
Entangled Queries: Enabling Declarative Data-Driven
Coordination

Nitin Gupta, Lucja Kot, Sudip Roy, Gabriel Bender and
Johannes Gehrke

Cornell University
Ithaca, NY 14853, USA

{niting, lucja, sudip, gbender, johannes}@cs.cornell.edu

Christoph Koch

EPFL
CH-1015 Lausanne, Switzerland

christoph.koch@epfl.ch

ABSTRACT

Many data-driven social and Web applications involve collabora-
tion and coordination. The vision of declarative data-driven coor-

dination (D3C), proposed in [9], is to support coordination in the
spirit of data management: to make it data-centric and to specify
it using convenient declarative languages. This paper introduces
entangled queries, a language that extends SQL by constraints that
allow for the coordinated choice of result tuples across queries orig-
inating from different users or applications.
It is nontrivial to define a declarative coordination formalism

without arriving at the general (NP-complete) Constraint Satisfac-
tion Problem from AI. In this paper, we propose an efficiently en-
forcible syntactic safety condition that we argue is at the sweet spot
where interesting declarative power meets applicability in large scale
data management systems and applications.
The key computational problem of D3C is to match entangled

queries to achieve coordination. We present an efficient matching
algorithm which statically analyzes query workloads and merges
coordinating entangled queries into compound SQL queries. These
can be sent to a standard database system and return only coor-
dinated results. We present the overall architecture of an imple-
mented system that contains our evaluation algorithm; we also eval-
uate the performance of the matching algorithm experimentally on
realistic coordination workloads.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

General Terms

Languages

1. INTRODUCTION

1.1 Declarative data-driven coordination
Collaboration and coordination are increasingly important as-

pects of the ways people produce, process and consume data. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

is true not only for serious tasks such as scientific dataset manage-
ment, but also at the grass-roots level, as internet users organize
and coordinate activities online. In [9], we presented our vision of
declarative data-driven coordination (D3C) as a high-level design
principle for collaborative data management systems. In this pa-
per, we address some of the challenges related to making D3C a
reality by introducing a system that supports entangled queries – a
declarative mechanism for data-driven coordination.

Our paper [9] motivates D3C through a series of real-world co-
ordination scenarios. We briefly revisit these examples here and
explain D3C in some detail in order to make more concrete the
technical challenges involved in implementing entangled queries.

A common coordination scenario is joint travel planning with
friends or family; for instance, several friends might wish to sep-
arately reserve seats on the same flight. The desired coordination
is based on the attributes of the data itself, such as flight numbers
and times, rather than on context information such as the time the
booking is made. Thus, the coordination itself is data-driven.

There are many other settings in which users wish to coordi-
nate. College students want to enroll in the same courses as their
friends, busy professionals want to schedule joint meetings, and
wedding guests want to purchase gifts in a way that avoids dupli-
cation. Coordination also occurs in massively multiplayer online
(MMO) games, where players are often interested in developing
joint strategies with other players to achieve common objectives.
Again, the coordination is data-driven as it relates to in-game goals.

Despite the ubiquity of scenarios such as those described above,
coordination is not commonly supported in today’s data-driven ap-
plications. For example, joint travel planning usually starts with
significant out-of-band communication to fix an itinerary. Next,
one designated user makes a group booking, or all users try to make
bookings simultaneously and hope that enough seats will remain
available. Finally, more communication may be necessary to sort
out finances. The same is true for the other examples of coordina-
tion mentioned above. In MMO games, for instance, joint strate-
gies are currently formed using out-of-band communication, to the
detriment of gameplay experience.

The idea behind D3C is to provide a way for users to coordinate
within the system and without having to worry about the details of
the coordination. Because the coordination is data-driven, the co-
ordination abstraction is designed to sit at the same level as other
abstractions that relate to the data. Declarativity – allowing users to
express what is to be achieved, rather than how it is to be achieved
– has long been an underlying design principle in databases. In a
declarative specification of coordination, the users’ only responsi-
bility is to state their individual preferences and constraints, and
the system takes care of the rest. D3C is thus in contrast with exist-

ing work on data-driven coordination in workflows [4, 13] and Web
services [5, 3, 16], which does not clearly separate the coordination
specification and mechanism.
To see what coordination looks like in a system that supports

D3C, consider an example. Suppose Kramer wants to travel to Paris
on the same flight as Jerry. In our system, he can express his request
with the following entangled query:

SELECT ‘Kramer’, fno INTO ANSWER Reservation

WHERE

fno IN (SELECT fno FROM Flights WHERE dest=‘Paris’)

AND (‘Jerry’, fno) IN ANSWER Reservation

CHOOSE 1

Jerry also wants to travel with Kramer, but he has an additional
constraint: he wants to travel only on flights operated by United.
His query is as follows:

SELECT ‘Jerry’, fno INTO ANSWER Reservation

WHERE

fno IN (SELECT fno FROM Flights F, Airlines A WHERE

F.dest=‘Paris’ and F.fno = A.fno

AND A.airline = ‘United’)

AND (‘Kramer’, fno) IN ANSWER Reservation

CHOOSE 1

Section 2 explains the syntax of these queries in detail. For now,
it is enough to understand that Reservation is a name for a vir-
tual relation that contains the answers to all the current queries in
the system. The SELECT clause specifies Kramer’s own expected
answer, or, in other words, his contribution to the answer relation
Reservation. This contribution, however, is conditional on two
requirements, which are given in the WHERE clause. First, the flight
number in question must correspond to a flight to Paris. Second,
the answer relation must also contain a tuple with the same flight
number but Jerry as the traveler name. Jerry’s query places a near-
symmetric constraint on Reservation.
Neither user explicitly specifies which other queries he wishes

to coordinate with – e.g. by using an identifier for the coordination
partner’s query. Instead, the coordination partner is designated im-
plicitly using the partner’s query result. This is a deliberate choice
that allows coordination with potentially unknown partners based
purely on desired shared outcomes. In travel planning, of course, it
typically is known who one’s coordination partners will be. How-
ever in other scenarios such as MMO games, coordination partners
may be unknown and their identities irrelevant.
When the system receives Kramer and Jerry’s queries, it answers

both of them simultaneously in a way that ensures a coordinated
flight number choice. In general, there may be many different suit-
able flights, but Kramer and Jerry only want to make a booking on
one of them. The CHOOSE 1 clause present in both queries specifies
that only one tuple is to be returned per query. The tuples returned
must be such that all constraints are satisfied. If the database is as
shown in Figure 1 (a), the system non-deterministically chooses ei-
ther flight 122 or 123 and returns appropriate answer tuples. Figure
1 (b) shows the mutual constraint satisfaction that takes place in
answering for 122. The intent is that Kramer and Jerry should now
be able to make a booking on flight 122.
The above queries are of course simplified to illustrate the ba-

sic coordination mechanic; in a real travel reservation setting, they
would include checks for seat availability and other factors.

1.2 Enabling D3C
Other research communities have long recognized the need for

communication among concurrently running processes and have

Flights Airlines

fno dest

122 Paris
123 Paris
134 Paris
136 Rome

fno airlines

122 United
123 United
134 Lufthansa
136 Alitalia

(a)

Kramer’s query Jerry’s query

answer tuple: R(‘Kramer’, 122) R(‘Jerry’, 122)

answer relation
constraint: R(‘Jerry’, 122) R(‘Kramer’, 122)

satisfies

satisfies

(b)

Figure 1: (a) Flight database (b) Mutual constraint satisfaction

designed solutions to support it. Systems researchers have devel-
oped solutions ranging from low-level mechanisms such as mes-
sage passing, shared memory, locks and semaphores to higher level
abstractions such as transactional memory [10]. The programming
languages community has given us Concurrent ML [14], Erlang
[18], Stackless Python [1], Concurrent Haskell [8] and many other
languages that come with concurrency support. These languages
enable communication through channels or other mechanisms in
a clean and precisely specified way. At a higher level, abstrac-
tions such the π-calculus [12] allow formal modeling and reasoning
about communication.

