
CS 1109 Homework 3 - Solutions July 29, 2013

1 Chess

1.a Initialization

Initialization can be written as a simple assignment.

function board = initialize()
% Returns an initialized chessboard

board = [8 9 10 11 12 10 9 8;
7 7 7 7 7 7 7 7;
0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0;
1 1 1 1 1 1 1 1;
2 3 4 5 6 4 3 2];

1.b Board Validation

A simple validation can be done by counting the number of pieces and figuring
out if there is an impossible scenario is in place. One can think of many compli-
cated situations to create conditional statements and then combine them with
logical operators for the validation. But since we will return only a true/false
value, at any point when we detect an invalid situation, we can set the output
to false and return.
Let’s write a couple conditions. The first one would be to check whether each
player has less than 9 pawns. Since pawns can be converted to other pieces
when they advance to the other edge of the board, for each extra piece of other
pieces, the number of lost pawns has to compensate for the difference. When
we count the number of excess pieces the bishop is tricky! Remember that our
validation function is incomplete.

function v = isvalid(board)
% Checks if the matrix provided as a chessboard is valid
% Consider counting pieces, board size etc. You don't need
% to consider pawns reaching the lowest or highest ranks.
% (but in the solutions we did.)

% Check board size
if ˜isequal(size(board),[8 8]), v = 0; return;

% Check number of pawns
nwp = sum(sum(board == 1)); % or use nnz function!
nbp = sum(sum(board == 7));
num pawns = nwp < 9 && nbp < 9;
if ˜num pawns, v = 0; return;

% Number of kings
nwk = sum(sum(board == 6));

1

CS 1109 Homework 3 - Solutions July 29, 2013

nbk = sum(sum(board ==12));
% We can only have one king for each player
if nwk ˜= 1, v = 0; return;
if nbk ˜= 1, v = 0; return;

% Number of bishops
nwb = sum(sum(board == 4));
nbb = sum(sum(board ==10));

% Number of knights
nwn = sum(sum(board == 3));
nbn = sum(sum(board == 9));

% Number of rooks
nwr = sum(sum(board == 2));
nbr = sum(sum(board == 8));

% Number of queens
nwq = sum(sum(board == 5));
nbq = sum(sum(board ==11));

% For each player initially we have two bishops sitting
% on black or white squares. For a player, we can ignore
% at most one bishop sitting on a white/black squares.
% The r+c value is even for white squares, and odd for
% black squares!

[rwb, cwb] = find(board == 4);
wb = rwb+cwb; % r+c values for White's bishops
wb on white = sum(rem(wb,2) == 0);
wb on black = sum(rem(wb,2) == 1);
% Minimum excess bishops for White
nweb = max(wb on white − 1, 0) + max(wb on black − 1, 0);

[rbb, cbb] = find(board == 4);
bb = rbb+cbb; % r+c values for White's bishops
bb on white = sum(rem(bb,2) == 0);
bb on black = sum(rem(bb,2) == 1);
% Minimum excess bishops for Black
nbeb = max(wb on white − 1, 0) + max(wb on black − 1, 0);

% Excess pieces for White
nwe = nweb + max(nwn−2,0) + max(nwr−2,0) + max(nwq−2,0);
if (nwp−8) < nwe, v = 0; return;
% Excess pieces for Black
nbe = nbeb + max(nbn−2,0) + max(nbr−2,0) + max(nbq−2,0);
if (nbp−8) < nbe, v = 0; return;

% Two kings can't be neighbors!
[rwk, cwk] = find(board == 6);
[rbk, cbk] = find(board ==12);
if abs(rwk−rbk) == 1 | | abs(cwk−cbk) == 1, v = 0; return;

% The pawns of a given player can't be at their home rank!
wp = sum(sum(board(1,:) == 7));
bp = sum(sum(board(8,:) == 1));
if wp > 0 | | bp > 0, v = 0; return;

2

CS 1109 Homework 3 - Solutions July 29, 2013

1.c Moving Pieces

First, we need to convert the string into row and column indices for the board.
In order to move a piece from a source location to a destination, we read the
value and copy it to the target. The source location becomes empty after the
move.

function board = move piece(board, move)
% Update the board, using the string move, which encodes a
% chess move in coordinate notation.

move = upper(move);

initial file = 1 + move(1) − 'A';
initial rank = 9 − (move(2) − '0');

final file = 1 + move(4) − 'A';
final rank = 9 − (move(5) − '0');

% Assuming move is valid!

