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Abstract:   

The international RoboCup competition entails the construction of fully 
autonomous, fast -moving robots which work together as a team to compete 
against similar teams in a robotic soccer match.  These robots function within the 
larger context of a system combining artificial intelligence, computer vision, and 
numerous electrical and mechanical subsystems.   
 
The electrical engineering team designed and built the individual electrical 
subsystems (wireless, microcontroller design, motion control, dribbling, and 
kicking) as well as smoothly integrated them into the larger system.  Our system 
is a significant improvement over that of 2001 as we have revamped the 
firmware architecture and made our dribbling, kicking, IR sensing, and wireless 
systems more robust.  We have also improved debugging capabilities, added in-
circuit programmability, improved configurability, and modularized the board 
design. 
 
The result is a well-integrated electrical system which allows the realization of 
the mechanical design goals and enhances the functionality of the artificial 
intelligence and control.  Our robot is faster, more robust, more flexible and 
easier to service than in previous years. 
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1.  Individual Contributions 
 
Liang-Yu (Tom) Chi 
 
Tom Chi designed and implemented the new IR, ultrasonic, variable dribbling, and 
variable kicking circuits.  Specifically he improved the IR robustness, took the ultrasonic 
system and variable dribbling from concept to completion, and discovered a simple 
solution to variable kicking.  He also wrote the new proportional-control motion code as 
well as designing the hardware necessary to drive the motors.  During first semester, he 
worked with Katherine Ko to develop the Robocup networking API and perform 
network timing tests. 
 
Michael Jordan 
 
Michael Jordan’s main responsibility was the wireless communications system for the 
RoboCup system.  He was the head of wireless sub-group, which worked on increasing 
the reliability of the wireless communications system.  To this end, Michael Jordan 
worked on researching alternative wireless modules as well as designing, implementing, 
and laying out the circuitry to support these modules.  He also developed, implemented, 
and applied a system of tests and test metrics to evaluate the performance of the wireless 
modules and their associated design parameters.  He is now working on incorporating 
forward error control and error detection onto the wireless system.  In addition to his 
work on the wireless communication, he provides supporting roles to the other team 
members in areas such as system design, debugging, and maintenance.     
 
Sinman Katherine Ko 
 
Ko, Sinman Katherine is in the electrical engineering team of Robocup. She was 
responsible for developing a robust wireless system and efficient networking code for 
the autonomous robots. For networking, she developed server/multi-clients application 
for effective communication between the vision with other systems, for instance the 
compiler and simulator.  Another task was to design a robust wireless system that 
would reduce frequency interference, bit error rate and send packet within the 16.6ms 
time constraint, performed trade-off analysis and testing of different wireless module. 
She also was participating in overall analog and digital circuit layout testing. 
 
Wei Feng Li 
 
Wei Feng Li was responsible for integrating the Altera FPGA into the system.  He 
designed, debugged and verified the circuits on the FPGA, which are parts of both the 
motion control and ultrasonic systems.  To achieve this he analyzed the characteristics of 
the motor encoder.  He also helped to verify the circuit layout for the final design 
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circuits, and to investigate potential applications of the Atmel microcontroller in future 
design. 
 
Evan Malone 
 
Evan Malone is the project systems engineer.  He participated in the identification of 
requirements for, and the conception, design, and manufacture of the 2002 electrical 
systems.  His primary focus is the packaging of the systems to maximize modularity, 
robustness, and maintainability, without sacrificing performance.  Through the dedicated 
cooperative effort of the electrical and mechanical engineering groups, and the advice of 
the 2001, these goals have been greatly exceeded.   
 
Shahab Najmi 
 
Shahab Ahmed Najmi took the lead on microcontroller selection, and was responsible 
for developing the main microcontroller code. The main microcontroller is the 
processing and control hub of the robot.  It takes input from the wireless 
microcontroller, collecting, parsing and converting packets into wheel velocities and 
subsystem control instructions.  Once parsed, the ma in microcontroller forwards these 
commands and performs necessary control for the variable speed kicking, dribbling, and 
motion microcontrollers.   In addition to these duties, it checks battery level and writes 
key information to the debug LCD.  Shahab also worked on the design of robot support 
systems and actively participated in the system debugging at all stages. 
 
Michael Schwaller 
 
Michael Schwaller contributed to four main areas on the 2002 RoboCup system: the 
systems engineering and integration effort, the wireless communication subsystem, 
process and documentation, and overall system design and construction.   The systems 
engineering process included special focus on designing for testability, usability, 
maintainability, and robustness.  Michael contributed to the wireless module evaluation, 
selection, and implementation to produce a low-latency, high quality broadcast link to 
the team of robots.  Continued process and documentation improvement improved the 
quality of the design team’s efforts.  
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2. Executive Summary 
 
The international RoboCup Competition pits teams from around the world against each 
other in fast-paced robotic soccer matches.  Despite the competition format, there is a 
larger research motivation behind RoboCup: to develop a team of fully-autonomous 
robots who can defeat the human World Cup champions by 2050.  
 
Cornell has historically been an important 
contributor to RoboCup, introducing a 
number of key innovations over the years 
which have significantly raised the level 
of play.  Among these are the introduction 
of dribblers, omni-directional drive and 
controlled passing and motion.  These 
innovations have been rewarded by 1st 
place finishes in 1999 and 2000, and a 
strong 3rd place finish in 2001. 
 
The 2001 system offered improvements, 
and introduced CNC machining methods, 
but it also had significant drawbacks:  
overall the robots were slower than much 
of the competition and several subsystems 
including wireless, IR, and motion were less robust than desired.  Consequently our 
electrical engineering team has directed energies toward improving the robustness of 
these systems: supporting multiple carrier frequencies on the wireless system, making 
IR resistant to ambient light, and replacing unreliable PID control with microcontroller-
based proportional control.  Beyond improving robustness, we have also supported a 
number of improvements and innovations.  We now help realize a faster drive system, 
have added tightly controlled kicking and dribbling, and provided ultrasonic talkback to 
the intelligence and control system. 
 
Throughout the project, our team has maintained a strong systems focus.  This focus has 
greatly aided the integration of complex electrical subsystems into the larger context of 
mechanical design and artificial intelligence.  This year’s boards are more cleanly 
packaged and have been more thoroughly tested and reviewed.  Systems concepts have 
manifested themselves in our work via adding in-circuit programmability, improving 
configurability, extending debugging capabilities, and modularizing board design.  It 
has also simplified our trade-off analysis and allowed us to accomplish our goals within 
a compressed timeframe. 
 
The result is a well integrated electrical system which allows the realization of the 
mechanical design goals and enhances the functionality of the artificial intelligence and 
control.  Our robot is faster, more robust, more flexible and easier to service than in 
previous years. 
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3. System Overview 
 
This is the fourth year the Cornell RoboCup team has participated in the RoboCup 
Small-Size League competition.  The responsibilities of the electrical engineering group 
within the RoboCup project are to design and improve the electrical systems for the new 
team of robots, maintain the electrical system on the old robots, and to assist the 
RoboFlag team in their electrical requirements.   
 

 
 
 
The goal of the electrical engineering team is to build an efficient, robust and reliable 
electrical system that will help the Cornell RoboCup Team to reclaim the championship 
this year.  As Figure 1 suggests, we divide the project into three main platforms: digital, 
analog and wireless systems.  The wireless component receives the data transmitted 
from the AI computer.  The digital component processes the data from the wireless 
system and controls the different functions of the robot. The analog component 
distributes the digital supply voltage and provides power to the kicking, dribbling and 
motion control actuators. 
 
Last year, the electrical engineering team focused on improving robot performance of 
with most of the hardware unchanged.  This year, we take a different approach.  We 
decided to take a leading role by innovating rather than merely supporting the efforts of 

Digital Circuit 

Wireless 
Communication 

Analog Circuit 

Artificial 
Intelligence 

 

Mechanical 
System 

 

Figure 3. Electrical Engineering Gro up in the System 
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the Computer Science (CS) and Mechanical Engineering (ME) groups.  We researched 
and worked on several areas like new microcontrollers, more sophisticated and flexible 
control of actuators, more robust sensing, modularity, testability, maintainability, 
robustness, and usability.  We also took the lead in promoting designs and processes 
aimed at satisfying project, rather than individual group goals.   
 
This year’s electrical engineering team has begun to apply the systems engineering 
approach to the design process.  Focusing on well-documented requirements up-front 
compiled from prior years’ experience and from the insight of current project 
stakeholders ensures a more methodical, goal-oriented design approach.  Through the 
use of special task forces we are also able to focus on robust designs that place a special 
emphasis on maintainability, usability, and testability.  By explicitly considering systems 
integration issues early in the design phase and seeking inter-disciplinary team input 
leads to a tighter integration of the electrical subsystem into the final product.  In the 
presence of this well-documented process we reduce uncertainty and promote success of 
the electrical system while enhancing knowledge retention for future years. 
 
Here are the highlights of the major improvements we made from robots from previous 
generations.  A new wireless communications system between the control system and 
the robots is implemented.  The new system supports three different types of modules 
operating on different carrier frequencies for broadcasting data to the robots.  In 
addition, an optional, ultrasonic return path has been implemented to add flexibility.  
The main control system on the robot has been upgraded from a polling-based to a 
completely interrupt-driven system, thereby increasing robustness and reducing latency.  
A new high-performance four-wheel omni-locomotion system conceived by the 
mechanical group has been made feasible by the introduction of flexible, software 
configurable feedback control circuitry, and more efficient power electronics.  Other 
performance improvements include variable-energy kicking, torque-feedback controlled 
dribbling for better ball control.  A great deal of effort was expended on making the 
electrical systems easily used, maintained, debugged, and more robust through the 
addition of a debug port, error display, intra-board communication eavesdropping, 
modular motherboard/daughterboard configuration, and by designing to counteract 
anticipated failures. 
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4. Systems Engineering Design Process 

4.1. Process Overview 

4.1.1. Overview 
 
The discipline of systems engineering operates to integrate all of the functional 
subgroups involved in a project over the whole product cycle.  System engineers make 
sure the product matches the marketplace, define the components to enable the technical 
engineers to design and build them, determine most of the design choices affecting 
system cost and performance, ensure that  the components will integrate successfully 
and perform together as required, provided that their specifications are free of error.  At 
the project planning phase, a project manager creates an initial systems engineering 
management plan for the project, defining tasks, resources, milestones, costs and 
schedule at each milestone.  At the same time a core technical process is applied to create 
a behavioral and structural model of the system.  Trade-off and risk analysis are 
performed to search first for feasible, then for optimal solutions, given the available 
resources and constraints.  During the project implementation phase, an iterative of 
sequential build-and-test process is carried out, and development is monitored with the 
aim of identifying any major errors that arise during the development process.   The 
product is finally validated by testing compliance with the required performance 
measures.  The whole systems engineering process proceeds in an iterative, controlled 
manner to ensure that the system meets the design criteria  within the available time and 
budget.  Written documentation is kept throughout the cycle to maintain corporate 
memory and permit learning from prior cycles.   
 
RoboCup is a complex, systems engineering project, with many components being 
redesigned and constructed from scratch by an inexperienced team of students subject to 
performance, schedule, resource and budgetary constraints.  Simultaneously satisfying 
these constraints and while proceeding through the technological development of the 
system is a very challenging information management problem.  It is essential that the 
various technical subgroups in the project share a common vision of the system on 
which they are working, and that the specific technical design requirements that they are 
attempting to satisfy result from a rational decomposition of the requirements for the 
fully integrated system.  Furthermore, everyone participating in the project has technical 
development responsibilities, and little time to spend on inessential overhead tasks.  For 
these reasons, a pragmatic and methodical approach to project information management 
is necessary.  Several of the M.Eng. degree candidates participating in RoboCup are 
involved in the Cornell University Systems Engineering option, and have attempted to 
experiment with and apply a variety of systems engineering techniques and tools to 
RoboCup.  The result is a significant deviation from the idealized presentation of 
systems engineering provided above.  Over the course of the project, useful methods 
have evolved and expanded, while others have proven too burdensome or ineffective, 
and have died away.  A discussion of the various methods evaluated follows.  
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4.1.2. Group Meetings and Minutes 
 
The EE team holds a functional group meeting every week.  Group members would 
update and report their progress on the project over the previous week.  The meetings 
also allows group members to voice their problems and concerns for the whole team for 
open discussion.  This interactive communication process allows group members to 
exchange information, expectations and feedback as well as discuss about planning, 
upcoming schedules and deadlines and priorities.   
 
Minutes were initially instituted as a means for progress and task responsibility 
tracking, as well as a decision process history for ourselves or future teams to use to 
identify the origin of team decision process and system design failures.  The example 
form in the appendix is typical of the style used for recording meeting minutes. Minutes 
were kept fairly reliably for the first ¾  of the project duration, but few people found 
them useful, and most found them burdensome to record and post.  A more streamlined 
minutes design was suggested and employed by the EE group (See appendix), but even 
with the reduced overhead of this design, few people found them worth keeping.  In the 
very intense final quarter of the project duration, minutes have been de facto eliminated.   
 

4.1.3. Individual Laboratory Notebooks 
 
Each EE team member has his/her own individual laboratory notebook.  The function of 
the notebook is for idea retention.    It is advisable to transform the little ideas into the 
notebook.  .        
 
Nearly the entire first ½ of the project duration was spent in construction of 10 units of 
the 2001 design robots for use in an exhibition match of 11 vs. 11 robot soccer at the 
upcoming competition.  While manufacturing these robots, it was discovered that last 
year’s documentation was erroneous and incomplete in many details, and in ways 
which led to significant wasted time for this year’s team in reconstructing lost 
knowledge and correcting errors.  It was gradually realized that because the RoboCup 
project extends into the summer, beyond submission of grades and graduation and the 
associated motivation for diligence, most of the work performed during the summer did 
not make its way into any form of document, and was lost.  It is also all too common that 
from time to time, members may come up with some unique and interesting ideas, but 
then lose them for want of a very simple means of storing them.  Another advantage is 
that they are very handy for recording test results.  From these considerations emerged 
the concept of providing individual laboratory notebooks to each team member.  It is 
hoped that by placing few restrictions on their use, other than that content be legible, 
dated, and given a topic heading, members would find these notebooks to be a low 
impedance repository for ideas, observations, and test results that might prove useful to 
us or to future teams.  
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4.1.4. Intranet/Electronic Mail 
 
This year’s team was fortunate (for the initiative of an EE team member) to receive 
sponsorship from Intranets.com to have a team intranet for posting information, storing 
documents, posting calendars, and numerous other functions.    The intranet was an 
extremely useful tool for some and not that useful for others.  One major use of the 
intranet was the storage and distribution of documents for the team to access. It 
possesses a number of tools for event calendars with email reminders, polls, discussions, 
etc.  Unfortunately, though, the calendar tool is not very sophisticated, and could not 
handle multiple schedules.  An expanded bulletin board area on the site would have 
been valuable, as well.  More could have been made of the tool, but members and 
leaders both were somewhat reluctant to spend the time required to keep the 
information on the site up to date.  In addition to the intranet site, email list-serves were 
created for each of the subgroups to enable easy communication among team members 
and among functional subgroups.  These tools enabled the entire team to keep each 
other abreast of major accomplishments by delivering information in a timely manner to 
the entire team. 
 

4.1.5. Group Electronic Documentation 
 
The team felt that electronic documentation was also very important as a way to keep 
track of important data that was easy to lose in paper format.  Electronic documentation 
included: 
 

• Datasheets 
• Code Versioning System / CVS 
• Parts List 
• Board Issues List 
• Battery logging 
 

4.1.6. Datasheets 
 
Electronic copies of most of the data sheets available online were stored in a directory 
for easy access.  The ease of accessibility allowed quick information retrieval during both 
design and debugging phases.  A copy of all of the datasheets used by the 2002 electrical 
engineering team can be found in the Appendix  
 

4.1.7. Code Versioning System / CVS 
 
A late addition to the suite of electronic tools used was a code versioning system.  The 
original method of backup entailed copies of versions of the code accompanied by a 
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running history of modifications in a README file.  The system was replaced by the use 
of the free CVS package also used by the artificial intelligence and control group.  This 
software package allowed for much more comprehensive version control and 
comparisons of different states of the software development.  CVS will prove to be an 
invaluable tool as we approach the summer months of development. 
 

4.1.8. Parts List 
 
A parts list spreadsheet was developed to satisfy multiple needs during the project.  
Major categories in the spreadsheet included the following: 
 

• Part Description 
• Component Designator (name on schematic) 
• Footprint (Layout) 
• Description 
• Value 
• Manufacturer 
• Manufacturer Part Number 
• Digikey (Distributor) Part Number 
• Use (specific circuit in which part is used) 
• Quantity per Board 
• Comments 
• Bin Number 
• Total in Stock 
 

The spreadsheet allowed us to keep track of the inventory of parts still in stock, allowing 
us to order enough components, and Bin Number corresponded to the exact location of 
the parts.  Digikey part numbers along with quantities needed per board made it simple 
to order more parts as necessary.  Component designators provided the link between 
part numbers and the actual location of them on the physical board.  Lastly, the footprint 
was invaluable while laying out the board.  All of this information was in one 
convenient location and found multiple uses throughout our development process.  One 
minor setback was getting everyone to continue to keep the document updated.  To 
improve this process we recommend using change tracking, using a database system 
(MS Access, for instance), or keeping the document in CVS to keep mistaken changes 
from entering into the system. 
  

4.1.9. Board Issues List 
 
A board issues list was started for each board after our first design was sent out for 
fabrication.  As errors were discovered, they were posted to a document with a status 
and comments.  This document served invaluable as a checklist when performing 
revisions on the board to ensure that the team did not miss errors.     
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4.1.10. Battery Logging 
 
Batteries were labeled with a designator and then matched to a battery log to record the 
voltage measured after charging.  This record of charging history allows us to keep track 
of the battery performance over its lifetime.  Battery charging instructions were written 
and training for other team members was initiated to ensure proper maintenance habits.   
 

4.1.11. Conclusion / Process Benefits 
Time and again, we discovered that the sense of urgency of an impending deadline 
caused us to rush through preparations in the naïve hope of  being lucky – getting a 
successful result – this despite our stated goal of pursuing a methodical systems 
engineering approach.  This never works.  We are building a complex system, and there 
is no substitute for careful forethought, constant scrutiny of each others work, constant 
vigilance against the typical and inexplicable human failures.  Despite even the most 
sophisticated and patient methods, errors will still occur, but careful design, and a habit 
of diligence make the scale of the errors, and finding them far less difficult. 
 
 

4.2. System Engineering Product Cycle 
 
The systems engineering product cycle that the electrical engineering team adopted can 
be seen below.  Initially, previous years’ documentation was read to define paths 
already taken and areas that could use improvement.  Project stakeholders or customers 
are then interviewed to determine new requirements.  Customers included the project 
advisor and other team members.  The requirements were then used to drive the design.  
Preliminary design consisted mainly of breadboarding circuits followed by preliminary 
testing.  After having confidence in the design, the designs were sent for manufacturing 
and then more testing.  After iterations of this process, our final product emerged.  This 
end result then needed support through competition.  The need for support is then 
passed on to future teams. 
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4.3. Customer Needs 
 
Customer needs were gathered from previous years’ documentation, key veteran 
experts, current project stakeholders, and video recordings of prior matches.  The 
information gathered was then synthesized into requirements that can be found in the 
Appendix . 
 

4.4. Requirements Gathering 
 
An essential component of systems engineering (arguably of any task) is the clear 
statement of goals.  To this end, in the first ½ of the project, an effort was made to 
capture the global requirements for the RoboCup system, and to decompose them into 
technical requirements that could be used as design specifications by each of the 
technical subgroups working on the system.  Interviews were conducted with all 
technical groups, with project leadership, with all veteran members, and a close 
inspection of prior year’s documentation, prior year’s systems designs, and the work of 
other teams (on video) was made.  A set of documents were generated which stated the 
primary requirements that this year’s system was/is believed to need to meet to attain 
success.  These were decomposed through additional interviews with technical 
subgroups into more field-specific requirements. 
 

4.5. Special Task Forces 
 
As the design process proceeded, a conscious attempt was made to ensure that all 
technical subgroups were sharing the same vision of the fully integrated system, and 
that they were making design decisions first and foremost on the basis of their 
implications for the system. As systems become more complex, it becomes more 
essential to give careful consideration to matters beyond performance, most notably to 
the fact that everything must work before performance can matter.    This required some 
special EE and interdisciplinary task forces to consider special systems design issues.  
The issues can be broken down into several categories 
 

• Design for Testability 
• Design for Usability 
• Design for Maintainability 
• Design for Robustness 
• Design for Manufacture 

 
 

4.5.1. Design for Testability 
 
A large effort was put into making this year’s robots extremely easy to debug and test, 
as this was one of the main complaints of last year’s system after having built and 
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debugged eleven of the 2001 robots.  A team was formed with the sole intent of making 
the subsystems and other portions of the hardware and software systems easy to debug.  
A large list of numerous possible enhancements were considered including the 
following: 
 

• Adding jumpers to sections of circuits in order to physically remove parts of the 
system. 

• Aggregating wire harnesses so that there could be one point of connection from 
the robot to the electronics, allowing for a test harness to be built with 
monitoring points available on the harness. 

• Test points in the circuit allowing convenient probing of important signals such 
as power, ground, 5V regulation, and other key signals.  

• On-board display to show battery health, robot ID, wireless signal strength, and 
robot operational mode. 

• Register values that show the “health” of certain part of the system.  This 
“health” could be as simple as a “heartbeat” signal to ensure that the circuit we 
are viewing is still active and operating as expected. 

• A serial port for communications for debugging the micro-controller. 
• A graphical user interface (GUI) for the wireless transmitter in order to: 

o Test wireless transmissions 
o Gather data on other parts of the system 
o Re-use the application that can be used as a diagnostic tool plugged into 

the serial port. 
• Power on tests or self-tests to test each subsystem and other features. 
• Selectable test modes to isolate and test: 

o Dribbling 
o Kicking 
o Motion Control 
o Wireless System including Latency, Bandwidth, and Bit Error Rate 

 
After further consideration, analysis, or testing, some of the above were accepted, and 
some rejected.  A summary of the outcomes and the reasons for them follow: 
 

• Jumpers were not implemented, however, as a fortuitous side effect of our only 
feasible concept for multi-processor in-circuit programming (using SPDT 
switches to hold all but the micro to be programmed in reset), we are able to shut 
down individual microcontrollers. 

• An aggregating wire harness has become a motherboard with socketed 
daughterboards. 

• Testpoints were designed in, included in a first revision of the boards, then later 
removed to speed the routing process on a later revision under time pressure.  In 
the end, the hindrance to the routing process turned out to be an incorrectly 
sized “DRC routing box” - the inexperience of the OrCad operator.   A deadline 
precluded replacing them in the design. 
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• A backlit LCD is supported in the current design, and correct operation has been 
verified, but the device has yet to find its place in the very tightly packaged 
robot.  A few possible locations still exist. 

• The register/heartbeat code may still be included if code memory permits. 
• The debugging serial port is implemented in hardware, but is not yet supported 

in software.  It remains to be seen whether sufficient code memory space remains 
to include this functionality. 

• At present, it appears that we lack sufficient time prior to competition to develop 
a more sophisticated interface to the wireless transmitter. 

• Power-on self-tests will also depend on the availability of code memory. 
• Several selectable test modes have been implemented, but their sophistication 

and extent are limited. 
 

4.5.2. Design for Usability 
 
Another focus of the 2002 EE team was the usability of the robot.  In previous years, the 
human-robot interface was limited to a bank of dip switches to set robot modes, a small 
LED to display robot number, and a reset switch.  Connectors for hardware such as 
motors and sensors found themselves on all sides of the board and occasionally running 
from one side of the robot to the other.  Not many of the connections were labeled 
causing even more confusion to the user.  With respect to the board, the system was 
made up of a digital and analog board, where the analog board found itself underneath 
the digital board.  This placement made it difficult to gain access to the analog board.  
The boards were individually fastened to each other and to the chassis via four screws 
making board replacement an involved task.  Furthermore, a mechanical engineer 
attempting to access the kicking solenoid would find removal of the boards a difficult 
and annoying task.   
 
In 2002, the main design changes that made large differences in system usability were in 
the area of the human-robot interface and the physical layout and connection of the 
electrical boards to the robot chassis.  The LED has been replaced with a small back-lit 
liquid crystal display (LCD) that enables us to convey multiple pieces of information to 
the user.  Extra LEDs on both the analog and digital board convey information on 
different subsystem status. 

4.5.3. Design for Maintainability 
 
Maintainability may seem as an unimportant area to focus design energy on, but you 
will quickly learn the importance after using any system for a while.  The main focus of 
the maintainability team was on following items: 
 

• Batteries 
• Location of connectors 
• Types of connectors  
• Wireless module selection 
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4.5.3.1.  Batteries 
 
Battery removal on the 2001 robots was very difficult and required access to the bottom 
of the robot and removal of two small screws holding battery plates against the chassis.  
Batteries were in two packs that were connected by a wire harness that needed to be 
disconnected to remove the batteries.  This system worked well except that it was 
difficult to quickly remove the batteries from the robot and was extremely annoying 
with the frequency of battery replacement.  Secondly, the robot was not protected by its 
carbon fiber hat when the user would turn the robot upside down, placing a lot of 
pressure on the circuit boards and allowing for the possibility of harming circuit 
components by either force or static discharge.  In conjunction with the mechanical 
engineers, the batteries were designed in three always connected packs that could be 
inserted from the sides of the robot through hinged doors.  This solution made battery 
replacement much easier and decreased the size because of removal of connector 
complexity.  Screws were replaced by pins that could quickly be pulled in and out of the 
battery door hinges. 
 

4.5.3.2.  Location of connectors 
 
Connectors are a point of constant abuse, especially in the 2001 robot system where 
device connected from all sides of the robot to the bottom board with very short wires.  
The removal of the electrical boards required constant disconnection of the devices, 
which in turn suffered a lot of stress since the connectors were small and difficult to 
disconnect.  The 2002 system was designed to require a minimal amount of connectors 
to attach the devices to the actual robot.  The new system employs a 
motherboard/daughterboard design where the analog and digital boards plug into a 
motherboard that contains all of the necessary connectors.  In order to remove either of 
the main boards, no connectors must be disconnected.  Secondly, all connectors are 
placed near their respective device, removing excess cabling that would otherwise 
clutter up the robot and make ma intenance difficult. 
 