The data management research community has long avoided the
coordination problem, probably as a consequence of accepting iso-
lation among transactions as a dogma. However, as pointed out
above, data-driven coordination has real uses. The process-centric
abstractions mentioned above are not a good fit for data-driven ap-
plications [9]; a large class of such applications would be much
easier and faster to develop using a data-centric abstraction such as
entangled queries. Moreover, a well engineered high-level abstrac-
tion like entangled queries creates an opportunity for automatically
optimizing coordination on a large scale that is not possible for the
lower-level abstractions offered by operating systems.

It is important to emphasize that existing database mechanisms
such as nested transactions [11], Sagas [7], or ConTract [15] that
weaken isolation in a form or another do not solve the coordina-
tion problem, for two reasons. First, they only allow for unidirec-
tional information flow between transactions on the same concep-
tual layer (of nesting), not the kind of bi- or multidirectional flow
required to achieve coordination. Moreover, coordination requires
automated matchmaking between queries, which is a problem not
addressed at all in previous work. It may at first seem that trig-
gers or other active database constructs [19] can address the same
problems as D3C, since active databases perform actions based on
certain conditions becoming true in the database. However, trig-
ger conditions are preconditions, while the coordination constraints
of entangled queries are postconditions on the desired state of the
database after the coordination. Again, triggers provide no straight-
forward way to achieve coordination matchmaking, which is the
key problem addressed and solved in this paper.

Once the notion of entangled queries has been formalized, a key
technical challenge is to solve the coordination problem. That is,
we need an algorithm that finds answers to the entangled queries in
a way that satisfies the coordination constraints.

There is, however, a fundamental obstacle. The combination of

a declarative query language such as SQL with coordination con-
straints of the kind illustrated above naturally captures the general
Constraint Satisfaction Problem (CSP) of AI [6], which is NP-
complete. This source of complexity is included by design: the
very idea of D3C calls for a coordination solution to be a choice

(nondeterministic, if you will) from a query result, constrained by

cross-query conditions. Declarativity naturally entails a (combina-
torial) satisfiability problem.
There are in fact two sources of nondeterminism (disjunction)

and thus complexity in the coordination problem. The first is the
choice of queries to be grouped together; the second, the choice
of data tuples from the query results that are chosen as coordinat-
ing solutions. We cannot reasonably hope to eliminate the second
type of complexity; this is the same issue that causes select-project-
join queries to be NP-complete if one considers the query to be
part of the input. On the other hand, one usually considers this
acceptable because queries are small. If this second source of NP-
completeness had to be eliminated, one could not support declara-
tive queries with coordination constraints in a similar formalism.
A key contribution of this paper is a syntactic condition, safety,

which ensures that coordination can be performed efficiently in the
sense that the first source of complexity is eliminated. Coordination
is only NP-hard in the size of the groups of queries or individuals
who want to coordinate; in a travel scenario like our example where
an arbitrary number of pairs of two people want to coordinate, this
size is two. The hardness result is independent of the total number
of entangled queries in the system, and also of the size of the data
in the database. The latter fact is comfortingly obvious from the
fact that the algorithm presented in this paper merges queries to be
coordinated statically into standard SQL queries that only produce
coordinated solution tuples for the constituent entangled queries;
the essential query matching/coordination problem is solved with-
out access to the data.

1.3 Contributions
The contributions of this paper are as follows. First, we formal-

ize entangled queries, a simple yet powerful abstraction for D3C.
Entangled queries are expressed in an extension of SQL, allowing
the coordination constraints and the data involved in the coordi-
nation to be specified at the same level of abstraction. They are
inspired by a language example from [9]; however, in this paper
we give a full formal treatment of these queries, including a precise
syntax and semantics.
Second, we introduce a formal notion of safety for queries that

are admitted into the system. In keeping with our previous dis-
cussion, safe queries are designed to allow efficient evaluation in
realistic settings rather than express generic CSP instances.
Third, we present an algorithm for coordination. The algorithm

begins by working at the syntactic level to solve the query matching
problem – identifying the potential coordination partners for each
query. Next, each set of matching queries is combined into a larger
query that expresses the desired joint outcome. For example, Jerry
and Kramer’s queries would be combined into a single query asking
for a United flight to Paris. Finally, the answers to the combined
query are used to generate individual answers.
Fourth, we introduce an end-to-end system that supports entan-

gled queries. Apart from an optimized implementation of the al-
gorithm, we present other components for query management and
interaction with the application layer. Our system supports coordi-
nation in two modes: set-at-a-time mode (queries arrive in batches)
and incremental mode (queries arrive as a stream). We leverage the
properties of coordination structures to partition and evaluate query
sets independently and in parallel.

Finally, we give experimental results that use our system and
demonstrate the scalability of the coordination algorithm. We strive
to use workloads that are as realistic as possible; in generating
them, we make use of real social network data and extend them
to a scale which is realistic for today’s internet.

The remainder of this paper is organized as follows. Section 2
introduces the syntax and semantics of entangled queries. Section
3 discusses the kinds of coordination structure that are likely to be
present in the most common use cases. Section 4 presents the eval-
uation algorithm for coordination. Section 5 describes our system
implementation and contains experimental results, while Section 6
discusses future work. We mention related work throughout.

2. ENTANGLED QUERIES
In this section, we introduce a SQL-like syntax for entangled

queries, propose an intermediate representation for ease of exposi-
tion and define the semantics of query answering.

2.1 Syntax
An entangled query is expressed in extended SQL using the fol-

lowing syntax:

SELECT select_expr

INTO ANSWER tbl_name [, ANSWER tbl_name] ...

[WHERE where_answer_condition]

CHOOSE 1

The WHERE clause is a normal condition clause that may refer
to both database and ANSWER tables. The ANSWER tables are not
normal database relations, whether permanent or temporary. Their
purpose in the query is only to serve as names that are shared
among queries and permit coordination. For example, the relation
Reservation in the example from the introduction is an ANSWER
relation. There is no relation named Reservation in the database;
after the queries are evaluated, Kramer and Jerry each receive a re-
sult set with the appropriate answer tuple. These answer tuples do
not persist anywhere, nor are they accessible to any other queries.
In particular, Kramer’s answer tuples are not even accessible to
Jerry’s query and vice versa. The CHOOSE 1 at the end of the query
explicitly specifies that the system should choose exactly 1 tuple
among all the tuples which satisfy the coordination constraints, and
that such a query should be chosen at random.

This paper presents semantics and an evaluation algorithm for
entangled queries that are restricted to use only select-project-join
(conjunctive) queries on the ANSWER relations in the WHERE clause,
and arbitrary queries otherwise. Such queries are powerful and ex-
pressive enough to handle many real-world coordination scenarios.
We discuss potential extensions in Section 6.

2.2 Intermediate representation
Although entangled queries are specified in an extension of SQL,

their evaluation is easier to perform on an intermediate representa-
tion. The representation uses a Datalog-like syntax; however, it
does not involve any recursion and it is completely equivalent to
the SQL syntax presented above.

In this representation, an entangled query has the form

{C} H D B

where C and H are conjunctions of relational atoms over answer
relations and B a query over database (non-answer) relations. B, H
and C are the body, head and postcondition of the query, respec-
tively. Each atom in the representation may contain constants and
variables. All variables that appear in H or C must also appear in B

(a range-restriction requirement). For simplicity of discussion, we

{R(Jerry, x)} R(Kramer, x) D F(x, Paris)

{R(Kramer, y)} R(Jerry, y) D F(y, Paris) ∧ A(y, United)
(a)

1: {R(Jerry, 122)} R(Kramer, 122)
2: {R(Jerry, 123)} R(Kramer, 123)
3: {R(Jerry, 134)} R(Kramer, 134)
4: {R(Kramer, 122)} R(Jerry, 122)
5: {R(Kramer, 123)} R(Jerry, 123)

(b)

Figure 2: (a) Intermediate representation of entangled queries

(b) Grounded queries

restrict B to conjunctions of relational atoms for the remainder of
this paper. This is, however, not enforced by the model in general.
For an entangled query expressed in extended SQL, H corre-

sponds to the SELECT INTO clause, while B and C correspond to
information in the WHERE clause. C specifies all the conditions on
answer relations from the WHERE clause. B specifies the conditions
on database relations from the WHERE clause, as well as serving to
bind variables used in H and C.
Figure 2 (a) shows the intermediate representation of Kramer and

Jerry’s queries from the introduction. The relations Reservation,
Flights and Airlines are abbreviated as R, F and A respectively.

