Tumbler Animation Project Report
Michael Ferguson
12/18/2002

Project Description

The goal of the project is to create an animation tool which can “unroll” and “slice”
a three-dimensional model composed only of triangles. This work was motivated by Lilla
LoCurto and Bill Outcault and completed in part as an undergraduate independent study,
CS 490, at Cornell University, under the guidance of Kavita Bala.

|//

Use Cases (Goals)

In a use case, a user creates a movie of a person unrolling. She creates a scene and
imports a large PLY file. She specifies that the model should be fully unrolled at a later time
and export a high-resolution QuickTime move of the scene.

In a second use case, users interested in the calligraphic forms of sections of people
import two models. From these two models, they create a variety of sections and reposition
them to make interesting movement. They export this animation to a high-resolution
QuickTime movie.

Project Status

Figure 1 shows the interface that Tumbler presents to its users. This window
contains a tool palette, which can be used to rotate, translate and scale a selected object or
to rotate, translate, or zoom the camera. There is a timeline at the bottom of the window
with which a user can change the current time. The model displayed in the center has an
“unroll” effect attached to it, and the grey disk controls how the unrolling is done. Note
that this version does not include support for the “slice” effect. However, it can unroll a
model in spherical or cylindrical coordinates with and without “spines”, import SMF and
PLY files, and export fixed-resolution QuickTime movies and SMF files.

Technical Implementation

3D Obijects

A scene stores a list of 3D objects which are arranged into a hierarchy of coordinate
systems. Reorienting an object at the top of the hierarchy will also reorient its children. An
object also may contain cells which are always drawn in an object’s local coordinate
system.

The grey disk described above is currently the only example of a control object. A
control object represents a setting for an effect with its position, and it can be translated,
rotated, and scaled in the same way as any other object in the scene. | implemented this
control disk simply by adding it as a child of the model object in the hierarchy.

Level of Detail

In order to render large models quickly, they need to be simplified. | investigated
two methods, propslim and plycrunch, for this project in my accompanying Level of
Detail Survey. Both of these methods are a publicly-available command-line programs.
Currently, to reduce a model, one of these programs must be run from a command line on
an input file in the correct format.

The “Unroll” Effect

The “unroll” effect animates between two positions of the model: the start state and

the unrolled state. Imagine projecting each point in the model onto a cylinder or sphere of
a certain radius, and then unrolling that cylinder or sphere. In the start state, the effect
makes no change to the model. In the unrolled state, each point in the model is converted
into cylindrical or spherical coordinates and the resulting rectangular surface is drawn. See
Figure 2 for an example of this transformation. The radius of the line from the origin to the
point on the model becomes the height of the projected surface at that point. The in-
between states are created simply by linearly interpolating between the start and end states.

The “unroll” effect sends the points at the theta angles 0 and 2z to diverging
locations (see Figure 2), and so all triangles with a positive x-value and which intersect the
xz plane are split by the xz plane and each new triangle is sent to the correct location.
Finally, for simplicity, | implemented changes in the position of the projective cylinder by
transforming all of the vertices before and after the “unroll” is processed. Also, because a
user usually wants a body to be unrolled from its “spine” which may not lie upon the z-
axis, for cylindrical projections, | vary the center of the imaginary cylinder so that it
matches the center of a vertical slice of the model - see Figure 3. Figure 4 shows an
example of this effect applied to a person.

Effects List Processing

In order to enable a user to combine effects, | represent models with effects applied
to them as a source object together with a list of effects that the object goes through before
being drawn. Effects might include “unrolling” or “slicing.” The source object exposes its
triangles for modification to each effect. So to apply the effects in order, a “scratch” copy of
the original model is made. Then each effect is applied to this scratch copy, which is then
stored and used whenever the object is drawn. If the effects list and the current parameters
for each effect have not changed, the scratch copy can be reused instead of being
recomputed. Although | completed the back-end for the effects list, currently it is not
possible to compose several effects because the user interface is not complete.

