An Architecture for Reference Linking

Donna Bergmark, William Arms* and Carl Lagoze!
Cornell Digital Library Research Group

TR2000-1820
October 25, 2000

Abstract

The Digital Library Research Group at Cornell has Reference Link-
ing as one of its projects. Typical projects within in the group take an
object-oriented approach to handling digital information. To support
reference linking, therefore, we designed a scheme whereby reference
linking information is extracted from archives by surrogate objects
and then presented to client applications or users by means of a well-
defined API. This paper describes that architecture, the API, and how
the API might be supported in the Dienst protocol.

1 Background

This report covers the design of a new reference linking service, sup-
ported by a DARPA/CNRI grant to intralink D-Lib Magazine and a
JISC/NSF grant to intralink the Los Alamos physics E-prints archive,
now called arXive. The ultimate goal of this work is not only to
intralink these two archives of online literature but to interlink auto-
matically Open Archives[14] and some online journals.

What does it mean to “intralink” and “interlink”? Reference Link-
ing is actually an old idea. Classical reference linking arose from a de-
sire to study citation patterns among scholarly articles. The Science
Citation Index, founded by Eugene Garfield in the 70’s, was invented

*DARPA/CNRI Grant #2057/57-02
fNSF Grant # I1S-9907892



Observations:
1. Paper C has 4 references.
2. Papers C, D, and G have been analyzed.

3. Paper A has 2 citations.

4. Papers C and G are bibliographically coupled.

Figure 1: Classical Reference Linking

to do just that, and was a spectacular success. It was, however, based
on human labor. For every paper in a set of journals, the staff cap-
tured that paper’s metadata, and then went to the reference section
and did the same for each reference directed to journals covered by
the SCI.

As a result, one could look up links using the Science Citation
Index and build a graph as shown in Figure 1. From this graph we
can observe that Paper C has 4 references, that Papers C, D, and G
have been analyzed, that Paper A has two citations, and that Papers
C and G are bibliographically coupled (i.e. they have a reference
in common). The links in the graph are explicitly contained in the
Science Citation Index.

We then fast-forward some 25 years to the current time, where
there is a growing amount of scholarly literature online. Much of this
has HTML links to other works on the web. As in classical reference
linking, the references are inserted by authors. Some are accompanied
by URLs, but not all.

It is important to distinguish between hyperlinking, as implemented
in HTML, and general reference linking. Hyperlinks are links from one
item to another, from an HTML page to a specific copy of a Web re-
source. Reference links are intellectual links to a work or one of its
manitestations. (For a discussion of the difference between works,
manifestations and individual copies, see the IFLA reference model
1],

Unlike SCI and classical reference linking, citations (as opposed to
URLs) cannot be directly discovered from the Web. It is a daunting
task to analyze all the items on the web to find out who might have
cited a paper of interest.

Figure 2 shows how interlinked papers on the Web might exist.
The graph is implicit, defined by links between papers. It is likely to



Observations:
1. HTML page C has 4 links on it

2. Links just happen - no analysis required.

3. Paper A has 2 links to it (at present)

4. Papers C and G are linked to a common page

Figure 2: Linking on the Web

be quite large. From the fragment shown here, we can deduce that
HTML page C has four links in it to other HTML pages; page A has
at present two links to it; and papers C and G are linked to a common
page. But, discovering this fragment from traveling the web is nearly
impossible. The graph exists implicitly on the Web.

In our reference linking project we are aiming somewhere between
the classical view and what exists today on the web. We wish to make
the graph in Figure 2 explicit, as well as supply additional links where
possible. By making the links explicit, new applications are possible.
Figure 3 is just one example of a reference linking application.

Document A Popup Window

(user clicks on "[10]"
while reading A)

10. Mitchell, A. Thunks
and Algo. JACM, March...

[.ps] [.ps][.pdf]

[cancel]

Status: retrieving....

