
Ap
pl

ic
at

io
ns

Ad
ap

tiv
e 

R
PC

 li
br

ar
y

cache
consistency

demand
fetch

synchronous
writeback

asynchronous
logging

prefetch

access
monitoring

background processing

outgoing traffic

incoming traffic

MFS: a Mobile File System

Client cache manager

Servervalidate file
fetch file

write file

write file

MFS/CC in action

Writer Server Reader

write file A

read file A
invalidate A

discard A

(marks A dirty)

(discards A)
write back A read file A

(BLOCKS)
fetch A

pull A

fetch-reply
(UNBLOCKS)

(boost priority)

Benjamin Atkin and Kenneth P. Birman
Reliable Distributed Systems Group

Cornell University

The authors were supported in part by DARPA under AFRL grant RADC F30602-99-1-0532, and by AFOSR under MURI grant F49620-02-1-0233, with additional support from Microsoft Research and from the Intel Corporation.

Challenges in mobile file 
systems design

Today's mobile file systems must adapt to 
wide variations in network bandwidth in 
order to provide good performance. 

near base
station

high
noise

poor 
connectivity

MFS design principles

1. Not all Remote Procedure Calls (RPCs)
are equally important.

2. Bandwidth can be conserved by making 
decisions about allocation based on the
current set of queued RPCs.

Microbenchmarks

We compare the speedup of a foreground workload running at the same 
time as a stream of file writes, relative to the time taken with synchronous 
writes at a bandwidth of 64 KB/s.

greatest 
improvement

constant 
benefit

NT file system
macrobenchmarks

Performance of priority and writeback for 3 different NTFS file traces. 
Asynchronous writes with priorities generally improve the overall time 
from the first to the last operation, and the time to write back all files.

MFS/CC consistency 
algorithm

§ Only invalidate when there's 
concurrent writeback traffic

1. Invalidate files if explicit invalidation is 
required

2. Separate writeback of shared and non-
shared files to reduce delay before 
changes are visible

MFS/CC uses asynchronous invalidations (async) and different priorities for 
writing back shared and unshared files (diff). We compare with 
synchronous invalidations (sync) and uniform writes (unif).

MFS/CC is equivalent to synchronous invalidations in terms of avoiding 
inconsistencies (number of server pulls), but reduces the invalidation 
overhead. 

MFS/CC decreases the time readers and writers must wait to access shared 
files, since it prioritises modifications to these files over changes to 
unshared files. This reduces the waiting time for a reader accessing a 
"dirty" file, and the likelihood a file will be dirty when a reader accesses it.

Cache consistency

Server

Builders,
engineers at work site

Architects
at offices

add pipe on4th floor

ge
t 4

th
 flo

or
blu

ep
rin

ts

High collaboration,
large numbers of 

participants

Asynchronous writes reduce delays when bandwidth
is low, but allow a client to hold an update for a file 
without the server knowing it's dirty.

MFS assigns RPC priorities according to 
how long they delay applications

Priorities for RPCs

§ High priority for small RPCs
§ High priority for reads
§ Low priority for "background" RPCs 

(writes, prefetches)

Making writes asynchronous can further 
decrease application delay.

Current work

§ Submitted to FAST'04
§ Automatically generating caching 

policies for files based on access 
patterns
§ Applying MFS-style adaptation 

techniques in other application domains


