Challenges in mobile file
systems design
Today's mobile file systems must adapt to

wide variations in network bandwidth in
order to provide good performance.
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MFS design principles

1. Not all Remote Procedure Calls (RPCs)
are equally important.

2. Bandwidth can be conserved by making
decisions about allocation based on the
current set of queued RPCs.
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We compare the speedup of a foreground workload running at the same

time as a stream of file writes, relative to the time taken with synchronous

writes at a bandwidth of 64 KB/s.
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MFS: a Mobile File System
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Priorities for RPCs

MFES assigns RPC priorities according to
how long they delay applications

= High priority for small RPCs
= High priority for reads

= Low priority for "background" RPCs
(writes, prefetches)

Making writes asynchronous can further
decrease application delay.

NT file system
macrobenchmarks
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Performance of priority and writeback for 3 different NTFS file traces.
Asynchronous writes with priorities generally improve the overall time
from the first to the last operation, and the time to write back all files.

Cache consistency

Asynchronous writes reduce delays when bandwidth
is low, but allow a client to hold an update for a file
without the server knowing it's dirty.
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MFS/CC in action
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MFS/CC decreases the time readers and writers must wait to access shared
files, since it prioritises modifications to these files over changes to
unshared files. This reduces the waiting time for a reader accessing a
"dirty" file, and the likelihood a file will be dirty when a reader accesses it.

Improving Adaptivity in Mobile File Systems

MFS/CC consistency
algorithm

1. Invalidate files if explicit invalidation is
required

= Only invalidate when there's
concurrent writeback traffic

2. Separate writeback of shared and non-
shared files to reduce delay before
changes are visible
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MFS/CC uses asynchronous invalidations (async) and different priorities for
writing back shared and unshared files (diff). We compare with
synchronous invalidations (sync) and uniform writes (unif).

MFS/CC is equivalent to synchronous invalidations in terms of avoiding
inconsistencies (number of server pulls), but reduces the invalidation
overhead.

Current work

= Submitted to FAST'04

= Automatically generating caching
policies for files based on access
patterns

= Applying MFS-style adaptation
techniques in other application domains
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