
Collection Synthesis

Donna Bergmark
Cornell Digital Library Research Group

Upson Hall
Ithaca, NY 14853

bergmark@cs.cornell.edu

ABSTRACT
The invention of the hyperlink and the HTTP transmission
protocol caused an amazing new structure to appear on the
Internet – the World Wide Web. With the Web, there came
spiders, robots, and Web crawlers, which go from one link to
the next checking Web health, ferreting out information and
resources, and imposing organization on the huge collection
of information (and dross) residing on the net. This paper
reports on the use of one such crawler to synthesize docu-
ment collections on various topics in science, mathematics,
engineering and technology. Such collections could be part
of a digital library.

Categories and Subject Descriptors
D.2.12 [Digital Libraries]; H.3.1 [Information Systems]:
Information Search & Retrieval; H.5.4 [Information Sys-
tems]: Hypertext/Hypermedia; H.1 [Models & Princi-
ples]

General Terms
Experimentation, Design, Performance

Keywords
World Wide Web, NSDL, Mercator, topic management, crawl-
ing, information retrieval,clustering

1. INTRODUCTION
Digital libraries are made up of collections of on-line re-

sources. In particular, we view collections as being a set of
semantically related resources as represented by their URLs.
Many on-line collections are hand-crafted, with federal sup-
port, and accompanied by a top page or portal. However,
this approach does not scale. In order to control costs, and
therefore to allow the long-term success and growth of digi-
tal libraries, we will have to rely increasingly on automated
procedures, including ways to find or build collections.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’02, July 13-17, 2002, Portland, Oregon, USA.
Copyright 2002 ACM 1-58113-513-0/02/0007 ...$5.00.

This paper reports on our effort to automatically put to-
gether collections on scientific topics, starting only with the
Web and a subject hierarchy. The general idea is to down-
load pages from the Web in a focused way and classify them
into the various topic areas. At the moment, the effort is
highly experimental and the results are preliminary; how-
ever our approach can be varied in many ways until optimal
results are achieved.

Section 2 describes the Web crawler we have at our dis-
posal which is used to locate resources on the Web; Sec-
tion 3 describes the digital library that is to benefit from
this research and reviews other projects devoted to building
topic-specific collections. Section 4 explains in more detail
the concept of focused crawling and why it is superior to
searching and clustering; it also explains our version of the
focused crawl. Section 5 briefly covers the implementation
of our focused crawl in Mercator; Section 6 contains our cur-
rent results. The paper concludes with ideas of where to go
next.

2. MERCATOR
To automatically build collections of topic-related Web

documents, whether by searching or clustering, one must
start with a Web crawler. Mercator1 is a powerful, inher-
ently parallel, and extensible Java-based Web crawler devel-
oped by System Research Center (SRC) [27, 37] in Palo Alto.
Because Mercator can be configured in many different ways,
it is a perfect vehicle for exploring various Web crawling
strategies for collection synthesis. Thanks to Compaq, we
have access to Mercator and thus join the list of researchers
who have done interesting work with this crawler [10, 25,
26, 38, 41].

Figure 1, adapted from [37], shows conceptually how Mer-
cator works. Mercator itself has no special personality. It is
simply fast, scalable and distributed. Its job is to download
pages, run one or more analyzers on each downloaded page,
and optionally enqueue child links for further downloading.

The loop shown in Figure 1 is executed continuously by
typically hundreds of threads, all of which belong to a single
instantiation of a Java Crawl object, henceforth called “the
crawl”. The primary data object in the crawl is the URL
frontier; it is shared by all the threads.

The researcher has several opportunities to add “flavor”
to the crawl. The first opportunity is the analysis stage,
where a sequence of analyzers A1, A2, ... An are applied
to each downloaded page. Each Ai is an extension of Mer-
cator’s base Analyzer class, which consists of a constructor

1<http://www.research.compaq.com/SRC/mercator/>

URL

frontier

Get IP
address;

get
robots.txt

{URLS} 2

{URLS}
1

URL Filters

dequeue

enqueue

Fetch allowed?

The Page

Fingerprint

Before?
Page Seen

A1, A2,

Analyze Page

(Optional) Final
analyzer could be

a link extractor

Download
Page

YES

NO

Figure 1: System block diagram of the Mercator
Web Crawler. Main components are: URL frontier,
a DNS resolver, an HTTP downloader, a Document
Fingerprinter, and a Link Extractor.

called once per crawl, and a process method called for each
downloaded page. The process method gets the content of
the page as well as information about the page, such as its
URL.

Which analyzers to apply and in which order are spec-
ified in a configuration file. The final analyzer might be
the Link Extractor, supplied with Mercator, which extracts
links from the downloaded page and sends them on to the
URL filtering stage.

At this point it might be mentioned that the extracted
child links are derelativized and encapsulated into a DocBun-
dle object. During page processing, user-specified informa-
tion can be added to the DocBundle.

