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Challenges in mobile file 
systems design

Today's mobile file systems must adapt to 
wide variations in network bandwidth in 
order to provide good performance. 
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MFS design principles

1. Not all Remote Procedure Calls (RPCs)
are equally important.

2. Bandwidth can be conserved by making 
decisions about allocation based on the
current set of queued RPCs.

Microbenchmarks

We compare the speedup of a foreground workload running at the same 
time as a stream of file writes, relative to the time taken with synchronous 
writes at a bandwidth of 64 KB/s.
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NT file system
macrobenchmarks

Performance of priority and writeback for 3 different NTFS file traces. 
Asynchronous writes with priorities generally improve the overall time 
from the first to the last operation, and the time to write back all files.

MFS/CC consistency 
algorithm

§ Only invalidate when there's 
concurrent writeback traffic

1. Invalidate files if explicit invalidation is 
required

2. Separate writeback of shared and non-
shared files to reduce delay before 
changes are visible

MFS/CC uses asynchronous invalidations (async) and different priorities for 
writing back shared and unshared files (diff). We compare with 
synchronous invalidations (sync) and uniform writes (unif).

MFS/CC is equivalent to synchronous invalidations in terms of avoiding 
inconsistencies (number of server pulls), but reduces the invalidation 
overhead. 

MFS/CC decreases the time readers and writers must wait to access shared 
files, since it prioritises modifications to these files over changes to 
unshared files. This reduces the waiting time for a reader accessing a 
"dirty" file, and the likelihood a file will be dirty when a reader accesses it.
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Asynchronous writes reduce delays when bandwidth
is low, but allow a client to hold an update for a file 
without the server knowing it's dirty.

MFS assigns RPC priorities according to 
how long they delay applications

Priorities for RPCs

§ High priority for small RPCs
§ High priority for reads
§ Low priority for "background" RPCs 

(writes, prefetches)

Making writes asynchronous can further 
decrease application delay.

Current work

§ Submitted to FAST'04
§ Automatically generating caching 

policies for files based on access 
patterns
§ Applying MFS-style adaptation 

techniques in other application domains