If GET is successful, the popup
window is replaced by a copy

of Mitchell’s seminal work.

Figure 3: A Reference Linking Application

You are reading a paper on the screen (or hearing it on your speak-



ers, etc.) and you come across an intriguing reference: “...Mitchel’s
seminal work on thunks[10].” If there is a copy of this work somewhere
online, the “[10]” would be turned into a clickable live link, so that
the user could start fetching that copy while continuing to read the
original paper. One interface that would support this goal might be
a JavaScript popup window that looks something like the one on the
right side of Figure 3; the complete reference string is shown along
with some choices of format (PostScript, PDF) in which the document
might be retrieved; the user can retrieve one of these or cancel.

Note that we might have not only static links as shown in the popup
window, but we might add some links dynamically, say by running a
Google search in the background, which might add a fourth option to
the current .ps and .pdf options.

Implementing the functionality shown in Figure 3 requires solving
at least two problems: 1) Figuring out that “[10]” is a reference and
that it matches the reference string, [10] Mitchell, A. Thunks and Al-
gol...; then parsing Mitchell, A. to decide what work it is and whether
it is linkable (this is a tough problem!) and deciding whether it is
something we’ve seen before so we can credit Mitchell with a citation.

2) Turning the “[10]” into a live link. In HTML and PDF you can
turn this into an anchor that can be clicked. For other formats some
kind of auxiliary display is needed. In fact, it is probably best just
to record bibliographic data with the anchor, and let a translation
system, such as XSLT, turn it into a link of the desired form.

In any case the first problem is one of analysis and the second is
a presentation problem. The API, to be described in this paper, is
responsible for supplying sufficient data for value added services, such
as creating live links.

2 Definitions

The previous section was a quick introduction to reference linking. In
this section we present some basic terms and definitions, so that we
can explore the problem in more detail.

2.1 Items and Works

In Figure 3, call the lefthand side thing A and call the line [10)]
MitchelA. Thunks... on the righthand side thing B. There is a subtle,



WORK

Manifestations

& Expressions

ITEM

Figure 4: IFLA Model

but important, difference between A and B. A is an [tem, something
that has a format, something that is online, something that can be
analyzed with a computer program. B, which is a one of the references
in A, is a Work, or an abstraction of a paper. Zero or more copies of
it may in fact exist. Some of them may even be online. We say that
A references B. B is one of A’s references. It probably even shows up
in a section of A titled References.

The words we just defined - Work for the abstract paper and Item
for a concrete instance of that paper — is taken from the IFLA model
[7, 11], shown in an abbreviated form in Figure 4. Since in dealing with
online stuff one usually cares about Works and Items, we ignore the
middle two levels. In our experience with scholarly and scientific work,
the reference is usually to the Work (rather than to, say, a specific
manifestation or instance of that work held in a particular collection,
in a particular format). See Svenonius [13] for a good philosophical
discussion of what a work is.

In the rest of this report, we drop the capitalization of work and
item, but continue to distinguish between the two terms.

2.2 References and Citations

Going back to Figure 3, the work of which item A is an instance
references work B, an abstraction of a paper by Mitchell. If in fact,
a copy of Mitchell’s work can be found online, then it is a linkable
reference. A citation is the inverse of reference. Here, the abstract
work of which A is an instance is a citation of B. Tracking citations is
not immediately needed for reference linking, but is a valuable addition



to any reference linking service. There is, of course, a subtle difference
in tractability of making, for an item, its list of references and its list
of citations. The labor involved in finding the citations is what made
the SCI a huge success. The main thing to note here is that both
references and citations are works, not items.

3 The Reference Linking API

Most reference linking projects (e.g., Open Journals[4] and ResearchIn-
dex [6]) use databases to store information about works and do a lot
of “database crunching”. For example, there would be one database
of all the titles, and perhaps another database of all the authors, and
a third with references. Instead of using databases to store this infor-
mation, we use item surrogates. A surrogate is a digital object that
encapsulates reference linking information relating to an item that is
being analyzed. Reference linking data is thus distributed across the
collection of surrogate objects, and all the data relating to one item
is within the surrogate for that item.