The URL filters are several. Some filters can simply be
encoded in the configuration file, e.g. to discard URLs
from particular domains. The remaining URLS (URLS2 ⊂
URLS1) are passed to the URLSet object, which has a
chance to add parent information to the DocBundle and
if desired, pick a download priority for this DocBundle. It
then goes to the Frontier object which adds the DocBundle
to the proper queue. The user can override URLSet and
Frontier by naming custom classes in the configuration file.

The machine which runs Mercator is accessed via OpenSSH
Version 2. All of our work is done remotely from Cornell to
the SRC in Palo Alto. We have noted that if the only an-
alyzer used is the Link Extractor, Mercator can download
more than 400 pages per second when running 500 threads.

In general, all of our programming additions have been
made by extending basic Mercator objects rather than al-
tering any of the Mercator code. This is a testimony to the
clean design and construction of the Java implementation of
Mercator.

3. THE NSDL PROJECT
The Cornell Digital Library Research Group is involved

in a large project with other institutions – the National Sci-
ence Digital Library[40, 47]. By Fall 2002 this project hopes
to have a couple hundred scientific collections on-line, orga-
nized, and searchable.

Hand-curated collections are valuable but costly. In the
beginning they will form the bulk of the NSDL. However,

the long-term success of the NSDL relies on automated tech-
niques for forming and maintaining content. Therefore we
must come up with ways in which collections can be gener-
ated automatically, even if they are initially of lesser qual-
ity than funded collections carefully built by trained re-
searchers.

Having access to a powerful Web crawler gives us a plat-
form for experimentation, so we decided to see how far we
could go in automatic collection acquisition. There are two
ways to use a crawler to come up with collections: one is
to synthesize the collection from resources on the Web; the
other is to discover existing collections on the Web. This
paper focuses on collection generation.

There are two objectives for the automated collection build-
ing project:

• Build a number of collections with minimum user input
because automation is the key to future digital library
projects [1, 42].

• Aim for limited-sized collections of high precision with
respect to the topic and which are educational. Col-
lections of about 20 to 50 good documents would be
best.

3.1 On Automatic Collection Generation
Fortunately, there has been copious research in recent

years on building digital collections of semantically related
materials.

The earliest collection builder, starting in 1994, is proba-
bly “Harvest” [6, 7]. The motivation of the Harvest project
[17] was to index community- or topic-specific collections.
Harvest was a selective document gatherer, which took source
data off the Web, indexed it, and redistributed it. Har-
vest used the Mosaic browser at a time when the Web was
tiny. An experiment at NCSA used Harvest to recognize
and then index over 7,000 WWW home pages among the
several hundred-thousand documents available then on the
Web. Harvest could be configured to automatically collect
and summarize related objects from around the Internet into
a large collection or to collect, summarize, and hand anno-
tate a small, specialized collections.

Harvest was the forerunner of the much more sophisti-
cated and functional Greenstone system [44, 45]. Green-
stone is a complete Digital Library system, one part of which
is “the Collector.” Given a collection of sources (a URL for
a Web site, an ftp URL for a repository, or a file URL for
a directory), the Collector will convert them to XML, index
them, and extract metadata. The software is available at
<http://nzdl.org>.

Chekuri et al. [16] start with broad topics selected from
the Yahoo subject category. They start with a training set
of pre-classified pages for each topic. Then they build a
term vector2 for each topic, and then crawl, outputting an
ordered list of categories for each downloaded page, which
allows them to categorize a page into several different topics.

In 2000, Kluev and others at the University of Aizu added
topic-based collection building to the OASIS distributed Web
crawler [29]. The aim was to produce some high precision,
high recall collections about computer science. Results for
building collections about “Algorithms” and “Programming

2The words term vector and document vector space will be
explained later.

Languages” are reported. Their collection builder starts
with a set of human-selected papers relevant to the topic. As
papers are downloaded, they are converted to plain text from
Postscript, HTML, and/or PDF; then 4 or 5 relevance fig-
ures are computed (including term similarity, phrase count,
etc). The children of the downloaded paper are placed in
a priority queue depending on a combination of the par-
ent’s metrics. Furthermore, papers are categorized as “un-
doubtedly relevant”, “probably relevant”, and “need to be
checked”. A random human sampling at the end determines
the goodness of the collection. Hence their collection builder
is a combination of automatic and nonautomatic techniques.

Cora is a Web crawling system that creates domain-specific
portals [32], but is also not completely automatic. They
train their search engine on one topic, using a set of (pre-
sumably recent) research papers and then use references and
hyperlinks to build a larger collection on that topic.

Mukherjea [34, 35] describes one system, WTMS (Web
Topic Management System) which computes hubs and au-
thorities[28] for a single topic. It uses a representative docu-
ment vector based on the terms contained in the seed URLs
(or search responses for a query with specified key words).

In general, our approach is different from these projects
for two reasons: we are after narrowly focused collections,
whereas many of these projects started with quite broad
queries and divided the web into topic areas; secondly we
plan to build many collections at once, rather than one at a
time.