4.5.3.3.  Types of connectors 
 
The types of connectors were also studied in detail for there maintainability.  Connectors 
that were very difficult to connect and disconnect eventually lead to lots of frustration 
and stress on the system as users try to pull them apart.  Connectors were chosen that 
would allow simple connection, such as the new battery connectors.  The battery 
connectors are larger with accentuated clips that allow ease of use. 
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4.5.3.4.  Wireless module selection 
 
Wireless module selection was never an issue in the past, since there has always been 
only one type of receiver on board.  However, this year’s team felt that redundancy was 
necessary in some form to be able to ensure a dependable wireless communications link.  
Because of this redundancy, the robot finds itself capable of using 3 different modules.  
To make the system more maintainable, a special circuit was designed using a DIP 
switch bank and some tri-state buffers to handle the intelligent switching of module 
control.  This system is described in more detail in the wireless section of the document.  
With this small amount of design, we have been able to create an easily maintainable 
system, allowing users to quickly change wireless modules and control code with only a 
few simple steps. 

4.5.3.5.  Design for Robustness 
 
Designing for robustness is a critical component to the design process, especially for a 
team of robots that will face hands-off competition.  Many robots don’t have as precise 
control or obstacle avoidance as our system does.  Therefore, we find our robots getting 
pushed and knocked around.  Our drive systems are also powerful enough to cause 
components to experience stresses.  Quick motions of the drive system and constant 
abuse can degrade the performance of our system.  The main areas of focus here were 
the following items: 
 

• Enlarging PCB trace width 
• Observing current ratings 
• Inter-board connection 
• System reset problems 
• Wireless communications flooded 

4.5.3.5.1. Enlarging PCB trace width 
 
The current 2001 system had larger printed circuit board (PCB) layout traces for digital 
and high current analog signals.  We studied the entire system to determine the 
magnitudes of the current drains that we would find in our system.  One of the 
conclusions was that the traces should be increased to handle larger amounts of current 
for longer periods of time.  The result has the most impact on the drive and kicking 
subsystems.  If the drive motors get jammed and the controller continues to force the 
motor in a certain direction, the motors will begin to drain a lot of current.  This current 
drain could potentially lead to a burnt trace on the board rendering it almost unusable.  
It is especially difficult to repair a board having undergone this stress and be able to 
guarantee its future performance.  For these reasons, we enlarged the traces to anywhere 
from 0.035” to 0.050” width on all devices that required large amounts of current.   To be 
frank, the actual widths used were not selected via any analytical method.   Traces were 
enlarged in proportion to their estimated worst case currents, and to the expected length 
of traces after routing.  Please refer to the board layouts in the Appendix for a closer look 
at these improvements.  
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4.5.3.5.2. Observing current ratings 
 
Along the same lines as increasing trace width is examining the components that 
accompany those traces.  Most of the inter-board connectors and device connectors were 
changed due to the current flowing through them.  The average current was measured 
in most cases and then a worst case scenario was employed to raise the current ratings to 
levels that would not be seen by the robot.  This over specification of the current 
guaranteed or at least minimized the probability of a component failure in the system.  
Specific examples of this detail include the larger battery connectors and the Futurebus 
connectors used for inter-board communication.  Different types of connectors were 
used for digital and analog systems.  Furthermore, multiple pins were used in order to 
increase the amount of current capable of flowing through a connector when the worst-
case current ratings were not met. 
 

4.5.3.5.3. Inter-board connection 
 
The current design consists of a motherboard and two daughterboards (analog and 
digital boards).  Because of the stress that the boards feel from being mounted 
perpendicular to the ground, we needed to ensure the robustness of the design.  
Through the use of specially designed bus connectors, compact sizing, stabilizing bars 
we were able to accomplish this mounting and maintain a robust system.  The Futurebus 
connectors that we used had very long pins and deep sockets to enable a solid contact.  
The connectors had a tight fit that was still simple to disconnect.  The mounting of the 
connectors to the actual daughterboards was also very sturdy.  The boards were 
designed more in the shape of a rectangle than a square also partly due to space 
requirements.  The compact design coupled with solid bus connectors gave us most of 
the stability that we required.  As added security the implementation of two rigid post 
that will cradle the edges of the board perpendicular to the ground will also strengthen 
our mounting solution. 
 

4.5.3.5.4. System reset problems 
 
System reset and boot-up sequence are also very important to the success of the robot.  
The 2001 system robots used PID chips as the basis for their motion control.  These PID 
chips would occasionally reset causing the whole system to need a reset.  The time while 
the reset occurs could be a crucial moment in the game.  Secondly, we experienced 
problems with our current distributed computing system stemming from the timing of 
starting up different subsystems of the robot.  This issue was easily fixed through well 
thought out startup sequences of subsystems such as wireless, motion control, and main 
robot control.  Through careful timing we can now guarantee that the robot will be in a 
controlled state at all times. 
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4.5.3.5.5. Wireless communications flooded 
 
One last area of work that could be a possible weakness in the robustness of our system 
is the wireless communications.  Although wireless communications can be difficult to 
maintain a constant connection, there are also other factors that are under the users 
control.  If for some reason the artificial intelligence floods the wireless system by 
sending two packets in succession, our system needs to be designed to handle this 
problem and not freeze up.  The current 2002 robots have been designed to only send 
the first packet that has been received and decoded and not flush out its memory to start 
the process again.  More details on this design can be found in the wireless section. 
 

4.6. Preliminary Design 
 
Preliminary designs were drawn to meet the requirements gathered.  Several designs 
were discussed in group meetings to gauge their feasibility before additional work was 
done. 
 

4.7. Preliminary Testing 
 
Each design was constructed and thoroughly tested on breadboard.  Several quality 
measures were used to test the circuit, including noise tolerance, resistance to physical 
shock, robustness given variability in component values, and possible failure modes 
given improper supply voltages.  Circuits also underwent peer review by group 
members for design verification. 
 

4.8. Manufacturing 
 
Manufacturing is an extremely difficult and tricky process for newcomers because of the 
attention to detail necessary to arrive at a perfect design.  Our new board designs had a 
higher cost than previous years and therefore, should have elicited more care on our 
part.  Because of delaying prototyping and testing, we shipped designs that weren’t 
fully tested, which is an absolute guarantee for failure.  Designs were sent out at the last 
minute after sleepless nights when attention to detail diminishes.   
 
The above-mentioned behaviors led to the release of a design that was manufactured 
incorrectly with only ourselves to blame.  Our motherboard was missing an internal 
routing layer, which we thought rendered our initial boards useless.  We also found 
mistakes on our digital board and continued to submit the wrong files, illustrating our 
lack of revision control, leaving us with errors that we already knew existed.  The 
morale of the team was extremely low, as we had spent large amounts of money on 
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unusable boards.  The situation was made even worse by the fact that we had many 
surface mount components with extremely small pitch sizes.   
 
With large amounts of teamwork, determination, and many sleepless nights the team 
was able to hand-populate the small components including a 100 pin Altera FPGA.  
Modifications on the digital board were made and connections for an entire layer were 
made on the motherboard.  After many creative soldering and rework strategies, the 
team managed to successfully get the incorrect boards to function correctly.  Photos of 
the salvaged boards can be seen in the Appendix. 
 
In the end, a second revision was sent out and manufactured without any other errors.  
Recommendations and lessons learned are described below: 
 

• Make a majority if not everyone check and “sign off” designs to ensure that fresh 
eyes get a chance to evaluate others’ work. 

• Do not focus resources on areas that do not have a high probability of failure 
such as the auto-routing feature of Orcad Layout. 

• Make sure there are redundant experts in the use of Orcad Layout and make sure 
that the routing window is large and not too small.  Small routing windows lead 
to long routing times and a reduced quality of routing.  The routing box size can 
be changed by adjusting the “route grid spacing” in the system settings box.  See 
the Orcad Layout help files for more information. 

• Follow our main strategies to checking the board 
 

o CHECK THE DESIGN!  The majority of errors were purely design errors 
that slipped through testing, were mistakenly entered into schematic 
capture, never breadboarded to ensure proper design, etc.  Check the 
schematic against a fully operational breadboarded design.  

o Check modifications against the Board Issues List mentioned in the 
Group Electronic Documentation section. 

o Check all parts for power and ground connectivity. 
o Check part pinouts between schematic and data sheets. 
o Check all part footprints versus datasheets, and model the board by 

sticking parts through a real-size printout of the layout that is laid on top 
of a Styrofoam base. 

o Ensure that all traces originate from a pad or via and end at a pad or via.  
Only a couple of errors originated from the use of auto-routing.  One 
trace had a small break in it and a couple of traces ran too close to board 
vias.  

 
• Board Rework Strategies !!! 
 

o Surface Mount Components – SMT 
§ Use “clay” under body of SMT parts to hold them in place while 

you solder them to the board.  Secondly, if you are resoldering 
and the pads are dirty, this will allow you to line up the leads 
without a problem. 
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§ Cut solder into “chips” with an knife into pieces that are almost 
invisible.  Touch the soldering iron to the chip of solder and then 
to the pin to solder. 

§ Use fine gauge wire to “thread” under a chip’s lead then heat up 
with a soldering iron and gently lift the lead.  This helps when 
you need to solder something to a pin while disconnecting it from 
the circuit. 

§ Bend axial lead resistors and solder them to pads if you don’t 
have any surface mount resistors. 

§ If the SMT package size is too small, take a chip carrier and solder 
wires to the carrier and then carefully solder the wires to the 
board or vias that connect to the footprint. 

§ It is possible to solder to SMT pins, just don’t hold the soldering 
iron on them too long.  It is preferred to put solder on a wire and 
then heat it up against the lead. 

§ To solder resistors, capacitors, and LEDs, place a small amount of 
solder on the pads initially and then place the part on there and 
carefully heat up the pads individually. 

o  Use shrink tubing whenever possible to eliminate possible contacts and 
shorts. 

o Ensure no cold joints by soldering carefully and correctly. 
o Check part numbers and orientation before soldering. 
o It is possible to solder on to exposed traces! 
o Cut traces using a sharp knife and “scratch away” layer above trace, then 

take piece of trace out. 
o Check package types vs. footprints on circuits for componen t 

interference. 
o The silkscreen is important for population and debug.  

 
Overall, be careful and check all of your work twice.  Errors will occur, but they can 
be fixed and learned from to lead you to a successful outcome. 
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5. Digital System 

5.1. Main Microcontroller 

5.1.1. Overview 
 
The main microcontroller is responsible for regulating all on-board operations. The 
following diagram depicts the sub-systems managed and information flow between the 
microcontroller and the sub-systems. 
 
 
 

 
 
 

Figure 5.1.1: Interaction with different sub-systems 
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Since many sub-systems depend on the main microcontroller, the choice of controller 
was of pivotal importance. Numerous criteria were considered before choosing the final 
microcontroller; the key criteria are discussed in later sections. 
 
 

5.1.1.1.  Microcontroller comparison 
 
 
The 2001 system used a PIC17C766 microcontroller. Despite many useful features, it had 
one serious drawback. The memory of the microcontroller was not electrically erasable; 
rather it had to be UV erased for approximately 30 minutes before reprogramming. This 
led us to investigating other microcontroller options.  
 
Many microcontrollers were investigated in view of our system requirements. Some of 
the microcontrollers that were short-listed are shown in the table below. 
 
 
 

Microchip Microchip  

(Flash) 

Microchip 

(Flash) 

Atmel 

(Flash) Features 
PIC17C766 PIC16F877 PIC16F876 AT91M55800A 

Maximum Frequency 33 MHz 20Mhz 20 MHz 33 MHz 

Operating Voltage Range 3.0 – 5.5V 2-5.5V 2-5.5V 2.7 – 3.6V 

RAM 8K 8K 8K 8K 
Program Memory  

FLASH - - - - 

Timers 4 3 3 3 

Capture inputs 4 2 2 - 

PWM outputs 3 2 2 12 

USART/SCI 2 1 HR* 1 2 

A/D Channels (10 bits) 16 8 5 8 

Watchdog Timer Yes Yes Yes Yes 

External Interrupts Yes Yes Yes Yes 

I/O Pins 66 34 22 147 

     

 
 

Table 5.1.1 : Comparison of features of some microcontrollers 
 
 
* there is one hardware SCI/USART but all digital I/O pins can be programmed to be  USART 
pins. 
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It must be kept in mind that the features given in the table above were not the only 
criteria used in our decision. Several important considerations that tilted the balance in 
favor of PIC16F877 are given in the next section.  
 
 

5.1.1.2.  Selection criteria: 
 
 
From table 5.1.1, it is obvious that all the microcontrollers listed have many useful 
features. While the number of I/O pins is limited in PIC16F877 as compared to the some 
of the other microcontrollers available in the market, it has many other attractive 
features which led to it being chosen. Some of these features are discussed below. 
 
 

1. The microcontroller can be programmed through flash memory in 
approximately 30 seconds.  This is a great improvement to the PIC17CXX series 
controller used last year which had to be erased in a UV Eraser for almost 30 
minutes before reprogramming. 

 
2. The same microcontroller is being used to implement wireless communication 

packet handling and proportional motion control. This simplifies our work 
because there is only one development environment/programming setup to 
learn. 

 
3. The microcontroller must support enough interrupts to implement an interrupt 

based system.   Previous years used a polling system where all operations ran 
sequentially in an infinite loop that polled for change. Interrupt based systems 
are more responsive and robust, and so we needed to have a device capable of 
handling all the interrupts. The PIC16F877 has 13 interrupts and thus proved 
ideal. 

 
4. It provides a high speeds for most basic operations, and is reasonably fast for 

multiply and ADC conversion. 
 
Based on our expectation of a higher pin count than last year (where 58 I/O pins were 
used) we decided initially to go with the Atmel AT91M55800. However, there were 
some problems encountered. It proved difficult to program, had an unreliable simulator 
and a inadequate debugger. A significant reduction in pin count requirements (due to 
switching from PIDs to p-control, and from offloading wireless to a PIC) allowed us to 
reconsider our microcontroller choice, and we switched from the AT91M55800 to the 
PIC16F877. A detailed discussion of the change is given in the Appendix C.  
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5.1.1.3.  Microcontroller features: 
 
 
Some of the salient features of the PIC16F877 are given below.  
 
Architecture: 
 

• High performance 8-bit RISC CPU 
• Only 35 single word instructions to learn 
• All instructions execute in a single cycle except branches which take two 
• Operating speed: DC - 20 MHz clock input 
• DC - 200 ns instruction cycle 

 
 
 

 
 
 

Figure 5.1.1.3:  The pin diagram of the PIC16F877 (QFP package type) 
 

Memory: 
 

• Up to 8K x 14 words of FLASH Program Memory 
• Up to 368 x 8 bytes of Data Memory (RAM) 
• Up to 256 x 8 bytes of EEPROM Data Memory 
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Compatibility: 
 

• Pinout compatible to the PIC16C73B/74B/76/77 
• Interrupt capability (up to 14 sources) 

 
Miscellaneous: 
  

• Eight level deep hardware stack 
• Direct, indirect and relative addressing modes 
• In-Circuit Serial Programming. (ICSP) via two pins 
• Single 5V In-Circuit Serial Programming capability 
• In-Circuit Debugging via two pins 
• Processor read/write access to program memory 
 

Electrical Characteristics: 
 
• Wide operating voltage range: 2.0V to 5.5V 
• High Sink/Source Current: 25 mA  
• Commercial, Industrial and Extended temperature ranges 
• Low-power consumption: 

o < 0.6 mA typical @ 3V, 4 MHz 
o 20 µA typical @ 3V, 32 kHz 
o < 1 µA typical standby current 
 
 

5.1.2. System Features 
 

5.1.2.1.  Interrupt based implementation 
 
A main improvement to robot microcontroller functionality came from our shift from a 
polling based system to a completely interrupt based system. There are several 
advantages of using an interrupt based system as opposed to a polling/looping system: 
 

1. Reduced latency 
The system is designed to optimize the performance and to reduce the delays 
inherent to a polling based system. All time-critical tasks are implemented in 
interrupt service routines. Many of the internal time consuming functions have 
also been implemented such that there is no polling thus eliminating 
unnecessary internal latency.  This essentially reduces response time to all time-
critical functions (e.g. wireless packet available, IR sensor beam broken, etc.) 

 
2. Improved reliability 

The interrupt based system improves the reliability because the microprocessor 
core ensures that incoming interrupts are serviced even if they appear at the 
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same time. Thus there is little chance of critical functions being missed or 
delayed. 

 

5.1.2.2.  Easy to Debug 
  
The system can easily be debugged by “listening” to the inter-microcontroller 
communication. All the microcontrollers communicate serially to each other, so we can 
view data passed between them on the serial port using HyperTerminal (a general serial 
port communication program available in Windows).  
 
This provides an easy way to isolate points of failure. 
 

5.1.2.3.  Fast / More reliable system 
 
The 2002 system with many watchdog codes to cater for the different contingencies and 
with its interrupt based nature should not only be more responsive but also much more 
reliable than the previous systems. We have eliminated the PID controllers from previous 
years that were known to reset the system on many occasions.   
 
Thus the major emphasis in designing the system has been on reducing the latencies and 
on making the system more robust. 
 

5.1.3. Main Microcontroller pin allocation 
 
The pin allocation table shows the name of the pins as well as the functions associated 
with each pin in the microcontroller. 
 
 
Pin # Pin Name Functions implemented 
      
1 RC7RX/DT Wireless IN 
2 RD4/PSP4 Motion Control PIC1  
3 RD5/PSP5 Motion Control PIC2  
4 RD6/PSP6 Speaker Out 
5 RD7/PSP7 LCD Serial 
6 Vss Vss 
7 Vdd Vdd 
8 RB0/INT IR (Interrupt) 
9 RB1 Kicker 
10 RB2 Ultrasonic 1 
11 RB3/PGM PGM 
12 NC No connection 
13 NC No connection 



 39 

14 RB4 Motion Control Interrupt1 
15 RB5 Motion Control Interrupt2 
16 RB6/PGC PGC 
17 RB7/PGD PGD 
18 MCLR/VPP Reset 
19 RA0/AN0 Kicker voltage in 
20 RA1/AN1 Battery voltage in 
21 RA2/AN2/Vref- Gnd 
22 RA3/AN3/Vref+ Vdd 
23 RA4/TOCKl Ultrasonic 0 
24 RA5/AN4/SS Dribbler feedback 
25 RE0/RD/AN5 Input for goalie 
26 RE1/WR/AN6   
27 RE2/CS/AN7   
28 Vdd Vdd 
29 Vss Gnd 
30 OSC1/CLKIN Clk 
31 OSC2/CLKOUT Clkout 
32 RC0/T10SO/T1CKl Debug RX 
33 NC No connection 
34 NC No connection 
35 RC1/T1OSl/CCP2 Dribbler PWM 
36 RC2/CCP1 Goalie Enable/Side dribbler 
37 RC3/SCK/SCL Goalie direction 
38 RD0/PSP0 DIP0 
39 RD1/PSP1 DIP1 
40 RD2/PSP2 DIP2 
41 RD3/PSP3 DIP3 
42 RC4/SDI/SDA Motion RX1 
43 RC5/SDO Motion RX2 
44 RC6TX/CK Wireless Out 
 

5.1.4. Function description:  
 
The main microcontroller program can be divided into the following parts. 
 

• Initialization 
• Receiving wireless packet 
• Parsing/processing packet 
• Kick 
• Horizontal dribbler control 
• LCD display 
• Calculation of wheel velocities 
• Sending motion vectors 
• Battery voltage check 
• ‘Beep’ enable 
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All of these parts of the code are described in this section. 
 

5.1.4.1.  Initialization  
 
Function name:  void Initialize(void); 
Input/output:    None 
Function(s) called:  None 
Description:  This function is used to initialize all the ports, setup 

counters, interrupts and check if the battery voltage is up 
to acceptable level for operation of the robot. This function 
is also responsible for checking the ID of the robot as set by 
the ID DIP switch on the robot. Another thing that this 
function implements is that it prints the value of the 
battery level and the ID of the robot on the debug LCD 
screen on the robot.  

 
This function is called after either a power up or after a 
reset. 

 
 
The following diagram lists all the sequence of events that take place in this function. 
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Figure 5.1.4.1: Initialization sequence  
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5.1.4.2.  Receiving wireless packet 
 
Function name:   void GetWirelessPacket(void); 
Input/output:    None 
Function(s) called:  AfterWirelessPacket( );  
Description: This function is called whenever there is data on the RX 

line of the main microcontroller (from U2). The purpose of 
the function is to get the 5 byte packet for the robot 
depending upon the robot number set by the robot ID DIP 
switch. It also reads the rest of the packets (that do not 
belong to the particular robot) to clear the buffer. When the 
packet is read AfterWirelessData( ) is called to process the 
received packet.  

   
Start

Get byte 4-7

 robotData[byteCount-1]=tempchar;

Frame for  Robot 0-4

End

robotNumber==0

robotNumber==1

Yes

N o

robotNumber==2

N o

robotNumber==3

N o

robotNumber==4

N o

N o

Get byte 8-11

 robotData[byteCount-1]=tempchar;

Get byte 12-15

 robotData[byteCount-1]=tempchar;

Get byte 16-19

 robotData[byteCount-1]=tempchar;

Get byte 20-23

 robotData[byteCount-1]=tempchar;

Yes

Yes

Yes

Yes

Yes

 
 

Figure 5.1.4.2: Receiving a wireless packet 
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5.1.4.3.  Parsing/processing packet 
 
Function name:   void AfterWirelessPacket(void); 
Input/output:    None 
Function(s) called:  Wheel1( ); 
    Wheel2( ); 
    Wheel3( ); 
    Wheel4( ); 
    Kick( ); 
    ControlHDribbler( ); 
Description: This function is the main control function that performs 

many operations when the wireless packet is received. It 
first parses the packet into different commands. Then it 
converts robot motion vectors into Vx, Vy (m/s) and 
Vtheta (rad/s) and then into wheel velocities V1, V2, V3, 
V4. Once the wheel velocities are calculated, it sends them 
onto motion control microcontrollers (U3, U4). Similarly 
actions are taken on the kicker and horizontal dribbler 
depending upon whether AI has activated/deactivated 
them and if activated, what speeds are indicated. 

 
The wireless packet sent by the AI is in the format shown in the following figure. 
 

Numbe
r of

Bytes

Packet
ID

Robot
0 or 6

Robot
1 or 7

Robot
2 or 8

Robot
3 or 9

Robot
4 or 10

Robot
5 or 11

(1 Byte) (1 Byte)
(4 Bytes per Robot)

26 Bytes of Data

 
 

Vtheta Magnitude (1 Byte)

1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0

Vx (1 Byte)
MSB gives direction

Vy (1 Byte)
MSB gives direction

AI_KickSpeed

AI_VDribEnable
AI_HDribSpeed
AI_Dive

UNUSED
Angular_Vel_Dir

4 Bytes of Data per Robot

 
Figure 5.1.4.3.1: Contents of the wireless packet 
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The AfterWirelessPacket() function is depicted in the figure below. 
 

 
 

Figure 5.1.4.3.2: Parsing and processing the wireless packet 



 45 

5.1.4.4.  Kick 
 
The kick is interrupt driven and would activate immediately on the external IR interrupt 
if the AI has enabled the kick in the wireless packet. However there is more than one 
possible scenario when the kicker system would be activated. The schematic below 
shows two of the possible scenarios when the kicker would be activated. 
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Figure 5.1.4.4.1: Possible events that trigger a kick  
 
 

1. IR Sensor activated: 
In case there is a interrupt generated by the IR sensor (ball detected) the function 
Kick( ) is called immediately. This function is discussed in detail below. This 
function makes sure that the robot never kicks unless it has been instructed by 
the AI to kick and if the previous kick has not been completed (which includes 
some time to retract the solenoid). 

 
2. AI commands to kick: 

When the AI in a wireless packet tells the microcontroller to kick the ball, the 
controller checks whether the previous kick has been completed and the IR 
sensor has been activated. In case both of these conditions are satisfied, the Kick() 
function would be called. 



 46 

 
 
Kick( ) function  
 
Function name:   void Kick(void); 
Input/output:    None 
Function(s) called:  None 
Timer(s) Set:   Timer1. Interrupt on overflow  
Description:   Details below. 
 
 
The Kick( ) starts a two stage process that does the following 
 

1. It ensures that the kicker would not be re-activated if the kicker is already 
activated. This is necessary since the time required to get a powerful kick is more 
than many times the time between the packets and thus it is possible that the AI 
commands the kicker to kick again even when the previous kick has not been 
completed.  

 
2. Does not hold up the processor while the kicker is activated since for a strong 

kick can take up to hundreds of milliseconds as opposed to the time between 
consecutive frames that is approximately 16ms. 

 
3. It also ensures that there is some minimum time maintained between two 

consecutive kicks so that the system does not get taxed by consecutive kicking.  
 
 
The Kick() function checks whether the AI has enabled the kick and if so, is the kick 
speed. Another thing that it checks is whether the last kick has been completed or is 
some part of the kicking system is still not ready for a new kick. When the above 
conditions are satisfied, the function activates the kick and starts a timer with the kick 
activation time set according to the AI kick speed. The larger the time the kicker is 
activated the stronger the kick (up to a certain limit).  
 
Timer 1 (based on counter 1 which is a 16 bit counter) is set to a particular value. On 
overflow the kicker is de-activated and the kicker is allowed to retract for a set time. 
Each count is incremented every 1.6 us ((1/20,000,000)*4*8). Thus for 2 ms time we need 
1250 counts (2ms/1.6us) before the counter overflows and the timer interrupt is 
triggered. 
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A flow diagram of the kick function is shown in the figure below. 
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Figure 5.1.4.4.2: Complete kick sequence 

 
 
 
 
 

5.1.4.5.  Horizontal dribbler 
 
Function name:   Void ControlHDribbler(int);  
Input/output:    AI_HDribblerSpeed/None 
Function(s) called:  None 
Timer(s) Set:   Timer2 for generating a PWM output to the analog circuit 
Description: Details below. 
 
The main function of the horizontal dribbler is to keep possession of the ball when the 
ball is kicked towards a robot or the robot is running with the ball.   
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There are two levels of control for the dribbler. A coarse control is defined by the AI 
which essentially limits the speed of the dribbler and a fine control is done on the basis 
of the current feedback circuit. The current measured using the current feedback circuit 
(described in detail in Section 6.5) is proportional to the torque being applied to the ball.  
This sensor provides feedback to the microcontroller which is used to change the speed 
of the dribbler to ensure that the ball is not lost in wake of the different loading 
conditions on the ball. The load on the ball would be different, e.g., if the robot is 
running back with the ball as opposed to running forward. This dual feedback system 
ensures that the ball is not lost in any case no matter what is the type of load on the ball. 
The dribbler speed is adjusted every time a new wireless packet is received 
(approximately every 16 ms).  
 