2.3 Semantics
From the point of view of a single entangled query, evaluation

is a process that returns an answer, i.e. a single row from the ap-
propriate answer relation. From the point of view of the system,
evaluation always involves a set of entangled queries, and the goal
is to populate the answer relation in a way that respects all queries’
coordination constraints. In the running example, Kramer and Jerry
wish to coordinate on flight numbers. The system evaluates their
queries by finding a tuple for Kramer’s query and a tuple for Jerry’s
query that share the same flight number, and returning each tuple
as an answer to the appropriate query.
Consequently, coordination semantics must be defined from the

perspective of the system, by specifying how a set of entangled
queries must be answered together. The process which the system
must perform is called coordinated query answering; it is described
next. For correctness, it is necessary to ensure that the underlying
database is not changed during the answering process.
Grounding the queries: Coordinated query answering makes

use of two technical concepts – valuations and groundings. If q is
a query in the intermediate representation and the current database
is D, a valuation is simply an assignment of a value from D to
each variable of q. For example, on the database in Figure 1 (a),
Kramer’s query has three valuations: x can be mapped to either
122, 123 or 134. Every valuation of a query is associated with
a grounding, which is q itself with the variables replaced by con-
stants following the valuation. We use the terms “grounding” and
“grounded query” interchangeably.
Let Q be the set of queries to be evaluated in a coordinated man-

ner. In the description that follows, we make use of G, the set of
groundings of the queries on the database. It is important to un-
derstand that evaluation does not require that G be materialized;
indeed, our evaluation algorithm presented in Section 4 does not
materialize it. However, for the purpose of explaining the seman-
tics, G is a useful tool.
Figure 2 (b) shows the set G obtained by grounding Kramer and

Jerry’s queries on the database in Figure 1 (a). The bodies of the
groundings are no longer needed and can be discarded.

Finding the answers: At a high level, the evaluation is a search
for a subset G′ ⊆ G such that G′ contains at most one grounding of
each query and the groundings in G′ can all mutually satisfy each
other’s postconditions. That is, if all the heads of the groundings in
G′ were combined into a set, this set would contain all the postcon-
ditions. Any set of groundings satisfying this property is called a
coordinating set. Once such a G′ is found, the evaluation produces
an answer relation which consists of the union of all the head atoms
in G′ (the answer may consist of more than one relation – this will
happen if the head atoms refer to more than one relation, i.e. the
original queries mention more than one ANSWER relation).

In the example, the initial set G is as shown in Figure 2 (b).
Groundings 1 and 4, as well as groundings 2 and 5, are suitable
coordinating subsets G′. Either of them may be used to generate
the answer relation and return answers to the respective queries.

It is possible that the selected G′ might not contain any ground-
ings for some queries. This event can be thought of as a statement
that those queries could not be answered; it is up to the programmer
to determine how to handle this case in the transaction code.

Guarantees on answering: In general, multiple suitable coordi-
nating sets G′ may exist. This raises the question of what require-
ments one should place on evaluation. It is clearly desirable that
some G′ be found unless none exists, and perhaps also that the G′

chosen be maximal, i.e. contain groundings of as many queries as
possible. However, the following result exposes fundamental limi-
tations on the guarantees that we can provide efficiently.

Theorem 2.1. Given a set of queries Q and an instance of the

database D, it is NP-complete to determine whether there exists a

coordinating set G′ ⊆ G, where G is the set of all groundings for Q

on D, containing at most one grounding of each query from Q.

This result is not surprising, considering that – as discussed –
entangled queries are powerful enough to encode instances of CSP.

3. QUERY ANSWERING IN PRACTICE
The main reason for the complexity of entangled query evalu-

ation indicated in Theorem 2.1 is not actually the choice of the
data values – such as specific flight numbers or hotel rooms. The
complexity is due to the fact that if we consider arbitrary sets of
queries, a backtracking search [6, 17] is required to discover the
coordination structure, that is, the way the queries (and their re-
spective groundings) match up together. Moreover, sometimes this
coordination structure is not unique.

Fortunately, real-world users are very unlikely to generate sets
of entangled queries that encode complex constraint satisfaction.
In fact, the sets of queries that they do generate are likely to have a
very specific structure. It turns out that we can put this knowledge
to good use in developing an efficient evaluation algorithm. In this
section, we formalize this additional structure and explain why it
allows tractable evaluation with respect to the data complexity.

3.1 Safe and Unique coordination
We argue that in most practical scenarios, the coordination struc-

ture that users express through entangled queries has two formal
properties: it is safe and unique. We informally introduce each
of these properties in turn before formalizing them and explaining
how they jointly guarantee tractability of evaluation.

We begin with the notion of safe coordination. Consider Kramer
and Jerry’s example queries from our running example. Each query
has a clear coordination partner. This means there is one clear de-
sired global outcome: both Jerry and Kramer receive the details
of a United flight to Paris. Suppose, however, that we extend the

{R(Jerry, x)} R(Kramer, x) D F(x, Paris)

{R(Jerry, y)} R(Elaine, y) D F(y, Athens)

{R(f , z)} R(Jerry, z) D F(z,w) ∧ Friend(Jerry, f)

(a)

{R(Jerry, x)} R(Kramer, x) D F(x, Paris)

{R(Kramer, y)} R(Jerry, y) D F(y, Paris)

{R(Jerry, z)} R(Frank, z) D F(z, Paris) ∧ A(y, United)

(b)

Figure 3: (a) An unsafe set of queries (b) A set of queries which

is not unique

database in our flight booking scenario with a Friend relation, and
that three users – Kramer, Jerry and Elaine – are mutual friends.
Consider the three queries in Figure 3 (a). The queries represent
the fact that Kramer wants to coordinate with Jerry on a flight to
Paris, Elaine wants to coordinate with Jerry on a flight to Athens,
and Jerry is happy to coordinate with any friend on any flight.
This set of queries does not fully specify the structure of the de-

sired coordination. Jerry’s query has two potential queries in the set
that could be its coordination partners; however, his query requires
a single tuple as an answer. There are two possible coordination
outcomes that satisfy some users: either Jerry flies with Kramer or
he flies with Elaine. However, there is no outcome that satisfies all
users, and it is unclear how the system might choose between the
two outcomes above.
To understand what it means for a coordination structure to be

unique, consider the three queries shown in Figure 3 (b). Here Jerry
and Kramer wish to coordinate on a flight to Paris as before. In
addition, Frank wishes to coordinate with Jerry on a flight to Paris,
but only if the airline is United. Depending on the flight database,
there are several possibilities for coordination here. First, it may be
possible to book all three users on a United flight. Of course, it is
possible that no suitable United flights exist. In this case, Jerry and
Kramer may still be able to coordinate and fly with another airline.
The coordination structure here is safe – each query has a unique
coordination partner – but it is not unique. There are proper subsets
of the entire set of queries that may be able to coordinate “locally”
even if the entire set cannot.
We next formalize the two above notions.