4. SEARCHING VS. CLUSTERING
There are a number of possible techniques for collection

synthesis. The three main approaches are: search engines[2],
clustering[9], and focused crawls[15]. Focused crawls are a
combination of search and clustering with additional tech-
nology added into the mix.

4.1 Search Engines
An obvious question to ask is why does the NSDL not

simply pose its various topics of interest to a search engine
and make a collection out of the top 50 results? Search
engines work by crawling the Web offline, indexing parts
of the downloaded text, building an efficient inverse index,
possibly computing page ranks based on the link structure
of downloaded documents, and then retrieving “important”
URLs which overlap the query.

The problem is that search engines index only a very small
portion of the Web [30], and cover all topics. While search
engines aim for uniform coverage of the Web, no search en-
gine can download and index the entire Web. Thus the
coverage of any particular topic is relatively small.

Another problem with many if not all search engines is
that in the interests of efficiency, they examine only a part of
the text, such as only the header data or the first paragraph.

Finally search engines are susceptible to search engine per-
suasion and keyword spamming [31]. It is much harder to
waylay an analyzer of complete page content by arranging
the words so that the page looks more attractive to the col-
lector.

4.2 Clustering
Clustering has long been a favorite information retrieval

technique for obtaining related subgroups from a larger,
amorphous collection of documents. Clustering is inherently

different from searching. The latter starts with a topic and
returns (ideally) a related result. The former starts with a
corpora and detects topic clusters.

A number of researchers have used clustering to build
topic-based collections. The idea here is that given corpora
of documents, one can divide it into clusters of related docu-
ments, hopefully one cluster per topic. The cluster-building
process can be parameterized as to how big the clusters may
be, how many there will be, and whether or not overlap is
allowed. In classic information retrieval, after the clusters
were built, a centroid was computed for each cluster. This
was the surrogate for the cluster and was meant to speed
up searching, make classification of new documents more
efficient, and to describe the cluster.

P. Willet [43] is an excellent survey of how clustering is
used for collection building. The basic types of classical
clustering methods are:

1. hierarchical grouping, starting with a complete sim-
ilarity matrix of distance between documents in the
collection (also called agglomerative clustering)

2. iterative partitioning, starting with a full collection

3. one pass methods, which cluster all the documents
on the fly by updating centroids as documents are
dropped into the clusters or start new clusters

Obviously methods 1 and 2, which start with the complete
corpora, are unsuitable for classifying Web documents, sim-
ply because the Web is not finite. The same characteristic
of the Web rules out iterative or multi-pass methods, such
as method 2. Method 3 is promising but it is not clear what
centroids to start with.

4.3 Focused Crawling
Since we wish to build a large number of topic-specific

collections, neither searching nor clustering seem to fit the
bill. Focused crawling can be used like a search engine, but
rather than attempting to download every possible docu-
ment on the Web, it can get further, faster by narrowing its
crawl to specific topics.

This approach was introduced by Chakrabarti in 1998 [12,
13]. Since then a number of variations have been introduced
[4, 5, 8, 11, 18, 20, 22, 29, 31, 33]. The unifying theme is
efficiency (see Figure 2). Suppose 30% of the current Web
is downloaded by the search engine’s crawler and by the
focused crawler. When looking at a particular topic (the
dotted area on the right), the search engine’s result contains
fewer relevant documents than the collection returned by the
focused crawler.

The main problem is keeping the crawl focused, and there-
fore efficient. The two main focusing techniques are link
structure analysis and content analysis.

Link analysis is based on the theory that a document
pointed to by one document is likely to be similar to it, or
that two documents linked to by the same document might
be similar to each other [19]. Content analysis looks at the
word similarity between documents [46]. This is based on
the premise that two documents related to the same subject
will use the same words [39]. There are hybrid approaches
which combine link and text analysis [13, 24].

The point of both link and content analysis is to keep re-
lated documents together. This leads naturally to the con-
cept of a “distance” metric; in the past researchers have

Focused
Crawl,
on-topic
pages

only

Search Engine’s
30%, all topics

THE WEB

Figure 2: Focused Crawl vs. Search Engine

used citation relationships [21], term similarity [3, 39], and
co-authorship [36]. For content analysis, we use term sim-
ilarity. For link analysis, we follow links only from pages
that are deemed relevant to one of our topics.

4.4 A Collection Synthesis Approach
Our basic approach to collection building is accretion, or

agglomeration (see Figure 3).

Engine
Search

query
= "t"

crawl
web

Topic t with Centroid

Virtual Collection

on Topic t

New CollectionVirtual Collection

Figure 3: One way to build collections.

First, we assume that for any topic t, a virtual collection
of online documents exists about that topic. We select a few
authorities from this collection (using a search engine) and
from them we construct a Centroid.