 
 

 
 

Figure 5.1.4.5: Horizontal dribbler feedback control 
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5.1.4.6.  Check battery voltage 
 
Function name:   Void CheckBatteryVoltage(void); 
Input/output:    None 
Function(s) called:  Buzzer 
Description: This function checks the battery voltage every time the 

robot is either reset or switched on. The value of the 
battery level is shown as a percentage of the maximum 
battery level on the LCD display. If the battery level is 
lower than a certain set threshold then a buzzer sounds 
twice to warn that the battery level is low.  

 
 

5.1.4.7.  Buzzer function 
 
Function name:   Void Buzzer(int); 
Input/output:    Number of times to beep 
Function(s) called:  None 
Description: This function makes the buzzer beep. The number of times 

that the buzzer would beep depends upon the input 
argument to this function.  

 
 

5.1.4.8.  Robot mode switch 
 
 
Function name:   Void GetRobotMode(void); 
Input/output:    None 
Function(s) called:  None 
Description: This function is used to read the value for the robot ID set 

using the ID DIP switch on the robot. Many operations of 
the robot are dependent upon its ID like going into test 
modes, setting robot’s number for  a game, etc.   

 

5.1.4.9.  LCD Display 
 
 
Function name:   Void LCD(void); 
Input/output:    None 
Function(s) called:  None 
Description: This function can be used to write useful robot and debug 

information on the LCD screen. Currently the battery level 
and the robot ID are displayed on the screen. 
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5.1.4.10. Wheel Velocities 
 
Function name:   void Wheeln(void); 
Input/output:    None 
Function(s) called:  None 
Description: There are four functions that use the information in the 

packet for Vx, Vy and Vtheta and convert them using the 
geometry of the robot into the appropriate wheel velocities 
for the four wheels of the robot.  

  
This function also encodes the values of the wheel speed in 
m/s into a 7 bit number for the magnitude and one bit for 
the direction of the velocity.  

  
See section 5.3.2 for details on the transformations used in 
calculating the wheel velocities.   
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5.2. Wireless Microcontroller 
 
For this microcontroller we are currently using the legacy system.  The code will be 
rewritten for the upcoming competition.  Refer to RoboCup 2001 for documentation on 
its current configuration. 
 
 
 



 52 

5.3. Motion Microcontroller 

5.3.1. Overview 
 
The motion control system is comprised of the hardware and firmware that interprets 
motion vectors sent from AI and transforms them into the physical motion of the robot.  
The lifecycle of these vectors are as follows:  

1) The vectors for each robot are calculated by AI based our current strategy. 
2) The motion vectors for all robots are transmitted wirelessly in a 25byte frame, 

intermingled with non-motion instructions for all the robots. 
3) The wireless system reads off the vectors and forwards what is applicable to 

the main micro. 
4) Inside the main micro, the global motion of the robot: Vx, Vy, and Vtheta is 

converted to 4 individual wheel vectors. 
5) The wheel vectors are sent to the wheel-control micros, which update their 

desired speeds and use proportional control to maintain those speeds. 

5.3.2. Wheel Velocity Transformations 
 
Figure 5.3.1 shows a schematic view of the robot wheel orientations.  The transformation 
used by the main microcontroller to convert the values from the AI to the wheel 
velocities (W1, W2, W3 and W4) are given by the equation below. 
 
 

 
Figure 5.3.1: Drive Geometry 

Vθ 
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The above diagram represents the robot wheel contact points relative to the (arbitrary) 
geometrical center of the robot, and wheel drive direction angles relative to the forward 
(X) direction of the robot.  From this, it is relatively easy to obtain the coordinate 
transformation (see below) between the three-component vector velocity of the geometric 

center of the robot, represented by 
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The angles between the wheel positive drive direction and the forward direction on the 
robot (see diagram above) are listed below, and are calculated from the design in 
ProEngineer.  These have been measured as well, and to the crude limits of the 
measurement method (protractor), the angles as manufactured agree with the design.  
 
 

Symbol Angle Degrees Angle Radians 
ψ1 145 2.531 
ψ2 225 3.927 
ψ3 315 5.498 
ψ4 35   0.611 

  
 
 The actual values of the x and y locations of the wheel contact points are listed below, 
and generated from the midlines of the wheels (midway between the inner and outer 
beads on the omni wheels) in the ProEngineer mechanical CAD files.  
 
 

Wheel X (m) Y(m) 
1 145 2.531 
2 225 3.927 
3 315 5.498 
4 35   0.611 

 
 
In order to permit the AI/Strategy components of the system to easily work with 
heterogeneous teams comprised of robots of different designs/vintages, the wheel 
velocity coordinate transformations take place within the robot, rather than on the AI side 
as was the case in prior years.   
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It must be born in mind that the total velocity of each wheel contact point is actually the 
sum of the driven and passive velocity vectors.  The four passive velocities can scale as 
necessary to match the combined constraint of the four driven velocities.  It must also be 
born in mind that with only 3 degrees of freedom, but 4 wheels to control, the not every 
combination of wheel velocities equates to a conflict-free net motion of the robot - lag or 
velocity errors in the control of the motors, and geometric errors in manufacturing, 
measuring or calculating the coordinate transformation can also result in fighting between 
drive wheels.  For more complete discussion of the consequences and conditions for 
fighting, see the section below on Geometric Tolerances. 
 

5.3.3. Wheel Velocity Calculations 
 
The following calculation is used to relate target counts to speed inside of the motion 
controller.  The full mapping between these speeds is in the document motocalc.xls.   
 
 Wheel Radius:   2cm 
 Wheel Circumference  4 * pi = 12.566 cm 
 Counts / Rotation:  2048 
 Gear Ratio:   9 
 Frames / sec:   600 
 
 Target Speed:   2 cm / sec 
 # Rot / sec @ Target: 2 cm / 12.566 = 0.159 
 Counts / sec @ Target: 0.159 * 2048 * 9 = 2934  
 Counts / frame:  2934 / 600 = 4.9 
 
The counts/frame is the value which is used by the microcontroller to do velocity 
control.  Currently, 4.9 is approximated as 5 in the interest of simplifying the arithmetic 
being demanded of the microcontroller (uses integer multiply as opposed to floating pt. 
multiply).   
 
2 cm/sec was chosen arbitrarily as a good target for the lower bound of robot speed 
control.  The upper bound is around 2.5 m/s.  Neither target is a rigid boundary, rather 
they were chosen because they cover the assumed operating range of the robot.  The 
upper bound was arrived at by calculating the maximum speed which could be 
achieved given the max acceleration of the robot and the available space on the field.  
Given this range, the following, simple mapping was used to convert incoming wheel 
vectors: 
 
 wheel vector: [8 bits]:  [sign] [7bit magnitude] 
 7 bit magnitude range:  0-127 
 Speed range:   0-2.5m/s  
  
 Mapping :: magnitude * 2 = speed in cm/sec. 
 This provides a range of 0-2.54 m/s 
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5.3.4. Motion Control Variables: Tradeoffs 
 
The calculations above have been done assuming a frame rate of 600 Hz.  The system 
can also be run at 300 or 150 Hz.  In the code this can be done simply by setting the 
GLOBAL_RATE at the tope of the code.  The desired counts/frame and proportional 
feedback strength K will be set accordingly.  Setting the GLOBAL_RATE will adjust how 
often the p-controller will control.  The rule of thumb for dynamic system control is that 
the control rate should be at least 10 times as fast as the fastest dynamics of the system.  
Estimating that the fastest robot dynamics of import happen around 10Hz, control rates 
of 100Hz or faster should be acceptable.  That said, the full ramifications of the various 
control speeds have not been examined in detail.  Ostensibly, faster control rates will 
have more problems at slow speeds since they will collect fewer counts given their short 
frames.  However, faster control rates might provide an advantage because they offer 
the possibility of implementing traction control.  

 
To increase the drive strength, the BASE_K can be set.  Setting BASE_K too high can 
have an adverse effect at low speeds.  For example, if the desired wheel speed is zero 
and the robot is slightly perturbed in one direction, a high gain will overcompensate and 
run the wheel hard enough so that it registers counts in the other direction.  The next 
push overcompensates and sends it in the original direction.  Oscillations can result.  
Too low a K can also cause trouble since at slow speeds, where the difference between 
the desired count and the actual count is small even when the robot is stationary, the 
value written to the PWMs may not be enough to overcome stall current.  
 

5.3.5. Architecture 
 
Each motion control micro controls 2 wheels.  U3 controls the wheels on the left side of 
the robot, while U4 controls the right.  The motion core control code consists of 2 ISRs.  
One is interrupted by new data on its hardware RX: this routine reads data off the RX 
line and sets the desired wheel speeds by reading a sign and magnitude off of each byte.  
The second ISR runs the tight proportional-control loop: this is where adjustments are 
made to the duty cycle of the motor controlling PWMs so as to match a desired velocity. 
 
In order to do velocity control, one must know what their current velocity and direction 
are.  This is achieved by interpreting the Aout and Bout encoder signals from each wheel.  
The number of counts on Aout and Bout can be mapped directly to wheels speeds, and 
their relative phase offset indicates the direction of the motor.  In order to get the finest 
count resolution possible, we used the FPGA to create a quadrature encoder signal: 
simply put it creates a small pulse for each transition in A or B.  Direction was collected 
by using a flip flop that read the value of A as pos edged clocked on B.  The quadrature 
count and direction are then fed into the motion control micro counters, where the 
counted value can be compared to the desired count, and the appropriate changes can 
be applied. 
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5.3.6. Motion Microcontroller pin allocation 
 
Pin # Pin Name Functions implemented 
1 RC7RX/DT Motion Vector IN 
2 RD4/PSP4  
3 RD5/PSP5  
4 RD6/PSP6  
5 RD7/PSP7  
6 Vss Vss 
7 Vdd Vdd 
8 RB0/INT  
9 RB1 ~DIR2 
10 RB2 DIR2: Motor 2 Direction 
11 RB3/PGM PGM 
12 NC No connection 
13 NC No connection 
14 RB4 ~DIR1 
15 RB5 DIR1 : Motor 1 Direction 
16 RB6/PGC PGC 
17 RB7/PGD PGD 
18 MCLR/VPP Reset 
19 RA0/AN0  
20 RA1/AN1  
21 RA2/AN2/Vref-  
22 RA3/AN3/Vref+  
23 RA4/TOCKl Counter : Motor 2 
24 RA5/AN4/SS Dribbler feedback 
25 RE0/RD/AN5 Input for goalie 
26 RE1/WR/AN6   
27 RE2/CS/AN7   
28 Vdd Vdd 
29 Vss Gnd 
30 OSC1/CLKIN Clk 
31 OSC2/CLKOUT Clkout 
32 RC0/T10SO/T1CKl Counter: Motor 1 
33 NC No connection 
34 NC No connection 
35 RC1/T1OSl/CCP2 Motor 2 PWM 
36 RC2/CCP1 Motor 1 PWM 
37 RC3/SCK/SCL DIR1_IN: Read Direction for Motor1  
38 RD0/PSP0  
39 RD1/PSP1  
40 RD2/PSP2  
41 RD3/PSP3  
42 RC4/SDI/SDA DIR2_IN: Read Direction for Motor2  
43 RC5/SDO ISR debug signal 
44 RC6TX/CK Debugging Output 
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5.3.7. Rise Time and Steady State Error 
 
From bench tests we have determined the rise-time for a single wheel to accelerate to 
1m/s to be approximately 110ms.  The Steady State Error is 1.5% using a frame rate of 
300 Hz and a K=8.  These are in agreement with early simulations which predicted a 
100ms rise time.  
 
The experiment was conducted by having a motion micro output a digital high when it 
first started to control its wheel, and then outputting a low when the desired count was 
within 2% of the actual count.  There are some caveats to this experiment.  It was 
literally conducted on a lab table where the oscilloscope probe had been crudely 
connected to the output bit.  In order to conduct the tests more accurately, a longer 
tether must be built to relay the output to the scope.  This will be necessary if we are to 
allow the robot to run on the field during the test.  Doing so is important because the 
field material has different frictional properties which may affect robot acceleration.  An 
easier but less accurate means of conducting the test would be to allow the vision system 
to track how fast the robot is moving. 
 
The test can also be extended by having the output bit flip at several points along the 
acceleration curve.  In other words the output would flip when it had reached 15, 30, …  
90% of its goal.  This would fill out the curve and may also give us some indication of 
what wheel slipping looks like electrically.  Also the test could be run with a number of 
values for K with the hopes of finding an optimal one. 
 

5.3.8. Slow Speed Add-ons 
 
Our current tests have shown that having the robot move at slow speeds is difficult.  With 
lower gain, the robot simply doesn’t move.  Using a high gain, it is possible to move, but 
the motion is sporadic, and the wheels are especially sensitive to “jittering.”  So far, there 
doesn’t appear to be a sweet spot which avoids both problems. 
 
In order to handle slow speeds there are numerous possibilities, here are some: 

a. Use a form of integral control. 
b. Have a K which changes according to desired wheel speed.  
c. Operate at a lower frame rate. 

 
The problem with all of these is that they may introduce instabilities or oscillations at 
junctures between behaviors (the point where a lower K meets a higher, or the speed 
above which integral control is abandoned).  These problems can not be definitively ruled 
out without proper calculation and simulation. 
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5.4. FPGA 

5.4.1. Overview 
 
The Field Programmable Gate Array (FPGA) plays an important role in two systems on 
the robots: the motion control system and the ultrasonic system.   
 
In the motion control system, the FPGA provides an interface between the motor 
encoder and the motion control microcontrollers (PIC16F877).  It takes the two motor 
encoder signals and provides a quadrature signal which gives more resolution to our 
motion count.  It also keeps track of motor direction. 
 
In the ultrasonic system, the FPGA is used to generate the 40kHz pulse which is 
necessary to run the ultrasonic transmitter.  

5.4.2. Selection of the FPGA 
 
Altera has been a generous sponsor from the past, and this year was no exception.  They 
donated development software, design laboratory kits, and the FPGAs used in final 
production.  We compared a number of FPGAs in the MAX 7000 family to choose one 
that satisfied our requirements.   
 
One major factor we considered was in-system programmability since the FPGAs are to 
be programmed on board.  MAX 7000S devices are in-system programmable via an 
industry-standard 4-pin Joint Test Action Group (JTAG) interface. The MAX 7000S 
architecture internally generates the high programming voltage required to program, 
making it programmable with a 0 -5V input. 
 
While most of the FPGAs in the MAX7000S family meet our needs, our final board 
design uses the EPM7128STC100-7 FPGA because it is small and surface mount.   With a 
capacity of 2500 gates, it leaves us room for future additions.  For our actual 
implementation and functional testing, we used the EPM 7128SLC84-7 which comes 
with the Altera Design Laboratory Package.  

5.4.3. Features of EPM7128S 
 

• High-performance, EEPROM-based programmable logic devices  
• 5.0-V in-system programmability (ISP) through the built-in IEEE Std. 1149.1 

Joint Test Action Group (JTAG) interface 
• High logic density offering 2,500 usable gates 
• 5-ns pin-to-pin logic delays supporting up to 175.4-MHz clock frequencies  
• 3.3-V or 5.0-V operation MultiVolt I/O, allowing devices to interface with 

3.3-V or 5.0-V devices  
 
 

Feature EPM7032S EPM7064S EPM7128S EPM7160S 
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Usable gates 600 1,250 2,500 3,200  
Max. User I/O 
pins 

36 68 100 104 

TPD(ns) 5 5 6 6 
TSU(ns) 2.9 2.9 3.4 3.4 
TFSU (ns) 2.5 2.5 2.5 2.5 
TCO1(ns) 3.2 3.2 4 3.9 
TCNT(MHz) 175.4 175.4 147.1 149.3  

Table 5.4.3:  MAX 7000S Device Features 
 
The number of usable gates determines how complicated our circuit can be.  The 
EPM7128S family has 2,500 usable gates.  As a point of reference, our final design 
utilizes 36% of all the usable gates.  This covers four 6-bit counters to generate 
quadrature encoding, one 8-bit counter for ultrasonic frequency generation, and 
miscellaneous logic to support enable functionality.  The maximum number User I/O 
pins for the EPM7128S is 100 and we used 22 in our final design.  The bottom five rows 
following rows describe setup time for the clock and inputs.  These numbers are all on 
the order of nanoseconds and are easily good enough for our design.  Our final circuit 
runs at 20MHz. 

5.4.4. Detailed Implementation  
 
In the motion control system, the FPGA takes two input signals from each motor 
encoder.  These are encA and encB.  These two signals are square pulses and are 90 
degree out of phase from each other.  We can derive both direction and velocity 
information from these two signals.  Figure 5.4.4.1 below is a sample of the possible 
input and its corresponding output.  
 

 
 
The second function the FPGA serves is in the ultrasonic system. The FPGA gets an 
enable signal from the main microcontroller and outputs a 40kHz signal as long as the 
enable is high.  This system is used in the scenario when AI has asked the robot for this 

encA 

encB 

Output Pulse 

Output Dir 

Figure 5.4.4.1: Sample Input from the Motor and Output from FPGA 
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ball status, and the robot has the ball. The ultrasonic transmitter is sensitive to the signal 
frequency. The signal it transmits will is greatly attenuated if the signal is off from 
40kHz.  Figure 5.4.4.2 below is a sample of input from the ball detector and the output of 
the FPGA 
 
 

 
 
 
We have first tried to implement the circuit using Verilog, however, some unstable 
behavior is observed.  We eventually used schematic to implement the circuits. The 
actually circuits are atta ched in the appendix.   
 
 

5.4.5. Special considerations: 
 
While the circuit implemented might look simple, there are several things we have to 
take into special consideration.  These considerations are discussed below: 

5.4.5.1.  HDL (Hardware Description Language) 
When using HDL or Verilog to design circuits, the FPGA can only take one module as 
the final design.  When we started with the FPGA, we initially used Verilog to design 
our circuit, since it is easier to understand and maintain (it is similar to C code).   
However, during our design, we experienced some unstable behavior.  Our design 
functioned correctly with the addition of some meaningless print statements, but it does 
not work correctly without the junk code.  We suspect this has to do with how the FPGA 
understand a sequential circuit written in Verilog, but we never found the root of the 
problem.  It should also be noted that our simulator results were always correct during 
these test, despite the fact that the actual circuit was nonfunctional.  To finally get our 
design to work we used the schematic view to draw our gates and counters directly.  
The result is very stable but slightly harder to extend.  

5.4.5.2.  Pin Assignments 
One advantage of using the Altera FPGA is that the programmer lets you assign signals 
to different I/O pins.  This can be helpful when routing since pin locations can be 
changed to ease routing.  However, when routing is not a problem (this year it wasn’t an 
issue), it is always a good idea to follow the suggested optimal layout that the 

Input From Sensor  

Figure 5.4.4.2: Sample Input from the Motor and Output from FPGA 

Output Signal 
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MAX+plus II compiler gives.   Once the final design/FPGA functionality is set, the final 
pins can be noted off the auto-generated pin layout.   

5.4.5.3.  Dedicated Pin Connections 
In addition to I/O pins and CLK pins there are also a number of pins which need to be 
connected to ground or VDD in order for the FPGA to work properly.  Table 5.4.5.3    
lists these pins.  Besides these pin assignments, small value capacitors (0.1 uF) should be 
connected the power pins so that the FPGA can suppress noise in the power supply. 

 
Dedicated Pin  84-Pin PLCC 100-Pin TQFP 

INPUT/GCLK1 83 87 

INPUT/GCLRn 1 89 

INPUT/OE1 84 88 

INPUT/OE2/GCLK2 2 90 

TDI(3) 14 4 

TMS(3) 23 15 

TCK(3) 62 62 

TDO(3) 71 73 

GNDINT 42,82 38,86 

GNDIO 7,19,32,47,59,72 11,26,43,59,74 ,95 

VCCINT(5.0V only) 3,43 39,91 

VCCIO(33.v or 5.0V) 13,26,38,53,66,78 3,18,34,51,66,82 

Total User I/O Pins 68 84 

 
Table 5.4.5.3 Dedicated Pins for the FPGA 

 

5.4.5.4.  Clock Frequency Consideration and others 
Since the circuits for both the motor control and ultrasonic use the global clock as a 
counter reference, it is very important to modify the design if the global clock frequency 
changes.  For example, sometimes designs that work on the development board will not 
work on the actual robot circuit boards because they have different clock frequencies.  
This is doubly important for the ultrasonic transmitter because it is sensitive to minor 
frequency variations.  
 

5.5. Ultrasonic 
 
The ultrasonic system allows the robots to give feedback to the AI.  Primarily it is used 
to allow a robot to say that it has possession of the ball.  This is useful in situations 
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where the ball is occluded since the vision system can not verify possession if it can not 
see the ball.  The system could also be used to send other data as well, but only at very 
limited bandwidth (globally BW: 240 bps, max).  Though our system does not currently 
do this, the robots could use these bits to indicate whether they are being pushed 
illegally.  Despite the bandwidth limitations, we have more bandwidth than we have 
data to communicate.  This is mostly a function of not having many status sensors to 
report. 
 

5.5.1. Transmitter 
 
The design of the transmitter involves four parts: physical transmitter, max203, FGPA, 
and main micro.  At the output it is just the ultrasonic transmitter attached to the output 
of an RS203.  The 203 serves as an amplifier, generating a +/- 12V signal from the 0-5V 
signal it receives at its input.  The input to the 203 comes from the FGPA and is a 0-5V 
square wave at 40kHz which is switched on and off by the main micro.  The enable pin 
is a standard micro I/O pin, so it is the envelope that is applied to the 40kHz pulse is 
completely determined in firmware. 
 

 
Figure 5.6.1: Ultrasonic Transmitter Circuit 

 
 
The robots all transmit at the same frequency (40kHz), so it is necessary to do simple 
TDMA to distinguish which robot is which.  AI will chose which robot it would like to 
hear during a given frame, and only that robot will be allowed to speak during the 
allotted time slot.  This eliminates the addressing/decoding complexity in the 
transmitted signal; the receiver need only look for the presence or lack of a signal.  
 

5.5.2. Receiver 
 
There is only one receiver in the circuit which handles the transmissions for all the 
robots on the field.  Its main goal is convert the relatively weak (2 -5mV) 40kHz pulses 
into a coherent binary verdict.  The receiver design consists of op-amp based amplifiers, 
signal-conditioning filters, all of which bring the signal to a level which can be 
interpreted by a microcontroller.  The microcontroller makes the call on whether the 
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signal exists or not, and manages feeding that data back into AI.  The micro can also be 
reconfigured to measure pulse width of the incoming signal, and convert that pulse 
width into sensible data. 
 

 
 

Figure 5.6.2.1: Ultrasonic Receiver Circuit 
 
 
 

 
 

Figure 5.6.2.2: Data Encoding with Ultrasonic pulses 

6. Analog System 

6.1. Batteries 

6.1.1. Overview 
Changes to the robot this year may demand more performance from the batteries than in 
previous years.  The most obvious change is that the robots will be driving four wheels 
instead of three.  Because of this, we must re-evaluate our power supply system to make 
sure it meets our requirements.  
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6.1.2. Battery Selection 

6.1.2.1.  Current Estimate 
To select the appropriate battery packs, we have to consider the current and the power 
the robots consume.  With the exception of the kicker, in schematic and layout, the 
driving motors, the horizontal dribbler, the vertical dribblers, and the 5V regulator have 
their input voltages tied at the same potential.   
 
At startup, each driving motor requires 5.4 Amps, and the 5V regulator that supports the 
digital and analog circuitry requires approximately 0.3 Amp input. In addition, 
assuming that the horizontal dribbler will also be turned on at startup, the stall current 
for the horizontal motor is 5.2 Amp, for the vertical motor is 3.3Amp. Assuming that the 
kicker is only used in spurts and not a factor in initial power consumption, the battery 
needs to give supply a total of 33.64 Amp at the input voltage at startup. Table 6.1.2.1 
gives a break down of the current requirement when the robots start up and when it is at 
normal playing mode.  Note that these numbers are calculated under the assumption 
that the robots are running with 13V power supply.  At normal operation the kicker and 
dribblers are also assumed to be off.   Please see the section 6.1.2.2 for more detail on 
these assumptions.  The total start up current might seem large.  This is because we have 
assumed worst case for all the components that might be on at start up, while in real life 
it might not be the case.   
 

Device Start Up(Am) Normal 
Operation(Am) 

Motor (x4) 5.4 .25 
Horizontal Dribbler 5.2 0 
Vertical Dribbler (x2) 3.3 0 
5V Regulator .14 .14 
Misc. (IR sensor etc) 0.1 .1 
Total  33.64 1.24 

 
Table 6.1.2.1: Calculated Current at Start Up and Normal Operation 

 

6.1.2.2.  Power Consumption 
 
In order to estimate how long the batteries will last, we have estimated the power 
consumption of the robot in Table 6.1.2.2.   
 

Power per unit(W) Device Units Resist  
(Ohm) 

Op. Volt  
(Volt) 

Current 
(A) Max Avg 

Max   (5%) 4 2.4 13 5.4 Motor 
Norm (90%) 4  13 .25 

70  6.6  

Kicker 1 1.52 13 8.6 112 .37 
Horizontal Dribbler  1 2.5 13 5.2 67.6 6.7 
Vertical Dribbler 2 2.4 8 3.3 26.4 2.64  
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5 Volt Regulator 1  13 .14 1.82 1.82 
Other Misc  N/A  13 .1 1.3 1.3 
Total Power     515 39.33 
 

Table 6.1.2.2: Power Consumption By the Robot 
 
Max. Power  = 70 x 4 + 112  + 67.6 + 26.4 x 2 + 1.82 + 1.3 
  = 515.52 W 
Avg. Power  =  7.7 x 4 + .37  + 6.7 + 2.64 x 2 + 1.82 + 1.3 
  = 42.33 W 
Avg. Current  =  Motor Cur. + Kicker Cur + H_Drib Cur. + V_Drib Cur + Misc 

= 4 x (5.4 x 10% + .25 x 90%) + (.373 / 1.52) + (6.7 / 2.5) + 2 x  
(2.64 / 2.4) + .14 + .1  

=  4 x (.27 + .24) + .245 + 2.68 + 2 x 1.1 + .24 
=  7.405 A 

 
The above calculation is based on the following assumptions: 
 
Motor: 
5% of the time, the motor is running at maximum power (i.e. stalling, cold start) 
95% of the time, the motor is running smoothly and only consuming 250mA 
 
Kicker: 
40 Kicks a game (20 minutes) 
100ms per kick 
Avg Power = (0.1 sec * 112W * 40)/ (20 x 60) = 0.373 W 
   
Dribblers: 
10% of on when playing 
 
5V Voltage Regulator 
Outputs .3Amp to the digital board  
85% efficiency 
 
The above maximum power 515W is considered to be the absolute maximum power that 
can be consumed by the robot. 
On average, the robot will only consume 39.33W with current 7.4 A. 
 

