Lecture 05

Functions

Erdal Yılmaz

Cornell University

July 8, 2013

Before we begin

HW2 Released Tomorrow

FL Vote for Final

Outline

- Functions
- M-files
- Subfunctions
- Anonymous functions
- Examples
- Factorial Function
- Approximating Sine function
- Sieve of Eratosthenes

Functions

Syntax

```
function [y1,..,yN] = func_name(x1,..,xM)
% Help text written here and it will be
% shown until the first non-comment line
% Do stuff
end % optional
```


Factorial Function

factorial

$$
n!=1 * 2 * \ldots * n \quad 0!=1 \quad 1!=1
$$

Code

```
function f = factorial (n)
% Computes n! = 1*2*...*n
    f = 1;
    for j = 1:n
        f = f * j;
    end
end
```


M-files

Function Files: define functions

```
function z = fname (x,y)
% This file has to be named fname.m
    z = x + y;
end
```

Script Files: collection of statements

```
% This file can have any valid filename
a = input('Enter x: ');
b = input('Enter y: ');
c = fname(a,b);
disp(c)
```


Variable Scope

Function Scope

```
function z = fname (x,y)
% This file has to be named fname.m
    z = x + y;
end
```

Global Scope

$$
\begin{aligned}
& \mathrm{x}=5 ; \operatorname{disp}(\mathrm{x}) ; \\
& \mathrm{a}=\text { input('Enter } \mathrm{x}: \quad \text { '); } \\
& \mathrm{b}=\text { input('Enter } \mathrm{y}: \quad \text { '); } \\
& \mathrm{c}=\text { fname }(\mathrm{a}, \mathrm{~b}) ; \\
& \text { disp(c); disp(x); }
\end{aligned}
$$

Subfunctions

Functions within functions

```
function y = myfunc(x)
    y = sub1(sqrt(x)) + sub2(x)
    function t = subl(x)
        t = log(x);
    end
    function r = sub2(p)
        r = 2*p;
    end
end
```


Anonymous Functions

not stored in a file

$$
\begin{aligned}
& \text { myfunc }=@(x)\left(x^{\wedge} 2\right) ; \\
& y=\text { myfunc }(3) ;
\end{aligned}
$$

Approximating Sine Function

$$
\begin{aligned}
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

What's wrong with the code?

```
function s = approx_sin (x, k)
n = 0; s = 0;
while n < (2k+1);
    s = s + (-1)^n + x^n /factorial(n);
    n = n + 1;
end
```


Approximating Sine Function

$$
\begin{aligned}
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Correct Version

```
function \(s=\) approx_sin \((x, k)\)
\(\mathrm{n}=0 ; \mathrm{s}=0\);
while \((2 \star \mathrm{n}+1)<\mathrm{k}\)
    \(s=s+(-1)^{\wedge} n * x^{\wedge}(2 * n+1) /\) factorial \((2 * n+1)\);
    \(\mathrm{n}=\mathrm{n}+1\);
end
```


Primes Function

Question
What are all prime numbers $\leq N$?

Using what we know

```
function p = primesl (N)
    p = []; % creates an empty array
    for j = 1:N
        if isprime(j) % built-in isprime
            p = [p, j]; % expands the array
        end
    end
end
```


A Better Primes Function

Add knowledge
All prime numbers, except 2, are odd numbers.

Updated code

```
function p = primes2
(N)
    if N>1, p = [2]; else p = []; end
    % check only odd numbers
    for j = 3:2:N
        if isprime(j)
        p = [p, j];
        end
    end
end
```


Measuring Performance

tic/toc tic starts the timer, toc returns the elapsed time.

Comparing primes functions

```
N = input('Enter N: ');
tic % Start timer
p0 = primes(N); % Call built-in primes
t0 = toc; % Stop timer and
    % store elapsed time
% Let's also measure our functions
tic; p1 = primes1(N); t1 = toc;
tic; p2 = primes2(N); t2 = toc;
```


Why is it slow?

- We check isprime for $3,5,7,9,11,13,15, .$.
- Why do we check 9? 15? 21? 25? ..

Current Version

```
function p = primes2 (N)
    if N>1, p = [2]; else p = []; end
    % there are unnecessary checks
    for j = 3:2:N
        if isprime(j)
            p = [p, j];
        end
    end
end
```


Sieve of Eratosthenes

Prime Sieve

- Idea: Eliminate the multiples of a number ahead of time, so that we don't need to check it.

Algorithm

```
Create an array X of all 1's of length N
Set X(1) to 0
Find position k of next 1 in the X array
If k is less than or equal to sqrt(N)
    Set X(2*k), X(3*k), X(4*k) ... to zero
    Go back to finding k
Else
    Find the indices of all 1's in X array
These indices are prime numbers
```


Sieve of Eratosthenes

```
function p = primes3 (N)
    X = ones(1,N); % An array of N 1's
    X(1) = 0; % 1 is not a prime number
    m = floor(sqrt(N)); % The maximum number upto
            % which we have to work
    k = 2; % The next available 1 in X array
            % if X(2) exists :)
    while k <= m
        % Set X(2*k) X (3*k) etc to zero
        for j = 2*k:k:N
            X(j) = 0;
        end
        % Find the next 1 in X array
        k = k + 1;
        while X(k) ~}=
            k = k + 1;
        end
    end
    p = find(X == 1); % Find all indices of elements
                                % which are equal to 1 in X array
end
```