We build several collections at the same time, starting
with a number of centroids for a number of distinct (virtual)
collections. This keeps the crawl efficient.3

Once the centroids have been defined, a massive Web
crawl is performed. The right part of Figure 3 illustrates
what we might have after a partial crawl. Each down-loaded
document is matched against all the centroids using some
distance measure.4 As the figure illustrates, some docu-
ments fall close to a given centroid, most documents are not
close to any of the centroids. At the end of the crawl, we
hope to have as many different collections as centroids.

3Because document download time is the major factor in
crawl speed, it is more efficient to do a single massive crawl
classifying documents into one of many classes rather than
to do a number of individual crawls, one per topic.
4Actually, we download pages. The definition of “docu-
ment” is tricky. If a page’s filename is node20.html, for
example, we can assume that it is part of a larger Latex
document.

As a distance metric, we use the cosine correlation and
the term vector and document vector space model:

corr
�
~c, ~d

�
=

~c · ~d

‖~c‖2

where

ci = weight of term i in the centroid ~c

di = weight of term i in the document ~d

Term i means this is the ith word in the crawl’s dictionary.
Weights are computed by the classical TF-IDF technique [3,
23, 39]:

idfi = log

�
N

dfi

�
di = fi × idfi, normalized by ||~d||2

N is the number of documents (or search results) used to
construct the centroids, and dfi is the document frequency
of term i. Belew [3] summarizes other metrics that could be
used here.

The cosine correlation yields a value between 0.0 and 1.0,

assuming that the weights in ~d have been normalized so that

||~d||2 is 1.0. The weights in the centroid are not normalized,
which is why we divide the inner product by the centroid’s
norm.

The crawl’s Dictionary is the union on the terms found in
the centroids.

5. FOCUSED CRAWL WITH MERCATOR
It is possible to configure Mercator in many different ways

to accomplish a variety of focused crawls. The ways to con-
figure Mercator fall into three general categories: how to
start a crawl, how to stay on topic, and how to stop a crawl.
This section describes our configuration.

5.1 Where To Start
In Mercator, the SeedURLs parameter in the configura-

tion file gives the seed URL[s] at which the crawl should
start. These are immediately added to the frontier. It is
unclear what makes a good seed URL, but intuitively it
should be rich in links, yet not too broad in scope. Yahoo
is the Mercator default. We added a few other sites, such
as http://www.search4science.com. An interesting exper-
iment would be to start with the top Google search result
for each topic.

Our focused crawl begins armed with a dictionary and
a set of centroids, constructed as explained in Section 4.4.
These are loaded at the start of the run during instantiation
of the first analyzer A1 (the Term Extractor). Which files to
load are specified by two new configuration file parameters
“Dictionary” and “Centroids”.
TermExtractor is an extension of Mercator’s base Ana-

lyzer object. Its process method is programmed to do the
following with the DocBundle and page content passed to
it:

1. Extract all text strings between ”>” and ”<”.

2. Split the text string into individual words.

3. Remove any words that are in the stop list.

4. Add/update the word in a hashtable of word frequen-
cies. The key of the hash is the word, and the value is
the frequency of the word in this document.

5. Add the completed hashtable to the DocBundle.

The words are not stemmed, mainly because stemming is
a recall-enhancing technique, and we are more interested in
precision.

5.2 Selecting Documents for the Collection
The DocBundle is passed on to the next analyzer, an ex-

tension of Mercator’s Link Extractor. This new subclass is
programmed to use the hashtable in the DocBundle to com-
pute the cosine correlation between the downloaded doc-
ument and each of the centroids. The document is classi-
fied with that centroid yielding the highest correlation value.
The correlation is the degree to which the document belongs
to this collection.

It is well known that document length is important. True,
we normalize the document vectors to length 1 but if there
is only one term in common with the centroids, then it will
automatically be classed with the centroid in which that
term happens to have the greatest weight. Since this sort of
categorization is quite arbitrary,5 we made the decision to
ignore documents that had fewer than 4 words overlap with
the centroids. This value is tunable.

Downloaded documents frequently contain terms not in-
cluded in the dictionary. Unlike classical Information Re-
trieval, we are not obliged to use all the significant words
in the collection. We are interested only in documents that
overlap our centroids, so we simply ignore new words. The
dictionary remains small, and thus does not slow up the
crawl.

Term discrimination values of existing words, however,
could be adjusted on the fly. In this way, some words which
appeared to have a high discrimination value with respect to
the centroids could be adjusted downwards. An advantage
of Mercator is that we can try both approaches: keep the
Dictionary fixed, or update it as documents are downloaded.

5.3 Stopping the Crawl
A crawl can be viewed as traversing a tree of links. It is a

tree, because Mercator never downloads the same URL twice
in a given crawl and so there can be no loops. (Mercator
also automatically detects and avoids crawler traps, which
generate an infinite series of URLs.)