6.1.2.3.  Final Battery Selection 
 
Last year, the team used Panasonic HHR210A NiMH for their design as the same as the 
year before. During the first semester, we manufactured more 2001 robots in preparation 
for an 11 on 11 robot demo.  When we order more batteries from Panasonic for the 11 -
robot demo, we also ask for advice in batteries selection.  The manager at Panasonic 
advised that the batteries we used in previous years are not designed to handle the high 
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current drain in motor driven applications.  He also suggested 4/5 SC (HHR200SCP) or 
SC (HHR-300SCP) size NiMH cells would be better suited for our robots.  We research 
into the two models suggested.  We eventually decided to use the HHR-300SCP because 
it offers 3050mAH capacity, which is 50% more capacity than the HHHR-200SCP’s 
2000mAH.  Our initial configuration is to put 9 cells in series as in Figure 6.1.2, note that 
the center packs are different configuration because they are behind the kicker. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We used the above configuration in our first robot.  The result shows that the robots are 
running smoothly with the battery packs and they fit perfectly into the mechanical 
system. 
   
Another concern in selecting batteries is whether our current battery chargers could 
recharge them. In the lab there are eleven Maha MH-C777 designed to charge NiCad or 
NiMH battery packs with the voltage ranging from 4.8 to 12 Volts.  They worked fine.  
Our final decision on batteries is to use the following model with the configuration in 
figure 6.1.2.  

Panasonic Nickel Metal Hydride 
   HHR-300SCP 
   BATTERY NIMH 3000 MAH 1.2V 
 
One concern is how long the battery packs will last.  Here we will provide a rough 
estimate. After fully charged, the battery packs can provide up to above 12V.  Given the 
average power consumption (39.33W) listed in Table 6.1.2.2, and the average current 
7.4A, we expect the battery packs to run for more than 20 minutes until it drops to its 
nominal voltage (10V).  The estimate is based on the discharge graph shown at Figure 
6.1.3.3. When discharging with 10A, it takes 7 minutes for the voltage to drop to 1.1V.  
We will pay attention to how long the batteries actually run during the practice games 
before the competition.  

+ _ 

Figure 6.1.2.3: Battery Packs on the Robot 
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6.1.3. Battery Specifications and characteristics: 
 

Diameter 23mm 
Height 43mm 

Approximate Weight 57g 

Nominal Voltage 1.2V 
Average Discharge Capacity 3050mAh 

Rated(Min.) Discharge Capacity 2800mAh 
Internal Impedance 4mOhm 

Standard Charge 300mAx16hrs. 

Rapid Charge 3000mAx1.2hrs. 

Standard Charge 0oC to 45oC 
Rapid Charge 10oC to 40oC 

Discharge -10oC to 65oC 

Storage <1 year -20oC to 35oC 

Ambient 
Temperature 

Storage <3 months -20oC to 45oC 

 
 

Table 6.1.3: Specifications of the HHR-300SCP 
 

 
 

 Figure 6.1.3.1: Typical Charge Cha racteristics 
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Figure 6.1.3.2: Typical Charge Characteristics at Low Current 

Figure 6.1.3.3: Typical Charge Characteristics at High Current 
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6.1.4. Fuses and Voltage Indicator:  
To protect the circuits, we use fuses on both the motherboard and the digital board.  On 
the digital board, we use Fairchild Mosfet NPD5070L.  This is a 2A self-reset fuse which 
will reset itself when the robot resets.  On the motherboard, we used F992-ND 15A fuse.   
 

 
 
 
 
The voltage indicator is essentially a voltage divider.  When the voltage supply drops 
below certain value, the voltage indicator will trigger the beeper to give sound, warning 
batteries low.  In our case, the indicator will trigger a beep when power drops under about 
10.5V.  The threshold voltage could also be modified easily in software.  Introducing the 
voltage indicator enables the robots to report problems instead of us trying to look for it. 
 

Figure 6.1.3.3: Fuses in the Schematic 
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6.1.5. Kicker Battery 
To get best performance for the kicker, we should use battery packs with least internal 
resistance.  This year, the mechanical engineering team picked the Sanyo Nickel 
Cadmium Battery because of its low internal resistance and small size.  The model 
number is N-250AAA.  The 6 batteries are connected in series to provide 7.2V nominal 
voltage to the kicker for kicks in different speeds.  
 
 

6.2. 5-Volt Integrated Switching Voltage Regulator 
 
In 2000 and 2001, the same basic 5 volt regulator circuitry was employed to generate the 
5 V supply required for the digital electronics and various outputs and signals,  despite a 
change in the main battery pack voltage from a nominal 9.6V to 12V.  This consisted of a 
step-down switching regulator circuit built around a National Semiconductor LM2675 
Switching Regulator Controller Chip, using the design recommended in the data sheet 
for this chip.   
 
In the course of maintaining old and constructing new units of the 2001 design robots, 
the EE team discovered several undocumented irregularities in the regulator circuit.  
Firstly, several of the old 2001 robots had single or multiple inductors in their circuit, 
with a variety of resultant inductances, typically less than that specified in the schematic 
(33µH).  Rumor had been circulating from veteran team members of some overheating 
and loss of regulation with the 2001 design, and it seemed that during the summer, after 
the documentation deadline, some experiments and modifications had been made to the 
circuit.  When tested in breadboard (see appended document), the overheating problem 
could not be replicated.  However, given rumor of instability, coupled with the 
undocumented changes, and the fact that the regulator circuit design was based on the 
2000 year nominal supply of 9.6V, it was decided to review the circuit design and 

Figure 6.1.3.3: Voltage Indicator Circuit 
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external component selection.  Typical for these types of chips from reputable 
manufacturers, the LM2675 data sheet includes a comprehensive design guide and 
recommended circuits.   
 
For a 12V nominal input voltage and about 0.5 A output , a 47µH or 68µH inductor is 
recommended. This was tested satisfactorily in breadboard and was populated on the 
new 2001 design boards.  We also observed some instability on some of the new 2001 
boards.  Although it was difficult to reproduce consistently, the regulator output would 
sometimes droop to 2-3 V when a drive motor on the robot was loaded or stalled.  
Monitoring the input voltage to the regulator did not reveal any problem, as input 
voltage never fell below 7 V, even briefly.  Despite tracing the circuit, and a full week 
devoted to debugging, the cause of this behavior was not identified. It is most likely 
related to a design error since the routing software and the outsourced manufacturing of 
boards are unlikely sources of error.   
 
After this nightmare, and the realization that switching regulator design is not trivial, it 
was suggested that a more fully self-contained, COTS (commercial off the shelf) 
regulator be investigated to resolve the regulation issue on the 2001 boards.  A team 
member had had some experience with appropriate products marketed by 
PowerTrends, now Texas Instruments Plug-in Power Solutions.  A web search of TI's 
plug-in power website led to the selection of the 78ST205VC, 2A, 5V integrated 
switching regulator (ISR).  This is a simple 3 pin device (input, ground, and output), 
about 1" tall by 1" wide, by 0.25" thick, including heat sink and inductor, with one 
external filter capacitor required.  Please see the datasheet in the appendix for details.  
These were retrofit into all of the new, and several of the old 2001 design boards, 
bypassing the existing circuit, since when there have been no problems with regulation.  
The tradeoff is a slight reduction in efficiency, from a nominal 90% to about 85%, 
probably due to the use of a tiny (given the 2A output) surface-mount inductor on the 
ISR, vs. the substantial through-hole inductors used in the previous circuit.  
 
The solid performance of these products led to the decision to integrate them into the 
2002 design.   
 
A brief estimate of the current demand that the 5 V supplied components (directly and 
indirectly) of the 2002 design follows, and justified the use of the 2A version of the 
component as opposed to the 3A.  Note that the following is based upon datasheet 
nominal values and schematic calculations.  
 
 
 
 
 
 
Component Description Quantity Current/unit Total 
PIC16F877 Microcontroller 4 15mA 60mA 
EPM7128S FPGA 1 50mA 50mA 
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MAX203 RS232 Driver 1 8mA 8mA 
LM555 Timer 1 3mA 3mA 
OPA1013 OpAmp 2 negligible negligible 
ECS200 Clock 1 25mA 25mA 
LCD0821 LCD 1 50mA 50mA 
MM74HC132 Schmitt NAND  1 negligible negligible 
MM74HC126 3-State Buffer 1 negligible negligible 
EFR-TQB40K5 Ultrasonic Tx 1 7mA 7mA 
Radiometrix RPC Wireless Module 1 34mA 34mA 
SML-LX1206 LED Indicator 5 23mA 115mA 
   TOTAL 352mA 
 
This is in reasonable agreement with a measurement made by patching an ammeter in 
series with the 78ST205VC on a set of prototype 2002 boards, which came to 250mA for a 
fully operating board, including interprocessor serial communications and driving the 
digital inputs of several analog power devices, but lacking the LCD.  Including the 
estimated LCD requirement, this would come to 300mA.  Interestingly, the calculated 
value in the table above turns out to be a moderate overestimate - the datasheet 
specifications of several of the components were generously estimated. 
 
According to the datasheet for the 78ST205VC, we can expect ~83% conversion 
efficiency from the component at 12V input, and ~300mA output. 
 
The following schematic depicts the relevant circuit, on the 2002 analog board design. 
 

 
Figure 6.2: Voltage regulator circuit 
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The ceramic input filter capacitor is considered optional by the manufacturer, but was 
included to help guarantee clean power.  Both the ceramic and the electrolytic capacitors 
were specified to tolerate 50V because the presence of rapidly switched 12V signals on 
the analog board might lea d to substantial spikes at the input.   
 
The physical placement of the parts on the 2002 analog board - see the photos of the 
boards in the Appendix  - is in retrospect, less than optimal, although its layout position 
was selected with the intention of minimizing trace lengths to reduce noise on the 5V 
supply.  The pins on the 78ST205VC are rather brittle, and there are no structural 
mounting pins.  We located the part too close to the edge of the board, and it is in 
jeopardy of being bumped by anyone removing/inserting the motor1 connector, or the 
dribbler connectors from the mother board.  We have yet to subject the boards to the full 
rigors of daily use, but we are hoping that the emphasis on the overall maintainability, 
reliability, and modularity of the robot will minimize the need remove these connectors.  
 
 

6.3. Kicker 

6.3.1. Variable Speed Kicking 
 
This is a very simple system.  The kicker is activated using a simple MOSFET switch, 
which, when activated,  provides the solenoid (being held at Vkick) a path to the ground.  
The voltage across the solenoid is equal to the battery voltage plus a nominal 7.2V from 
a six cell Sanyo KR-N-250 AAA NiCad external battery pack (a total of at least 18 V).  
They have 250mA-h capacity.  The strength of the kick is controlled by limiting how 
much time the switch is open with typical values being on the order of 50ms.  In the 
main microcontroller code this is done by setting a timer when the switch is first 
activated, and closing the switch when the timer interrupts on overflow. 
 

 
Figure 6.3.1: Kicker Circuit 

 

6.3.2. Testing of Kicker 
Note that when testing the kicker circuit, batteries must be used to power the 
robot.  A benchtop supply cannot source a sufficient current pulse for the circuit 
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to operate.  The result will be the appearance that no power is being delivered to 
the kicker. 

 

6.4. IR Circuit 

6.4.1. Overview 
 
In 2001 the IR system would sometimes malfunction in the presence of bright light.  
Bright light prevented the system from detecting a broken beam because the receiver 
would capture enough ambient infrared lux to register as “unbroken”.  The primary 
goal of the 2002 design was to address this problem. 
 
This year’s IR detector is designed to be less sensitive to misalignment and bright 
overhead lights.  It does this by sending a pulsed signal to its receiver.  The received 
signal goes through a high-pass filter to remove DC before further processing.  The DC 
filtering allows the overall room brightness to be subtracted out, leaving the pulsed 
signal to determine whether the beam is blocked. 

6.4.2. IR Transmitter 
 
The transmitter is a 555 timer chip running an infrared LED at 240 Hertz.  The 555 is a 
standard timer/oscillator whose oscillating frequency can be set by a resistor capacitor 
pair.  We ran ours at a low frequency of 240 Hz  because the receiver’s received power 
drops off at high frequency as does the amplification response of the OPA1013 op-amps 
(which do the signal preparation).  To adjust the transmitted signal strength, there is a 
current limiting resistor on the output leg. 
 
The infrared LED used this year is brighter and shines in a wider angular field than the 
one used in 2001.  Both of these factors contribute to improved resistance to 
misalignment.  We've also added the hardware necessary to support two IR sensors.  
This was done as a backup measure so more complex beam geometries could be 
supported.  Preliminary test, however, seem to indicate that one beam will be effective.  
A special connector was made to link the IR receiver-In signals of both detectors because 
without a signal going into both the unconnected IR receiver will report that its beam is 
broken. 
 
Another thing to note is that the total current consumption for two IR transmitters is 
around 100mA.  This is a non-trivial current for the digital board to support, especially 
since the IR transmitters are always on.  Despite this, it was calculated that the demand 
can be met by the digital board without adverse effects.  

6.4.3. IR Receiver 
 
The new design receives a pulsed IR signal instead of a steady beam.  When the beam is 
picked up by the receiver the DC bias can be removed (this subtracts out ambient light 
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levels) and the pulsed AC component can be processed.  The rest of the receiver circuit 
does simple signal processing to detect the strength of the AC component and generate a 
digital low if the beam is broken.  The first element of the processing is an amplifier 
which makes the signal easier to work with.  A passive filter averages out the amplified 
signal so that it is approximately flat and can be compared to a level of 0.5V in a 
comparator.  With excellent filtering only one comparator would be needed, but in our 
current setup there are situations where one comparator does not give a steady digital 
output (sometimes the filtered signal will drop below the comparator threshold).  This 
problem was addressed by adding another filtering capacitor and running the filtered 
output into a second comparator.  This setup gives good results which are resistant to 
both ambient light and mechanical shock. 
 
 

Figure 6.4.3: IR Receiver 
 

6.4.4. Possible Improvements 
 
In the future the system could be tuned to require two op-amps instead of three.  This 
could be done by combining filtering into the amplification stage so that a single 
comparator could make the call.  The circuit could also be improved by upping the 
frequency of the IR pulse (perhaps to 5kHz).  Two factors currently limit this: the photo-
pin diode (a .k.a. receiver), and the op-amp.  Both are less responsive at higher 
frequencies (op-amp amplification reduced, received voltage over diode lowered) but 
with different op-amps we could raise the frequency and thereby reduce the capacitance 
(and size) of our filtering elements.  This has the added benefit of slightly improving the 
response time (smaller filtering elements means faster responses to changes).  If 
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implemented as described above, the IR system could be compacted to take less than 
half its current board area while maintaining the same functionality. 

 
 

6.5. Dribbling System 
 
Variable dribbling speeds can be helpful in improving ball control, especially when 
turning.  If a ball is being spun quickly, its angular momentum can keep it from turning 
smoothly with the robot. If the robot turns suddenly the ball may be lost due to 
excessive spin on the ball. If the ball is dribbled slower just prior to turning, this problem 
can be largely avoided.   
 
We implemented a variable speed dribbler by creating a current sensing circuit which 
tells the main micro how much current is being used to dribble the ball.  Current is 
directly proportional to torque being applied to the ball and torque is the physical 
property we would like to control.  Currently the dribbler has a primitive control. It has 
some discrete values of dribbling speed and switches from one of these values to the 
next whenever the current consumption gets beyond certain set limit. It speeds up the 
dribbler if the current is too low, and slows down if it is too high.  In our final version it 
will be a simple p-controller with a more continuous set of speeds values for a more 
accurate control. This will be implemented in summer of 2002. 
 
The current sensing circuit consists of a low value resistor (0.5 Ohm), over which the 
voltage is measured and converted to a signal that is readable for the microcontroller 
A/D (0-5V). 
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Figure 6.5: Horizontal Dribbler circuit  
 
This circuit converts the current (AC) across the resistor R1 as a DC voltage within a 
usable range for the microcontroller to read using one of its Analog-to-Digital converter 
ports. The microcontroller uses this value to control the speed of the dribbler motor. The 
microcontroller, in turn, generates a PWM signal with adjusted duty cycle on HDrib 
(gate of Q1) to change the current consumption (or torque of the motor).  
 
C33 is used as a high pass filter to isolate any DC offset from the motor. The first Op-
Amp is a unity gain feedback stage to provide electrical isolation between the input and 
the output stages.  The second Op-Amp provides the gain to convert the voltage values 
to ones that are in the readable range of the microcontroller (0-5V). C32 and C31 are 
used to further filter the signal and remove any ripple in it (i.e., low pass filtering).  
When the dribbler is run with a PWM at 1kHz, the output signal appears well filtered 
and its level well correlated with dribbling speed. 
 

6.6. H-Bridges 
 
While the PWM signals from the motion micros determine how hard the motors should 
be driven, it is the H-bridges which actually drive them.  We used the L6203, which can 
handle up to 5A and in testing demonstrated a lower transistor turn-on voltage.  This is 
important because the lower the turn-on voltage across the H-bridge, the more voltage 
the motor actually sees, and consequently the easier it is to accelerate.  This drop can be 
measured by probing the voltage over the H-bridge while the motor is being stalled 
(held still while power is being applied).  Performing this test we found the 2001 H-
bridges yielded a drop of 3V, (a significant fraction of the nominal 10.8V supply), while 
the L6203’s by comparison yielded a 1.8V drop (a 15% improvement over 2001’s H-
bridges). 
 
Our implementation of the H-bridge is a slight adaptation of the implementation 
discussed on page 12 of the L6203 datasheet.  The salient features are as follows: 

• Pins 1 and 3 are the output terminals.  The voltage drop over them is what 
supplies power to the motor.  They each have a bootstrapping capacitor 
attached. 

• Between pin 1 and 3 there is also a 15 Ohm resistor/capacitor pair.  These 
components greatly reduced transient noise spikes.  The diodes also helps 
reduce the spikes. 

• Pins 5 and 7 determine the direction of the motor.  They take in digital signals 
and 7 should be the negation of 5.  In our design we used 2 pins from the 
motion micros to supply DIR and ~DIR. This was chosen over the option of 
using one pin and a NOT gate because conserving board space was more 
important than saving microcontroller pins.  

• Pin 11 is the PWM input.  The duty cycle determines how hard the motor will 
be driven 
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Figure 6.6 H-bridge Circuit 

 
Formal tests were not run on the thermal characteristics of the H-bridges.  They do 
however get significantly hot if the motors are stalled for more than 10 seconds.  Stress 
testing may reveal whether hot H-bridges lead to any adverse effects.  At this point, 
however, this testing is still in the pipe. 
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7. Wireless System 

7.1. Overview 
 
One of the major changes made by the EE team was the redesign of the wireless 
communications system between the intelligence and control system on the sideline and 
the robots on the field.  The design requirements of this system were two fold.   
 
Our primary goal was to improve the robustness of the wireless system so that we 
would not be plagued with the intermittent problems that former years’ wireless 
systems faced during competition.  We satisfied this requirement in several ways.  First, 
instead of relying on only one type of wireless module, our system now supports three 
different types of modules operating on different carrier frequencies: 418 MHz, 433 
MHz, 869 MHz, and 915 MHz bands.  Thus if a certain module is not working well at 
competition, we merely have to swap a different module onto the robot.  Secondly, 
while we are still offering backwards compatibility with the Radiometrix RPC used in 
previous years, we are moving to the Radiometrix TX/RX modules that allow us 
increased controllability.  This control allows us to implement methods of Error 
Detection and Forward Error Correction onto the wireless channel. 
 
Our secondary goal was to move from a simplex system where only the intelligence and 
control system could talk to the robots, to a full-duplex wireless system where 
information could flow in both directions.  This means that the robots can now send 
local information back to the intelligence and control system on the PC.  The 2002 Robots 
will feature ultrasonic transmitters which offer the ability to send one bit of information, 
back to the intelligence and control system indicating when that particular robot has the 
ball. 

 
Our team has also researched and designed a multi-frequency, high bandwidth, low-
latency wireless return path using the SE200 modules.  This design is ready to be 
implemented onto next year’s robots so that we can send more than one bit of local 
information back to the intelligence and control system.  For example we can send 
information regarding the BER rate of the forward wireless channel so that we know if 
we need to change to a different wireless module, battery voltage status so that we can 
tell which robots need to have their batteries recharged, status on how the various 
subsystems of the robot are performing, or local position information via an optical 
position tracking system.   
 
In Section 7.2 we detail all of the different Wireless Modules that we researched for use 
on the 2002 RoboCup System.  We detail the specifications, advantages, disadvantages, 
current status, and application for use of that particular module as it applies to the 
RoboCup System.  We also include corporate references and references to 
documentation where applicable.  Then in Section 7.7 we detail our wireless test setup 



 80 

and tests that were performed to evaluate and compare these modules. Section 7.3 
details the results of our tests as they apply to the 2002 RoboCup system.  
 
 

7.2. Requirements 
 
The requirements for this year’s wireless system were relatively straightforward. These 
requirements were decomposed a little bit further to give us more specific requirements.   
 
R1. The system shall be more robust than last year and more fault tolerant. 
 R1.A The system shall be able to use multiple frequencies. 
 R1.B The system shall be able to handle the overflow of the receiver. 
 R1.C The system shall be more immune to interference than last year’s system. 
R2. The system shall be compatible with last year’s system. 

R2.A The system shall have a latency no greater than ~16ms.  
R2.B The system shall be able to use the same packet structure as 2001. 

R3. The system shall have a return communication path for extremely low bandwidth 
communication (1 bit of information for a robot to acknowledge if it has possession 
of the ball or not). 

 
(Note:  Decomposed requirements are listed beneath the major headings.) 
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7.3. Design to Meet Requirements 
 
2001 System 

 
Figure 7.3.1: 2001 Simplex Wireless System 

 
 
The 2001 wireless system used the Radio Packet Controller (RPC) as its only available 
wireless module with two available frequency ranges.  The system performed broadcast 
communications from the artificial intelligence computer to the robots. 
 
 
2002 Communications System Design  
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Figure 7.3.2 2002 Full Duplex System 

 
 
The main difference between the 2001 and 2002 design is that we insert a microcontroller 
between the communication paths on the two end-to-end communications.  The 
advantages of including this microcontroller into new design are: 

(1) The AI system sends a packet of data every 16.6ms.  Instead having a 
processor on the PC spend all of its time negotiating with the wireless module, it can 
instead send the packet to the microcontroller who will negotiate the transfer with the 
wireless module, thus freeing up the PC processor. 

(2) Different types of wireless modules can be interchanged into the system, 
while remaining transparent to the AI system.  Thus if we need to change the wireless 
module during competition due to interference or malfunction, these settings need only 
be configured by a DIP switch at the microcontroller rather than reconfiguring code on 
the AI system 
 
 
Our 2002 requirements led to the formation of our preliminary design.  Because of space 
limitations, multiple wireless modules could not be feasibly mounted on the robot 
simultaneously.  Therefore, the concept of a single wireless module board that would 
adapt a number of modules onto the wireless board was conceptualized.  The different 
modules could cover the different frequency ranges and possibly different 
communication schemes.  The system would have not only a broadcast to the robots, but 
also a return path to the artificial intelligence computer to convey information such as 
ball possession.  Overflow of the receiver could be handled in software on the wireless 
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microcontroller’s  control software.  The same packet structure implies that 26 bytes of 
information need to be sent in 16.6ms creating a minimum data rate of 15,700bps (26 
bytes * 10 bits/byte/16.6ms).  We note that we need to count 10 bits per byte since there 
is a start and stop bit associated with each 8 -bit byte of data.  Lastly, immunity to 
interference can be increased by layout of the module and antenna choice.   
 

7.4. Preliminary Research 
 

7.4.1. Technologies Considered 
 
Numerous technologies were considered on the path to settling on a couple of feasible 
solutions.  A listing of the technologies considered follows. 

• Radio frequency 
o 418 MHz / 433 MHz 
o 869 MHz / 914 MHz 

• Ultrasonic 
• Spread Spectrum 

o 802.11b – Note:   Since this technology was not used in the final 2002 
Robot Design, due to time constraints we will be adding documentation 
over the summer. 

o  FHSS (Frequency Hopping Spread Spectrum) 
• Infra-red – Note: Since this technology was not used in the final 2002 Robot 

Design, due to time constraints we will be adding documentation over the 
summer. 

 

7.4.2. Wireless Modules Considered 
 
Numerous wireless modules were researched in our quest to find the best modules for 
our application.  We performed a great deal of research on the following modules. 
 

• Radiometrix 
o TX2 / RX2 
o TX3 / RX3  
o RPC 

• Wireless Mountain  
o Unilink 

• Aerocomm 
o AC1524C-3 

• Conrad  
o SE200 
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7.4.2.1. Radio Packet Controllers 
 

 
 
Specifications 
RPC Module  
Module Type Transceiver 
Carrier Frequency  418 MHz, 433 MHz 
Data Rate 64 kbps 
Setup Time ~5ms 
Manufacturer Radiometrix, UK 

tech_support@radiometrix.com 
www.radiometrix.com 

Distributor Attn: Danny Lemos 
Lemos International 
1305 Post Road Suite 108 
Fairfield, CT 06430 
1 (866) 345-3667 
sales@lemosint.com 
www.lemosint.com 

Interface parallel (1-byte wide) 
Data Rates 40 kbps half-duplex 
Frequency Band 418 MHz / 433 MHz 
Performance 30m in-building range / 120m open ground 
Dimensions\Weight\Volume 54 x 32 x 16 
Power 5V @ <20mA 
TX Latency 13.8ms 
 
Advantages / Disadvantages 
 
The advantage of the RPC is that it is a totally integrated unit with a PIC microcontroller 
on board.  However, it takes in parallel data which requires a lot of I/O ports on our 
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microcontroller.  With its large setup time, timing can become an issue with an increase 
of data.  Previous years’ RoboCup teams have also experienced interference issues using 
this module. 
 