Lessons Learned

This project has been the first large-scale application that | have developed
independently. | have learned a few software engineering lessons:
e Plan time for integration. My project schedule left adequate time to finish some of the
features themselves, but I had not planned on the time | needed to integrate the features as
well.
e Don't think too hard about design. Programming is like writing sometimes - to get
started it might be better to create a working copy than to design it “right the first time.”
There are two reasons: it is easy to get stuck on design problems when it is unclear what
issues will arise, and at the end of the day if you’ve only done design work, you will have
not created the program. If your aim is to create a working copy, you can make a design
choice just for the sake of simplicity. These design choices can be revisited later if they
need to be. As my sculpture professor once told me, “Don’t do it all in your head-bone;”
it's often easier to make design decisions in the act of creating the program or the
sculpture. When adding a new class to do one thing, it probably doesn’t need to be all
that flexible. Consider putting off adding flexibility until you need it.
 For intensely mathematical sections of the program,| created quite a few notes in my
book. | think that it would help to create descriptions of these sections complete with
pictures as need be so that they can be preserved with the source code. Although

computers can compile and execute C, it is not a terribly legible mathematical notation.

e Using existing libraries and frameworks can be useful. However, sometimes it is more
trouble to use a library than to grow your own code. In this project, | thought about using
the QuickTime movie format to store all of my parameters for effects and for model
positions. After doing a lot of research on QuickTime, | concluded that it was a bad idea,
mostly because the documentation was not clear about exactly how | would do that.
Although it would have been an interesting project, the functionality | would gain from
QuickTime would be questionable; without QuickTime, I only needed to create a class
which performed linear interpolation. | think it would have been a nightmare to use
QuickTime to store all of my data. The lesson is that even when a library claims to be able
to do what you would like it to, you should only use a library for its supported use.

e User interface code is not trivial to implement. Although an interface is only a way a
person can use some back-end functionality, it takes quite a bit of work to create a good
interface. For research projects on back-end parts, the simplest user interface to implement
is probably the best one.

e There is a wealth of knowledge in the computer science literature. | was very glad that |
could draw upon previous level-of-detail research instead of creating my own haphazard
method. Furthermore, the oldest and most-cited papers are not necessarily the best ones
for every reader; | learned more about quaternions from a Google search than from the
“authoritative” original paper, because the original paper was difficult to follow while the
page Google found was actually written for undergraduates like me.

Future Work

As | mentioned, the effect list user interface is not complete. And although |
intended to support a second effect - slicing a model - | did not get to slicing in this
version. Furthermore, I still need to add support for specifying lights and animating camera
movements. In addition, the graph of key-frames and the stored parameters at these frames
is not yet completed. The translate, rotate, and scale tools should allow constraints, and
these tools currently only manipulate one object (instead of all of the objects in a
selection). | would like to add a mechanism to “look at” a certain object in case the camera
is aimed in the wrong direction, a window to choose the output movie resolution, and
support for anti-aliasing.

Figure 1
the Tumbler user interface

Unticled 3

oA

Tool Palette |

‘ra /
™ Model
e
A
Control Disk
Object — 00 - |
Camera > F e un 500 7.5 0.0 FET

Timeline

Figure 2
Example of interpolation between starting locations and cylindrical projection

Generated in Mathematica with:
flt_, p_,r_, rmax_]:=
{ (1-p)*r*Coslt]-p*r, (1-p)*r*Sin[tl+p*rmax*(\[Pi]-t)}
ParametricPlot]
{f{t,0,1,11, ft,1/3,1,1], f[t, 2/3,1,1],f[t,1,1,1],f[t,0,0.2,1],
f[t,1/3,0.2,1], f[t, 2/3,0.2,1], f[t,1,0.2,1] }, {t, O, 2*\[Pi]},
AspectRatio\Rule]Automatic]

J

S
1

\.

Figure 3
Example of cylindrical “spine

7

Each cylinder represents a section of an object with
center at the center of the cylinder. The dark line is the
center used in the projection transformation; it is
interpolated between the values of the centers of the
cylinders.

Figure 4
Example of the “unroll” effect

t=0.2