The question then becomes how far down the tree to go
before abandoning a path. One may well be willing, in a
focused crawl, to traverse several less valuable pages in order
to get to one that is valuable. How many pages is controlled
by a two new Mercator parameters, cutoff and threshold.
The threshold determines the difference between a “nugget”
(a page with cosine correlation above the threshold) and an
off-topic page. The cutoff is the limit on the number of off-
topic pages are allowed before abandoning a crawl down a
given path in the tree.

The cutoff can be anywhere from 0 (in which case no links
of an off-topic page are followed) to the diameter of the Web
(in which case you’ll look across the whole Web if necessary
to find the next nugget).

An area for future research is to dynamically adjust the
cutoff and threshold depending on what has been learned in
5that single word could be “university”, for example

the crawl so far. This would represent a learned response
for how far to peer into the future to find the next relevant
item.

Other stopping criteria include: a list or description of
links never to follow (e.g. “next”, “previous”, “about”); a
list of URLs never to download (already supported by Mer-
cator URL filters); when a collection is big enough (at which
time its centroid may be ignored in future comparisons).

The overall crawl (the union of all the individual crawls) is
also subject to stopping criteria. Mercator offers the choice
of time limit and empty frontier. Another (uncontrollable)
stopping condition of course is failure of Mercator or the
computer it is running on. For this reason, Mercator has
support for check-pointing. Thus it is possible to make
multi-day crawls.

6. RESULTS
Our current experiments start with a topic hierarchy in

mathematics extracted from mathforum.org/library/toc.

html. This yielded 26 leaves about mathematics, an exam-
ple of which is topic 24: “Probability/Statistics Stochastic
Processes”. The top 7 URLs returned by Google in response
to this query were the following (formatted as the SeedURLs
clause for a Mercator configuration file):

(SeedURLs
(http://www.dam.brown.edu/graduate/handbook/node19.html
http://ubmail.ubalt.edu/~harsham/statistics/REFSTAT.HTM
http://www.santafe.edu/~shalizi/prob-notes/
http://www.amazon.com/exec/obidos/ISBN=0070484775/
http://www-2.cs.cmu.edu/~harchol/Perfclass/Booklist/...
http://science.ntu.ac.uk/msor/research/
http://www.siam.org/journals/tvp/Tvp.htm
))

Each of the seven page sets were downloaded by Mercator
and run through the TermExtractor and WordCounter an-
alyzers.6 The term vector, or centroid, for topic 24 in order
by descending term importance for this class is:

(statistics,probability,statistical,stochastic,...)

For centroid weights we chose term frequency × docu-
ment frequency / max(7,|result set|). We did not construct
a centroid if the result set had less than 4 items. Each of
the 26 centroids was truncated to its 20 highest weight terms
(we also tried the 40 highest, see Sections 6.1 and 6.3); these
terms combined to make a dictionary of 258 words, weighted
by TF-IDF as explained earlier. Details of the resulting dic-
tionary and centroids follow.

6.1 The Dictionary
For a faster crawl, we wish to have a fairly small dictionary

containing words pertinent to this area (here, mathematics)
with a range of IDF, or discrimination, values. We built two
different dictionaries, based on different truncation levels on
the centroids. As shown in Section 6.3, the dictionary based
on 20 terms resulted in at least as many highly correlated
documents as the one based on 40-term centroids, and ran
much faster. Words in the larger dictionary that are not
in the smaller one are for example “worksheets”, “world”,
“write”, “understand”, which tend to bring in more off-topic

6WordCounter is our Analyzer subclass that keeps a global
histogram of all the term frequencies and writes it to a file
at checkpoint time.

8

23

19

20

6

21

7

16

10

9

5

424

17

2522

15

11

180

3

1

2

13

14
12

Figure 4: A graphical layout of 26 centroids based
on their similarity. Each directed arrow points from
a centroid to the two centroids closest to it. That is,
edge (i,j) means that of all cosine correlations (i,k),
centroid j was one of the two closest to i.

pages.

Dict = 258 words
min max avg

df 1 82 9.1
tf 4 804 87.76

IDF .319 2.23 1.46
|C| 20 20 20

26 Centroids

Dict = 582 words
min max avg

df 1 101 7.87
tf 2 1089 60.18

IDF .33 2.34 1.69
|C| 40 40 40

36 Centroids

The range in IDF is about the same for the two cases, so
from that point of view, cutting down on the dictionary size
doesn’t hurt. All of the words in the original topics got into
the smaller dictionary except for three non-discriminators,
like “other”.

6.2 The Centroids
Note that the centroids are built automatically. We are

currently ruling out human intervention in this step. For
example, relevance feedback from a human looking at the
search results for a particular topic is considered too expen-
sive. We don’t even allow a few training runs (in the AI
sense) followed by automatic centroid generation.

Research on what makes a good centroid for retrieval pur-
poses is scarce. Intuitively, the centroids should not be too
close or overlap. We measured this by computing the com-
plete similarity matrix of cosine correlations between the
vectors. Figure 4 shows for each centroid the two centroids
most similar to it. The top left area is about algebra, the
middle top is about calculus, and the unconnected compo-
nent is about geometry. Surprisingly, the center (8) is about
partial differential equations.