3.1.1 Safety

Formally, a safe set of queries can be characterized in terms of
logical unifiability between various head and postcondition atoms
of the queries in the set. Consider two relational atoms containing
constants and variables that involve the same relation. They are
unifiable unless they contain different constants for the same at-
tribute value; for example, R(x, y) and R(z, z) are unifiable whereas
R(2, y) and R(3, z) are not. We call a set of queriesQ unsafe if it con-
tains a query q with a postcondition atom that is unifiable with two
(or more) head atoms found in Q. These can be either head atoms
of two different queries, or two head atoms of the same query. Eval-
uation of such queries is intractable and leads to degradation in the
performance of the system.
For example, in Figure 3 (a), Jerry’s query has a postcondition

atom R(f,z) which unifies with the head of Kramer’s query as well
as the head of Elaine’s query. Therefore, the set of queries is unsafe.
If presented with a set of queries which is unsafe, the system

has several options. Ideally, the problem would be pointed out to
the users involved and they would receive feedback allowing them
to reformulate their queries. Alternately, the system could remove

queries from the set until the remaining set was safe. A simple way
to do this is to iterate over the query set and search for queries q
with postconditions that unify with more than one head atom. All
such queries q would be removed from the set when found. This
procedure is not in general Church-Rosser, but it is simple and can
be performed efficiently. More sophisticated strategies for query
removal may be appropriate in particular application settings.

3.1.2 Uniqueness of the coordination structure

The formal definition of safety involves excluding queries whose
postconditions unify with more than one head. Uniqueness of the
coordination structure, on the other hand, has to do with heads that
unify with more than one postcondition, as seen in the three queries
in Figure 3 (b): the head atom of the second query, R(Jerry, y) uni-
fies with the postcondition atoms of both the first and third query.
However, the restriction required for uniqueness of coordination
structure (UCS) is not as straightforward as excluding all queries
with such heads; sometimes these types of configurations can be
permitted. Intuitively, the problem is due to the fact that a subset of
the queries can coordinate separately of the rest.

To define the UCS property for a set of queries, we use a simpli-
fied version of the unifiability graph that will be introduced in more
detail in Section 4. Construct a graph with a node for every query
in the system. Draw an edge from node qi to q j if a head atom of qi
unifies with a postcondition atom of q j. Intuitively, if there is a path
from query qk to ql, this means that groundings of query ql require
groundings of qk for satisfaction, directly or transitively.

We can use this graph to define UCS. We say that a set of queries
has the UCS property if every node in its simplified unifiability
graph belongs to a strongly connected component of the same graph.
This excludes the type of behavior shown in Figure 3 (b). The sim-
plified unifiability graph for this set of queries has three nodes, one
for each query. There are three edges – edges in both directions
between Jerry and Kramer’s queries, and an additional edge from
Jerry’s query to Frank’s query. Thus, Frank’s query does not belong
to a strongly connected component of the graph.

An interesting property is that a set of queries could satisfy the
UCS property even though a query in the set is unsafe. For exam-
ple, the third query shown in Figure 3 (a) is part of the strongly
connected component of the graph although it is unsafe.

3.2 Tractable evaluation
In settings where the coordination structure is both safe and unique,

efficient evaluation is possible.

Theorem 3.1. If a set of entangled queries Q is safe and UCS,

then all the queries can be evaluated in PTIME with respect to data

complexity.

The intuition for why efficient evaluation is possible is that the
coordination structure can be discovered efficiently. If we con-
struct a graph based on the unifiability of the head and postcondi-
tion atoms of the query, the strongly connected components of the
unifiability graph correspond to sets of queries that are coordination
partners and require each other’s postconditions during evaluation.

Within each such group, the specific way in which the queries
match is unique. It is therefore possible to collect the queries to-
gether into a big query that specifies a single joint outcome based
on the way they match. This is explained in much greater detail in
Section 4, but as an example, Jerry and Kramer’s queries from the
introduction can be combined into this postcondition-free query:

R(Kramer, x) ∧ R(Jerry, x) D F(x, Paris) ∧ A(x, United)

This query specifies that the system should find a United flight
to Paris and return the two answer tuples to Jerry and Kramer.
In the evaluation process as outlined above, safety guarantees

tractability, by ensuring that there is a unique way to combine the
queries in each strongly connected component into a bigger query.
The UCS property guarantees correctness: we know that we will
not miss any possible answers (i.e. coordinating sets of ground-
ings) that involve proper subsets of a set of matching queries, as
explained in our discussion of the queries in Figure 3 (b).

4. THE EVALUATION ALGORITHM
We now introduce our algorithm for coordinated query answer-

ing. Within our system, this algorithm is implemented in the coor-
dination module as explained in Section 5.1. It is invoked by the
coordination middleware, either automatically at regular intervals
or through explicit requests. Upon invocation, the algorithm oper-
ates on a snapshot of the database and on a fixed set Q of queries.
The set Q is assumed to be safe; if necessary, a simple check can
be run on Q to ensure safety.
The algorithm has two main phases: query matching and evalu-

ation proper. Query matching discovers the coordination structure
implicit in the individual entangled queries and uses this structure
to construct a set of combined queries. Once each combined query
is available, it is sent to the database for evaluation; each answer to
this query corresponds to a set of answers to the individual entan-
gled queries. The first (or any other) combined query answer can
be used to produce the individual answers.

4.1 Query Matching
Query matching discovers the coordination structure implicit in

the set of entangled queries. In most cases, as discussed, users
submit small groups of queries that match only each other. That
is, the structure consists of a potentially large number of small,
disconnected groups of queries that will coordinate only internally.
The query matching phase discovers this structure in two steps.

First, it identifies the disconnected, independent groups of queries.
In doing so, it partitions Q into a set of components which can
subsequently be processed independently and in parallel. We call
this phase the partitioning phase and describe it in Section 4.1.2.
Next, the algorithm works on each group of queries to discover

the actual coordination by determining how the query heads and
postconditions match. We refer to this phase as matching (proper)
and describe it in Section 4.1.3.
All stages of this process make use of a data structure called the

unifiability graph that represents certain dependencies among the
queries in Q with respect to matching. We begin by introducing
this graph and explaining how it is constructed. We then discuss
how the subsequent phases make use of it.

4.1.1 The unifiability graph

The unifiability graph of a set of queries Q is a multi-digraph
(directed multigraph) that contains a distinct node N(qi) for each
query qi in Q. There is an edge from query node N(qi) to query
node N(q j) for each pair of atoms (h, p) such that h is a head atom
of qi, p is a postcondition atom of q j, and h unifies with p. For the
remainder of this section, we use qi to represent both a query in Q
and the corresponding node in the unifiability graph.
For every query qi in Q, let INDEGREE(qi) denote the indegree

of the corresponding graph node, and let PCCOUNT(qi) equal the
number of postconditions of query qi. Safety guarantees that there
will be at most one edge into a graph node qi for each postcondition

of qi. This means that for every query qi in Q,

INDEGREE(qi) ≤ PCCOUNT(qi)

Equality holds if and only if every postcondition atom of qi unifies
with a head atom of some query.

For instance, suppose Q consists of the three following queries:

q1 : {R(x1) ∧ S(x2)} T(x3) D D1(x1, x2, x3)

q2 : {T(1)} R(y1) D D2(y1)

q3 : {T(z1)} S(z2) D D3(z1, z2)

Then the unifiability graph is as shown in Figure 4 (a). We will
use this set of three queries as our running example for this section.

4.1.2 Partitioning

The unifiability graph allows Q to be partitioned into subsets
that can be processed separately and in parallel. These partitions
are precisely the connected components of the unifiability graph;
for convenience, we refer to the queries corresponding to a con-
nected component of the unifiability graph as a component of Q.
Suppose that queries q1 and q2 are in different components of Q.
Then any coordinating set that contains groundings of both q1 and
q2 can be broken into two smaller disjoint coordinating sets, one
of which contains q1 and the other of which contains q2. All sub-
sequent stages of evaluation can therefore be performed separately
on each component of Q. Partitioning the graph has other potential
benefits in addition to the performance advantages associated with
increased parallelization and smaller search spaces. For instance, it
has security benefits. By analyzing the unifiability graph, an imple-
mentation of our system could provide guarantees about the inter-
action between different queries in the system. A system sensitive
to privacy could partition the workload by grouping queries into
sets of “trusted and sensitive,” “trusted but not sensitive,” or “un-
trusted” queries and ensure that no component of Q could contain
both a “trusted and sensitive” and an “untrusted” query.