board(final rank,final file) = board(initial rank,initial file);
board(initial rank,initial file) = 0;

1.d Performing Multiple Moves

We read a game recorded in coordinate notation in a text file. Each line contains
a single move. We count until the move number is reached and update the board
after each move.

function board = read moves(filename, move number)
% Reads the list of moves from a text file, and returns
% the board state after a specified move (line) number.

f = fopen(filename,'r');

board = initialize();
move id = 0;

while ˜feof(f) && move id < move number
move = fscanf(f,'%c',5);
temp = fscanf(f,'%c',1); % 2 for Windows
board = move piece(board, move);
move id = move id + 1;

end

fclose(f);

3

CS 1109 Homework 3 - Solutions July 29, 2013

1.e Possible Moves

Assuming we have functions for each piece which return its possible moves, we
can scan the board piece by piece to generate their possible moves and combine
them together. We ignore castling, en passant etc. We also assume that we are
not in check position, so we don’t need to move our King or need to protect it
right now.

function moves = possible moves(board, bw, filename)
% Returns the possible moves on the current board.
% If bw is 0, moves correspond to White, if bw is 1
% moves correspond to Black. The moves are also written
% to a text file specified by its filename.
% The storage in the file should be in coordinate notation.
% Each move should occupy a single line.

t = [];
for r = 1:8

for c = 1:8
m = [];
if bw == 0,

switch board(r,c)
case 1, m = pawn moves(r,c,board,bw);
case 2, m = rook moves(r,c,board,bw);
case 3, m = knight moves(r,c,board,bw);
case 4, m = bishop moves(r,c,board,bw);
case 5, m = queen moves(r,c,board,bw);
case 6, m = king moves(r,c,board,bw);

end
else

switch board(r,c)
case 7, m = pawn moves(r,c,board,bw);
case 8, m = rook moves(r,c,board,bw);
case 9, m = knight moves(r,c,board,bw);
case 10,m = bishop moves(r,c,board,bw);
case 11,m = queen moves(r,c,board,bw);
case 12,m = king moves(r,c,board,bw);

end
end

t = append moves(r,c,t,m);
end

end

moves = write moves to file(t,filename);

The target locations return by piece functions have to be appended with their
source location. We can employ array expansion using comma and semicolons.
The size of array t is (4×numberOfDiscoveredMovesSoFar), whereas the size of
m is (2×numberOfMovesOfTheCurrentPiece). We can append two rows on top
of m, and paste the result on the side of t.

4

CS 1109 Homework 3 - Solutions July 29, 2013

function t = append moves(r,c,t,m)
% Assuming m stores the target positions in two rows
l = size(m,2);
if l > 0,
t = [t, [[r*ones(1,l); c*ones(1,l)]; m]];
end

The subfunction which writes the moves to a text file is as listed as follows:

function moves = write moves to file(t,fname)
moves = [char(t(2,:)−1+'A');

char(9−t(1,:)+'0');
char(t(4,:)−1+'A');
char(9−t(3,:)+'0')];

f = fopen(fname,'w');
for ii = 1:size(moves,2)
fprintf(f,'%c%c−%c%c\n',moves(1,ii),moves(2,ii),moves(3,ii),moves(4,ii));
end
fclose(f);

Helper Functions

In the code listings for piece move functions, we made use of the following helper
functions.

function ob = onboard(r,c)
ob = r < 9 && r > 0 && c < 9 && c > 0;

function io = isopponent(r,c,board,bw)
io = any(board(r,c) == ((1:6)+(1−bw)*6));

function e = isitempty(r,c,board)
e = onboard(r,c) && (board(r,c) == 0);

function yn = cantake(r,c,board,bw)
yn = onboard(r,c) && isopponent(r,c,board,bw);

function yn = canmove(r,c,board,bw)
yn = onboard(r,c) && (cantake(r,c,board,bw) | | isitempty(r,c,board));

5

CS 1109 Homework 3 - Solutions July 29, 2013

Pawn

function t = pawn moves(r,c,board,bw)

t = [];

d = −1+2*bw; % direction based on player's color
if onboard(r+d,c),

if isitempty(r+d,c,board), t = [t,[r+d;c]]; end
end

for j = c−1:2:c+1 % check diagonals for opponent
if onboard(r+d,j),

if isopponent(r+d,j,board,bw)
t = [t,[r+d;j]];

end
end

end

if bw == 1 && r == 2, % starting position?
if isitempty(r+1,c,board) && isitempty(r+2,c,board),

t = [t, [r+2;c]];
end

end

if bw == 0 && r == 7, % starting position?
if isitempty(r−1,c,board) && isitempty(r−2,c,board),

t = [t, [r−2;c]];
end

end

Bishop

We use an indicator whether we are blocked or not in some direction. By setting
that condition to true, we can break out of the loop. Similar detection for
blocking can be used for the rook as well.