Although the graph looks nicely laid out, we did another
test on the centroids by using our Mercator classification
code (with cutoff 0 and threshold 1.0 to prevent a crawl). We
downloaded the approximately 150 centroid URLs; at least
90% of them were classified with “their” centroid, leading us
to believe that there was enough space among the centroids
to have a hope of accreting useful URLs on their topic.

6.3 The Crawl
The crawl was performed for 8 minutes, with a threshold

of 0.3 and a cutoff of 0. Thus the crawl was focused to
those links occurring on pages correlating 0.3 or higher with

0

200

400

600

800

1000

1200

1400

1600

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

do

cs
 a

t/a
bo

ve
 c

or
r

Correlation level (corr)

Performance of 20 term vs 40 term centroids (first 1400 documents downloaded)

20-term centroids
40-term centroids

Figure 5: Relative efficiency of 20- vs. 40-term cen-
troids. The 20-term case finds slightly more highly
correlating documents during the first 1400 down-
loaded than does the 40-term set. The 20-term case
with its shorter centroids and smaller dictionary is
also faster: it downloads more than 5000 documents
in 8 minutes vs. 2100 for the larger centroids.

the centroid closest to it. We assembled 26 collections of
HTML, PDF, and PostScript documents related to topics
in our Mathematics term hierarchy.

Crawl performance is measured in two different ways. First,
plotting correlation vs. download order gives a measure of
the efficiency of the crawl. Assuming that high correlations
imply relevance to the topic, the more efficient crawl will
download highly relevant documents early in the crawl, and
more often. A different measure, precision, will be explained
later.

Our initial crawls were meant to determine whether long
centroids would be better than shorter ones (see Figure 5).
A snapshot of the first 1400 downloaded documents above
0.25 cosine correlation shows that the 20-term case was as
good as (if not better than) the 40-term case.

Next we concentrate on just one of the collections found
in the crawl, to get an idea of whether high correlations ac-
tually mean anything. (Ideally, high rank should imply high
relevance.) The relevance judgments are of course highly
subjective, but were not too difficult to make. With rele-
vance judgments in hand, we can measure the precision of
the crawl.

In classical information retrieval, precision was defined as
the number of relevant retrieved vs. number of documents
retrieved. Here, however, we can download as many doc-
uments as we wish, as long as we find some relevant ones.
Precision is therefore defined as number relevant vs. rank,
where documents are ranked in decreasing correlation order.
For example, a collection of size 1 would simply contain the
document which correlated most strongly with the collec-
tion’s centroid. If that document were relevant, the preci-
sion is 1.0, otherwise 0. If half the items in the collection
are relevant, the precision is 0.5.

Figure 6 shows the results for the topic query “plane geom-
etry euclidean triangles and other polygons”. The highest
three ranking documents were relevant to the topic, which

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45

P
re

ci
si

on

Rank

Relevance vs. Rank

original
Google

Figure 6: Precision plot for the geometry collec-
tion based on a 4-minute crawl in which 5785 doc-
uments were downloaded which had a correlation
between .25 and 0.53. Precision seems to be stabi-
lizing around 0.5. For comparison, the precision for
the first 40-some search results on a Google search
of the same query is shown.

is good. In this short crawl, however, the collection preci-
sion is only 0.5 (the final point in the plot). It is expected
that lengthening the crawl will lift the precision curve, but
that has yet to be tested. For comparison purposes, we also
did a Google search on this query, made relevance assess-
ments for the first 40-some results, and plotted the resulting
precision. Google starts off with amazingly high precision
but then quickly lapses into irrelevant topics, such as course
descriptions.

6.4 New IDFs
Closer inspection of some of the results indicated that

calculating IDF values only on the basis of the centroids
was not optimal. Hence we did a 4-minute crawl with the
initial dictionary, getting term frequencies and document
frequencies from approximately 10,000 documents. Those
frequencies were used to recompute the term IDF’s. The
range expanded, and some words moved up in value, others
down, but the size of the dictionary (necessarily) remained
the same. The picture for the first 1400 documents is in Fig-
ure 7, which can be compared with the original dictionary’s
crawl in Figure 8. It would appear that the recomputed
IDF’s had a good effect on discriminating good documents
from bad. However, it is not clear that precision was im-
proved, even though higher ranks were retrieved. Figure
9 shows precision using the original term weights vs. the
updated weights.