7.4.2.2. TX2/RX2 
 

 
 
Specifications 
TX2/RX2 Modules  
Module Type Transmitter/Receiver 
Carrier Frequency  418 MHz, 433 MHz 
Data Rate 160 kbps 
Setup Time ~ 1 ms 
Manufacturer Radiometrix, UK 

tech_support@radiometrix.com 
www.radiometrix.com 

Distributor Attn: Danny Lemos 
Lemos International 
1305 Post Road Suite 108 
Fairfield, CT 06430 
1 (866) 345-3667 
sales@lemosint.com 
www.lemosint.com 

 
Advantages / Disadvantages 
 
The TX2/RX2 modules are separate transmitter and receiver modules with a carrier 
frequency of 418 MHz and 433 MHz.  The module is extremely small in size and in 
contrast to the RPC module takes in digital data serially.  A separate microcontroller is 
needed to format the data and balance the packets in order to send them through the 



 86 

module.   However, this also means that we gain more control over encoding and 
decoding schemes as well as rate of data transfer.  
 
Notes  
 
The RX2 module used a carrier detect signal to internally detect when to capture the 
incoming signal.  A 22 µF and a 0.033 µF capacitor were used to filter the incoming 
signal to enable a more stable output.  Manchester encoding was used to guarantee that 
an equal number of ones and zeros are transmitted over a period of several milliseconds.  
A 50% bandwidth overhead goes into the Manchester encoding, but the TX2/RX2 
module’s maximum data rate is well above twice our required data rate; we will also be 
exploring the viability of alternate encoding schemes over the summer. 
 

7.4.2.3. TX3/RX3 

 
 
 
Specifications 
TX3/RX3 Modules  
Module Type Transmitter/Receiver 
Carrier Frequency  869 MHz, 914 MHz 
Data Rate 64 kbps 
Setup Time ~ 1 ms 
Manufacturer Radiometrix, UK 

tech_support@radiometrix.com 
www.radiometrix.com 

Distributor Attn: Danny Lemos 
Lemos International 
1305 Post Road Suite 108 
Fairfield, CT 06430 
1 (866) 345-3667 
sales@lemosint.com 
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www.lemosint.com 
 
Advantages / Disadvantages 
 
The advantage of using this module is that it operates in an alternate frequency range 
than the 418/433 MHz used by most other RoboCup teams in competition.  Like the 
TX2/RX2 the modules are extremely small in size and in contrast to the RPC module 
take in digital data serially.  A separate microcontroller is needed to format the data and 
balance the packets in order to send them through the module.   However, this also 
means that we gain more control over encoding and decoding schemes as well as rate of 
data transfer.  
 
Notes 
 
The module takes voltages in the range 0-3 V which is different from the RX2 and RPC 
from Radiometrix.  The data sheet recommends placing a 100 kΩ resistor on the line to 
bring the voltage down from 5 V to the 3 V range.  A 22 µF capacitor was used to filter 
the input, enabling a more stable output. 
 
 
Specifications 
Interface Serial 
Data Rates 50kbps 
Frequency Band 914 MHz  
Performance 30m in-building / 120m open ground 
Dimensions\Weight\Volume 12 x 32 x 3.8mm 
Power 2.7V-12V @ 9.5mA  
 
References: 
http://www.radiometrix.com/html/products/tx3.html 
 

7.4.2.4. SE200 
 

Our testing and analysis has shown that the SE200 can be used to support a multi-
frequency, high bandwidth, low latency return channel.  A block diagram representation 
of this system appears below.   

While this reverse channel system offers many advantages, it was not used on the 
2002 Robots due preliminary concerns regard about the extra microcontroller on the 
robot that it required would not fit on the Digital Board using the Motherboard PCB 
board layout architecture that we had planned to use.  Instead of moving to a different 
board layout or trying to adapt our preliminary design for the Motherboard layout to 
get all this to fit, the decision was made to forego this multi-frequency, high bandwidth, 
low latency return channel.  Our work remains ready for implementation on the 2003 
robots.   



 88 

Note that over the summer we will be adding a great deal to this section: hardware 
schematics and explanations behind them, software to get the SE200’s operational, and 
explanations and preliminary test results of the SE200, so that the research that we have 
already done can be readily picked up by next year’s team.   Unfortunately, due to time 
constraints we did not have time to add all of this information to this document. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.4.2.5. Aerocomm 
 
Specifications 

RS232 

SE200 
Receiver 
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Interface 20-pin mini connector 
Serial Communications Up to 115.2 Kbps 
Frequency Band 2.402 – 2.478 GHz, FHSS 
Performance Up to 100ft (30m) inside, 1,000ft (305m) 

line of sight 
RF Channels 10 
Dimensions: 
Weight: 

2.65” x 1.65” x 0.2” (6.7x4.2x0.5 cm) 
<.7 ounces (<20 gm) 

Power 100mA (Tx); 80mA (RX) Consumption 
3mW output power 

Voltage 5V 
 
Advantages 
 
The main advantage of this product is that fact that it utilizes Frequency Hopping 
Spread Spectrum (FHSS) technology to handle interference problems with other RF 
devices. Additionally this product provides us with a high bandwidth communications 
systems with a serial communications interface. 
 
Disadvantages  
 
We note that the advantages of FHSS technology does come at the cost of increased 
overhead and latency to the system.  After speaking with a technical representative for 
Aerocomm we were able to ascertain that while the normal specification of time to 
packetize and send data is about 16ms (very close to the 1/60s limitation of our system), 
the Aerocomm devices do allow us to define and program our own communications 
protocol within the onboard EEPROM.  The technical representative said that by 
removing some of the features of the default protocol, we can get our latency down to 
the 5 – 7ms range, especially due to the fact that we only have about 27 bytes of data to 
send.  There is a 1ms overheard due to frequency hopping, and we can define our own 
parameters for channel number, addressing mode, and error control.  Since 
retransmission protocols do not help us with such a real time system, we can simply 
eliminate the error control overhead and we should be able to get the device to operate 
within the latency requirements of our system. 
 
We would also like to note that last year’s RoboCup team also tested a FHSS product 
from Aerocomm for the 2000-2001 RoboCup system.  After reading through their Final 
Design Document, we note that the main problems dealt with the hardware and 
software setup of the system (page 62 – 64 of the 2001 Electrical Engineering Final 
Design Document).  They also mention that the maximum bandwidth that they could 
get out of the system was 800bps.  This number seems extremely low for a system that is 
supposed to run at a maximum of 115.2Kbps.  While the means of testing as well as the 
associated calculations for this 800bps calculation are not given, we propose that they 
were measuring effective bandwidth after the all of the control overhead was 
introduced.  If we were to use an Aerocomm device we would be defining our own 
communications protocol so that this overhead would be much lower for our system.  
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Furthermore we are using the 1524 family of Aerocomm devices which is their low-
latency product, rather than the LX2400S-10 which was tested last year. 
 
References 
 
Company Aerocomm 
Product AC1524C-3 
Address 10981 Eicher Drive 

Lenexa, Kansas 66219 
 

Phone 1.800.492.2320 
Webpage www.aerocomm.com 

 

7.4.2.6. Wireless Mountain - Unilink 
 
 

Specifications 
Interface RS-232 (Serial) 
Serial Communications 300 to 19.2KBPS 
Frequency Band 902-928 MHz ISM Band 
Performance 125 meters, up to 400 feet, line of sight 
RF Channels Factory configured, up to 254 user 

assignable addresses per channel 
Dimensions: 
Weight: 
Volume: 

1.3” x 2.0” x 0.5” (3.3x5.1x1.3 cm) 
2.0 ounces (60 gm) 
1.3 cubic inches (21cc) 

Power Powered via RS-232 line 
 
 
Advantages:  

Being a self contained, “black box” unit with only a serial connector as an 
interface, which makes this unit very easy to use and set up.  The associated PC software 
allows the user to configure the device settings such as addressing and error control by 
plugging the device into the PC. (Note that since we get new data every 1/60th of a 
second we do not have time for retransmission of data and hence it is our desire to 
decrease the error control functionality as much as possible in order to cut down on the 
latency of the system.) 
 
 
Disadvantages: 
 We note that the RoboRoos team from Australia used the Wireless UniLink 
device for the 2001-2002 competition.  It was noted by Professor D’Andrea and Michael 
Babish that they believed that the RoboRoos experienced some problems with 
interference when using this product.  If necessary we will contact them after we get 
samples of this product and evaluate its performance. 
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References: 
 
Company Wireless Mountain 
Product UniLink 
Address 560 Higuera Street 

San Luis Obispo, CA 93014 
 

Phone 805.596.0960 
Webpage www.wirelessmountain.com 
Contact 
Personal (conversational) Info 

Matt Steenwyk 
Mechanical Engineer, graduated and got 
degree from USAF, likes to joke about MechE’s 
vs. EE’s. 

 
 

7.5. Developing Functional Prototypes 
 After selecting our preliminary modules for consideration we next needed to 
figure out how to get the modules working and begin performing some preliminary 
tests to make sure that the modules would work with our system.  Since previous years’ 
teams had already been using the Radiometrix RPC, we knew that this module would 
suit our purposes.  We thus focused on the TX2/RX2, TX3/RX3, and the SE200. 
 Since all three of these devices accepted a digital serial input on the transmitter 
end and output a digital serial output at the receiver end, we initially thought that it 
would not require too much effort to get the modules working: we could just connect 
the transmitter and receivers to the respective microcontroller USART connections.   
Unfortunately, while the modules are interfaced serially, there are quite a number of 
steps required both in hardware and software needed to get the modules operational.  
This process was made increasingly difficult by the fact that the manufacture’s 
documentation and application notes were sparse and unclear.  Through many hard 
hours of consultation with the manufacturer mixed with some trial and error, we were 
able to arrive at the proper hardware and software configurations needed to get the 
modules working.  We note a couple of key findings:  
 

• All three modules require an approximately 50:50 mark to space ratio.  This 
means that on a time average on the order of several milliseconds there need 
to be an equal number of 1’s and 0’s received by the receiver module.  This 
ratio can be accomplished by encoding schemes such as Manchester 
Encoding, which we will be discussed in Section 7.6.4. 

• The receiver module needs to be resynchronized at the onset of each packet.  
Inter-packet noise lacks the 50:50 mark to space ratio and serves to 
desynchronize the module.  Thus at the onset of each packet we need to 
resynchronize the module with 1[ms] to 3[ms] of alternating marks and 
spaces, which correspond to sending 0xAA or 0x55 across the transmitter. 
(The exact timing specifications vary from module to module and are 
detailed in Section 7.7.3.)  

• The USART also needs to be resynchronized at the onset of each packet.  
Prior to module synchronization data into the USART from the receiver has 
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been the noise on the wireless channel.  Thus after module synchronization 
the USART needs to be synchronized such that the start of the packet data 
stream corresponds to the start of byte, i.e. the data stream is byte aligned to 
that on the USART.  This is done by sending one to two byes of mark, 0xFF.  
Recall that during normal operation of the USART, the channel remains high 
when no data is being sent and then the line drops low for the start bit of a 
byte.  Thus the effect of sending OxFF is to keep the channel high long 
enough allow the USART to synchronize with the end and start bits of the 
OxFF bytes.  

 
 

7.6. Functional Design 

7.6.1. Overview 

 

Check DIP Switch
Mode

Send data to U1
(Main

Microcontroller)

Decode Packet

Receive Packet

Check for valid
data

OKNO

Start /
Reset

 
Figure 7.6.1.1 

 
On startup or system reset, the wireless microcontroller begins by reading in the 
wireless dip switch value (SW7), which is in the range from 0-3.  Depending on the 
number read from the dip switch, different pieces of software are run to handle the 
different timings required by the different modules.  The microcontroller then enters its 
normal operational state of waiting for a packet of the correct length.  Once a packet is 
received, the data is decoded and then checked for validity.  After the validity test, 
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correct data is sent to the main microcontroller; otherwise the wireless microcontroller 
waits for the next packet and continues in this operational state. 
Currently, all of the data that is decoded is sent to the main microcontroller on the robot, 
instead of parsing out only the data necessary for that particular robot.  Our initial 
prototype had only one way communication, so this was our initial software 
implementation.  This implementation satisfies the necessary data rate.  For future 
improvements, we have modified the hardware to handle two way communication so 
that the main microcontroller, U1, which can send the wireless microcontroller the 
robot’s ID number.  Using this ID number, U2 will be able to send only the necessary 
data to the robot’s main microcontroller.  Because the modules that we are using offer a 
significantly high data rate, this is currently a low priority, however this functionality 
will need to be implemented in software if we move to an 11v11 system. 

 
 

7.6.2. Packet Structure 
The figure below shows the packet structure for the 2002 Robot System.  This packet 
structure is byte-identical to the packet structure developed for the 2001 11v11 system 
and is considered to be the standard packet structure moving forward. 
 
Referring to the diagram we see that the first byte of data refers to the number of bytes 
in the packet.  Thus this packet should always read as 0d26.  This byte is necessary for 
operation of the Radiometrix RPC module, and remains part of the packet structure for 
all modules. 
 
The second packet is the Packet ID.  This number reads as ‘0’ if the packet pertains to 
Robots 0 to 5, or ‘1’ if the packet pertains to Robots 7 to 11. 
 
The rest of the packet consists of 6 sets of 4 bytes, each corresponding to a particular 
robot.  The individual bits are described in the diagram below. 
 

Numbe
r of

Bytes

Packet
ID

Robot
0 or 6

Robot
1 or 7

Robot
2 or 8

Robot
3 or 9

Robot
4 or 10

Robot
5 or 11

(1 Byte) (1 Byte)
(4 Bytes per Robot)

26 Bytes of Data
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Vtheta Magnitude (1 Byte)

1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0

Vx (1 Byte)
MSB gives direction

Vy (1 Byte)
MSB gives direction

AI_KickSpeed

AI_VDribEnable
AI_HDribSpeed
AI_Dive

UNUSED
Angular_Vel_Dir

4 Bytes of Data per Robot

 
 

 

7.6.3. Hardware Design 
 
Figure 7.6.3.1 shows the hardware overview for the RX2 and RX3 systems on the 2002 
robot.  (The RPC connects to the U2 microcontroller via a parallel interface and so is not 
shown here.) 

 
Figure 7.6.3.1: Schematic Diagram of RX2 and RX3 Interfaces to U2 Microcontroller 
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RX2_RXD, the digital output from the RX2 module is connected to both inputs of a 
NAND gate such that the output is the logical NOT of RX2_RXD, i.e. ~(RX2_RXD).  This 
output and RX2_CD, the RX2 carrier detect signal are the inputs to a second NAND 
gate, such that the resulting output, I1, is a logical 0 if and only if the received digital 
data RX2_RX2 is a logical 0 while the carrier detect line is asserted.  The truth table for 
this output is:  

 
RX2_RXD RX2_CD Output I1 

0 0 1 
0 1 0 
1 0 1 
1 1 1 

Table 7.6.3.1: RX2 Hardware Logic Structure 
 

Why would we want our digital data from the RX2 module to be defined in this 
manner?  Note that we would like our system to output a digital 0 when RX2_RXD is 
low AND RX2_RX2 is asserted and that we would like our system to output a digital 1 
when RX2_RXD AND RX2_RXD are both asserted high.  Next recall that when data is 
not being sent across the USART, the line should remain asserted high.  Note this 
desired effect is produced when RX2_CD line is low.  Our digital logic thus produces 
our desired output for all states of RX2_RXD and RX2_CD. 
 
We next put this I1 signal through a tri-state buffer before it goes to the U2 Pin C7 
hardware RX interrupt line.  DIP PIN1 of the Wireless DIP controls the C1 control line 
into this tri-state buffer.  This controls whether the output of the tri-state buffer should 
be the input I1, or if it should be put into a high Z state.  The DIP switch allows the 
output to be kept in the high Z state for all modes except when RX2 is the selected 
module for use in the 2002 Robot system.  The truth table for this tri-state buffer can be 
represented by: 

 
I1 C1 O1 

X L Z 
0 1 0 
1 1 H 

Table 7.6.3.2 Tri-sate Buffer Truth Table 
 
 
 
 
 
 
Since the RX3 module lacks a carrier detect signal, the RX3_RXD digital output 
from the RX3 module is input directly into a tri-state buffer which performs that 
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same functionality as that for the RX2 module.  Here DIP PIN0 of the Wireless 
DIP controls the C0 control line into this tri-state buffer.  Thus for RX3 we have: 
 

RX3_RXD C0 O0 
X L Z 
0 1 0 
1 1 H 

Table 7.6.3.3 RX3 Hardware Logic Structure 
 
The outputs O0 and O1 of the two tri-state buffers, along with the U2 
programming line are all connected to Pin C7 of U2.  Each line has associated 
with it a 1k resistor to prevent against driver contention from the other lines. 
 
As detailed in Section 9.2.5, the Wireless DIP configurations for the different 
Wireless modes are: 
 
 
DIP P0 DIP P1  O0 O1 State 
0 0 Z Z Programming Mode 

RPC Mode 
0 1 Z I1 RX2 Mode 
1 0 I0 Z RX3 Mode 
1 1 - - Undefined 

(Resistors prevent contention.) 
 

Table 7.6.3.4: DIP Configurations for Wireless Module States   
 
 

7.6.4. Software Implementation 

 
Recall the functional diagram from Figure 7.6.1.1 and the discussion in Section 
7.5.  The transmitter first sends the required setup information of 1 to 3ms of 
alternating mark and space, followed by two bytes of all marks.  This is followed 
by a Manchester Encoded version of the data from AI.  
 
The main data manipulation in the wireless microcontroller is the Manchester 
decoding.  This encoding scheme can be described as replacing a 0 à 01 and a 1 
à 10.  Manchester encoding works well for our application because it guarantees 
a balanced packet of equal numbers of ones and zeros, which gives us the best 
receiver sensitivity.  For our purposes, we performed decoding as a lookup table.   
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(Note:  More efficient encoding schemes will be investigated in the summer  We will 
also be adding more information to this section regarding the actual software code that is 
being used. Unfortunately, due to time constraints we did not have time to add all of this 
information to this document. ) 
 

Decimal 
Value 

Binary Value 
(Index) 

Encoded 
Value 

0 0000 01010101 
1 0001 01010110 
2 0010 01011001 
3 0011 01011010 
4 0100 01100101 
5 0101 01100110 
6 0110 01101001 
7 0111 01101010 
8 1000 10010101 
9 1001 10010110 
10 1010 10011001 
11 1011 10011010 
12 1100 10100101 
13 1101 10100110 
14 1110 10101001 
15 1111 10101010 

Figure 7.6.4 
 

7.7. Testing 
 

7.7.1. Overview 

 
Preliminary testing of the Wireless modules needed to be performed before the 2002 
Robots were completed, or even designed, to ensure that the chosen wireless modules 
would work with the system.  In order to do this we needed to develop a test system 
that would model the 2002 RoboCup Wireless system.  We detail the design and 
operation of this system in Section 7.7.2. 
 
We originally planned to use this Wireless Test System to perform three different tests: a 
latency test, a maximum bit rate test, and a bit-error test.  We define these tests in greater 
detail in Sections 7.7.3 though 7.7.5 respectively.   
 
At this point we have only tested the modules using our latency test.  During the latency 
testing phase of the project, we discovered that the TX2/RX2, TX3/RX3, and SE200 
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modules could not consistently output stable data.  We traced this problem to the fact 
that in our test setup we did not have a way to effectively mount the antennas onto the 
modules.  We found that moving the antennas just slightly would dramatically change 
the module’s ability to read valid data.  This issue did not affect our ability to perform 
the latency test since we could measure the latency during periods the antennas were 
aligned correctly. 
 
While we could still use our Wireless Test Setup to perform latency tests on these 
different modules, their inability to reliably accept valid data meant that we could not 
perform the maximum bit rate or bit-error tests until after we could mount the modules 
onto a more secure platform.  For this reason we chose to delay performing these tests 
until after we designed the wireless PCB boards that these modules would be mounted 
on when integrated as part of the 2002 RoboCup System.  Since our support for the RPC 
in this year’s design meant that we could get a 2002 System operational using merely the 
RPC, priorities and human resources were shifted away from continuing these tests and 
toward other parts of the RoboCup system.  These tests will be performed over the 
summer, and their results used to determine optimal data encoding and antenna 
configuration. 

 
 

7.7.2. Procedure 

 
Before we could begin testing, we first needed to design a Wireless test system that 
would simulate the actual 2002 RoboCup system.  As shown in Figure 7.7.2.1, we used 
four microcontrollers to simulate this RoboCup system. 
 
 
 
 
 
 
 
 
 
 

Figure 7.7.2.1 Four microcontrollers representing the wireless system. 
 
Referring to Figure 7.7.2.1, we see that the first microcontroller, PIC PC, represents the 
PC which is going to be sending the data to the PIC TX module every 1/60th of a second.  
PIC TX represents the microcontroller which will be taking the incoming data from the 
PC, encoding that data, and then sending it out across the wireless channel.  PIC RX 
represents the microcontroller U2 on the robot which detects incoming data on the 
wireless channel, decodes this data, and then sends it to microcontroller U1 on the robot.  

Wireless  
 
Channel 

PIC 
PC 

PIC 
TX 

PIC 
RX 

PIC 
PIC 
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PIC PIC represents microcontroller U1 which receives the packet data and then parses it 
into the individual packet components.  
 
In terms of our testing metrics, we note that they apply only to the actual wireless 
channel itself, and hence only effect parts PIC TX and PIC RX of our Wireless Testing 
Model.  We use PIC PC and PIC PIC to emulate the parts of the system that PIC TX and 
PIC RX need to communicate with.  To do this we connect the change on interrupt PIN 
B4 of PIC PC to a function generator.  On this interrupt we have PIC PC send a packet of 
data to PIC TX.  Thus we see that we can adjust the rate at which PIC PC sends data, and 
hence the arrival rate into PIC TX by adjusting that frequency of the square wave 0 to 5V 
frequency generator. 

 

7.7.3. Latency Test 
 
In terms of latency, what we would really like to measure is the latency as defined as the 
total time required from the moment the first bit of information enters part of the 
wireless system until the moment that the last bit of information leaves that part of the 
wireless system.  Our main concern is that any one stage of the RoboCup system is less 
than 1/60 th of a second.  Why is this? With our system defined by the input frame rate of 
60 fps, this means that not one subsystem can have a processing time of greater than 
1/60 th of a second.  To see this let us model a subsystem as a simple queuing system: 
 
 
 
 
 
 
  
With the arrival rate into any subsystem fixed at 60 Hz, we see that in order to keep the 
departure rate of our system fixed at 60 Hz, we need to keep our system stable.  This 
occurs only when the arrival rate multiplied by the service time is less than or equal to 1.  
Thus the service time of each subsystem must be less than 1/60 th of a second. 
  
Thus, referring to Figure 7.7.2.1, we see that the service times for the PIC TX, wireless 
channel, PIC RX must all be less than 1/60th of a second.  We note that the service time 
on the wireless channel is minimal since it corresponds only to the propagation of radio 
waves in air.  We thus need only to measure the latency associated with PIC TX and PIC 
RX.  We define T1 to be the time from the receivable of the first bit of data to the 
transmission of the last bit of data on PIC TX.  Similarly we define T3 as the time from 
the receiving of the first bit of data to the transmitting of the last bit of data in PIC RX.  
We measured these values by setting a port pin high at the onset of data being received 
and then setting it low again at the end of the data being transmitted. 
 
Device Data Rate (bps) T1 (ms) T3 (ms) Notes 

λ = 60 [Hz] 60 [Hz] 
s [sec] 
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TX2/RX2 
40kbps 

38,400 19.0 15.4 Initialization is 12 bytes of 0xaa or 
approximately 3ms 
Using Manchester Encoding 

TX2/RX2 
40kbps 

38,400 17.6 15.4 Initialization is 6 bytes of 0xaa 
Using Manchester Encoding 

TX2/RX2 
40kbps 

38,400  17.84 15.4 Initialization is 7 bytes of 0xaa 
Using Manchester Encoding 

TX2/RX2 
160kbps 

38,400 17.84 15.4 Initialization is 7 bytes of 0xaa 
Using Manchester Encoding 

TX2/RX2 
160kbps 

57,600 14.2 11.12  Initialization is 16 bytes of 0xaa 
Using Manchester Encoding 

TX3/RX3 
64kbps 

38,400 18.10 15.4 Initialization is 7 bytes of 0xaa 
followed by two start bytes 
Using Manchester Encoding 

TX3/RX3 
64kbps 

57,600 < 16  < 16 Measured as less than 16 ms, but 
actual value not recorded. 
Using Manchester Encoding 

Table 7.7.3.1: Latency tests for modules in various configurations 
 

In Table 7.7.3.1, “Device” refers to the specific device tested.  The kbps rating is 
listed as part of the specification since the modules can be purchased in different 
configurations based on baud rate. “Data Rate” refers to the data rate that U2 sends data 
to the wireless module, and thus the rate at which the wireless module sends data across 
the wireless channel. 

Referring to Table 7.7.3.1, it is clear that T1, the time required from the first bit 
being received by PIC TX (U2) to the last bit being sent by PIC TX (U2) is the timing 
limiting factor in our system.  This makes sense because since it also sends the channel 
synchronization information it has the largest amount of data to send.   

We also see that the required data rate to maintain the 1/60th second service time 
falls between 38,400 and 57,6 00 bps.  Since both the TX2/RX2 and TX3/RX3 modules 
specification supports data rates above this requirement both modules satisfy our 
latency requirement. 

 

7.7.4. Maximum Bit Rate Test 
 
We would also like to determine what the maximum amount of data is, so that we can 
send over a 1/60th of a second period.  We currently are sending 26 data bytes per frame.  
We note that these robots may also be used in RoboFlag, an 11 versus 11 match, or other 
situations that require more than five robots.  In these situations, we need to send two 
different sets of packets, one for Robots 0 to 6, and another for Robots 7 – 12.  Sending 
this data can be accomplished by either decreasing the frames per second or increasing 
the data rate of the system.  Our current implementation for RoboFlag and 11 versus 11 
is to lower the frames per second to 30fps, but with the latter more desirable, we use our 
maximum bit rate test to determine its feasibility.  This test will be performed over the 
summer. 
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7.7.5. Bit Error Test 
  
We would also like to measure the bit-error rate of the wireless devices.  We plan to do 
this by having the transmitter send "known" data to the receiver.  The microcontroller on 
the receiving end will then compare the data received to the data expected, and keep 
track of when the bits are not in agreement.  Since BER tends to be very small, we will 
run this test for 30 minutes to see how many errors have occurred during that time 
period, where 30 minutes is an arbitrarily large number and is also on the order of the 
length of a RoboCup match. 
 
We plan to conduct this BER test in two different environments.  The first test will be in 
a relatively RF noise-free environment.  The second test will be in a relatively RF noisy 
environment.  We will simulate the RF noisy environment by having many RF 
transmitters transmitting, as well as, at Evan Malone's suggestion, having a Dremel 
turned on to generate broadband RF noise. 
 