Reference linking is amongst the set of extensible behaviors we
would like to add to digital objects, as pointed out by Payette [9]. In
general, we refer to such objects as “value-added surrogates”.

Another unusual aspect of reference linking at Cornell is that we
define an API for reference linking. Having an API specifies the op-
erational semantics of reference linking; it also allows us to cleanly
separate the analysis phase of reference linking from the presentation
phase. For example, one method in the API is getReferencelist,
which returns harvested metadata for each reference contained in an
archive item, such as its title, publication, context in which it was
cited, year and authors. This data, encoded as XML data, is suit-
able for further processing by other applications. The advantage of
creating an API is that no decision is made in advance of what the
data should be used for; our work is not wrapped up into a single
stand-alone reference-linking service.

The combination of surrogates and an API essentially allows us
to walk up to a paper and ask it “what are your references” and “is
reference 10 linkable?” One surrogate is constructed for each archive
item, to provide information about that item. The set of questions it
is prepared to answer is the API. Each surrogate answers the same
set of questions (to the best of its ability).



open archive,

D-Lib, etc.
Work [~ =="-- tem ) " bibliographic
=
I : dissemination
// :
e
other Other
—-J Item
copies Work urrogate

Figure 5: An Architecture for Reference Analysis

This architecture is depicted in Figure 5. The central column rep-
resents some repository of network-accessible documents. The items
listed in this column are linkable (they are online) and therefore ana-
lyzable (we have their bits). Access to those bits may require autho-
rization, but that is external to the reference linking service.

On the left are drawn the works that the items represent. Any work
might have several copies spread across several archives. All of these
copies are items corresponding to that work. If more than one copy of
a work is encountered, the system could pool the information collected
so that both surrogates have consistent data, but this requires either
that the surrogates be able to find and communicate with each other,
or that there be a central database. Arranging for the surrogates to
communicate among themselves is an interesting research problem;
for now we keep a small database of works seen so far which at least
allows sketchy information to be updated.

To the right of the archive items are the surrogates, shown as
blobs. They provide methods that disseminate, via the API, biblio-
graphic data about the item, and indirectly, about the work. Client
applications invoke methods in the API and then display or otherwise
use the results.

The four primary methods in the reference linking APT are:

e getlinkedText — contents of the paper (as data) augmented
with reference linking data. This question would be asked by
browsers that wanted to display the document with some of its
references turned into anchors of live links, as in Figure 3.

e getReferencelist — this interface would be used by applications
that wish to know what references are contained in this paper.
For example, if one were building the SCI, this would be the
question to ask, along with the next one.



e getMyData - this returns that paper’s metadata. This is not
directly related to reference linking, but is required for building
up citation relationships. It could have other uses; for example,
one client might have a button labeled “get BibTeX”; when the
button is pushed, the client invokes getMyData on the surrogate,
and reformats the results into something suitable for cutting and
pasting into a LaTeX bibliography.

e getCurrentCitationList — the list of works citing this paper
to the best of the surrogate’s knowledge. As stated before, this
function is not strictly required for reference linking, but would
be very useful to client applications that want to know what
other documents cite this one, as they might be related or provide
more current information. If online, we have a linkable citation.

3.1 Output from the API

Figure 5 shows the surrogates disseminating bibliographic information
about their items, in response to a particular method in the API
being invoked. Each method returns an XML byte-array of structured
data. Figure 6 shows what one component of the XML information
disseminated by getReferenceList might look like. This component
is the second reference (ord="2") for this surrogate’s item.

First comes bibliographic data related to the reference work. This
implementation uses Dublin Core for convenience, so for example,
dates are in CCYY-MM-DD format.

