
Entangled Transactions

Nitin Gupta, Milos Nikolic, Sudip Roy, Gabriel Bender,

Lucja Kot, Johannes Gehrke, Christoph Koch

Coordination

In the age of Web 2.0, users increasingly coordinate on

data-driven tasks

Example: travel planning

• Mickey and Minnie want to travel to Seattle on the same flight

Coordination: Course Enrollment

Students want to enroll in classes with

their friends

Interesting scenarios:

• Negative constraints

– avoid the section my ex is in

• Strong mutual dependencies

– I will take this tough class only if my friend takes it too

Coordination: MMOs

Players want alliances based on

shared or complementary goals

• I will attack from the North

if someone else attacks from

the South

Alliances often formed with strangers for the

purpose of achieving one goal

Coordination: SIGMOD 2011

Room Sharing among attendees of the 2011 ACM SIGMOD Conference

The conference officers have set up a web page where interested attendees of the conference can

register their interest in sharing rooms at the conference hotel. Through this service attendees can

enter their details so that interested people can contact each other.

To register your interest, please submit your information at: http://bit.ly/sigm_share_room (URL

shortener service forwarding to a Google Spreadsheets form). This service is provided solely as a

convenience to participants that seek to share accommodation costs. Please contact directly

participants that have expressed interest. The organizers will not be involved in the process nor

are they responsible for possible abuse of the information you provide.

http://bit.ly/sigm_share_room

Coordination: SIGMOD 2011

Coordination: SIGMOD 2011

Entangled Transactions

Mickey expresses his intention to coordinate

• “I want to travel to Seattle on the same flight as Minnie”

Minnie expresses a symmetric intention

System takes care of the rest

To make this a reality, need:

• a basic primitive for coordination – entangled queries

(SIGMOD 2011)

• an understanding of how entangled queries fit into

transactions (this paper)

Entangled Queries

SELECT „Mickey‟, Flightno INTO ANSWER Booking

WHERE

(„Minnie‟, Flightno) IN ANSWER Booking

AND Flightno IN SELECT Flightno FROM Flights F

 WHERE F.Destination=„Seattle‟

CHOOSE 1

• ANSWER Booking is an ephemeral relation

• exists only when the queries are answered

• used to collect the answers to all “participating” queries

• allows the expression of cross-constraints beetween answers

Entangled Queries

SELECT „Mickey‟, Flightno INTO ANSWER Booking

WHERE

(„Minnie‟, Flightno) IN ANSWER Booking

AND Flightno IN SELECT Flightno FROM Flights F

 WHERE F.Destination=„Seattle‟

CHOOSE 1

SELECT „Minnie‟, Flightno INTO ANSWER Booking

WHERE

(„Mickey‟, Flightno) IN ANSWER Booking

AND Flightno IN SELECT F.Flightno FROM Flights F, Airlines A

 WHERE F.Destination=„Seattle‟

 AND F.Flightno = A.Flightno

 AND A.Airline = „United‟

CHOOSE 1

Evaluation Example

Flightno Destination

CO83 Seattle

CO82 Paris

UA211 Seattle

TH244 Chicago

UA112 Seattle

Flight

Flightno Airline

CO83 Continental

CO82 Continental

UA211 United

TH244 Thai

UA112 United

Airlines

UA211 and UA112 satisfy all constraints

(Mickey, UA112) (Minnie, UA112)

(Minnie, UA112) (Mickey, UA112)

Answer

Constraint

 Mickey‟s query Minnie‟s query

Entangled Transactions

Entangled queries typically embedded in transactions

1. coordinate on flight number

2. book ticket based on result from step 1

3. commit

More interesting scenario:

1. coordinate on flight number

2. book ticket

3. coordinate on hotel based on date of flight chosen

4. book hotel

5. commit

Mickey’s Entangled Transaction

BEGIN TRANSACTION;

SELECT `Mickey', fno, fdate AS @ArrivalDay INTO ANSWER FlightRes

WHERE fno, date IN (SELECT fno, fdate FROM Flights WHERE dest=`Seattle')

AND (`Minnie', fno, fdate) IN ANSWER FlightRes

CHOOSE 1;

-- (Code to perform flight booking omitted)

SELECT `Mickey', hid, @ArrivalDay, `2011-09-02‟ INTO ANSWER HotelRes

WHERE hid IN (SELECT hid FROM Hotels WHERE location=`Seattle')

AND (`Minnie', hid, @ArrivalDay, `2011-09-02‟) IN ANSWER HotelRes

CHOOSE 1;

-- (Code to perform hotel booking omitted)

COMMIT;

Research Challenges

What kind of “transaction” is this?

• a classical transaction is a standalone, coherent unit of work

• an entangled transaction is not standalone – requires an

entanglement partner!

What happens to isolation?

