Challenges in mobile file
systems design
Today's mobile file systems must adapt to

wide variations in network bandwidth in
order to provide good performance.

high | .
AM‘N noise M‘
g poor
8 poo con nectivity
near base = o 460 500
station |/

MFS design principles

1. Not all Remote Procedure Calls (RPCs)
are equally important.

2. Bandwidth can be conserved by making
decisions about allocation based on the
current set of queued RPCs.

Microbenchmarks
Small foreground RPCs Large foreground RPCs
20 - : : 25 - ; -
—&— uniform/sync —&— uniform/sync I;@
—— priorities/sync & —+— priorities/sync
—_ —S— priorities/async . —~ 20| —©— priorities/async
L 15¢ aal v
n 0
c C
9 9
© T 15 | constant
0] o !
£ 10l £ benefit
H 210
5 @ 5
3 =3
o | 0
= greatest < 5| e
improvement ®--- :—*;B/E'
— "
0 : : : 0 : : :
64 128 256 512 1024 64 128 256 512 1024
bandwidth (KB/s) bandwidth (KB/s)

We compare the speedup of a foreground workload running at the same

time as a stream of file writes, relative to the time taken with synchronous

writes at a bandwidth of 64 KB/s.

time (s)

Benjamin Atkin and Kenneth P. Birman
Reliable Distributed Systems Group
Cornell University

MFS: a Mobile File System

Client cache manager

incoming traffic \

demand
fetch

PC libr

synchronous gasynchr;g),|;]%;~®~;‘,\,rite file
\:

R

/ Applications @

writeback | e I_oggrng 2 |write file‘)
background processing §

cache || access
consistency | | monitoring /

Priorities for RPCs

MFES assigns RPC priorities according to
how long they delay applications

= High priority for small RPCs
= High priority for reads

= Low priority for "background" RPCs
(writes, prefetches)

Making writes asynchronous can further
decrease application delay.

NT file system
macrobenchmarks

Time spent on RPCs (64 KB/s) Time spent on RPCs (512 KB/s)
3000 : : : - 600 : ; . :

I mostly reads
500 | I mostly writes
heavy load
[] store overhead

2500

2000 400

1500

time (s)

300}

1000 2001

500 100}

0

—_— 0 I
priorities uniform priorities uniform priorities uniform priorities uniform
synchronous asynchronous synchronous asynchronous

Performance of priority and writeback for 3 different NTFS file traces.
Asynchronous writes with priorities generally improve the overall time
from the first to the last operation, and the time to write back all files.

Cache consistency

Asynchronous writes reduce delays when bandwidth
is low, but allow a client to hold an update for a file
without the server knowing it's dirty.

%
1
0
|
L]
!
|

A

l
-_!'

..-"
[

Builders,

i@ Architects

at offices

High collaboration,
large numbers of

engineers at work site participants
MFS/CC in action
Writer Server Reader
read file A
write file A | - — Invalidate A (marks A dirty)
4 _ _ _discard A
\\’%g, ““““ (discards A)
e
v :
\ fy read file A
v pull A (BLOCKS)
R i
2|
(UNBLOCKS)

Average duration of reader fetch
1.5 . :

[ ] IVIFS/CC

B async+unif
Bl sync+diff

[ ] none+diff
synchronous

average time (s)

o
o

”ﬂlﬂﬂlﬂ]ﬂulmrmﬂm_

64 128 256 512 1024
bandwidth (KB/s)

average time (s)

Average shared store RPC duration

1.4

1.2¢

1r

o
©

o
o

o
_p.

o
N

64

[ | IVIFS/CC

B async+unif

Bl sync+diff |
[ 1 none+diff
B synchronous | |

rlrr "

128 256 512 1024
bandwidth (KB/s)

MFS/CC decreases the time readers and writers must wait to access shared
files, since it prioritises modifications to these files over changes to
unshared files. This reduces the waiting time for a reader accessing a
"dirty" file, and the likelihood a file will be dirty when a reader accesses it.

Improving Adaptivity in Mobile File Systems

MFS/CC consistency
algorithm

1. Invalidate files if explicit invalidation is
required

= Only invalidate when there's
concurrent writeback traffic

2. Separate writeback of shared and non-
shared files to reduce delay before
changes are visible

Invalidations and server puIIs T|me spent on |nval|dat|ons
. v 9
- MFS/CC [- MFS/CC
B async+unif 8l B async+unif |-
200 Bl sync+diff Bl sync+diff
[_1 server pulls 7t
& o
5 150 | @
E © 5fF
o =
® =l
2 100} g4
=] -—
- 3 a
50 21
1 n
0 = 0
64 1 28 256 512 1024 6 128 256 512 1024
bandwidth (KB/s) bandwidth (KB/s)

MFS/CC uses asynchronous invalidations (async) and different priorities for
writing back shared and unshared files (diff). We compare with
synchronous invalidations (sync) and uniform writes (unif).

MFS/CC is equivalent to synchronous invalidations in terms of avoiding
inconsistencies (number of server pulls), but reduces the invalidation
overhead.

Current work

= Submitted to FAST'04

= Automatically generating caching
policies for files based on access
patterns

= Applying MFS-style adaptation
techniques in other application domains

The authors were supported in part by DARPA under AFRL grant RADC F30602-99-1-0532, and by AFOSR under MURI grant F49620-02-1-0233, with additional support from Microsoft Research and from the Intel Corporation.