function t = bishop moves(r,c,board,bw)
t = [];
j = c;
blocked = 0;
for i = (r+1):8 % South−West direction

j = j − 1;
if j > 0 && possible(i,j), t = [t, [i;j]]; end
if blocked, break; end

end

k = c;
blocked = 0;
for i = (r+1):8 % South−East direction

k = k + 1;
if k < 9 && possible(i,k), t = [t, [i;k]]; end
if blocked, break; end

6

CS 1109 Homework 3 - Solutions July 29, 2013

end

j = c;
for i = (r−1):−1:1 % North−West direction

j = j − 1;
if j > 0 && possible(i,j), t = [t, [i;j]]; end
if blocked, break; end

end

k = c;
blocked = 0;
for i = (r−1):−1:1 % North−East direction

k = k + 1;
if k < 9 && possible(i,k), t = [t, [i;k]]; end
if blocked, break; end

end

The subfunction possible is given as follows:

function p = possible(a,b)
p = ˜blocked && canmove(a,b,board,bw);
if ˜isitempty(a,b,board),
blocked = 1;

end
end % possible

end % bishop moves

Knight

Knight makes L-shaped moves and it can jump over other pieces.

function t = knight moves(r,c,board,bw)
t = [];

if r > 2
if c > 1 && possible(r−2,c−1), t = [t, [r−2; c−1]]; end
if c < 8 && possible(r−2,c+1), t = [t, [r−2; c+1]]; end

end

if c > 2
if r > 1 && possible(r−1,c−2), t = [t, [r−1; c−2]]; end
if r < 8 && possible(r+1,c−2), t = [t, [r+1; c−2]]; end

end

if r < 7
if c > 1 && possible(r+2,c−1), t = [t, [r+2; c−1]]; end
if c < 8 && possible(r+2,c+1), t = [t, [r+2; c+1]]; end

end

if c < 7
if r > 1 && possible(r−1,c+2), t = [t, [r−1; c+2]]; end
if r < 8 && possible(r+1,c+2), t = [t, [r+1; c+2]]; end

end

7

CS 1109 Homework 3 - Solutions July 29, 2013

function p = possible(a,b)
p = canmove(a,b,board,bw);
end

end

Rook

function t = rook moves(r,c,board,bw)
t = [];

blocked = 0;
for i = r−1:−1:1

if possible(i,c), t = [t,[i;c]]; end
if blocked, break; end

end

blocked = 0;
for i = r+1:8

if possible(i,c), t = [t,[i;c]]; end
if blocked, break; end

end

blocked = 0;
for i = c−1:−1:1

if possible(r,i), t = [t,[r;i]]; end
if blocked, break; end

end

blocked = 0;
for i = c+1:8

if possible(r,i), t = [t,[r;i]]; end
if blocked, break; end

end

function p = possible(a,b)
p = ˜blocked && canmove(a,b,board,bw);
if ˜isitempty(a,b,board),
blocked = 1;

end
end % possible

end % rook moves

8

CS 1109 Homework 3 - Solutions July 29, 2013

Queen

Queen is no different than a superposition of a bishop and a rook.

function t = queen moves(r,c,board,bw)
t1 = bishop moves(r,c,board,bw);
t2 = rook moves(r,c,board,bw);
t = [t1, t2];

King

King is slightly difficult since we need to take into account whether a destination
square is targetted by oppenent’s pieces. You have to consider the possible
moves of your opponent in the next turn to figure out where you can’t move to.
You need to create a temporarily updated board and call a modified version of
the possible moves function. The complication comes from two kings being
close to each other. Do you see why? In order to reduce the complexity, let’s
simply return a list of possible squares around it.

function t = king moves(r,c,board,bw)
t = [];

blocked = 0;

for i = r−1:r+1
for j = c−1:c+1

if possible(i,j), t = [t,[i;j]]; end
end

end

function p = possible(a,b)
p = canmove(a,b,board,bw);
end % possible

end % king moves

9

	Chess
	Initialization
	Board Validation
	Moving Pieces
	Performing Multiple Moves
	Possible Moves