7. CONCLUSIONS AND FURTHER WORK
It is absolutely necessary that if libraries like the NSDL

are going to scale, automatic methods such as those dis-
cussed here are required. We have shown plausibility of
building collections using a crawler. We have knobs and
scope for investigating all sorts of variations to our collec-
tion synthesis approach. Our main goal now is to lift the
precision curve above the 50% mark. Here are some possible

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000 1200 1400

C
or

r

Downloaded

Class 23 (prev 24): 5-7 seeds, 20-term centroids, 0.30 threshold, cutoff=0

"GoogleCorrs-NewDict-20-30-0-First1400.csv"

Figure 7: Results for the first 1400 downloaded doc-
uments above 0.25, using recomputed IDF weights.
In this point plot, the dots represent the similarity
of the document with its closest centroid, in the or-
der in which documents were downloaded (the order
is approximate since 500 threads were being run at
once). The Y-axis is similarity.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000 1200 1400

C
or

r

Downloaded

Class 23 (prev 24): 5-7 seeds, 20-term centroids, 0.30 threshold, cutoff=0

"GoogleCorrs-20-30-0-First1400.csv"

Figure 8: Results of a crawl with the original dic-
tionary based on the 20-term centroids. The first
1400 documents downloaded that have a correlation
> 0.25 with their closest centroid are shown. In gen-
eral, not as many documents have high correlation,
and the point-plot is darker to the bottom, meaning
that more junk was retrieved.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

pr
ec

is
io

n

rank

Effect of recomputing IDF values

original
recomputed

Figure 9: Original IDF values vs. recomputed IDF
values. Recomputation resulted in higher ranks and
apparently higher precision.

next steps:

• Let the clusters overlap. For example, if a document
correlated very highly with two centroids, then put it
into both collections.

• Vary the starting place by selecting different SeedURLs
for the crawl.

• Vary the threshold; so far the cosine correlation 0.3
looks like a good line between “could be relevant” and
“probably not relevant”.

• Vary the cutoff. So far 0 is looking best.

• Update dictionary IDF values on the fly. Initial results
show this might be something worth implementing.

• Vary the initial centroid length. So far 20-term cen-
troids look better than 40-term centroids.

• Vary the minimum acceptable overlap between docu-
ment terms and centroid terms.

• Chakrabarti’s paper on CLEVER [14] suggests 3 fur-
ther things we might try (prioritize links so off-site
links are higher; don’t follow links from documents al-
most identical to ones previously seen; use only a single
point-of-entry into any given site).

8. ACKNOWLEDEGMENTS
This work was funded in part by the NSF grant on Project

Prism, IIS 9817416. Thanks go to Bill Arms for suggesting
this project, and to Carl Lagoze for improving the clarity of
this presentation. We also acknowledge considerable techni-
cal help from the Systems Research Center at Compaq.

9. REFERENCES
[1] W. Arms. Automated digital libraries: How effectively

can computers be used for the skill tasks of
professional librarianship. D-Lib Magazine: The
Magazine of Digital Library Research, July 2000.
<http:

//www.dlib.org/dlib/july00/arms/07arms.html>.

[2] A. Arvind, J. Cho, H. Garcia-Molina, A. Paepcke, and
S. Raghavan. Searching the Web. ACM Transactions
on Internet Technology, 1(1):2–43, Aug. 1002.

[3] R. K. Belew. Finding Out About. Cambridge Press,
2001.

[4] I. Ben-Shaul, M. Hersovici, M. Jacovi, Y. Maarek,
D. Pelleg, M. Shtalheim, V. Soroka, and S. Ur. Adding
support for dynamic and focussed search with
Fetuccino. In Proceedings of the Eighth International
World-Wide Web Conference, pages 575–588, Toronto,
Canada, May 1999. Available: <http://www8.org/

w8-papers/5a-search-query/adding/adding.html>

(current as of August 2001).

[5] K. Bharat and M. R. Henzinger. Improved algorithms
for topic distillation in hyperlinked environments. In
Proceedings of the 21st International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 104–111, Aug. 1998.
Available: <http://www.acm.org/pubs/proceedings/

ir/290941/p104-bharat/p104-bharat.pdf>.

[6] C. M. Bowman, P. B. Danzig, D. R. Hardy,
U. Manber, and M. F. Schwartz. Harvest: A scalable,
customizable discovery and access system. Technical
Report CU-CS-732-94, Department of Computer
Science, University of Colorado, Boulder, July 1994.

[7] C. M. Bowman, P. B. Danzig, D. R. Hardy,
U. Manber, and M. F. Schwartz. The Harvest
information discovery and access system, 1994.
Additional information available <http://archive.

ncsa.uiuc.edu/SDG/IT94/Proceedings/Searching/

schwartz.harvest/schwartz.harvest.html>.

[8] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. In Proceedings of the
7th International World Wide Web Conference
(WWW7), Brisbane, Australia, 1998. Available online
at <http://www7.scu.edu.au/programme/

fullpapers/1921/com1921.htm>, (current as of 28
Feb. 2001).

[9] A. Broder, S. Glassman, and M. Manasse. Clustering
the Web, 1999. Available: <http://www.research.

compaq.com/SRC/articles/199707/cluster.html>.