4.1.3 Unifier Propagation

At the core of our algorithm is an iterative process that identifies
and removes unanswerable queries, i.e. those that have no chance
to participate in a coordinating set. Fundamental to the algorithm
is the observation that a query with a postcondition that does not
unify with any query’s head cannot have a grounding that partici-
pates in a coordinating set. Any such query can therefore be safely
disregarded. We can identify such queries using our unifiability
graph: a query node N(qi) can be safely removed from the graph if
its indegree is strictly less than the number of postconditions of qi.

Unifier propagation requires that no variable can appear in more
than one query. If the initial Q does not satisfy this property, it is
easy to enforce it by renaming variables as needed. For the remain-
der of this section, we assume that each variable is indeed unique to
a single query. Let Val denote the set of all constants and variables
occurring in Q.

Unifiers The matching algorithm associates a unifier U(n) with
each node n in the unifiability graph. A unifier is a constraint on
the valuations of the variables in Val. Formally, it is a partition of
a subset of Val which contains at most one constant per partition
class. It can be represented as a set of subsets of Val. For example,
{{x, 3}, {y, z}} is a unifier specifying that in any permitted valuation,
the variable xmust have value 3 and the variables y and zmust have
the same value.

Given unifiers u1 and u2, the Most General Unifier of u1 and u2,
denoted mgu(u1, u2), is the most general (least restrictive) unifier
that enforces all the constraints imposed by each ui. In general,

mgu(u1, u2) may not exist, but if it does exist then it is unique. For
instance, there is no most general unifier for the unifiers {{x, 3}} and
{{x, 4}}; if one existed, it would need to restrict valuations so that x
was equal to both 3 and 4.
Given two unifiers u1 and u2, it is possible to computemgu(u1, u2)

– or determine that it does not exist – using standard methods.
An optimized implementation of the MGU procedure based on
disjoint-set forests provides strong performance guarantees. If uni-
fiers u1 and u2 jointly contain k distinct variables then it possible
to compute their most general unifier in expected O(k · α(k)) time,
where α is the inverse of the Ackermann function.
Cascading effects of unifier propagation If a query node qi is

removed from the graph then we can also remove any node q j such
that a postcondition atom of q j unifies with a head atom of qi. This
is true because of our safety condition: we know that each postcon-
dition atom unifies with at most one head atom.
In practice, this means that if a node qi is removed from the unifi-

ability graph then every successor q j of qi may be removed as well.
Repeating this argument, we may remove every successor of a suc-
cessor of qi, and so on until we have removed all descendants of qi
from the graph. This can be accomplished using a standard graph
traversal algorithm such as Breadth-First Search. We assume that
there is a function CLEANUP(n) that removes an input node and all
its descendants from the dependency graph, as well as all edges into
and out of those nodes. We also assume that CLEANUP removes all
of these nodes from the updates queue, a data structure whose pur-
pose will be described shortly.

4.1.4 Matching

We are now ready to explain the query matching algorithm proper.
We begin by constructing a unifiability graph for the set of queries
Q. For each query qi in Q, we create a node, and we define a set
U(qi), called the unifier, for this node. Intuitively, U(qi) repre-
sents the minimal (least restrictive) currently known constraints on
valuations that must hold for any coordinating set that contains a
grounding of qi.
We initialize the unifier U(qi) of each node qi to the empty set.

For each head atom h of each query qi we check whether there is a
postcondition atom p of a query q j that unifies with it. If such a p

exists then we create an edge from qi to q j in the unifiability graph.
We also update U(q j) to be the MGU of U(q j) and the most general
unifier of p and h. If no such h exists or no MGU exists then the
query qi is unsatisfiable, and we may run CLEANUP to remove it and
all its descendants from the graph.
The unifiability graph can be generated in a straightforward but

inefficient manner by trying to unify each postcondition with each
head in our entire input set of queries. This process can be made
more efficient by building indices, but doing so is non-trivial. For
example, consider the atoms Reserve (Kramer, x) and Reserve
(Jerry, y). Clearly, a unifier does not exist for these atoms de-
spite the fact that they point to the same relation. Interestingly, we
can attempt to reduce the number of these matchings by simply re-
placing the variables in every atom by a unique constant ∆. We
then build an index on all heads in Q of the following form:

(Relation, Parameter, Value) → [List of Atoms]

A lookup for a postcondition atom Reserve (Jerry, y) involves
a seek on the index for (Reserve, 1, Jerry) and (Reserve,
1, ∆). Formally, if L denotes the lookup function on the index
and A represents the set of atoms, an atom R(v1 . . . vn) can only
unify with

A∩
⋂

constants vi

(L(R, i, vi) ∪ L(R, i,∆))

Such an index structure does not provide us with any guarantee
on complexity. Indeed, we expect it to perform poorly when queries
have many variables. However, a query set with a very large num-
ber of variables is highly likely to be unsafe: postconditions and
heads that contain mostly variables rather than constants will typi-
cally unify with each other densely. In practice, therefore, this type
of index is immensely useful.

In building the graph, we iteratively removed any query contain-
ing a postcondition that did not unify with some head atom. This
fact, together with our assumption that Q is safe, is sufficient to
guarantee that that for each postcondition p of each query qi in the
graph there is exactly one other query q j with a head h that uni-
fies with p. This establishes a local satisfaction of constraints for
each of the remaining nodes in the dependency graph. The algo-
rithm next propagates these constraints using the structure of the
unifiability graph. More specifically, if a postcondition of query q j

requires the head of some query qi for satisfaction, the coordinat-
ing set cannot contain a grounding of q j unless both q j’s existing
constraints and qi’s constraints hold.

Unifier propagation is an iterative procedure that runs on each
component of the unifiability graph. As it runs, it performs two
tasks. First, it discovers the coordination structure, i.e. how the
queries match with respect to satisfying each other’s postcondi-
tions. As it does this, it updates the unifiers associated with the
graph nodes to reflect the current known constraints on valuations
that are required for this query to be answerable. Simultaneously,
the algorithm discovers and removes unanswerable queries from
the graph.

Algorithm 1Matching on a unifiability graph G

1: updates := queue containing all nodes in G
2: while updates is not empty do

3: parent := DEQUEUE(updates)
4: for child in successors of parent do

5: U(child) := MGU(U(parent), U(child))

6: if U(child) was changed then

7: if U(child) = NIL then

8: CLEANUP(child)

9: else

10: ENQUEUE(updates, child)

11: end if

12: end if

13: end for

14: end while

The propagation procedure is shown in Algorithm 1. At a high
level, it pushes unifier information forward along edges. If a uni-
fier does not exist for some node qi then the CLEANUP function is
invoked on qi, removing it and all its descendants from the unifi-
ability graph and the updates queue. The intuition is that such a
node corresponds to an unanswerable query, and any descendants
of this node represent queries that relied on a postcondition of qi
for satisfaction, so are also unanswerable. Whenever the unifier of
a node is updated, that node is added to the updates queue so that
the change can be propagated to the node’s children. This prop-
agation of unifier information continues until no new information
is propagated by any of the nodes and the updates queue becomes
empty.