Next there is item-related information, such as the reference string
exactly as it appeared in the item (enclosed in a <literal> element
and entified), and all the contexts in which the work was cited. The
context is usually one complete sentence, as shown near the bottom
of Figure 6. Note the “[2]” in the context. Since the Maly paper does
have a URL, this may become the anchor of a live link in any text
returned by a call to getLinkedText.

3.2 Various Specifications of the API

Up to now, the API has been described in rather general terms with
a detailed description of its output. There are many different ways to
describe the API. For example, figure 7 shows three ways to specify
getReferencelist.



<api:reference_list length="17"
xmlns:api="http://www.cs.cornell.edu/cdlrg/..."
xmlns:dc="http://purl.org/DC">

<api:reference ord="2">

<dc:title>

Smart Objects, Dump Archives: A User-Centric, Layered Digital

Library Framework

</dc:title>

<dc:date>1999-03-01</dc:date>
<dc:identifier>10.1045/march99-maly</dc:identifier>

<dc:creator>K Maly</dc:creator>

<api:displayID>

http://www.dlib.org/dlib/march99-maly/03maly.html

</api:displayID>

<api:literal tag="2.">

Maly K, "Smart Objects, Dumb Archives: A User-Centric, Layered Digital
Library Framework" in D-Lib Magazine, March 1999,
&lt;http://www.dlib.org/dlib/march99-maly/03maly.html&gt; .
</api:literal>

<api:context list>

<api:context>

The need for standards to support the interoperation of digital library
systems has been reported on before in D-Lib[1],[2] as have efforts to
discover common ground in related standard processes(Dublin Core and
INDECS[3]).

</api:context>

</api:context list>

</api:reference>

</api:reference_list>

Figure 6: XML for a Reference Object



API getReferencelist

Java | Byte[] getReferenceList()

Verb: Disseminate

Version: 1.0
FixedArgs:FulllD,getReferencelist,xml
KeywordArgs: (none)

Dienst | Return MIME type: text/xml

Return Status Codes: 200, 400, 404

Example request:
Dienst/Repository/1.0/Disseminate/10.1045/
december99-miller/getReferencelist/xml

Figure 7: Three Alternate Specifications of the API

To implement the method in Java, the method is described in
terms of a Java signature along with procedural code. In other words,
getReferenceList would be one of the public methods of the Surro-
gate class.

If we were to implement the API in Dienst[5], then we would lay
out what for getReferenceList the Dienst protocol should look like.
The disseminate verb takes three fixed arguments, the second of
which is the view. Views in Dienst are particular disseminations of a
document; here the protocol is requesting an XML-formatted list of
references.

An example HTTP request is shown at the bottom of the table.
The result of this request would be a Dienst response (verb version
number, etc.) plus the XML listed in Figure 6.

This report will next look at the Java implementation and the
Dienst implementation in greater detail.

4 Java Implementation: the Classes

This section is a detailed discussion of our Java implementation and
may be skipped by the reader who is more interested in just an
overview of the reference linking API.

10



Surrogate Reference Citation BibData
BibData BibData BibData myDOI
Reference[ ] ordinal# context[ ] myURN
knownCitations origRef how title
myURL context[ ] - Author{ ]

date

Figure 8: API in Java: The Objects

In Java, classes are templates for what the objects should know
and do. For the Java implementation of the reference linking API,
the main place to start is to define a Surrogate class. The public
methods of this class define the API. Given the four main methods in
the API (see Section 3), Figure 8 shows the series of Java objects that
emerges.

The Surrogate is the principle object. It contains just a few impor-
tant fields. The first is a BibData object, which contains information
about the work corresponding to the item for which this object is the
surrogate. The BibData object contains typical work-related meta-
data. The key, “myURN” is the API’s identification of this work and
is constructed out of metadata belonging to the work. It meets most
of the requirements for URNs laid out by Sollins and Masinter [12].