• there is communication, so classical isolation is broken

• but some sort of “residual isolation” is desirable

Need a formal semantic model for entangled transactions

Research Challenges

How do we actually run entangled transactions?

• how do we enforce “correct” execution as defined

in semantic model?

– locking, optimistic cc?

• what if something goes wrong?

– Minnie never submits her matching transaction

– an entangled query fails

– entanglement succeeds, but then one of the transactions

aborts

Need an execution model for entangled transactions

• one size will likely not fit all

Research Challenges

How do we run entangled transactions in a real system?

• is entangled transaction support implemented in the

middle tier or within the DBMS?

• what is the overall system architecture?

• how do we make this fast and scalable?

Our Contributions

A semantic model for entangled transactions

• formalizes the entangled equivalents of the ACID properties

A practical execution model

• suitable for realistic scenarios like travel planning

• (ongoing research)

A concrete system design and prototype implementation

• middle-tier support for entangled transactions

• integrates with existing DBMS functionality

Experimental evaluation

Our Contributions

A semantic model for entangled transactions

• formalizes the entangled equivalents of the ACID properties

A practical execution model

• suitable for realistic scenarios like travel planning

• (ongoing research)

A concrete system design and prototype implementation

• middle-tier support for entangled transactions

• integrates with existing DBMS functionality

Experimental evaluation

Semantic Model - Consistency

What is a transaction?

• a standalone, coherent unit of work

Formalized in the consistency assumption

Every transaction, if executed on an initially

consistent database by itself

 , will produce

another consistent database.

Semantic Model - Consistency

What is an entangled transaction?

• a standalone, coherent unit of work modulo its need for

entangled query answers

Formalized in the oracle-consistency assumption

• an entangled query oracle is a process that (only) answers

entangled queries

Every entangled transaction, if executed on an initially

consistent database by itself except for an entangled query

oracle that returns valid query answers, will produce

another consistent database.

Semantic Model - Isolation

Classically, two ways to formalize isolation:

• exclusion of anomalies (dirty reads etc.)

• serializability – equivalence to a serial schedule

• results that link the two notions

Challenges in the entangled case:

• serializability no longer makes sense

• new isolation anomalies unique to entangled setting

New Isolation Anomaly #1

Widowed transaction

• what if one transaction aborts?

• entanglement is a kind of dirty read (on the system state)

New Isolation Anomaly #2

Unrepeatable quasi-read

• information flows through entanglement to a transaction, even

if it does not read a table directly

Semantic Model - Isolation

Two definitions of isolation for an entangled schedule:

• anomaly-based entangled isolation

– exclude all the classical anomalies plus widowed

transactions and unrepeatable quasi-reads

• oracle-serializability

– (final state) equivalence to schedule where the same

transactions execute serially along a suitable oracle

Theorem: Anomaly-based entangled isolation implies

oracle-serializability

• so list of anomalies is “complete”

• see paper for details!

Semantic Model Summary

Consistency

• a transaction executing on its own with an oracle takes DB

from one consistent state to another

Isolation

• anomaly-based and oracle-serializability definitions

• Theorem: the former implies the latter

Atomicity

• transaction must complete or be rolled back

Durability

• if a transaction commits, changes must persist

Experimental Evaluation

We ran several experiments using our prototype

• implemented in Java

• uses JDBC to connect to a MySQL database system (InnoDB)

Experiments investigate:

• the overhead of providing transactional guarantees

– “How much slower is the running time if we enclose the code in BEGIN

TRANSACTION; and COMMIT; ?”

• the performance impact of different workloads (transactions

match well or badly, in a simple or complex way)

• what happens when we vary parameters in our execution

model

Transactional Overhead

Three workload types

• NoSocial – a user books a flight

• Social – a user books a flight based on a friend‟s booking

• Entangled – a user coordinates with a friend to book a flight

using entangled query

For each of these, generate a non-transactional (-Q) and a

transactional (-T) workload

• 10000 transactions generated using Slashdot social network data

Determine running time for each workload

• this is a function of the number of concurrent connections

Results (10K-transaction Workloads)

Conclusion

Entangled transactions are a powerful, clean and

declarative way to support data-driven coordination

• formal semantic model with analogues of the classic ACID

properties

• end-to-end solution with a practical execution model and an

implemented prototype

Many exciting challenges for future work

• more execution models

• language and model extensions

• privacy issues

• ...

Additional Slides

Run-based Execution Model

A simple execution for noninteractive transactions

Isolation achieved with appropriate locking and group

commit requirement

Run-based scheduling:

• transactions scheduled in batches or runs

• entangled queries are blocking points in evaluation

• run ends when every transaction is either ready to commit or

blocked waiting for a partner

Transactions in a Run

Results: Pending Transactions

Results: Coordinating Set