We would also like to note that we can use this BER test to evaluate the need for error -
checking and error-correction in our system.  While our "real-time" RoboCup system 
makes Error Detection / Automatic Retransmission Request (ED/ARQ) techniques 
infeasible, Error Detection / Forward Error Control (ED/FEC) techniques could 
conceivably be used.  By sending redundant data, we could detect that an error has 
occurred, and then correct it, or possibly ignore the data sent for that cycle.  We are 
cognizant of the fact that ED/FEC techniques will increase the amount of data in our 
system as well as increase the processing time, so our plan is to first measure the actual 
BER and then determine if these schemes are necessary.  This testing will be performed 
over the summer and used to find our optimal choice of antenna and software 
configurations for the different modules. 

 

7.8. On-Robot Hardware Design 
 

7.8.1. Hardware Layout for Wireless RX Board 
 

The RX Wireless board serves as a mounting board for the three different 
modules that can be used in the 2002 Robot System.  This board serves as the 
interface between the connections on the module and those on the digital board.  
They also contain filter capacitors and other signaling components.  Even though 
only one module will be mounted to the RX Wireless board, to reduce design 
complexity we designed one board to support all three modules, rather than 
three independent boards.  This design choice also provides lower production 
costs since we can send out around 50 of the same type of board and increased 
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maintainability since one general board can be used for three different module 
types. 

 
The circuit diagram for the RPC is shown in Figure 7.8.1.1.  Here we see that the 
signals are connected directly between the RPC header which connects to the 
RPC module and the RPC to Wireless To Digital Board Header which connects to 
the Digital Board.  Pin 11 of the RPC header is the connected to the ground via a 
22uF filtering capacitor.  
 

 
Figure 7.8.1.1 Circuit design for the RPC. 
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Figure 7.8.1.2: Circuit design for the RX2 and RX3 modules. 

 
In a similar fashion to the RPC, signals from RX2 and RX3 are routed from the 
headers to the RX3/RX2 to Digital Board Header.  Again 22uF filtering capacitors 
are used between power and ground.  Additionally the RX2 module contains a 
.033uF low-pass filtering capacitor between RX2_CD and ground.  We 
experimented with different values for this low-pass filter, and found .033uF to 
be an optimal value to eliminate noise on the CD line while not rejecting too high 
of a frequency that the actual CD signal would not be detected.  
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7.8.2. Antennas 
 

7.8.2.1. Antennas Types 
 
The two main categories of antennas that exist are integral and external antennas.  
External antennas have the best performance as one would one guess.  However, 
the integral antenna types provide more compact solutions and are the preferred 
solution for portable applications.  Four main types of integral antennas were 
considered: 
 

• ¼ wave whip 
• Base-loaded whip 
• Helical 
• Loop 

 

Quarter wave whip antennas are the length of ¼ of the desired wavelength.  
They can be made of wire, PCB traces, or a combination of the two.  The length in 
millimeters is equal to 71250 divided by the frequency in MHz.  A variation on 
this antenna is the base-loaded whip antenna which uses a coil at the base to 
shorten the length of the wire.  The helical antenna is like a spring with reception 
characteristics being determined by the length, number of turns, and turn 
spacing.  Lastly, the loop antenna looks as its name implies, a loop.   
 
Radiometrix had a good comparison of different factors between the different 
types, which helped us in choosing our antenna types.  The information is 
summarized below. 
 
 ¼  wave 

whip 
Base-loaded 

whip 
Helical Loop 

Performance  +++ ++ ++ + 
Ease of design set-up +++ ++ ++ + 
Size + +++ +++ ++ 
Immunity to 
interference 

++ + + +++ 

 
Because of its physical characteristics, the loop antenna was eliminated very 
quickly.  We felt that the helical antenna might not be the best choice, because it 
wouldn’t really extend outside of the robot’s enclosure, reducing its reception 
capability.  The helical also doesn’t have great immunity to interference.  We 
concentrated on whip antenna types, with a greater emphasis on ¼ wave types 
because of their performance, immunity to interference and ease of design, since 
we are first -time wireless users.   
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Below are the antennas that we are currently considering for our wireless 
modules. 
 

 
 

7.8.2.2. Connector Types 

 
Figure 7.8.2.2.1 

 
Many types of connectors exist to connect antennas to the system.  We focused 
on two types of connectors, namely BNC and flat metal plates that connect via a 
screw.  The easiest type of connector to mount to the wireless board was the flat 
metal plate as can be seen in the picture above.  This type of connector appeared 
to be the most compact and be a standard connection type on the more compact 
antennas.  They appeared to be designed to screw directly onto a metal pad on a 
PCB board. 
 

Connector to PCB Board 
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7.8.2.3. Mounting Considerations to the Wireless Board 
 
Mounting considerations to the wireless board were very critical as any oversight 
can cause degradation in the wireless performance.  Major considerations 
included placement near microprocessors that emit radio interference at many 
different frequencies or other noisy components, the t race length to the antenna 
connection, and the contact to the actual PCB board.  We decided to locate the 
wireless board as far away from the FPGA and four microprocessors as possible 
near the top of the board to have the antenna located above the two daughter 
boards.  The use of a ground plane was also employed as an added way to 
reduce the amount of spurious noise that would effect the wireless module.  
Trace length from the wireless module to the antenna was minimized as much as 
possible.  It should be in an order of less than 1/10 of the carrier wavelength; 
otherwise an impedance match strip line should be used.   We created a large 
pad on the wireless board where we were able to connect the antenna with a 
screw and ensure a good quality contact.   Other system considerations were 
how the vision system would handle the antenna showing through the top of the 
robot’s hat.  After some testing, the vision sub-group concluded that the antenna 
would not interfere with the vision system’s recognition of the robots color 
identification markers. 
 

7.8.2.4. Optimization 
 
More extensive testing on antenna choices will occur over the summer because 
our breadboarded test setups were not very robust.  It was decided that initial 
tests would be performed to determine feasibility.  After the system’s boards 
have been fabricated, extensive testing will generate much more reliable data. 

7.8.3. Interference 
 
Interference can be a major problem in the design of a wireless system.  Radiometrix’s 
application notes gave us a lot of information on potential sources of interference that 
we needed to be aware of in building our system.  In previous years, many failures 
occurred with the RPC where the receiver just went dead for a short period of time.  
These phenomena could have easily been explained by interference from neighboring 
computer equipment. 
 
Some possible sources of failure include: 
 

• Computers and other digital electronics can produce broadband noise and weak 
clock harmonics to 1GHz and above. It is worth noting that even EMC-approved 
equipment could still be legally radiating spurious signals that are 40-50dB above 
our example receiver’s noise threshold. 
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• An extremely common and particularly difficult variation on the above is 
interference from digital electronics within the product in whic h the receiver is 
used. Since the interfering source is usually within 5 to 20cm of the receiving 
antenna and is always present, it masks all incoming signals below a certain 
level. The result is that the receiver is permanently “deaf”.  

• Microwave ovens and industrial heaters - multiple unstable 2.4GHz carriers. 
• Switch mode power supplies - harmonics up to 100MHz and above. 
• Amateur radio transmissions on 433 MHz and other low power radio systems in 

the local area. 
 
Because of what we read about positioning wireless modules, we had to be very careful 
with our 4 microcontrollers and our FPGA.  We also had to be especially careful to keep 
the modules as far away from the drive motors as possible.  By mounting the board at 
the top edge, we also gave the antenna the highest probability of having good reception.  
Another consideration was to employ a ground plane to isolate spurious noise from the 
wireless board.  With all of these strategies in mind, we chose our current location of the 
wireless board along with the use of a ground plane on the wireless board. 
 

 
Figure 7.8.3.1 

 
Some methods mentioned to overcome the interference were discussed.  One such 
method involves increasing the output transmitter power above the receiver’s detection 
threshold in order to achieve a more reliable link.  Another method is to use multiple 
receivers so that if one is in a null zone or receives data with errors, the other can 
compensate for this problem.  Furthermore, having multiple transmitters spatially 
separated and sending the same data with a slight time offset affords similar benefits.  
These strategies were difficult to employ especially with our space constraints and 
particular application.  However, these are strategies that should not be forgotten if we 
decide to move into a larger league. 
 
Information provided in Radiometrix application note entitled “99% is Good Enough” at 
http://www.radiometrix.com/html/products/apnt6.html 
 

Wireless Board Location 
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7.8.4. Mounting Considerations 
 
A separate wireless board was chosen over mounting modules directly onto the digital 
board.  This mounting method allows a more stable mounting of the module with a 
shorter path to the attached antenna.  The goal with mounting an antenna is to keep the 
trace as small as possible.  It was also argued that the separate board would be able to 
isolate the module from some of the noise in the system.  Secondly, modules should be 
mounted on an area of ground plane to reduce noise and allow for better reception.  
Modules are connected to the digital board via two headers and a nylon screw to hold 
the module in place.   
 

 

7.9. Off-Robot Hardware Design 
 
 

7.9.1. Hardware Layout for TX Wireless Board 
 
Similar to the RX Wireless board, the TX Wireless board also serves as a 
mounting board for the three different modules that can be used in the 2002 
Robot System.  Again, this board serves as the interface between the connections 
on the module and those on the digital board.  It also contains filter capacitors 
and other signaling components.  Just as with the RX board, even though only 
one module will be mounted to the TX Wireless board to reduce design 
complexity, we designed one board to support all three modules instead of three 
independent boards.  This design choice also provides lower production costs 
since we can send out around 50 of the same type of board and increased 
maintainability since one general board can be used for three different module 
types. 

 
The circuit diagram for the RPC is shown in Figure 7.9.1.1.  Here we see that the 
signals are connected directly between the RPC header which connects to the 
RPC module and the RPC to Wireless To Digital Board Header which connects to 
the Digital Board.  Pin 11, RPC_ON, of the RPC header is then connected via a 
22uF filtering capacitor to ground.   While Pin 11 of the RPC is Vcc, we connect is 
to the Transmitter board via the signaling pin RPC_ON.  The Transmitter board 
will have all three modules connected simultaneously, but we will only want one 
of them powered at a time.  Thus when we desire to use the RPC, RPC_ON will 
be high, and when we are using a different module RPC_ON will be low.  
Similarly as shown in Figure 7.9.1.2 the TX2 module has TX2_ON and the TX3 
module has TX3_ON. 
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Figure 7.9.1.1: Schematic diagram for the RPC module on the Wireless 
Transmitter Board 

 
 

The TX2 module also has a .033uF low-pass filtering capacitor on the TX2_TXD 
line. We experimented with different values for this low-pass filter, and found 
.033uF to be an optimal value to smooth the digital input into the TX2 module 
without degrading the input pulse too much that it could no longer be readable 
by the RX2 receiver.  The TX3 module has a 100k resistor in series along the 
TX3_TXD line.  As per the Radiometrix documentation this is required to lower 
the input signal from a 0V – 5V signal to a 0V – 3V signal.  As with the RPC, both 
modules also have 22uF filtering capacitors between power and ground. 
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Figure 7.9.1.2: Schematic diagram for the TX modules on the Wireless 

Transmitter Board 

 

7.10. Conclusion 
 
Overall, our recommendation to next year’s team is to leave a lot of extra time in their 
schedule, realizing that wireless is an art.  Limit the number of module choices to a 
reasonable amount and seek help whenever you stumble into a wall.  Many countless 
hours can be spent debugging wireless modules.  One of the largest surprises to a 
newcomer to the wireless area is how great an impact a small tuned filter, consisting of a 
capacitor, can have on the performance of the module.  In most cases, the filtering 
capacitor that was used caused the module to work extremely well compared to 
basically not functioning well at all.  Also, it appears that antennas are very important to 
the modules getting clear reception. 
. 
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8. Goalie Systems 
 

8.1. Overview 
 
The mechanical realization of the goalie started out very early with the rest of the robot 
but when it came to building robots, the goalie was put on the hold with the intension 
that that goalie would be constructed over the summer if time allows.  For this reason, 
the mechanical engineers were not able to give us a final list of requirements.  Therefore 
the electronics for the goalie was designed with the maximum flexibility possible; our 
electronics can be used to control any of the multiple configurations that the mechanical 
engineers were considering.   
 
The leading mechanical design requires controlling the following actuators: a bi-
directional solenoid, a horizontal dribbler motor (uni-directional), and a “cocking “ chip-
kick motor.  The “cocking” chip-kick motor also requires a switch that is used to 
determine when the motor is in the “cocked” position. 
 

8.2.  Goalie Systems 

8.2.1. Bi-directional Solenoid 
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Figure 8.2.1: Bi-directional Solenoid Schematic 
 

The Bi-directional solenoid is controlled via an H-bridge.  The circuit is exactly the same 
as the motor control circuit (Figure 6.6).  The three signals that are used to control the 
solenoid are EN, DIR, and ~DIR.  When EN is high, the motor is turned on, while DIR 
and ~DIR are used to control the direction of the motor.  When DIR = 0 and ~DIR = 1 the 
motor rotates in one direction, and when DIR = 1 and ~DIR= 0 the motor rotates in the 
other direction. 
 

8.2.2. Horizontal Dribbler Motor 
 
The goalie’s horizontal motor will be controlled with the normal robot’s horizontal 
motor control circuitry (see Figure 6.5) 
 

8.2.3. Chip-Kick 
 
The chip-kick uses a motor that cocks the chip-kick and then the same motor releases the 
cocked chip-kick.  To reduce circuitry, the chip-kick motor will be powered through the 
existing vertical dribbling circuit, because the goalie robot will not have vertical 
dribblers. 

 
Figure 8.2.3 

 
The main microcontroller (U1) will turn on and off the chip-kick motor.  A switch will be 
mounted next to the motor to determine when the motor needs to be stopped (Figure 
8.2.3).  This switch is connected to U1 with a pull-down resistor.  When the switch is 
closed, the line is pulled high through the switch. 
 

8.2.4. Motion Control 
 
The goalie’s motion control will be implemented exactly like the field player’s motion 
control with the following exceptions:  motion control is that the goalie may have 3 
wheels instead of 4 and the goalie will definitely have a different wheel geometry than 
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the normal field player.  This geometry will change the code geometry transformation 
code in U1.  
 
Currently, the goalie’s geometry has not been determined, so the new geometry 
transformation cannot be determined.  
 

8.3. Customized Packet Structure 
 
To implement the goalie’s functionality, the data packet structure being sent from 
artificial intelligence will have to be changed.  The first three bytes, Vx, Vy, and Vtheta 
will not need to change.  The last byte will need to change to enable chip-kick control 
instead of vertical dribbler control. 
 
To keep track of which player is the goalie, we will set-up the robots so that robot 
number 0 is always the goalie. 
 
TBD 
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9. System Use 

9.1. Microcontroller 

9.1.1. Setting Robot ID 
 
Use the red 4 bit DIP switch to set the ID for the robot. The first 5 numbers (0-4) are 
currently for setting the robot numbers. The rest of them have till not been defined. 
However we plan to implement different test modes for IDs 10-15 (A-F). 

9.1.2. Test Modes 
 
The test modes for the robot have to be defined in the summer of 2002. The following 
test modes are planned for this year’s robots. 
 

1. Wireless test mode 
2. Horizontal dribbler test mode 
3. Motion control test mode 
4. Kick test mode 

 
All the test modes would be used to test some sub-system of the robot.  
 

9.2. Programming 

9.2.1. Overview 
 
This section details the procedure of events for programming the four 16F877 
microcontrollers on the 2002 Digital Board.  This is a two step procedure.  The first time 
that the microcontrollers are programmed, we need to load them with the Bootloader 
program.  This program allows successive re-programming of the microcontrollers to be 
done via in-circuit serial programming.  In order to do this we need to connect the 
microcontrollers, one at a time, up to the PICSTART Plus Development programmer via 
the programming interface module that we designed.   

 
Once we have the bootloader program loaded onto the microcontroller, we can program 
them via the serial/USART port using the PIC downloader.exe program. 
 

9.2.2. Watchdog timers 
 
There are watchdog timers in all the microcontrollers on the robot. The reason for using 
the watchdog timers is that the microcontrollers are reset if they do not receive any serial 
data for a particular amount of time. 
 



 115 

Resetting the system makes sure that the system re-initializes as soon as possible. 
 
NOTE: Setup timer 0 before setting up the watchdog timer. 
 
 

9.2.3. Programming the Bootloader onto the PIC16F877 
1. The 20 Mhz clock must be removed from the board during programming of the 

microcontrollers. 
2. Position the switches, SW1 to SW4 to the proper states.  The switch for the 

microcontroller to be programmed should be in the on/high/1 state, while the 
other three switches should be in the off/low/0 state.  Here “high” refers to the 
top of the board, i.e. “high” is the top of the switch if you are oriented so that 
you can read the text on the switch.  Note when we refer to the switch being 
“on”, this refers to the microcontroller being “off”. 

3. Connect the 2002 Digital Board to the PICSTART Plus Development 
Programmer via the constructed interface module.  This module connects the 
MCU programming pins (J7 to J10, where J7 corresponds to micro 1 and J10 
corresponds to micro 4) to the PICSTART programmer.  The 5V Vdigital power 
needs to be supplied (i.e. the robot should be turned on) to the 2002 Digital 
Board.  Ground should also be shared between the PICSTART programmer and 
the 2002 Digital Board. 

4. Open “bootldr.pjt” in MPLAB IDE.  Make sure that the PIC16F877 processor is 
selected.  Also double check that lines 66 – 69 of the code read: 

list p=16f877   ; <<< set type of microcontroller 
      ; <<< set same microcontroller in the project 
  #define FOSC D'20000000'  ; <<< set quartz frequency [Hz], max. 20 MHz 
  #define BAUD D'57600'  ; <<< set baud rate [bit/sec] 

 Line 66 defines the chip, PIC16F877, that we are using.  Line 68 defines 
the 20 Mhz clock rate that we are using for our microcontroller.  Line 69 defines 
the baud rate, 57.6 kbps, that we will be using to program the microcontrollers 
by in-circuit serial programming via the PICdownloader.exe program.  Note: 
This 57.6 kbps rate does not reflect the rate of all USART communications 
speeds, only the speed at which the microcontroller will be programmed via 
ICSP. 

5. Go to menu Project -> Make Project.  Verify that there are no errors or warnings.  
Build results should read, “Build completed successfully.” 

6. Go to menu PICSTART Plus -> Enable Programmer 
If the MPLAB IDE program crashes at this point, it may prove helpful to log off 
or restart your computer and try again. 

7. In the configuration bits window, select the desired configuration bits.  We are 
currently using: 

Configuration Bit Setting Reason 
Oscillator HS A 20 Mhz clock is a high speed clock. 
Watchdog Timer On This will allow the processor to be 

restarted on a software lockup. To 
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work properly this must be 
implemented in software with the 
setup_wdt() and restart_wdt(). 

Power Up Timer On We calculated the Vdd rise time to be 
approximately 200 usec which is faster 
than 0.05V/msec. MCLR changes at 
0.8*Vdd or 4V. Since our external reset 
circuitry reaches 0.8*Vdd after 872ms, 
this power up timer should have no 
effect.  However, since we desire 
Brown Out Detect, we leave this timer 
enabled. 

Code Protect Off Disabled to allow ISCP. 
Brown Out Detect On Prevent abnormal operation on low 

supply voltage. 
Low Voltage Program Disabled Not necessary when using PICSTART 

Plus programmer. 
Date EE Protect Off Disabled to allow ISCP. 
Flash Program Write 
Enabled 

Enabled Allows us to write to Flash memory 
via the PICdownloader.exe program. 

8. Go to menu PICSTART Plus -> Program/Verify 
You may receive a message informing you that the firmware for the PICSTART 
programmer is out of date.  Ignore this message and click OK.  

9. Click on the “Program” window in the Program/Verify window.  (Note: We do 
not really need to program all of the microcontroller’s memory.  Instead we can 
program from 0000 to 0008, and then again from 1F28 to 1FFF.  This is done by 
programming the microcontroller twice.  During the first programming, type “0” 
into the “Start Address” field and “8” into the “End Address” field, and then hit 
“Program”.  During the second programming, type “1F28” into the “Start 
Address” field and “1FFF” into the ”End Address” field and hit “Program”.   
Note that depending on whether the microcontroller has previously been write 
protected, this option may or may not be possible. 

10.  Verify that the microcontroller has been programmed successfully.  This can be 
checked by the word “success” or “failure” in the Program/Verify window.  The 
microcontroller has now been programmed with the bootloader successfully. 

 

9.2.4. Programming the PIC16F877 
 
1. Compile your C program in CCS C.  Compilation will produce a file called 

yourfile.hex. 
2. Open PIC downloader.exe and use the “search” button to locate yourfilex.hex. 
3. Set the port to the serial port you are using, and select 56000 as the baud rate. 
4. On the 2002 Digital Board connect the GND, RX, and TX lines from the DB-9 cable to 

the desired destination microcontroller’s programming pins on J9. 
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5. Position the switches, SW1 to SW4 to the proper states.  The switch for the 
microcontroller to be programmed should be in the off/low/0 state, while the other 
three switches should be in the on/high/1 state.  Here “high” refers to the top of the 
board, i.e. “high” is the top of the switch if you are oriented so that you can read the 
text on the switch. 

6. Click on the “Write” button in the PIC downloader.exe application.  You should see 
“Searching for the bootloader” message in the Info bar.  If you get an “Open Port 
Error” message, make sure that no other applications are currently using the selected 
serial port.   HyperTerminal and MPLAB IDE are two common programs to do this.  

7. Press and then depress the Reset Switch, SW5, on the 2002 Digital Board.  You 
should see a “Writing, please wait!” message in the info bar.   

8. The message “All ok” will appear If the microcontroller was programmed 
successfully.  If the microcontroller was not programmed successfully, press the 
“Cancel” button, and the repeat steps 6 and 7. 

 
 
 
 
 
 

 
 
 

Figure 9.2.3: Programming cable and programming port 
 

9.2.5. Programming the FPGA 
 
Here are the detailed programming procedures (note: anything in quotations marks are 
the actually words you will see in the software): 
 

1. Open the MAX+plus II software 
2. Open the schematic file.  You should always open the high level module if there 

is one. (“File”à “Open”)  
3. A new window “Open” will pop up for you to choose the file.  Go to the 

directory where you store the files and pick the schematic file which ends with 

Programming 
cable 



 118 

.gdf. (Hint: Since all of our implementations are in schematics, clicking the 
“Graphic Editor Files” option under “Show in Files List” will make selection 
much easier).  Always choose the files with name High or Main, since these are 
the top level schematics.  

4. Before compiling, we need to make sure of the following two things: 
o We have assigned the correct device (“Assign”à”Device”).  You should 

see EPM7128STC100-7 highlighted. If it is not, you first have to unselect 
the “Show Only Fastest Speed Grades” option, and then select 
EPM7128STC100-7 from the list. 

o We have assigned the input/output signals to the desired pins. 
(“Assign”à”Pin/Location/Chip”). A new “Pin/Location/Chip” 
window will pop up. All the assigned pins are listed under “Existing 
Pin/Location/Chip Assignments:” window.  The pin assignments are 
shouldn’t be changed unless you have changed the design.  

5. Set the current schematic to current project. (“File”à”Project”à”Set Project to 
Current File”) 

6. Compile the design (“MAX+plus II” à “Compiler”).  A new “compiler” window 
will pop up and click “Start”. 

7. After the circuit is successfully complied, program the FPGA (““MAX+plus II” 
à “Programmer”). In the pop up “Programmer” window, one should verify the 
“File” and the “Device” to be correct.  Click “Program” button. Sometimes, it 
might give you a warning about the pin assignment. It is all right. 

 
The FPGA now should be programmed.  
A common problem and their solution: 
When programming the FPGA, an error message might pop up.  “ByteBlaster is not 
present— check power and cables).  You should first check if the cables are connected 
correctly.  Second, leave the “Programmer” window on the screen, go to top menu 
choose “Options”à”Hardware Setup”.  Make sure the “Hardware Type” is 
“ByteBlaster(MV)” and “Parallel Port” is “LPT1:”. In some cases, you have to 
reinstall ByteBlaster software.  Please see the Altera handbook for detail about how 
to do that.   

 
 

9.2.6. Setting Wireless Module ID 

 
 
The Piano DIP Switch SW7 is used to set which wireless module is going to interface 
with microcontroller U2.  The setting of this DIP designates both in hardware and 
software the choice of wireless module to be used.  Referring to Figure 3.3.4.3.1, in 
hardware, the desired input line is set open, and the other line(s) are set to high Z.  The 
output of these DIP switches also connects to pins B1 and B2 on U2.  These pins are read 
during the initialization code of U2 to set the proper version of software to use for the 
wireless module being used. 
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Table 9.2.5 outlines the proper DIP settings for the wireless modules and programming 
mode.  Refer also to Section 3.5.5.1.1 for a more detailed explanation of interrelationship 
of the Wireless Piano DIP Switch to the rest of the On-Robot Communication Receiver 
Hardware System. 

 
Figure 9.2.5 Hardware Configuration of Wireless DIP 
 
DIP P0 DIP P1  O0 O1 State 
0 0 Z Z Programming Mode 

RPC Mode 
0 1 Z I1 RX2 Mode 
1 0 I0 Z RX3 Mode 
1 1 - - Undefined 

(Resistors prevent contention.) 
 

Table 9.2.5: DIP Configurations for Wireless Module States   

9.3. System Debugging 
 
There are many features included in this year's design to allow for easy debugging of the 
system. Some of these features are discussed below. 
 

9.3.1. Inter-microcontroller Communication 
 

9.3.1.1.  Parallel vs. Serial Communication 
 
Communication between the microprocessors is an essential design consideration when 
designing a multi-processor system.  We looked into serial and parallel methods of 
communication.  After careful consideration, we decided to implement the serial method 
of communication because of the following reasons: 
 
1. Serial Communication only requires 2 physical lines of connections between 
microprocessors, saving I/O pins for other uses.  
2. Serial Communication is easy to implement with the PIC16F877. 
3. Serial Communication allows us to achieve a high data rate (up to 115,200 Kbps in 
hardware or software). 
 

9.3.1.2.  Serial Communication via PIC16F877 
 
The PIC16F877 supports one hardware TX/RX pair and any other pair of pins can be a 
software TX/RX.  The hardware RX institutes a 3 byte buffer which makes sure that no 
data is missed.  The hardware RX also handles everything that is required to interrupt 
on an incoming byte of data.  The hardware TX implements the transfer of the data in 
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hardware, meaning that the microprocessor is free to do other tasks while the data is 
being sent. 
 