The Surrogate contains a fixed-size array of Reference objects. The
Reference object consists of a BibData object (metadata for the ref-
erence), the literal reference as it appeared in this item, and the list
of contexts in which it was referenced in this item.

The Surrogate also contains a dynamically-sized vector of Cita-
tion objects. Unlike arrays in Java, vectors can grow in length. As
other surrogates are created for items that cite the work related to
this surrogate, new citations can be added to knownCitations of this
surrogate. The Citation object contains bibliographic data relating to
the cited work and to the circumstances of the citation.

Finally the Surrogate knows the URL, or location, of its item. A
client reference linking application always accesses the item through
its surrogate.

11



package purpose lines

Linkable. API This is what the client application uses. 875

Linkable.Analysis | Contains a set of parsers and analyzers. | 2500

Linkable. Utility Static database functions and utilities. 1350

Figure 9: API in Java: Three Packages

4.1 Implementation Details

The Java implementation of the reference linking API exists of three
packages, as depicted in Figure 9.

The first package contains the public interface to the reference
linking software, and is for client applications. Client applications
instantiate a surrogate and hand it a URL of an item to be analyzed.
Depending on the format of the item at the other end of the URL, the
surrogate instantiates a parser. For example, one of the parsers that
could be instantiated is HTMLAnalyzer, for parsing HT'ML documents.
Each parser is an implementation of the RefLinkAnalyzer interface.

This interface is a key element of the Linkable.Analysis pack-
age. Reference link parsers currently have three required methods:
buildLocalMetadata(),buildRefList (), and buildCitationList ().
These methods are invoked by the surrogate in order to populate its
private data fields.

When parsing HTML files, we found it useful to convert HTML
items to XML (i.e., XHTML) before attempting to parse them[1].
Therefore when the surrogate is handed an HTML document to an-
alyze, it first invokes JTidy [10] to convert the document to XML
form and then instantiates an XHTMLAnalyzer to parse it. Another
implementation of RefLinkAnalyzer, RiggedAnalyzer, knows all the
information for a particular paper. This could be used for testing
presentation clients.

The Linkable.Utility package has all responsibility for database
construction and maintenance, as well as a number of static utility
routines. (The Java implementation of the API keeps around a few
hashtables for keeping track of works, authors, and citations.) This
package also contains methods for DOM/SAX parsing of XML files
and generation of XML output. It has some routines for parsing au-
thor names.

12




e I e m

Figure 10: A Simple Reference Linking Application

4.2 Sample Application

The API Java implementation is being currently being used for analyz-
ing D-Lib articles. D-Lib is an on-line journal that has been appearing
eleven times a year since July 1995; it makes an excellent test bed be-
cause there is little editorial imposition on the format of the papers
submitted to the journal, and therefore provides a wide selection of
formats.

In Figure 10, the client application is given the URL of a D-Lib
paper. It then constructs a surrogate object, passing it that URL.
The surrogate opens a connection to this URL and proceeds to inspect
the item. All further interactions between the client and the reference
linking API are via this surrogate. Alternatively, the application might
instead be handed a DOI, and then use a handle server|[2] to get a URL.

The right-hand side of Figure 10 shows that the client application,
having instantiated a surrogate for the item to be analyzed, can now
invoke various methods on the surrogate. The result of any of these
invocations is an XML byte array, which can then be written to a file,
or presented to the user in some way.

Figure 11 is a code snippet that represents the portion to the right
of the dotted line in Figure 10. Following are some key things to note:
(1) The program starts by importing the Linkable . API package, which
implements the methods contained in the reference linking API. The
package includes the Surrogate class.

(2) The main program executes in three steps: it calls initialize
to open a file called “D-LibArticles”, which contains the URLs of
some D-Lib papers; it then calls createSurrogates which constructs
a surrogate for each item; and then it calls finalize to clean up.

