Network Monitoring

Cornell Network Research Group

Cornell Computer Science

Russell Schwager (russells@cs.cornell.edu)

May 16, 1998
Abstract:

Currently, the network management tools that exist today do not adequately monitor network components. There are a lot of events that can occur that can throw havoc into a network. For example, on election day, lots of web surfers go to election results sites causing unusual traffic flows through the network. This event is a one time event that could bring a network to its knees. The goal of this project is to monitor networks and detect when various components are not running normally and alerting the network administrator of this fact. It is unreasonable to expect a network administrator to check every node on a network so it is advantageous if the network administrator is alerted to nodes acting abnormally. This work is going to be done by using scripts to log various network statistics and develop heuristics to define network stability. Eventually, this work will be tied into the work being done on automatic topology discovery to create tools for a next-generation network management system.

Functionality:

The network monitoring tool has three main functions: gathering statistics, parsing and summarizing the data, and logging errors. The data gathering function is independent of the modules that analyze and summarize the data. This approach allows the tool to be used in different environments like simulators such as REAL or using real world hardware. The tool was implemented with portability and modularity in mind. The networking monitoring tool is a bunch of scripts written in PERL which can run under UNIX and Windows. The software used to produce graphs is gnuplot which can run on the same platforms as PERL. The protocol used in gathering the statistics from the network is SNMP (simple network management protocol). This is a widely supported protocol running on a range of devices from routers to end nodes running Windows NT Server.

The script that gathers data needs some information to work. Therefore, the script requires several input files. The first piece of information needed is which statistics or MIB entries to gather. This information is stored in several files. One set of the files is used to indicate the MIB’s to be monitored that are node specific. There is one input file for each node. The second file contains the MIB entries to be logged for all nodes set to be monitored. The other piece of information needed is what nodes to be logged and how frequently. That information is stored in another file. The script does contain driver functions which allows for creating these files. With all this information, the script will get the information from the router and store it in a file. Before the script does any logging, it checks to make sure that the node is alive by pinging the node and then checks to see if SNMP is supported. If those checks pass, the script gets the information and stores it. If there is a problem with an SNMP request, it is noted in the data file and could be noted in the error log file. The timing mechanism used is the sleep function in PERL. If this unacceptable, the cron facility on UNIX can be used but then ability to have various frequencies for logged nodes is compromised.

Once there is data, other scripts can be run to parse, summarize and analyze the data. There are several different options for analyzing the data. An HTML page could be generated, or various graphs can be made up. The graphs can be done in various ways. The values from a MIB entry can be fitted to a fourier transform or to a gamma distribution. The values could also be plotted as an XY plot showing the values over time. The HTML page that is generated takes the data and for each hour computes the minimum value, the maximum value, the mean, and the variance for a given MIB entry. It displays that information in a table and shows a graph with the values over time along with a line showing the average values for the MIB entry over the lifetime of the logged node with error bars to show the standard deviation over the lifetime of the logged node. When the HTML page is generated, if the mean for a given block of time varies from the average value over time by a given threshold, then a warning message is logged in the log file and the script can change the interval in which the node is monitored. When the scripts are done parsing and analyzing the data, all the data files being used can be stored in a .tar file.

Interface Functions:

remove_monitor(node) – Will remove the node passed in as a parameter from the list of nodes to be monitored.

monitor_node(node, mib, mib description, [frequency in seconds]) – Will add the MIB entry for the node passed in to the list of MIB entries to be monitored. If the node isn’t on the list of nodes to be monitored, it will be added at the frequency given.

log(error/warning, information on the error, node, [date])

do_log() – This starts the logging. It will initialize the script, load up all the files needed and start the logging.

log_debug() – This function can be used to test the functionality of the program. Currently, it shows examples of functions being called.

Installation:

1. Set the global variables in the function log_init() in log.pl.

$gnuplot – Indicates the path of gnuplot. (version 3.6 should be used with .gif support)

$htmldir – The directory where HTML pages should be stored.

$fft – The path where the fast fourier transform program is located. The source code can be found in the tools directory of this package.

$gamma – The path where the gamma distribution program is located. The source code can be found in the tools directory of this package.

$dir – The directory where all the data files are stored.

$mibFile – The path of the input file containing the MIB entries to be logged for all monitored nodes.

$initFile – The path of the input file containing the nodes to be monitored and the frequencies for those nodes.

$logFile – The path of the log file used to store warning/error messages.

$archiveDir – The path where archived data files are stored.

2. Verify that the snmputil program is compiled and executable. The program is used in snmp.pl and the source code can be found in the snmp directory of the package.

3. Whether using the functions above or done manually, create the necessary input files for the scripts. Below is the format for the files:

· $mibFile – “unique ID|oid|description” (ex. “RID|.1.3.6.1.2.1.1.5|Router ID”)

· $initFile and router input files (path is $dir/<routername>-input.txt) – “routername:frequency (in sec.)” (ex. “csgate4.cs.cornell.edu:300”)

4. Call either do_log() or log_debug() to run the script.

Recommendations and Hints:

· The frequency used for each router should be in the range of 5 or 10 minutes. The absolute maximum value used should be 1 hour. A lot of the MIB values are stored as counter values in the range of 0 to 232 and if the time interval is too large, the counter could roll over several times in between logging. Using a really small frequency of 1 minute or so creates a lot of network traffic and results in a large number of datafiles.

· The graphs on the HTML pages will not include the average line and standard deviation error bars until there is good data to be able to create those lines. The data must contain less than 3% bad SNMP requests to be used. When the data is good, it is stored in 2 files called $dir/<router>-average.dat and $dir/<router>-stddev.dat. The data stored for the means doesn’t contain the maximum value and the minimum value of each data set to remove outlier points.

· When an SNMP request is dropped, the value used when plotting the data is 0 therefore, SNMP drops can be noticed by irregular patterns in a graph.

· Large spikes in a graph can indicate a large burst of activity, or a router being reset.