Implementing the software code to transmit serial data is easy.  First, the serial port 
must be specified using the follow ing line: 
 
 #use rs232(baud=57600, xmit=PIN_C4, rcv=PIN_C5) 
 
This line implements the hardware TX/RX pair which is Pin C4 and C5.  The same line 
will also implement a software TX/RX pair; for example: 
 
 #use rs232(baud=57600, xmit=PIN_D4, rcv=PIN_C4, parity=n) 
 
This line implements a software TX/RX pair on pins D4 and C4. 
 
There are two basic commands to send data via the serial TX: 
 putc('A'); 
 printf("Data goes here \n\r"); 
 
There is one basic command to get data via the serial RX: 
 getc(); 
 
  Note: getc() is a blocking function, i.e. the microprocessor will wait until 
it receives data.  This can cause the microprocessor to freeze and must be addressed in 
the code by using a timed getc (see the U1.c code). 
 
 

9.3.1.3.  Overview of inter-microcontroller Communication 
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Figure 9.3.1.3– Diagram of the Inter-Microprocessor Communication 

 
 
Refer to the diagram above.  A few things to note: 
 
1. Most of the communication is handled on the hardware TX/RX pairs.  The only 
exceptions to this are the output of U2 to U1 and the outputs of U1 to U3 and U4. 
 
The output of U2 is not on a hardware TX/RX pair because the receiver is using the 
hardware TX/RX.  The receiver needs to interrupt the RX line, which when using a 
software RX requires implementation in software, while the hardware TX already takes 
care of interrupting on the RX line. 
 
The outputs of U1 to U3 and U4 are not on hardware RX/TX pairs because the input 
from U2 uses the hardware TX/RX.  The input from U2 needs to interrupt the RX line 
which as explained above requires implementation in software when using a software 
RX. 
 
2. There are no resistors that protect against driver-contention between microprocessors.  
We looked into this issue and determined that it is not necessary to protect aga inst 
driver contention because each pin of the microprocessor can source 25mA and each pin 
can also sink 25mA. 
 
3. There are resistors between the serial programming header and the microprocessors 
that protect against driver-contention.  This is required because an external source may 
source more than the 25mA that the microprocessor can sink. 
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9.3.2. Debug Ports 
 
There are four ports that connect to the transmit/receive pins of all the four 
microcontrollers on the digital board.  There are two purposes of the debug ports: 
 
1. To program the microcontrollers. For a detailed treatment of this topic see section 9.2. 
2. To eavesdrop on the inter-microcontroller communication. 
 
By using a dedicated cable to connect to the serial port of the microcontroller we can get 
information about the operation of the robot as the following table shows: 
 
Port 1:   Provides the output of the main microcontroller. Normally the output of 
the microcontroller does not give any data on its TX line unless there is some debugging 
code outputting some debug information. 
 
Port 2:   Wireless packet data is sent periodically to the main micro on the TX line 
of the wireless micro. Thus if we connect the cable to the port 2, we can see what the 
actual packets being sent to the main microcontroller. However in HyperTerminal the 
data is displayed in ASCII which complicates translation into robot vectors we expect. 
 
Port 3:   The motion control microcontroller is programmed to send the values of 
the desired counts its been given and the actual value of the counts from its motor 
encoders. This gives an insight into both the operation of the p-controller, and the 
whether the correct values have been forwarded to it from the main microcontroller. 
 
Port 4:   Port 4 is connected to the output of the second motion control 
microcontroller. Thus the behavior of this port is exactly the same as the other motion 
control microcontroller (Port 3). 
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10.  Appendix 
 
 

A. NETWORKING 
Network Communication 
 
1 Relevant Files 
Server.cpp : Server code 
Server.h 
Client.cpp : Client code 
Client.h 
Socket.cpp : Core networking routines 
Socket.h 
CommType.h : node type definition 
 
2 Architecture: 
This year’s system is a TCP/IP-based server-client architecture based on Winsock (the 
standard Window’s network library).  In our setup, nodes have three possible 
designations: JUST_SEND, JUST_RECEIVE, and SEND_RECEIVE.  JUST_SEND is used 
for server nodes, JUST_RECEIVE, for clients, and SEND_RECIEVE designates a node 
which can act as both.   
 
3 Server Side 
To instantiate a server, one must specify the type, the address and port number the 
server is to be established with.  Once instantiated, the server sets up a listening socket 
on the specified port and creates a data structure for managing connections.  The server 
then starts a listener running on a separate thread so it is free to perform other tasks 
while also monitoring any connection requests. 
When a client requests a connection from the server, a handshake is initiated (standard 
TCP/IP) to confirm the connection. 
 
4 Client Side 
In order to establish a connection with the server, the client is first instantiated using the 
appropriate IP address and port number and the connection() method is called.  The 
client type and server type must match for a connection to open successfully.  E.g. if the 
server type and/or client type is not recognized or not an allowable configuration 
(senseless to have two JUST_SEND entities connect to each other), the connection will 
not be created.  If the connection succeeds, the client and server can communicate using 
the send() and receive() methods.  
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5 Connection-oriented (TCP) Network Applications 
 
 Server    
 Client

 
 

socket ( ) 

bind ( ) 

startListener ( ) 

listen ( ) 

accept ( ) 

receive ( ) 

send ( ) 

socket ( ) 

openConnect ( ) 

send ( ) 

receive ( ) 

close ( ) 

Blocks until getting 
connection request  

Try to 
connect 

Transmit 
Data 

Transmit 
Data 
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6 The detail structure of each class is defined as follow: 
CommType is a structure that defines the communication mode the client or server can 
take on.  These modes include: duplex mode defined as SEND_RECEIVE, send-only 
mode defined as JUST_SEND, and receive-only mode defined as JUST_RECEIVE.   
 
 
Class Socket: Contains methods to set up a socket connection; open/close connection; 
send and receive data over the connection.  It is uses the Winsock library and provides 
the basic calls which are used by both client and server classes.  
In order to use this class, user should add ws2_32.lib to the link, this can be done by: 

In Visual C++: Go to Project->Settings.  Click on the Link tab and within 
Object/library modules, add the statement: “ws2_32.lib” 

 
Method Details: 
Socket(); 

Default constructor.  Creates a new Socket object 
 
bool openConnection( c har* hostname, int port ); 

The method opens a connection when given a hostname and port number. 
 
Input parameters:  
hostname: The hostname of the server 
port: port number of the server 
 
Return value:  
returns 1 if successful, 0 if failed 

 
bool openListener( char* hostname, int port ); 

This method opens a listening socket using the given hostname and port number; it 
then binds the new socket and starts listening for an incoming connection.  Listeners 
are used to listen for incoming connection requests. 
 
Input parameters: 
hostname: The hostname of the server 
port: port number of the server 
 
Return value:  
returns true if successful, false if failed 

 
bool isOpen();   

This method checks if a connection is currently open 
 
Return value: 
Return true if connected, false if not connected 

 
void close(); 

This method closes a connection 
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bool sendData( char* message, int size ); 

This method sends data over a socket connection.  It returns true if successful and 
returns false if: 
1) the size of data sent is not the same as the size of actual data 
2) the connection is already closed  
 
Input parameter: 
message: pointer to the message that would like to send 
size: size of the message 
 
Return value: 
Return true if successful, false if failed 

 
bool receiveData( char* message, int size ); 

This method is used to receive data over a socket connection.  It returns true if the 
data is received correctly, and false if: 
1) the size of data received is not the same as the size of actual data 
2) the connection is already closed  
 
Input parameter: 
message: pointer to buffer to the message that would like to receive 
size: size of the message 
 
Return value: 
Return true if success, false if fail 

 
Socket* acceptConnection(); 

This method accepts an incoming connection request 
 

Return value: 
Return a newly connected socket 

 
Class Server: This class includes everything needed to create and use a Server. Methods 
include setting up a connection; listening and accepting incoming socket connections; 
sending and receiving data from different client types.  The methods are built from calls 
to the socket class.  
 
Method Details: 
 
Server (CommType serverType, int MaxSend, int MaxReceive ); 

Constructor of the server class.  It takes in the type of server.  Possible types are 
defined in CommType.h and are as follows: 
JUST_SEND: server that only sends data (e.g. Vision) 
JUST_RECEIVE: server that only receives data 
SEND_RECEIVE: server that both sends and receives data 
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Servers accept a certain max number of clients that can send and/or receive data 
 

Input parameter: 
serverType: Type of the server 
MaxSend: store the max number of clients of type JUST_RECEIVE and 
SEND_RECEIVE 
MaxReceive: store the max number of clients of type JUST_SEND and 
SEND_RECEIVE 

 
bool startListener( char* hostname, int port ); 

This method generates a thread to listen for connection requests.  A connection will 
be accepted if given the client satisfies both of the following conditions: 

1) The server and client types are compatible 
2) There are still available slots for the incoming client type.  

It also checks if there is already a connection set up for the client.  If there is, the 
server ignores the new connection request and returns false. 
 
Input parameter:  
Hostname: hostname of the server would like to connect to 
Post: port number of the server client would like to connect to 
 
Return value:  
Return true if successful, false if failed 

 
void listen(); 

This method is called by startListener() and it accepts connections from the listener 
socket and assigns them to the proper client index by calling the appropriate private 
methods –addSender(); addReceiver() and addSenderReceiver(): 
 
1) For JUST_SEND client type, calls addSender()  
2) For JUST_RECEIVE client type, calls addReceiver() 
3) For SEND_RECEIVE client type, calls addSenderReceiver() 

 
void sendAll( void* message, int size ); 

This method sends data to all receiving clients, which includes JUST_RECEIVE and 
SEND_RECEIVE 

 
Input parameter: 
message: pointer to buffer to the message that would like to receive 
size: size of the message 

 
bool send(int clientIndex, void* message, int size);  

This method sends data to a particular client who has the given clientIndex value 
 
Input parameter: 
clientIndex: use to identity the client.  It is the index of the private variable - 
sendIndex[] array 
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message: pointer to buffer to the message that would like to send 
size: size of the message 
Return value: 
Return true if success, false if failed 

  
bool receive(int clientIndex,void* message,int size); 

This method receives data from a particular client who has the given clientIndex 
value 
 
Input parameter: 
clientIndex: use to identity the client.  It is the index of the private variable - 
receiveIndex[] array 
message: pointer to buffer to the message that would like to receive 
size: size of the message 
 
Return value: 
Return true if successful, false if failed 

 
void setSendBuffer(int bufSize) 

This method set the size of the sender’s buffer.  The buffersize for Robocup is not 
much of an issue since the typical amount of data which is sent in a packet is small, and 
considerably smaller than the default kernel buffersize of 8192.  

 
Input parameter: 
bufSize: size of the buffer 

 
void setReceiveBuffer(int bufSize) 

This method set the size of the receiver’s buffer 
Input parameter: 
bufSize: size of the buffer 

 
Class Client: This class includes everything needed to create and use a Client. Methods 
include setting up a connection; checking connection status; sending and receiving data.  
The methods are built from calls to the socket class. 
 
Method details: 
Client(CommType clientType): 

The client constructor uses a default host address of 127.0.0.1 (loopback/localhost 
address) and port number 4545.  
 
Input parameters:  
clientType: defines the client’s communication mode by either SEND_RECEIVE, 
JUST_SEND or JUST_RECEIVE.   

 
Client(CommType clientType, const char* hostname, int port): 

This is a constructor to create Client with user-specified communication type and 
user-defined server address and port number. 
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Input parameter:  
clientType: defines the client’s communication mode by SEND_RECEIVE, 
JUST_SEND and JUST_RECEIVE 
hostname: defines the address to connect to   
port: defines the port number to connect to 
 

bool openConnection() 
This method opens a connection to communicate with the server having address 
defined as “Client->hostname” and port number as “Client->port”.   
 
Return Value: 
Returns true if connection is opened successfully and false if the client type is 
rejected by the server or connection fails.       

 
bool openConnection( const char* hostname, int port ) 

This method opens a connection to communicate with the specified server.   
Input parameter: 
hostname: defines the server’s address 
port: defines the server’s port number 
Return Value: 
Returns true if successful and false if open connection fails.  

 
bool isOpen() 

This method checks if the client has opened a connection with a server. 
 
Return Value: 
Returns true if successful and false if open connection fails.  

 
void close() 

This method closes a client connection. 
Input parameter: None 
Return Value: None 

 
bool send( void* message, int size ) 

This method sends a message of the specified size to the server.  It also performs a 
check to ensure server is not in JUST_SEND mode.   
 
Input parameter: 
message: pointer to the message to be sent 
size: length of the message 

  Return Value: 
  Return true if data is sent and false if the server is     
  defined to be in the send-only mode. 
 
bool receive( void* message, int size ) 
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This method receives a message of the specified size from the server.  It also 
performs a check to ensure the server is not in the JUST_RECEIVE mode. 
Input parameter: 
message: pointer to the message to be received. 
size: length of the message  
Return Value: 
Return true if data is received and false if the server is defined to be in the 
JUST_RECEIVE mode.   

 
7 Constraints 
Networking is one of many pieces whose combined time must be under 16.6ms so that 
our system is able to run at 60Hz.  Because our system is currently running on a 
100Mb/s local Ethernet there negligible timing delays once our packets get to the wire.  
It is important to have the Nagle algorithm switched off, since the Nagle algorithm 
clusters packets and prevents them from being sent immediately (it does so as to avoid 
the “silly window” syndrome which is more of a problem for networks with higher 
overall utilization).  Due to the real-time qualities of our domain, it is critical that we 
send packets as soon as possible, thus the Nagle algorithm should stay off. 
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B. SCHEMATICS 
ANALOG 
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DIGITAL 
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MOTHERBOARD 
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C. BOARD LAYOUT 
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Explanation of Plane Layers: 
 
The plane layers (PWR and GND) are shown as negatives, meaning that everywhere 
where there is ink there will not be copper and everywhere where this is no ink there will 
be copper.  The light yellow circles on these layers are thermal reliefs.  Thermal reliefs 
are placed around pins that 
are connected to the layer.  
They allow the pin to be 
connected to the rest of the 
layer while leaving enough 
space for expansion of the 
layer due to heat generated 
by current flowing to the pin. 
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D. MICROCONTROLLER: REASONS FOR CHOSING PIC16F877 

Reasons for changing to the PIC16F877 
 
Atmel microcontroller was chosen for its flexibility, processing power and the number of 
I/O pins. It had many attractive features that included the following. 
 

– High-performance 32-bit RISC Architecture 
 

– Fully-programmable External Bus Interface (EBI) 
 

– 8 Chip Selects 
 

– Software Programmable 8/16-bit External data bus 
 

– 8-level Priority, Individually mask-able, Vectored Interrupt C ontroller 
 

– 58 Programmable I/O Lines 
 

– 6-channel 16-bit Timer/Counter 
 

– 6 External Clock Inputs and 2 Multi-purpose I/O Pins per Channel 
 

– 3 USARTs 
 

– 8-channel 10-bit ADC 
 

– 2-channel 10-bit DAC 
 

– 8-channel Peripheral Data Controller for USARTs and SPIs 
 

– IEEE 1149.1 JTAG Boundary-scan on all Digital Pins 
 
However there were some reasons due to which it was abandoned for the favor of PIC 
microcontroller. These reasons are, 
 

1. The supporting documentation for the Atmel microcontroller was not very good 
and there is no documentation for the libraries with the development board. 
There are many functions provided with the development board that can be used 
with the development board but the only way to understand how a function 
works is to see from the library code itself or to interpret from an example (some 
examples are also provided in the libraries). 

2. The development environment used (Multi 2000) had some version conflicts with 
the library version. 

3. The debugger had some bugs which caused it to behave randomly on many 
occasions. 
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E. MEETING MINUTES TEMPLATE 
 

 
 
 
 
 
 
 
 
 

Minutes of the EE meeting on 11/12/01      

        

Written by: Shahab A. Najmi       
        
S. No.  Issue Priority 

(Critical, 
Major, 
Minor) 

Responsibility Due by Task 
assigned 
on 

Status 
and 
Notes 

 
               
1 Soldering of 11 on 11 boards M Wajih 12-Nov   P – A 

local 
company 
has 
sponsored 
the 
soldering 
of all 
boards  

2 Maximum current, voltage that is 
available to the MECH team 

M Wajih 19-Nov 12-Nov - 
 

3 Look into the motor control options M Wajih 15-Nov 12-Nov -   
4 Microcontroller type to be decided C Shahab 15-Nov 1-Nov P – old 

code 
finally 
working!  

5 Compiler for Black box/ wireless 
microcontroller to be ordered 

M MJ 12-Nov 8-Nov DONE 
 

6 Loop timing test M Shahab 17-Nov 1-Nov    
7 Frequency hopping. Comment – the 

latency seems to be too much for our 
application 

Mi MJ 

17-Nov 

1-Nov   

 
8 Write-up on Wireless M MJ 15-Nov 12-Nov    
9 Write-up on IR M M S 15-Nov 12-Nov    
               
        
Comments:        
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F. FPGA CIRCUIT BLOCK DIAGRAM / PINOUT DIAGRAM 

 
 
 



 149 

 
 
 

 
 
 
 



 150 

 
 



 151 

 
 
 
 
 
Device: EPM7128STC100-7 
 
Device Options: 
    Turbo Bit                                    = ON 
    Security Bit                                 = OFF 
    Enable JTAG Support                        = ON 
    User Code                                  = ffff 
    MultiVolt I/O                              = OFF 
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G. PHOTO GALLERY 
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Reworked Digital Board 

 
 

 
Reworked Analog Board 

 

 
Reworked Analog Board (Rear View) 
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Reworked Motherboard (Rear View) 

 

 
Second Revision (Analog Board) 

 

 
Second Revision (Digital Board) 
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Second Revision (Motherboard) 

 

 
Second Revision (Digital Board) 

 

 
Second Revision (Analog Board) 
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Programming Port / Listening Port (Close-up) 
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H. MAIN MICROCONTROLLER FIRMWARE 
 
//******************         CORNELL ROBOCUP 2002 CODE (U1)       *************************// 
//******************         By:  Shahab A. Najmi              *************************// 
// and Wajih Effendi, Michael Jordan, Michael Schwaller, Katherine Ko, David Li, Evan 
Malone// 
 
 
#include <16F877.h> 
#include <u1.h> 
#use delay(clock=20000000) 
#use rs232(baud=57600, xmit=PIN_C6, rcv=PIN_C7, parity=n) 
#org 0x1F00,0x1FFF 
void loader() {} 
#define JUSTKICKED      0 
#define RETRACTING      1 
#define RETRACT2        2 
#define KICKCOMPLETED   3 
 
 
// ********************* Control switches for testing ********************************** 
//#define WHEEL 
//#define CONTROL 
// ************************************************************************************* 
 
void Buzzer(int); 
void CheckKickerVoltage(void); 
void CheckBatteryVoltage(void); 
int GetRobotMode(void); 
void Kick(void); 
void KickerDown(void); 
void ControlHDribbler(int); 
void KickerIR_ISR(void); 
void KickRetract(void); 
void test(void); 
void GetWirelessPacket(void); 
void AfterWirelessPacket(void); 
void Wheel1(); 
void Wheel2(); 
void Wheel3(); 
void Wheel4(); 
void Test_Motion(unsigned int8 v1, unsigned int8 v2, unsigned int8 v3, unsigned int8 v4); 
void LCD(void); 
byte bgetc(void); 
 
 
 
void initialize(void)   //Initializes the different ports, etc. 
{ 
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   robotNumber=GetRobotMode();  //Reads the robot mode set up by the Robot ID DIP  
   kickStatus=KICKCOMPLETED;   //Initialize the kicker  
   byteCount=255;    //Temporary variable to neglect the first bit in a 
wireless frame 
   current=0;  
   AI_KickSpeed=1;    //Initialize the kick speed to some value 
   AI_HDribblerSpeed=1;    //Initialize the H Dribbler speed 
   enable_interrupts(GLOBAL);   //Enable interrupts 
   enable_interrupts(INT_EXT);    //Enable external interrupt 
   enable_interrupts(INT_RDA);   //Enable interrupt on change on port A 
   setup_adc(ADC_CLOCK_INTERNAL); //Setup the ADC on internal clock 
   setup_adc_ports(ALL_ANALOG);  //Setup analog port (for current sensing) 
   setup_ccp2(CCP_PWM);    // 
   setup_timer_2(T2_DIV_BY_4, 255, 8);        //Setup timer 2 for horizontal dribbler PWM 
   setup_timer_1 ( T1_INTERNAL|T1_DIV_BY_8);  //Timer setup for kicker 
   CheckBatteryVoltage(); //Checks the voltage of the battery an sounds 

//the buzzer if the voltage is too low 
LCD(); //Writes the value of the battery voltage on the 

//LCD 
} 
 
 
void main() 
{ 
 
   initialize();      //Initializes the different ports etc. 
 
   do      //Infinite loop 
   { 
 
    
      if (kickStatus==RETRACTING)  //Checks if the kicker timer is out and it needs 
to be retracted 
      { 
         set_timer1(10000); 
         setup_timer_1(T1_INTERNAL|T1_DIV_BY_8);//Sets timer for retracting 
         kickStatus=RETRACT2; 
      } 
       
   }  while (TRUE); 
} 
 

/*  Added this to eliminate hanging inside of getc in ISR's*/ 
 
short timeout_error; 
 
char timed_getc()    //Gets a character. Times out if nothing is 
received for a certain amount of time  
{ 
   long timeout; 
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   timeout_error=FALSE;    
   timeout = 0; 
   while(!kbhit()&&(++timeout< 5000)) 
      delay_us(10); 
   if (kbhit()) 
      return(getc()); 
   else  
   { 
      timeout_error=TRUE; 
      return(0); 
   } 
}      //end function  
 
 
#int_ext 
void KickerIR_ISR(void)   //This ISR calls the function kick() 
{ 
   kick(); 
} 
 
 
 
void Kick(void) //This function energizes the kicker for 

//different time depending upon the speed   
//needed 

{ 
 
   unsigned int16 speedCount; 
   long fineTune; 
 
   switch (AI_KickSpeed)   //Depending upon the speed from the AI the 
counter is set 
   { 
      case 0: 
         return; 
      case 1: 
         speedCount=40000; 
         break; 
      case 2: 
         speedCount=30000; 
         break; 
      case 3: 
         speedCount=0; 
         break; 
      default: 
         speedCount=62411; 
         break; 
   } 
 
   if (kickStatus==KICKCOMPLETED)   //Only starts if the previous kick has been 
completed 
   { 
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      output_high(PIN_B1);    //Makes the kicker pin high 
      AI_KickSpeed=0;    //Makes the speed zero to avoid kicking again 
      enable_interrupts(INT_TIMER1);   //Enables interrupt on timer overflow 
      setup_timer_1 ( T1_INTERNAL|T1_DIV_BY_8); //Setup timer 1: 16 bit counter, increments 
every 1.6us, total time 2ms  
      set_timer1(speedCount);                     //Timer started 
      kickStatus=JUSTKICKED;    
   } 
}      //End of kicker function 
 
 
 
#int_timer1      //When timer 1 overflows this ISR is called 
void KickerDown(void) 
{ 
   int temp; 
 
   if (kickStatus == JUSTKICKED)  //If the status is JUSTKICKED  
   { 
      output_low(PIN_B1);   //Kicker down 
      kickStatus=RETRACTING; 
   } 
   else if (kickStatus==RETRACT2)  //If status is RETRACT2 
      kickStatus=KICKCOMPLETED;  //finish the kicker routine 
    
} 
 
 
#int_rda     //Interrupt on change 
void GetWirelessPacket()   //Get the frame from the wireless 
microcontroller 
{ 
   tempchar = timed_getc();    //Getting a byte of data 
 
 
   // Just Robot 0 for now...fix later 
   current++; 
   //if(current<WIRELESSPOS[robotNumber]+1) 
   if(current<5+1) 
   { 
 
      if(byteCount++==255) 
      { 
         return; 
      } 
 
      robotData[byteCount-1]=tempchar; 
   } 
   else if(current<25) 
   { 
      return; 
   } 
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   else 
   { 
      current=0; 
      byteCount=255; 
 
      AfterWirelessPacket();    //When the frame is completely received, 
AfterWirelessPacket() is called 
   } 
}       //This function currently only works for robot 0 
 
 
void AfterWirelessPacket(void) 
{ 
 
       //Parsing the packet 
 
   AI_Dive           = (robotData[3] & 0x20) >> 5;  //Dive bit  
   AI_VDribEnable    = (robotData[3] & 0x10) >> 4; //Side dribbler enable 
   AI_HDribblerSpeed = (robotData[3] & 0x0C) >> 2; //Horizontal dribbler speed 
   AI_KickSpeed      = (robotData[3] & 0x03);         //Kick speed 
 
   
       // parsing vx, vy, vtheta from 
robotData  
          // converting to meters/second and 
radians/second 
 
          /* 
          NOTE: 
             vx   = MAX_VELOCITY * vx / 0x7D; 
 

This should, in theory, be the 
following: 

                   vx   = MAX_VELOCITY * vx / 0x7F; 
 

However, empirically, 0x7D works 
better than 0x7F.  We should find out   
why!  