(3) The CreateSurrogates routine executes a loop that reads a URL
from the file, constructs a surrogate for it:

s = new Surrogate( url );
and then prints out its list of references:

System.out.println(s.getReferencelList () .toString());

13



import Linkable.API.x;
import java.io.*;

public class DLIB {

private static final String FILENAME = "./D-LibArticles";
private BufferedReader in = null;

public static void main (String[] args) {
initialize ();
createSurrogates();
terminate();

private static void createSurrogates() {
String url;
Surrogate s = null;

try {
while ( (url = in.readLine()) != null ) {
s = new Surrogate( url );
System.out.println(s.getReferencelList () .toString());
}} catch (IOException e){ System.exit(0); }

Figure 11: A Simple Application Program

14



In real life, the surrogate object would not be created, used once,
and then thrown away; it would be saved in some form of persistent
storage so that could be used again.! FEDORA [8] is one such per-
sistent store. A FEDORA object could encapsulate the data part of
a surrogate object and store it in a distributed FEDORA repository.

5 Embedding the API in Dienst

Dienst is an architecture, a protocol, and a set of software that can
be used to store and retrieve online documents. We have designed
and begun to implement the reference linking API in Dienst. The
first step was to specify the protocol for talking with a surrogate.
While APIs specify signatures — i.e. names of procedures, types of
arguments, and the value returned — protocols accomplish that same
thing by specifying the syntax for sending requests and responses over
the network.

Figure 12 is an example of a simple Dienst request and response,
according to the current Dienst protocol. In this example, “list-
contents” is a way of asking an archive what items it contains. It
returns a set of URNs. Note that all Dienst responses are in XML.

Dienst Request: list-contents
Possible Response:

<?7xml version="1.0">

<List-Contents version="4.0">
<record>arXiv:hep-th/9801001</record>
<record>arXiv:hep-th/9801002</record>
</list-contents>

Figure 12: Request-Response Protocol Specification

As mentioned before, we can extend the existing Dienst protocol
with methods from the reference linking API by encoding them as
views. For example, requesting the getReferencelist view will — if
there is a surrogate for this item — return the same byte[] stream

In addition to the four methods described in section 3, the API has methods for storing
and reloading surrogate objects.

15



as returned by the corresponding call in Java, except that at the be-
ginning there is some Dienst-specific XML output, such as the verb
version that is being used.

The four main API methods of Section 3 (getLinked Text, getRefer-
enceList, getMyData, getCurrentCitations) become views of the Dis-
seminate verb. The Dienst protocol for learning what views can be
disseminated for any given document is the Structure verb. Thus we
need only add four new views to the structure verb; for example, one
possible response to the structure request, assuming that our item has
a surrogate, is:

<view id="getReferencelList" nrefs="15">

This response says that for the requested record, there is a view avail-
able that would return the item’s references, which are 15 in number.

How does a Dienst implementation know whether a particular item
is reference-linked? In NCSTRL [3], one popular implementation of
the Dienst architecture, each item is a directory containing several dif-
ferent formats of the paper, along with other data. One could simply
add another subdirectory called “Surrogate” inside the same directory.
The presence or absence the the directory determines whether or not
the four additional views of the API are available.

The contents of the Surrogate subdirectory are the data required to
reconstitute the surrogate into an object able to disseminate reference
linking information.

6 Architecture Recap

Up to this point, we have discussed the API: its methods and out-
puts. However, recall that the application shown in Figure 3 requires
solving two very difficult problems: analysis, to find the live refer-
ences; and presentation of those live references. Figure 13 shows this
two-phased architecture of analysis and presentation. The interface
between the two phases is structured data — XML. This report has
not dealt with the presentation problem, but the overall architecture
has been discussed.

