
1	

CS 1110 Fall 2012: Walker White	

•  Outcomes:	

§  Fluency in (Python) procedural programming	

•  Usage of assignments, conditionals, and loops	

•  Ability to design Python modules and programs	

§ Competency in object-oriented programming	

•  Ability to write programs using objects and classes.	

§ Knowledge of searching and sorting algorithms	

•  Knowledge of basics of vector computation	

•  Website:	

§ www.cs.cornell.edu/courses/cs1110/2012fa/	

Class Structure	

•  Lectures. Every Tuesday/Thursday 	

§  Not just slides; interactive demos almost every lecture	

§  You may attend either Lecture section (9 or 11)	

§  Semi-Mandatory. 1% Participation grade from iClickers	

•  Section/labs. ACCEL Lab, Carpenter 2nd floor 	

§  Guided exercises with TAs and consultants helping out	

§  Register for ANY section, but go to the one you want	

•  Tuesday: 	
12:20, 1:25, 2:30, 3:35	

•  Wednesday: 	
10:10, 11:15, 12:20, 1:25, 2:30, 3:35, 7:20	

§  Mandatory. Missing more than 2 lowers your final grade	

Class Materials	

•  Textbook. Think Python by Allen Downey	

§  Supplemental text; does not replace lecture	

§  Hardbound copies for sale in Campus Store	

§  Book available for free as PDF or eBook	

•  iClicker. Acquire one by next Tuesday	

§  Will periodically ask questions during lecture	

§  Used to judge class understanding	

§  Will get credit for answering – even if wrong	

•  Python. Necessary if you want to use own computer	

§  See course website for how to install the software	

Helping You Succeed: Other Resources	

•  Consultants. ACCEL Lab Green Room	

§  Daily office hours (see website) with consultants	

§  Very useful when working on assignments	

•  AEW Workshops. Additional discussion course	

§  Runs parallel to this class – completely optional	

§  See website; talk to advisors in Olin 167.	

•  Piazza. Online forum ask and answer questions	

§  Go here first before sending question in e-mail 	

•  Office Hours. Talk to the professor!	

§  Available in Hollister 202 between lectures	

Assignments	

•  Major portion (40%) of your final grade	

§  Larger projects due every two weeks	

•  First assignment requires mastery	

§  Submit, get feedback, resubmit, … until correct 	

§  Everyone eventually scores 10/10	

•  Later assignments are designed to be fun	

§  Examples: graphics, image manipulation	

§  Final project is a Breakout game project	

•  Submitted via Course Management System (CMS)	

§  Visit cms.csuglab.cornell.edu/ to check you are enrolled	

Things to Do Before Next Class	

1.  Register your iClicker	

§  Does not count for ���

grade if not registered	

2.  Enroll in Piazza	

3.  Sign into CMS	

§  Quiz: About the Course	

§  Complete Survey 0	

4.  Read the textbook	

§  Chapter 1 (browse)	

§  Chapter 2 (in detail)	

•  Everything is on website!	

§  Piazza instructions	

§  Class announcements	

§  Consultant calendar	

§  Reading schedule	

§  Lecture slides	

§  Exam dates	

•  Check it regularly:	

§  www.cs.cornell.edu/

courses/cs1110/2012fa/	

2	

Expressions vs Statements	

Expression	

•  Represents something	

§  Python evaluates it	

§  End result is a value	

•  Examples:	

§  2.3
§  (3+5)/4

Statement	

•  Does something	

§  Python executes it	

§  Need not result in a value	

•  Examples:	

§  print “Hello”
§  import sys

Will see later this is not a clear cut separation	

Value	

Complex Expression	

Type: Set of values and the operations on them	

•  Type int:	

§  values: …, –3, –2, –1, 0, 1, 2, 3, 4, 5, …	

§  operations: +, –, *, /, **, unary –	

•  Principal: operations on int values must yield an int	

§  Example: 1 / 2 rounds result down to 0	

•  Companion operation: % (remainder)	

•  7 % 3 evaluates to 1, remainder when dividing 7 by 3	

§  Operator / is not an int operation in Python 3 (use // instead)	

“Whole” numbers w/o decimals	

multiply	
 to power of	

Memorize this definition!	

Write it down several times.	

Type: Set of values and the operations on them	

•  Type floating point (or float):	

§  values: fractions and/or real numbers	

•  If you add a decimal, Python assumes it is a float (e.g. 2.0)	

•  Without a decimal, Python assumes it is an int (e.g. 2)	

§  operations: +, –, *, /, **, unary –	

•  But meaning is different for floats	

•  Example: 1.0/2.0 evaluates to 0.5 	
	

•  Exponent notation is useful for large (or small) floats	

§  22.51e6 is –22.51 * 106 or –22510000	

§  22.51e–6 is 22.51 * 10–6 or 0.00002251	

§  Must start with an integer: 1e5 is ok, but e5 is not	

Representation Error	

•  Python stores floats as binary fractions	

§  Integer mantissa times a power of 2	

§  Example: 12.5 is 10 * 2-3	

•  Impossible to write every number this way exactly	

§  Similar to problem of writing 1/3 with decimals	

§  Python chooses the closest binary fraction it can	

•  This approximation results in representation error	

§  When combined in expressions, the error can get worse	

§  Example: type 0.1 + 0.2 at the prompt >>>	

mantissa	
 exponent	

Type: Set of values and the operations on them	

•  Type boolean or bool: 	

§  values: True, False	

§  operations: not, and, or	

•  not b: 	
 True if b is false and False if b is true	

•  b and c: True if both b and c are true; False otherwise	

•  b || c: 	
 True if b is true or c is true; False otherwise 	

•  Often come from comparing int or float values	

§  Order comparision: 	
i < j 	
i <= j 	
i >= j 	
i > j	

§  Equality, inequality: 	
i == j 	
i != j	

==, not =	

Casting: Converting Value Types	

•  Basic form: type(value)	

§  float(2) casts value 2 to type float (value now 2.0)	

§  int(2.56) casts value 2.56 to type int (value is now 2)	

•  Narrow to wide: bool ⇒ int ⇒ float	

•  Widening Cast. Python automatically if needed	

§  Example: 1/2.0 evaluates to 0.5 (casts 1 to float)	

•  Narrowing Cast. Python never does automatically 	

§  Narrowing casts cause information to be lost	

§  Example: float(int(2.56)) evaluates to 2.0	

	