The execution of the algorithm on our running example is shown
in Figure 4. In Figure 4 (b), unifiers are computed for all nodes
in the graph, and all nodes in the graph are added to the updates

queue. In Figure 4 (c), the first node, q1, is removed from the head
of the queue and information about its constraints is propagated to

(a) Basic unifiability graph (b) Computing initial unifiers

(c) Processing q1 (d) Processing q2

(e) Processing q3 (f) Reprocessing q1

(g) Reprocessing q2 (h) Reprocessing q3

Figure 4: A sample run of matching

its successors q2 and q3. In 4 (d), q2 is removed from the queue
and information about its constraints is propagated to its child q1.
Since q1 is not currently in the queue, it is added at this point. In 4
(e), q3 is removed from the queue and its constraints are propagated
to its child q1. In 4 (f), q1 is processed again with its new unifier,
and information about the update is propagated to q2 and q3. In 4
(g) and 4 (h), the update is propagated to q1, but since U(q1) is not
changed by the operation, it is not added to the queue.
We now consider a variant of this example in which q3 has the

postcondition T(2) rather than T(z1). In this case, no choice of head
atoms for q1 can simultaneously satisfy the postconditions of q2 and
q3, so we expect that the matching algorithm should fail. Indeed,
immediately before Figure 4 (e), U(q2) will contain the set {x3, 1}
and U(q3) will contain the set {x3, 2}. The unifier of q1 will be up-
dated first to mgu(U(q1),U(q2)) and then to the unifier of that value
with mgu(U(q1),U(q2)). The last unification will require x3 to be
equal to 1 and 2 simultaneously, and that unification will therefore
fail. As expected, the matching algorithm will consequently elimi-
nate the node q1 and its children q2 and q3.

4.1.5 Complexity Analysis

Graph Construction We first analyze the complexity of con-
structing the unifiability graph. Let H denote the total number of
head atoms in all queries inQ, let P denote the total number of post-
condition atoms, and let κ denote the greatest number of columns
that appears in any single atom in Q. In the absence of any indices,
for each head atom h and postcondition atom p inQ, we must check
whether h unifies with p; each such check takes expected O(κ α(κ))
time. If h is fixed then we must perform this check with P different
values of p. Since every query in Q contains at least one postcon-
dition atom, the time required to find all postcondition atoms and
perform this loop is expected O(P κ α(κ)). We must perform this
inner loop for H different values of h. Since each query in Q has
at least one head atom, finding all the head atoms in the input and
iterating over all of them takes expected O(P H κ α(κ)) time.

Unifier Propagation We now analyze the complexity of Algo-
rithm 1. The input is a connected component of the unifiability
graph containing nodes Q′ ⊂ Q such that each variable appears in
at most one query in Q′, as well as a unifier for each node in the
graph. Suppose that all queries in the input jointly contain k free
variables, and let w be the maximum number of postconditions of
any query in Q. Let P be the total number of postcondition atoms
in every query in the graph, and n the number of queries in Q′.

We add a node to the updates queue only at the very beginning
of the algorithm or when its unifier is updated by a call to the MGU
function on line 5 of the algorithm pseudocode. First suppose that
k = 0, i.e. there are no variables in the input. In this case, unifica-
tion is trivial, unifiers are never changed, and the whole algorithm
runs in time proportional to the number of edges in the graph; this
is bounded above by O(P) time.

Now suppose that k > 0. If a unifier is updated by a call to the
MGU function then either the new unifier must contain a constant
that the old unifier did not contain or else two sets in the old unifier
must be merged together and the total number of sets in the unifier
must decrease. This means that if all queries in the input jointly
contain k free variables then for each node child in Q′, the check
on line 6 can succeed at most O(k) times. If every node q in the
input has indegree at most w then each node can be added to the
updates queue at most O(kw) times. It follows that lines 5-12 can
be executed at most once O(kw2) for each node in the graph. Each
execution takes expectedO(k ·α(k)) time if we ignore the time spent
in the CLEANUP function on line 8, so the running time of the loop
is expected O(k2 w2 · α(k)). The total time spent in the CLEANUP
function across all calls is at worst linear in the number of nodes in
the input. It follows that the entire procedure runs inO(k2 w2

α(k)+
n + P) time. Since every query in the input contains at least one
postcondition, this can be simplified to expected O(k2 w2

α(k) + P)
time.

4.1.6 Discussion

We note that at any given time, the unifier of a query node q rep-
resents the weakest constraints on variables that must hold in order
for there to be a coordinating set of groundings for a subset Q′ ⊂ Q
that contains exactly one grounding for each query in Q′. A node
is removed from the graph only when this is known to be impossi-
ble, either because some of its postconditions can’t be satisfied at
all or because some subset of its postconditions can’t be mutually
satisfied by any variable assignment.

This is the best we can do without any knowledge of the records
in the database: the unifier of any query that remains in the system
after the matching algorithm halts can be satisfied for some valua-
tion of the variables it contains. This means that for each remaining

query q there exists a database D, a set of groundings Q ⊂ Q′, and

a coordinating set of groundings G, such that q ∈ Q and G consists
of exactly one grounding for each g ∈ G.

4.2 Constructing and evaluating the combined
query

After the matching procedure finishes, we are left with a set of
answerable queriesQ = {qi}i∈I , each associated with a unifierU(qi),
such that Q is a subset of the current component Q′ of Q. We com-
pute a global unifier U for the whole set of queries as mgu({U(qi)}).
If such a U cannot be computed, evaluation fails for Q′ and all the
queries in Q′ are rejected. If U does exist then it can be expressed
as a conjunction of equality statements relating the variables and
constants involved; call this conjunction ϕU .
At this point, the evaluation algorithm creates a combined query

using Q and ϕU . Let Bi denote the body of query qi, and let Hi

denote the conjunction of its head atoms. Then the combined query
q∗ is ∧

i

Hi D

∧

i

Bi ∧ ϕU

That is, the body of q∗ is the conjunction of all the bodies of the
original queries, together with equality atoms that encode the con-
straints in u. The head of q∗ is the conjunction of the original query
heads.
In our running example illustrated in Figure 4, all query nodes

end up with the same unifier after matching. This is

{{x1, y1}, {x2, z2}, {x3, z1, 1}}

The required most general unifier U is consequently also

{{x1, y1}, {x2, z2}, {x3, z1, 1}}

A suitable corresponding ϕU is

x1 = y1 ∧ x2 = z2 ∧ x3 = z1 ∧ x3 = 1

The combined query generated by the system is as follows:

T(x3) ∧ R(y1) ∧ S(z2) D D1(x1, x2, x3) ∧ D2(y1) ∧ D3(z1, z2)

∧x1 = y1 ∧ x2 = z2 ∧ x3 = z1 ∧ x3 = 1

As this example makes clear, q∗ can be simplified making use
of the information in ϕU . Our example query is equivalent to the
following query:

T(1) ∧ R(x1) ∧ S(x2) D D1(x1, x2, x3) ∧ D2(x1) ∧ D3(1, x2)

Once q∗ is constructed, it can be sent to the database for evalu-
ation. Each answer to q∗ is a valuation of the variables in q∗ that
corresponds to a set of fully grounded head atoms. Only one such
valuation is necessary to answer the entangled queries, so q∗ may
be equipped with a LIMIT 1 clause. Once an answer is available,
the fully grounded head atoms can be used to generate answers for
the individual queries from Q in a straightforward manner.

5. D3C ENGINE AND EXPERIMENTS
This section describes the system we are building to provide end-

to-end support for entangled queries. We outline the structure of
our system and present results from an experimental evaluation of
our implementation of the query evaluation algorithm.

5.1 D3C Engine
Designing an entire system to provide end-to-end coordination

support is a major research challenge. For instance, all levels of
the system must handle not just coordination success, but coordi-
nation failure as well. Suppose Kramer submits his query as in our

first example, but Jerry’s matching query never arrives; the system
needs a suitable mechanism for dealing with this, ultimately send-
ing a message to the transaction code that the query is not answer-
able. As another example, suppose Kramer and Jerry do coordinate,
but Kramer’s transaction aborts before he makes the booking. The
coordination has created a dependency between their transactions
which must be considered during recovery. Integrating entangled
queries into a transaction processing system is ongoing work.

In [9], we argue that designing for D3C raises questions about the
very foundations of database system design. Coordination, by def-
inition, requires communication between user programs. As such,
it is a breach of isolation, which is a cornerstone of the transaction
abstraction. If transactions are no longer isolated, this has funda-
mental implications for the overall system architecture at all levels.

Figure 5 gives the outline of the portion of our system which
is directly involved in handling entangled queries. The design is
closely tied to the life cycle of the entangled queries, from the mo-
ment the query is generated until the answers are returned.