             */ 
 
 

vx   = (float)((robotData[0])&(0x7F));    //Converting the value received from   
//the AI into float (first 7 bits) 

   vx   = MAX_VELOCITY * vx / 0x7D;   //Converting vx into m/s 
   if (robotData[0] >> 7)    //Changing the sign of the speed depending 
upon the MSB 
      vx=vx*(-1); 
 
 
   vy   = (float)((robotData[1])&(0x7F));   //Converting vy 
   vy   = MAX_VELOCITY * vy / 0x7D; 
   if (robotData[1] >> 7) 
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      vy=vy*(-1); 
 
   vtheta = (float)(robotData[2]);    //Converting into float 
   vtheta = MAX_ANGULAR_VELOCITY * vtheta / 0xFE; //Converting into rad/s 
   if (robotData[3] >> 7) 
      vtheta=vtheta*(-1) ; 
 
 

Wheel1(); //Converting into wheel speed for 
//wheel 1 

Wheel2(); //Converting into wheel speed for 
//wheel 2 

Wheel3(); //Converting into wheel speed for 
//wheel 3 

Wheel4(); //Converting into wheel speed for 
//wheel 4 

 
   #use rs232(baud=57600, xmit=PIN_D4, rcv=PIN_C4, parity=n) 
   putc(iV1);      //Sending the motion micro 1 values 
for wheel 1 
   putc(iV2);      //Sending the motion micro 1 values 
for wheel 2 
 
   #use rs232(baud=57600, xmit=PIN_D5, rcv=PIN_C5, parity=n) 
   putc(iV3);      //Sending the motion micro 1 values 
for wheel 3 
   putc(iV4);      //Sending the motion micro 1 values 
for wheel 4 
 
if ((AI_KickSpeed !=0) & (kickStatus==KICKCOMPLETED))//Kick if AI commands and if last  

//kick already completed 
   { 
      if ( input(PIN_B1) ) 
         kick(); 
   } 
 
 
   ControlHDribbler(AI_HDribblerSpeed);     
 
   if (AI_VDribEnable) 
      output_high(PIN_C2); 
   else 
      output_low(PIN_C2); 
 
   return; 
 
} 
 
void Wheel1() //Conversion into wheel 

//velocity for wheel 1 
{ 
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   V  = cos_psi1 * vx; 
   V += sin_psi1 * vy; 
   V += vtheta_coeff * vtheta; //Using the geometric 

//conversion 
 
   if (V < 0) 
   { 
     if (V < -MAX_WHEEL_VELOCITY) { V = -MAX_WHEEL_VELOCITY; }    //Truncates  

//negative overflow 
     iV1 = (int8) (0x7F * -V / MAX_WHEEL_VELOCITY); 
     iV1 = iV1 | 0x80; 
   } 
   else { 
     if (V > MAX_WHEEL_VELOCITY) { V = MAX_WHEEL_VELOCITY; }      //Truncates positive  

//overflow 
     iV1 = (int8) (0x7F * V / MAX_WHEEL_VELOCITY); 
   } 
 
} 
 
void Wheel2() 
{ 
   V  = cos_psi2 * vx; 
   V += sin_psi2 * vy; 
   V += vtheta_coeff * vtheta; 
 
   if (V < 0) { 
     if (V < -MAX_WHEEL_VELOCITY) { V = -MAX_WHEEL_VELOCITY; }    //Truncates  

//negative overflow 
     iV2 = (int8) (0x7F * -V / MAX_WHEEL_VELOCITY); 
     iV2 = iV2 | 0x80; 
   } 
   else { 
     if (V > MAX_WHEEL_VELOCITY) { V = MAX_WHEEL_VELOCITY; }      //Truncates positive  

//overflow 
     iV2 = (int8) (0x7F * V / MAX_WHEEL_VELOCITY); 
   } 
 
} 
 
void Wheel3() 
{ 
   V  = cos_psi3 * vx; 
   V += sin_psi3 * vy; 
   V += vtheta_coeff * vtheta; 
 
   if (V < 0) { 
     if (V < -MAX_WHEEL_VELOCITY) { V = -MAX_WHEEL_VELOCITY; }    //Truncates  

//negative overflow 
     iV3 = (int8) (0x7F * -V / MAX_WHEEL_VELOCITY); 
     iV3 = iV3 | 0x80; 
   } 
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   else { 
     if (V > MAX_WHEEL_VELOCITY) { V = MAX_WHEEL_VELOCITY; }     //Truncates positive  

//overflow 
     iV3 = (int8) (0x7F * V / MAX_WHEEL_VELOCITY); 
   } 
 
} 
 
void Wheel4() 
{ 
   V  = cos_psi4 * vx; 
   V += sin_psi4 * vy; 
   V += vtheta_coeff * vtheta; 
 
   if (V < 0) { 
     if (V < -MAX_WHEEL_VELOCITY) { V = -MAX_WHEEL_VELOCITY; }    //truncates  

//negative overflow....  
     iV4 = (int8) (0x7F * -V / MAX_WHEEL_VELOCITY); 
     iV4 = iV4 | 0x80; 
   } 
   else { 
     if (V > MAX_WHEEL_VELOCITY) { V = MAX_WHEEL_VELOCITY; }    //truncates positive  

//overflow.... 
     iV4 = (int8) (0x7F * V / MAX_WHEEL_VELOCITY); 
   } 
 
} 
 
 
 
void ControlHDribbler(int hDribblerSpeed) //This function controls the 

//speed of the dribbler 
//depending upon   
//the voltage from the current 
//sensing circuitry 

{ 
   signed int16 duty; 
   int analogHDribblerValue; 
   float multiplier; 
 

switch(AI_HDribblerSpeed) //Depending upon the speed 
//from the AI, a base value of 
//multiplier is set 

   { 
      case 0: 
         multiplier=0;       
         break; 
      case 1: 
         multiplier=.150; 
         break; 
      case 2: 
         multiplier=.300; 
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         break; 
      case 3: 
         multiplier=1; 
         break; 
      default: 
         multiplier=0; 
         break; 
   } 
 
   set_adc_channel(4); 
   delay_us(10); 
   analogHDribblerValue = read_adc();     //Reads the value from the 
ADC input 
 
 
   if ( (analogHDribblerValue > 170) || (analogHDribblerValue== -1) ) 
       
      duty = 520 * multiplier;    
   else if (analogHDribblerValue > 85) 
       
      duty = 700 * multiplier;   
   else 
      duty = 900 * multiplier;      //Duty cycle set depending upon the 
value of the current 
 
   //setup_ccp2(CCP_PWM); 
   //setup_timer_2(T2_DIV_BY_4, 127, 1);  
   
   set_pwm2_duty(duty); 
}        //End of the function 
 
int8 GetRobotMode(void)       //Reads the robot ID 
from the ID DIP switch 
{ 
 
   modeNumber= (input_d() & 0b00001111); 
   return(modeNumber); 
} 
 
 
void Buzzer(int timesOn)     //Sounds the buzzer 
depending upon the input argument to it 
{ 
 
int i; 
 
   for (i=0; i<timesOn; i++) 
   { 
      output_low(PIN_D6);             //Buzzer on 
      delay_ms(500); 
      output_high(PIN_D6);              //Buzzer off 
      delay_ms(500); 
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   } 
} 
 
 
void CheckBatteryVoltage(void)          //Measures the battery voltage and 
sounds a buzzer if it is low 
{ 
   int16 value; 
 
   set_adc_channel(1); 
   delay_us(100); 
   value = read_adc(); 
   batteryLevel=value; 
   
   if (value <=batteryThreshold) 
      Buzzer(2); 
}        //End of the function 
 
 
void LCD(void) 
{ 
 
   float percentage; 
 
 
 
   #use rs232(baud=19200, xmit=PIN_D7, rcv=PIN_C0, parity=n)    //Setting the pins to send 
data to the LCD   
      printf("              \n"); 
      printf("              \n"); 
      printf("\nBat %x  ",batteryLevel);  
      printf("\nRNo %d        ",robotNumber);    //Printing robot No and 
battery level 
} 
 
 
 
void test(void)       //Sends pre-programmed 
directions to the robot 
{ 
   #ifdef WHEEL 
   printf("IN\n\r"); 
      if (robotNumber == 0x0e) 
 
      { 
         Test_Motion(0x08, 0x08, 0x08, 0x08); 
      } 
      if (robotNumber == 0x0c) 
      { 
                         //Data for Straight 
         robotData[0] = 0x26;              //vx  
         robotData[1] = 0x00;      //vy 
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         robotData[2] = 0x00;      //vtheta 
         robotData[3] = 0x00;   // and MSB of this is sign bit 

//for vtheta 
 
         AfterWirelessPacket(); 
      } 
      else if(robotNumber == 0x0a) 
      { 
               //Data for Left 
         robotData[0] = 0x00;      //vx  
         robotData[1] = 0x26;      //vy 
         robotData[2] = 0x00;      //vtheta 
         robotData[3] = 0x00;   // and MSB of this is sign bit 

//for vtheta 
 
         AfterWirelessPacket(); 
      } 
      else if(robotNumber == 0x08) 
      { 
                      //Data for Back 
//         robotData[0] = -0x26;      //vx  
         robotData[1] = 0x00;      //vy  //was 80 
         robotData[2] = 0x00;      //vtheta 
         robotData[3] = 0x00;   // and MSB of this is sign  bit 

//for vtheta 
 
         AfterWirelessPacket(); 
      } 
      else if(robotNumber == 0x06) 
      { 
               //Data for Right 
         robotData[0] = 0x00;      //vx  
//         robotData[1] = -0x26;      //vy  //ec 
         robotData[2] = 0x00;      //vtheta 
         robotData[3] = 0x00;       // and MSB of this is sign bit 
for vtheta  
 
         AfterWirelessPacket(); 
      } 
      else if(robotNumber == 0x04) 
      { 
                //Data for Rotate Right 
         robotData[0] = 0x00;      //vx  
         robotData[1] = 0x00;      //vy 
//         robotData[2] = -0x26;     //vtheta 
         robotData[3] = 0x00;       // and MSB of this is sign bit 
for vtheta  
 
         AfterWirelessPacket(); 
      } 
      else if(robotNumber == 0x02) 
      { 
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         //Data for Rotate Left 
         robotData[0] = 0x00;      //vx  
         robotData[1] = 0x00;      //vy 
         robotData[2] = 0x26;      //vtheta 
         robotData[3] = 0x00;   // and MSB of this is sign bit 

//for vtheta 
 
         AfterWirelessPacket(); 
      } 
   #endif 
 
   #ifdef CONTROL 
 
      if(robotNumber == 0x00) 
      { 
         //Test Kicker 00 - Kicker Speed 0 (off) 
         robotData[0] = 0x00; 
         robotData[1] = 0x00; 
         robotData[2] = 0x00; 
         robotData[3] = 0x00; // 2 LSBs are kicker Magnitude 
 
         AfterWirelessPacket(); 
      } 
 
       if(robotNumber == 0x02) 
      { 
         //Test Kicker 01 - Kicker Speed 1 
         robotData[0] = 0x00; 
         robotData[1] = 0x00; 
         robotData[2] = 0x00; 
         robotData[3] = 0b00000101;     // 2 LSBs are kicker Magnitude 
 
         AfterWirelessPacket(); 
      } 
       if(robotNumber == 0x04) 
      { 
         //Test Kicker 02 - Kicker Speed 2 
         robotData[0] = 0x00; 
         robotData[1] = 0x00; 
         robotData[2] = 0x00; 
         robotData[3] = 0b00011010;  // 2 LSBs are kicker Magnitude 
 
         AfterWirelessPacket(); 
      } 
       if(robotNumber == 0x06) 
      { 
         //Test Kicker 03 - Kicker Speed 3 
         robotData[0] = 0x00; 
         robotData[1] = 0x00; 
         robotData[2] = 0x00; 
         robotData[3] = 0b00011111;  // 2 LSBs are kicker Magnitude 
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         AfterWirelessPacket(); 
      } 
        if(robotNumber == 0x08) 
      { 
         //Test Kicker 
         output_high(PIN_B1); 
         delay_ms(200); 
 
         output_low(PIN_B1); 
         delay_ms(1000); 
         output_low(PIN_B1); 
      } 
      #endif 
} 
 
 
void Test_Motion(unsigned int8 v1, unsigned int8 v2, unsigned int8 v3, unsigned int8 v4) 
{         
         //This function lets 
you send 8bit wheel velocities to the  
         //motion control 
    
   iV1 = v1; 
   iV2 = v2; 
   iV3 = v3; 
   iV4 = v4; 
 
   #use rs232(baud=57600, xmit=PIN_D4, rcv=PIN_C4, parity=n) 
   putc(iV1); 
   putc(iV2); 
 
   #use rs232(baud=57600, xmit=PIN_D5, rcv=PIN_C5, parity=n) 
   putc(iV3); 
   putc(iV4); 
} 
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//********************************Header file for the U1 code **************************************// 
int robotNumber; 
int kickerBatteryThreshold=200;   
int batteryThreshold=220;         
int modeNumber=0; 
int IR_Status; 
int kickStatus=KICKCOMPLETED; 
unsigned int8 robotData[4]; 
byte AI_Dive; 
byte AI_VDribEnable; 
byte AI_KickSpeed; 
byte AI_HDribblerSpeed; 
char tempchar; 
int8 current; 
int8 byteCount; 
int16 batteryLevel; 
#define bkbhit (next_in!=next_out) 
#define BUFFER_SIZE 25 
byte buffer[BUFFER_SIZE]; 
byte next_in = 0; 
byte next_out = 0; 
 
 
/* Start LUT Variables */ 
 
/*  Wheel Drive Direction Angles 
Psi1 = 145 degrees 
Psi2 = 225 degrees 
Psi3 = 315 degrees 
Psi4 = 35 degrees 
*/ 
 
//Wheel geometry constants 
FLOAT CONST cos_psi1 = -0.819152; 
FLOAT CONST sin_psi1 = 0.573576; 
FLOAT CONST cos_psi2 = -0.707107; 
FLOAT CONST sin_psi2 = -0.707107; 
FLOAT CONST cos_psi3 = 0.707107; 
FLOAT CONST sin_psi3 = -0.707107; 
FLOAT CONST cos_psi4 = 0.819152; 
FLOAT CONST sin_psi4 = 0.573576; 
 
//Vphi constant 
//NOTE:  vtheta_coeff needs to be updated to reflect any 
//robot geometry changes 
FLOAT CONST vtheta_coeff = 0.0717; 
 
/*  Wheel Positions */ 
FLOAT CONST x1 = 0.0372; 
FLOAT CONST y1 = 0.0615; 
FLOAT CONST x2 = -0.0525; 
FLOAT CONST y2 = 0.0489; 
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FLOAT CONST x3 = -0.0525; 
FLOAT CONST y3 = -0.0489; 
FLOAT CONST x4 = 0.0372; 
FLOAT CONST y4 = -0.0615; 
 
//to convert wireless commands into meters/second and radians/second 
FLOAT CONST MAX_WHEEL_VELOCITY   =  2.5; 
FLOAT CONST MAX_VELOCITY         =  2.5; 
FLOAT CONST MAX_ANGULAR_VELOCITY = 10.0; 
 
//for calculating coordinate transformations 
float vx; 
float vy; 
float vtheta; 
 
//to hold the integer wheel velocity to send to motion control 
unsigned int8 iV1; 
unsigned int8 iV2; 
unsigned int8 iV3; 
unsigned int8 iV4; 
 
float V; 
 
/* End LUT Variables*/ 
 
 
/* Begin Wireless RX receive Variables */ 
   BYTE CONST WIRELESSPRE[6] = {0,1,5,9,13,17};    // end byte bytes before robotData 
   BYTE CONST WIRELESSWAN[6] = {1,5,9,13,17,21};   // robotData 
   BYTE CONST WIRELESSPOS[6] = {5,9,13,17,21,26};  // start bytes after robotData 
/* End Wireless RX receive Variables */ 
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I. MOTION CONTROL FIRMWARE 
// RoboCup 2002 motion control code – Tom Chi 
#include <16F877.h> 
// #include <16F876.h> 
#use delay(clock=20000000) 
#use rs232(baud=57600, xmit=PIN_C6, rcv=PIN_C7, parity=n) 
#org 0x1F00,0x1FFF 
   void loader() {} 
 
#define VECTOR_LENGTH 7            // 10 bits of control for each wheel 
#define BASE_K 4                        // proportional control constant 
#define J 2                        // integral control constant 
#define BUFFER_SIZE 2              // Buffersize for Motion Vector 
#define SSE_THRESHOLD 5            // allowable Stead State Error Threshold 
#define GLOBAL_RATE 300            // (Hz) control loop rate 
 
byte buffer[BUFFER_SIZE];          // input buffer to store motion vectors on the HW RX 
byte next_in = 0; 
byte next_out = 0; 
 
int8 count_scale = 0;               // count scale that is used to set desired count 
based on rate 
int8 K = 0; 
signed int16 timer0track = 0; 
 
int1 dir1 = 1;                     // wheel direction: default forward = CCW 
int1 dir2 = 1;                     // wheel direction: default forward = CCW 
signed int16 pwm1val = 0;          // PWMval set in tight loop 
signed int16 pwm2val = 0;          // PWMval set in tight loop 
 
int8 dir1mem = 0;                   // 1 bit memory to filter direction errors 
int8 dir2mem = 0;                   // 1 bit memory to filter direction errors 
 
signed int16 cnt1 = 0;             // timer0 value 
signed int16 cnt2 = 0;             // timer1 value 
signed int16 cnt1des = 0;          // ideal count1 value 
signed int16 cnt2des = 0;          // ideal count2 value 
signed int16 cnt1int = 0;          // integral control count 1 
signed int16 cnt2int = 0;          // integral control count 2 
 
signed int16 dif1 = 0;             // count difference for motor 1 
signed int16 dif2 = 0;             // count difference for motor 2 
 
signed int16 temp1 = 0;            // intermediate calculation val 
signed int16 temp2 = 0;            // intermediate calculation val 
        int1 dir1Read = 0;         // observed wheel direction 1 
        int1 dir2Read = 0;         // observed wheel direction 2 
 
signed int16 cnt1db = 0;           // motor 1 DEBUG (DB) variables 
signed int16 tmp1db = 0; 
signed int16 dif1db = 0; 
signed int16 pwm1db = 0; 
        int1 dir1db = 0; 
signed int16 cnt2db = 0;           // motor 2 DEBUG (DB) variables 
signed int16 tmp2db = 0; 
signed int16 dif2db = 0; 
signed int16 pwm2db = 0; 
        int1 dir2db = 0; 
 
#define bkbhit (next_in!=next_out) 
 
byte bgetc() { 
   byte c; 
 
   while(!bkbhit) ; 
   c=buffer[next_out]; 
   next_out=(next_out+1) % BUFFER_SIZE; 
   return(c); 
} 
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short timeout_error; 
 
char timed_getc() { 
   long timeout; 
 
   timeout_error=FALSE; 
   timeout = 0; 
   while(!kbhit()&&(++timeout< 5000)) 
      delay_us(10); 
   if (kbhit()) 
      return(getc()); 
   else { 
      timeout_error=TRUE; 
      return(0); 
   } 
} 
 
// ************************************************************************************ 
// INTERRUPT SERVICE ROUTINES // 
 
#INT_RDA 
serial_isr() {                            // Buffers motion vectors coming on Serial Rx 
   int t; 
 
   // read motion vectors 
   buffer[0] = timed_getc(); 
   buffer[1] = timed_getc(); 
 
   //printf("%x ",buffer[0]);         //temp delete 
   //printf("%x \r\n",buffer[1]); 
 
   // Convert Vector into PWM values (can take up to 10 bit) 
   cnt1des = (int16)(buffer[0] & 0x7F) * count_scale;  // approximate count scaling: see 
spreadsheet: motorcalc.xls in actuality: 4.9 
   dir1 = buffer[0] >> 7; 
 
   cnt2des = (int16)(buffer[1] & 0x7F) * count_scale; 
   dir2 = buffer[1] >> 7; 
 
   // Start Counters 
   set_timer0(0); 
   set_timer1(0); 
 
   dir1mem = dir1; 
   dir2mem = dir2; 
} 
 
#int_rtcc 
timer0_isr() { 
   timer0track++; 
   if (timer0track > 3) 
      timer0track = 0; 
} 
 
#int_timer2 
wheel_control_isr() { 
//   output_bit(PIN_C5,0);                  // debug scope signal to mark beginning of 
ISR 
//______________________________________________________________________________ GET 
FRAME INFO 
   dir1Read = input(PIN_C3);              // get motor direction: motor1 
   dir2Read = input(PIN_C4);              // get motor direction: motor2 
 
   cnt1 = get_timer0() + (timer0track << 8);                   // read number of counts 
(timer0) 
   cnt2 = get_timer1();                   // read number of counts (timer1) 
   cnt1 = cnt1 << 1;             // !!! HACK HACK HACK :: to get rid of overcounting. 
 
 
   set_timer0(0);                         // reinitialize timer0 
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   timer0track = 0;                       // var needed to make timer0 (8bit counter) 
count up to 1024 
   set_timer1(0);                         // reinitialize timer1 
//______________________________________________________________________________ 
CALCULATE NEW PWMs 
 
   if ((dir1Read!=dir1) && (dir1mem==dir1Read)) 
      cnt1 = - cnt1;   // if dir is opposite of desired: switch sign on Encoder Count 
 
   if ((dir2Read != dir2) && (dir2mem==dir2Read)) 
      cnt2 = - cnt2; 
 
   dir1mem=dir1Read; 
   dir2mem=dir2Read; 
 
   dif1 = cnt1des-cnt1; 
   dif2 = cnt2des-cnt2; 
 
 
   if (temp1 < 0)                        // MOTOR 1: if negative 
      pwm1val = -temp1; 
   else if (temp1 > 1023)                 // cap PWM value at 1023 
      pwm1val = 1023; 
   else                                   // else: regular case 
      pwm1val = temp1; 
 
   if (temp2 < 0)                         // MOTOR 2: if negative 
      pwm2val = -temp2; 
   else if (temp2 > 1023)                // cap PWM value at 1023 
      pwm2val = 1023; 
   else                                  // else: regular case 
      pwm2val = temp2; 
 
//______________________________________________________________________________ SET 
DIRECTION 
 
if (temp1 < 0) {                          // on overcount, flip dir 
   if (dir1 == 1) 
      dir1 = 0; 
   else 
      dir1 = 1; 
} 
if (temp2 < 0) { 
   if (dir2 == 1) 
      dir2 = 0; 
   else 
      dir2 = 1; 
} 
 
   if (dir1) {                           // set direction 
      output_bit(PIN_B5,1); 
      output_bit(PIN_B4,0); 
   } 
   else { 
      output_bit(PIN_B5,0); 
      output_bit(PIN_B4,1); 
   } 
 
   if (dir2) { 
      output_bit(PIN_B2,1); 
      output_bit(PIN_B1,0); 
   } 
   else { 
      output_bit(PIN_B2,0); 
      output_bit(PIN_B1,1); 
   } 
 
if (temp1 < 0) {                          // flip back 
   if (dir1 == 1) 
      dir1 = 0; 
   else 
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      dir1 = 1; 
} 
if (temp2 < 0) { 
   if (dir2 == 1) 
      dir2 = 0; 
   else 
      dir2 = 1; 
} 
 
   set_pwm1_duty(pwm1val);          // wait till after direction set to set PWM 
   set_pwm2_duty(pwm2val); 
 
//______________________________________________________________________________ DEBUG 
SIGNALS 
   dir2db = dir2Read;              // set debug variables 
   cnt2db = cnt2; 
   tmp2db = temp2; 
   dif2db = dif2; 
   pwm2db = pwm2val; 
 
 //  output_bit(PIN_C5,1);           // scope signal to mark end of ISR 
} // END wheel_control_isr() 
 
 
 
// ************************************************************************************ 
// DEFINES // 
 
 
void main() { 
  enable_interrupts(GLOBAL);                 // turn on interrupts 
  enable_interrupts(INT_RDA);                // Hardware RX Interrupt 
  enable_interrupts(INT_TIMER2);             // TIMER2 interrupt: triggers control loop 
code 
  enable_interrupts(int_rtcc);             // 8b count ... need to track to count up to 
10 bits. 
  setup_ccp1(CCP_PWM);                       // PWM1 
  setup_ccp2(CCP_PWM);                       // PWM2 
  setup_timer_0(RTCC_EXT_L_TO_H);            // counter 1 
  setup_timer_1(T1_EXTERNAL);                // counter 2 
 
 
 
if (GLOBAL_RATE == 600) {                    // sets timebase for control loop AND PWM 
rate : 600 Hz control loop 
  setup_timer_2(T2_DIV_BY_4, 255, 8); 
  count_scale = 5; 
  K = BASE_K << 2; 
} 
else if (GLOBAL_RATE == 300) {               // 300 Hz control loop 
   setup_timer_2(T2_DIV_BY_4, 255, 16); 
   count_scale = 10; 
   K = BASE_K << 1; 
} 
else if (GLOBAL_RATE == 150) {               // 150 Hz control loop 
   setup_timer_2(T2_DIV_BY_16, 255, 8); 
   count_scale = 20; 
   K = BASE_K; 
} 
 
  set_pwm1_duty(0);                          // init state: motor1 off 
  set_pwm2_duty(0);                          // init state: motor2 off 
  cnt1des = 0; 
  cnt2des = 0; 
 
//  printf("*** Starting Main Loop...\r\n"); 
  while(1) { 
 
  } 
} 
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J.  SYSTEM REQUIREMENTS 
 

 

CORNELL 2002 ROBOCUP  5 ROBOT SYSTEM  
 
1. SCOPE  
1.1. This source specification establishes the performance, design, development, and test requirements for a 
system of autonomous soccer-playing robots. 
 
 
 
 
2. MISSION  
2.1. The mission of the Cornell 2002 RoboCup  5 Robot System is to win the 2002 RoboCup F180 League 
Competition. 
 
 
 
 
3. APPLICABLE DOCUMENTS  
3.1. CORNELL 2002 ROBOCUP  5 ROBOT SYSTEM source specification (this document) 
3.2. RC02Orient - Microsoft PowerPoint Presentation, Dr. R. D'Andrea 
3.3. RoboCup Organization F180 (Small Size) League Rules for RoboCup 2002 
3.4. Cornell RoboCup Documentation from 1999, 2000, 2001 
3.5. Documentation of other RoboCup systems 
3.6. Systems Engineering process references 
3.6.1. Engineering Complex Systems, Oliver, Kelliher, Keegan 
 
 
 
 
 
4. GENERAL REQUIREMENTS 
4.1. The system shall comply with the 2002 RoboCup Organization F180 (Small Size) League Rules. 
4.2. The system shall win robot soccer matches played against the Cornell 2001 RoboCup 5 Robot System, 
prior to the 2002 RoboCup Competition. 
4.3. The system shall win robot soccer matches played against the Cornell 2001 RoboCup 11 Robot System, 
prior to the 2002 RoboCup Competition. 
4.4. The system shall not experience spontaneous malfunction or breakdown during the course the RoboCup 
2002 Competition. 
4.4.1. The system shall be easily testable. 
4.4.2. The system shall be easily maintainable. 
4.5. The system shall not display any of t he known malfunctions of the Cornell 2001 RoboCup 5 Robot 
System. 
4.6. The system shall be safely and easily transported to the location of the 2002 RoboCup Competition in 
Japan. 
4.6.1.  The system shall comply with air transport regulations. 
4.7. The system shall comply with all applicable laws at the competition venue (Fukuoka, Japan). 
4.8. The system shall perform at least as well in the RoboCup 2002 venue as in the Cornell RoboCup 
Laboratory. 
4.9. The system shall be tolerant of human errors. 
4.10. The system behavior shall be easily adjustable during competition. 
4.10.1. The system shall allow strategy changes at the competition. 
4.11. Every subsystem shall be either redundant, or easily replaced. 
4.12. The system shall, where practical, share hardware resources with the Cornell 2002 11 Robot System. 
 