On the left of Figure 13 is an archive to be analyzed (or which has
been analyzed already). The databases save metadata sufficient to
reconstruct surrogates. Whether the surrogate has been instantiated
or reconstituted, it can then be used to generate an XML file. Figure

16



(other disseminations
- see API)

CARCHIVE oL
Rep of browser/renderer
batch processor Surrogates Item,

tex
.dvi

Axt

.htm

with
links

-

databases

(Work metadata)
ANALYSIS DISPLAY

Figure 13: Overall Reference Linking Architecture

13 shows the response to “getLinkedText”. This XML along with an
XSL stylesheet can be converted into a document suitable for use by
a browser or a renderer, or into a display similar to the one shown in
the popup box in Figure 3.

Linkable references in the text become anchors to links sufficiently
rich to point to various on-line copies of the reference, to retrieve the
reference string itself, and so on. A project to implement all this has
begun, but is not yet complete.

7 Project Status and Conclusions

This project is well underway. The design of the API is done, and the
Java implementation is in progress. The Dienst implementation has
been designed.

The main difficulty is parsing text that has been produced by many
different authors in many different formats with many different con-
ventions. A separate paper [1] discusses this problem in more detail,
and presents some algorithms useful in reference linking.

We are currently analyzing the papers in D-Lib for reference linking
information. The D-Lib papers are all written in HTML. Only since
1999 are the papers accompanied by metadata. As a consequence, we
are picking up almost all of the information directly from the text.

At this point we are analyzing papers, examining the errors, patch-
ing up the API Java code, and then analyzing new papers. Prelim-
inary results show the proportion of elements that can be extracted

17



automatically from an item or a reference is around 80%. With each
iteration of the method the implementation improves a little. The
work done so far indicates that the architecture and design for the
reference linking API are sound.

References

1]

2]

Donna Bergmark. Automatic extraction of reference linking infor-
mation from online documents. Technical Report TR 2000-1821,
Cornell Computer Science Department, October 2000.

Priscilla  Caplan and William Arms. Reference link-
ing for journal articles. D-Lib Magazine:  The Maga-
zine of Digital Library Research, 5(7/8), July/August 1999.
<http://www.dlib.org/dlib/july99/caplan/07caplan.html>

James Davis and Carl Lagoze. NCSTRL: design and deployment
of a globally distributed digital library. IEEE Computer, Febru-
ary 1999.

Steve Hitchcock, Les Carr, Wendy Hall, Stephen Harris, S. Pro-
bets, D. Evans, and D. Brailsford. Linking electronic journals:
Lessons from the Open Journal project. D-Lib Magazine: The
Magazine of Digital Library Research, December 1998.

C. Lagoze and J. Davis. Dienst: An architecture for distributed
document libraries. Communications of the ACM, 38(4):47, April
1995.

Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digital li-
braries and autonomous citation indexing. IEEE Computer,
32(6):67-71, 1999. <http://www.researchindex.com>

Norman Paskin. E-citations: actionable identifiers and scholarly
referencing, 1999. <http://www.doi.org/citations.pdf>

S. Payette and C. Lagoze. Flexible and extensible digital ob-
ject and repository architecture (FEDORA). In Second European
Conference on Research and Advanced Technology for Digital Li-
braries, Heraklion, Crete, 1998.

Sandra Payette and Carl Lagoze. Value-added surrogates for dis-
tributed content. D-Lib Magazine: The Magazine of Digital Li-
brary Research, 6(6), June 2000.

18



[10]
[11]

[12]

[13]

[14]

Andy Quick. Java HTML tidy.
<http://www3.sympatico.ca/ac.quick/jtidy.html>

K. G. Saur. Functional requirements for bibliographic records,
1998. UBCIM Publications - New Series Vol. 19.

Karen Sollins and Larry Masinter. Functional require-
ments for wuniform resource names, December 1994.
http://www.ietf.org/rfc/rfc1737.txt.

Elaine Svenonius. The Intellectual Foundation of Information
Organization. M.I.T. Press, 2000.

Herbert Van de Sompel and Carl Lagoze. The Santa Fe Con-
vention of the Open Archives Initiative. D-Lib Magazine: The
Magazine of Digital Library Research, 6(2), February 2000.

19