Entangled queries can, in principle, be input by hand, but nor-
mally they are generated by a front end web interface, just like
regular (non-entangled) queries. Once a query is generated, it is
passed to a suitable layer for answering.

From the perspective of the application, the coordinated answer-
ing is an asynchronous process. An individual query may not in
general be answerable until other, partner queries are available.
The middleware layer provides to the application an asynchronous
query answering abstraction with callback functionality. Such an
abstraction is needed due to the misalignment between the asyn-
chronous query submission by the application code and the syn-
chronous entangled query answering by the coordination module.

It is unrealistic for an entangled query to wait an arbitrary amount
of time for a coordination partner. To deal with this, the system
has a notion of query staleness; when a query becomes stale, it is
removed from the list of pending queries and its evaluation is con-
sidered to have failed. Any further handling of the query is up to
the programmer in application code. Staleness can be defined in a
variety of ways; a timeout mechanism or manual user intervention
are two possibilities.

Below the middleware layer, a dedicated module actually per-
forms the coordination. The structure of this module directly mir-
rors that of the algorithm presented in Section 4. It receives a
stream of queries and constructs the unifiability graph using suit-
able indices over the queries. Subsequently, each component of the
graph can be processed by an independent server thread, which per-
forms the actual query matching and generates a combined query.
This combined query is then sent to the database for evaluation.
The DB query optimizer can apply traditional query optimization
techniques in evaluating this combined query. Once the coordina-
tion module computes answers to the individual entangled queries,
these answers are returned back to the application code.

At present, we have a full implementation of the coordination
module. The implementation consists of a server which can accept
connections and queries from a hundred clients. The evaluation
algorithm can be executed periodically in a set-at-a time fashion
(after specific time intervals or after a fixed number of queries).
Alternately, it can be executed incrementally upon submission of
every query. On the arrival of a new query in the system, the unifia-
bility graph may be updated and only certain partitions may require
updates. The incremental evaluation requires each partition to store
the partial matching unifiers and continues the matching algorithm
from this state with the addition of a new query. A parameter in our
implementation allows us to switch between the two. Section 5.3.4
discusses the impact of using each of these approaches.

Figure 5: D3C Engine based on entangled queries

The system is implemented in Java 1.6.0. The implementation
uses JDBC to connect to aMySQL database system (version 4.1.20).

5.2 Experimental Setup
To evaluate the system, we use a simulated flight booking sce-

nario in which users want to coordinate their travel plans with their
friends. We use the Slashdot social network data [2] to establish
friendship relationships between users. The graph has 82168 users
and 102 airport destinations. We assign a “hometown” airport to
each of the users, ensuring as far as possible that that each user has
at least half his or her friends living in the same city.
The schema for our system is as follows:

Reserve(UserName, Destination)

Friends(UserName1, UserName2)

User(UserName, HomeTown)

In the rest of this section, we use R, F and U to denote the Reserve,
Friends and User tables respectively. Within this flight booking
scenario, we test our system under various different coordination
scenarios and with different workloads.
We run all experiments on a Dual 2.0Ghz Intel Xeon CPU with

5GB of RAM; the reported values are averages over three runs. The
standard deviation is less than 2% in each experiment.

5.3 Results
We present results from five sets of experiments. The first three

are designed to test the scalability of coordination in an increas-
ingly complex set of scenarios; the last two stress-test our query
matching and safety check procedures. All experiments use an in-
cremental version of the algorithm unless specified otherwise.

5.3.1 Two-way coordination

The first experiment tests the scalability of coordinated query
answering in a basic scenario where pairs of friends want to coor-
dinate on flights. The query sets used consist of pairs of queries of
the following form:

Figure 6: Scalability on best-case and random workload

{R(x, ITH)} R(Jerry, ITH) D

F(Jerry, x) ∧ U(Jerry, c) ∧ U(x, c)

{R(x, ITH)} R(Kramer, ITH) D

F(Kramer, x) ∧ U(Kramer, c) ∧ U(x, c)

The intuition is that the above pair of queries is generated by
Jerry and Kramer who each want to fly to JFK with any of their
friends. When generating such query pairs, we ensure that Jerry
and Kramer are friends according to the social network structure,
but we do not ensure that they live in the same city. Enforcing
only one of these two conditions in query generation allows us to
produce queries that have a realistic – not too small and not too
large – chance to coordinate.

We vary the size of our query sets from five to one hundred thou-
sand. In addition, to detect any side effects of our incremental query
evaluation approach, each run of the experiment is evaluated on a
randomly permuted set of mutually coordinating pairs of queries.
Figure 6 shows our results.

It is interesting to note that although the heads and postcondi-
tions of all queries point to the same ANSWER relation, the perfor-
mance of system is linear in the number of queries. This is due to
the fact that queries coordinate often and the number of “pending”
queries in the system does not grow with an increase in the number
of queries.

We also test the effect of making the queries more specific. In
particular, we eliminate the variables from the postcondition and
the head, so that the pairs queries are now of the following form:

{R(Kramer, ITH)} R(Jerry, ITH) D

F(Jerry, Kramer) ∧ U(Jerry, c) ∧ U(Kramer, c)

{R(Jerry, ITH)} R(Kramer, ITH) D

F(Kramer, Jerry) ∧ U(Kramer, c) ∧ U(Jerry, c)

Earlier, a join was required in the body between F and U to
ground the value of x. However, with the complete specification
of friends, this join is now eliminated and the grounding step is
faster. This leads to an increase in performance, as shown in Figure
6. The overall performance of the system, however, is still linear in
the number of queries.

5.3.2 Three-way coordination

The second experiments tests scalability in a slightly more com-
plex scenario. We now generate triples of queries, corresponding
to triangles in the social network structure, of the following form:

Figure 7: Scalability in the number of postconditions

{R(Kramer, IAH)} R(Jerry, IAH) D

F(Jerry, Kramer) ∧ U(Jerry, c) ∧ U(Kramer, c)

{R(Elaine, IAH)} R(Kramer, IAH) D

F(Kramer, Elaine) ∧ U(Kramer, c) ∧ U(Elaine, c)

{R(Jerry, IAH)} R(Elaine, IAH) D

F(Elaine, Jerry) ∧ U(Elaine, c) ∧ U(Elaine, c)

We vary the size of the query set within the same parameters as
before. Figure 6 shows the results.

5.3.3 Increasing the number of postconditions

The next set of experiments investigates the performance im-
pact of an increase in the complexity of the coordination required.
Specifically, we increase the number of postconditions per query,
varying it from one to five. For each individual experimental run,
all queries have the same number of postconditions. A sample set
of three queries with two postconditions is given below.

{R(Jerry, SBN) ∧ R(Kramer, SBN)} R(Elaine, SBN) D

F(Elaine, Jerry) ∧ F(Elaine, Kramer)∧

U(Kramer, c) ∧ U(Elaine, c) ∧ U(Jerry, c)

{R(Elaine, SBN) ∧ R(Kramer, SBN)} R(Jerry, SBN) D

F(Jerry, Elaine) ∧ F(Jerry, Kramer)∧

U(Kramer, c) ∧ U(Jerry, c) ∧ U(Elaine, c)

{R(Elaine, SBN) ∧ R(Jerry, SBN)} R(Kramer, SBN) D

F(Kramer, Elaine) ∧ F(Kramer, Jerry)∧

U(Jerry, c) ∧ U(Kramer, c) ∧ U(Elaine, c)

This represents a scenario where Elaine wants to travel with both
her friends, Jerry and Kramer. Jerry and Kramer have analogous
requirements. Note that this is different from the three way coor-
dination mentioned above; cliques in the social graph are required
for coordination, rather than just cycles. The intent of the coordi-
nation is that they all travel together from the same city to the same
destination. Queries with a greater number of postconditions are
generated in a similar fashion. Increasing the number of postcon-
dition is associated with an increase in the number of queries that
must be matched for successful coordination.
Figure 7 shows two components of the result obtained by exe-

cuting 10000 queries. The first component corresponds to the time
taken by the algorithm to find matching sets of queries, and the
second part corresponds to the time taken by the MySQL database
for query evaluation. The database performs very poorly when the
number of joins surpasses a certain threshold (14). However, the

Figure 8: Scalability when queries do not match

time required to find matching sets of queries is still within reason-
able bounds in the number of postcondition atoms.

5.3.4 Stress-testing the query matching

Our next sets of experiments are designed to test the performance
of query matching for workloads where little coordination can take
place because most queries are unanswerable.

We first test this contingency using a query set generated to en-
sure that no query has a postcondition unifying with the head of
another query. In this case, the unifiability graph does not have
any edges; however, with the arrival of each query, index looks are
performed to check for new edges. The unifier propagation phase
of the algorithm is never initiated because postcondition and head
atoms never unify. As expected the “no coordination, no unifica-
tion” curve in Figure 8 is near-linear.

We also run experiments on a workload in which queries fre-
quently have coordination partners but the system is never able to
generate a single combined query in the evaluation phase. This pro-
cess requires both graph construction and unifier propagation, and
ideally the unifier propagation, even for queries without variables,
should dominate the running time. If the matching algorithm was
run after every query, one would initially expect the algorithm’s
running time to be at least quadratic.

As the “usual partitions” line in Figure 8 shows, the query eval-
uation time is near-linear even though there is an increase in the
number of pending queries (as no matching takes place) and many
queries unify. In other words, the current set of queries forms a
long chain in the unifiability graph but does not form cycles. After
more careful analysis, we observe that the clustering in the social
network graph allows the partitions of the unifiability graph to stay
within a certain bound. This explains the high throughput in the
experiment on the query set with high unification but no matching.

In order to stress test our system, we identify a big cluster in the
social network graph and run experiments on this single large clus-
ter. This change results in significant increase in the overall running
time of our experiment. We next run a set-at-a-time evaluation of
such massively unifying partitions instead. Figure 8 shows the per-
formance of such a process. It is still within reasonable bounds,
given that thousands of people are trying to coordinate together.
We therefore establish that for extremely huge coordinating groups,
evaluating the queries set-at-a-time is definitely a better approach.
By doing so, we wait till all coordination partners arrive before we
actually run the algorithm.

5.3.5 Stress-testing the safety check

In the final experiment, we test the performance of the safety
check. We load the system with twenty thousand queries that are
unable to coordinate. Then, we add large sets of queries to the

Figure 9: Evaluation time for safety check

system. Such sets contain queries that will fail the safety check
with respect to the queries already present in the system. We vary
the size of such sets of queries from five to one hundred thousand.
The results are shown in Figure 9. It clearly shows that the safety
check does not add significant overhead to the system.

5.3.6 Discussion

In designing our experiments, our goal was not to design a full
benchmark for entangled queries, but to understand whether this
functionality is viable for use in a real-world system. As our re-
sults show, the algorithm is efficient in removing queries that are
unable to be matched with others and queries that cause safety vi-
olations. The queries that are matched can be evaluated efficiently.
The overall evaluation algorithm scales to workloads which are re-
alistically sized with respect to today’s social networks.

6. FUTUREWORK
Notwithstanding the tractability bounds imposed by Theorem

2.1, a more expressive language for entangled queries would have
many practical advantages. In this section, we present several con-
crete language extensions that would greatly enhance the useful-
ness of entangled queries. The syntax for entangled queries could
be extended with features such as disjunction, union and aggrega-
tion in WHERE clauses. Consider a database that contains three ta-
bles: a table Partieswith schema (pid, pdate), a table Friend
with schema (name1, name2), and a relation Attendance with
schema (pid, name). Suppose a user named Jerry wants to at-
tend a party on Friday subject to the constraint that more than five
of his friends attend this same party. This could be expressed as
follows using aggregation:

SELECT party_id, ‘Jerry’ INTO ANSWER Attendance

WHERE

party_id IN (SELECT pid

FROM Parties

WHERE pdate=‘Friday’)

AND

(SELECT COUNT(*)

FROM ANSWER Attendance A, Friend F

WHERE party_id = A.pid AND

A.name = F.name2 AND

F.name1 = ‘Jerry’) > 5

CHOOSE 1

“Soft” preferences, another possible extension of entangled queries,
would allow coordination constraints to be relaxed when full coor-
dination is difficult. For example, if Jerry and Kramer have trou-
ble obtaining matching travel itineraries, they could instead request
that their respective travel dates be as close together as possible.

It is also desirable to allow users to specify a ranking function
on preferred query groundings. In our travel example, users who
are coordinating on travel dates may prefer some dates to others.
Disregarding their preferences may be acceptable if satisfying them
precludes coordination, but the evaluation algorithm should favor
coordinating sets G′ that satisfy the users’ preferences.

Finally, many applications could benefit from extended seman-
tics that allow a query to return more than one answer tuple. Such
semantics might allow users to request that all groundings of a
query be included in the coordinating set, or that as many as possi-
ble be included up to some limit k. For instance, in a coordination-
aware course enrollment system, students might request that they
be enrolled in the same courses as their friends while the registrar
ensures that no student enrolls in more than four courses.

Developing these and other extensions fully and designing suit-
able semantics and evaluation methods for them is ongoing work.

7. ACKNOWLEDGMENTS
This research has been supported by the NSF under Grants IIS-

0534404, IIS-0911036, by a Google Research Award, by NYSTAR
under Agreement C050061, and by the iAd Project funded by the
Research Council of Norway. Any opinions, findings, conclusions
or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the sponsors.

8. REFERENCES
[1] http://zope.stackless.com.

[2] http://snap.stanford.edu/data/soc-Slashdot0902.html.

[3] Web services transactions specification (WS-T).
www.ibm.com/developerworks/library/ws-coor/, Aug 2002.

[4] G. Alonso, D. Agrawal, A. E. Abbadi, M. Kamath, R. Günthör, and
C. Mohan. Advanced transaction models in workflow contexts. In
ICDE, pages 574–581, 1996.

[5] S. Dalal, S. Temel, M. Little, M. Potts, and J. Webber. Coordinating
business transactions on the web. IEEE Internet Computing,
7(1):30–39, 2003.

[6] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[7] H. Garcia-Molina and K. Salem. Sagas. SIGMOD Rec.,
16(3):249–259, 1987.

[8] S. L. P. Jones, A. Gordon, and S. Finne. Concurrent haskell. In
POPL, pages 295–308, 1996.

[9] L. Kot, N. Gupta, S. Roy, J. Gehrke, and C. Koch. Beyond isolation:
Research opportunities in declarative data-driven coordination.
SIGMOD Record, 39(1):27–32, 2010.

[10] J. R. Larus and R. Rajwar. Transactional Memory. Morgan and
Claypool, 2007.

[11] N. A. Lynch and M. Merritt. Introduction to the theory of nested
transactions. Theor. Comput. Sci., 62(1-2):123, 1988.

[12] R. Milner. Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, 1999.

[13] K. R. Mohan Kamath. Failure handling and coordinated execution of
concurrent workflows. In ICDE, 1998.

[14] J. Reppy. Concurrent Programming in ML. Cambridge University
Press, 1999.

[15] A. Reuter and H. Wächter. The contract model. IEEE Data Eng.

Bull., 14(1):39–43, 1991.

[16] J. Roberts and K. Srinivasan. The tentative hold protocol. W3C Note,
www.w3.org/TR/tenthold-1/., Nov 2001.

[17] L. Siklóssy and J.-L. Laurière. Removing restrictions in the relational
data base model: An application of problem solving techniques. In
AAAI, pages 310–313, 1982.

[18] R. Virding, C. Wikström, and M. Williams. Concurrent programming
in ERLANG (2nd ed.). Prentice Hall International (UK) Ltd.,
Hertfordshire, UK, 1996.

[19] J. Widom and S. Ceri, editors. Active Database Systems: Triggers
and Rules for Advanced Database Processing. Morgan Kaufmann,
1995.