[10] A. Broder, S. Glassman, M. Manasse, and G. Zweig.
Syntactic clustering of the web. In Proceedings of the
Sixth International World-Wide Web Conference,
Santa Clara, Ca., pages 391–404, Apr. 1997.
Available: <http://www.scope.gmd.de/info/www6/

technical/paper205/paper205.html> (current as of
September 2001).

[11] J. Carriere and R. Kazman. WebQuery: Searching
and visualizing the Web through connectivity. In
Proceedings of the Sixth International World-Wide
Web Conference, pages 701–711, Santa Clara, Ca,
Apr. 1997.

[12] S. Chakrabarti. Recent results in automatic Web
resource discovery. ACM Computing Surveys, Dec.
1999. Available: <http://www.acm.org/pubs/

articles/journals/surveys/1999-31-43es/

a17-chakrabarti/a17-chakrabarti.pdf>.

[13] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg,
P. Raghavan, and S. Rajagopalan. Automatic resource
compilation by analyzing hyperlink structure and
associated text. In Proceedings of the Seventh

International World-Wide Web Conference, pages
65–74, Brisbane, Australia, Apr. 1998. Available:
Computer Networks and ISDN Systems special issue,
30(1-7).

[14] S. Chakrabarti, B. E. Dom, D. Gibson, R. Kumar,
P. Raghavan, S. Rajagopalan, and A. Tomkins.
Experiments in topic distillation. In Proceedings of the
ACM SIGIR Workshop on Hypertext Information
Retrieval on the Web, Melbourne, Australia, 1998.
ACM. Available: <http:

//www.almaden.ibm.com/cs/k53/abstract.html>.

[15] S. Chakrabarti, M. van den Berg, and B. Dom.
Focused crawling: a new approach to topic-specific
Web resource discovery. In Proceedings of the Eighth
International World-Wide Web Conference., pages
545–562, Toronto, Canada, May 1999. Available:
<http://www8.org/w8-papers/5a-search-query/

crawling/index.html> and <http:

//www.cs.berkeley.edu/~soumen/doc/www99focus/>

(current as of August 2001).

[16] C. Chekuri, M. Goldwasser, P. Raghavan, and
E. Upfal. Web search using automatic classification,
1997. Available at <http://cm.bell-labs.com/who/

chekuri/postscript/web.ps.gz> Current as of
December 5, 2001.

[17] F.-C. Cheong. Internet Agents: Spiders, Wanderers,
Brokers and Bots. New Riders Publishing,
Indianapolis, Indiana, 1996. ISBN:1-56205-463-5.

[18] B. D. Davison. Topical locality in the Web. In
Proceedings of the 23rd Annual International
Conference on Research and Development in
Information Retrieval (SIGIR 2000), Athens, Greece,
July 2000. ACM.

[19] J. Dean and M. R. Henzinger. Finding related pages
in the world wide web. In Proceedings of the Eighth
International World-Wide Web Conference, Toronto,
Canada, pages 575–588, May 1999. Available:
<http://www8.org/w8-papers/4a-search-mining/

finding/finding.html> (current as of August 2001).

[20] M. Diligenti, F. Coetzee, S. Lawrence, C. . Giles, and
M. Gori. Focused crawling using context graphs. In
Proceedings of the 26th International Conference on
Very Large Databases, 2000.

[21] E. Garfield. Mapping the structure of science, pages
98–147. John Wiley & Sons, Inc. NY, 1979. Available
at <http://www.garfield.library.upenn.edu/ci/

chapter8.pdf>.

[22] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring
Web communities from link topology. In Proceedings
of the 9th ACM Conference on Hypertext and
Hypermedia: Links, Objects, Time and Space –
Structure in Hypermedia Systems (hypertext’98,

Pittsburge, PA, pages 225–234, June 20–24 1998.

[23] E.-H. S. Han and G. Karypis. Centroid-based
document classification: Analysis & experimental
results. Technical Report 00-017, Computer Science,
University of Minnesota, Mar. 2000.

[24] T. H. Haveliwala, A. Gionis, and P. Indyk. Scalable
techniques for clustering the Web. In WebDB’2000:
Third International Workshop on the Web and
Databases, May 2000. Available <http://www.

research.att.com/conf/webdb2000/PAPERS/8c.ps>.

[25] M. Henzinger, A. Heydon, M. Mitzenmacher, and
M. Najork. On near-uniform URL sampling. In
Proceedings of the 9th International World Wide Web
Conference: The Web: The Next Generation,
Amsterdam, May 2000. Elsevier. Available:
<http://www9.org/w9cdrom/88/88.html>.

[26] M. R. Henzinger, A. Heydon, M. LMitzenmacher, and
M. Najork. Measuring index quality using random
walks on the web. In Proceedings of the Eighth
International World Wide Web Conference, pages
213–225, May 1999. Available
<http://www8.org/w8-papers/2c-search-discover/

measuring/measuring.html>.

[27] A. Heydon and M. Najork. Mercator: A scalable,
extensible Web crawler. World Wide Web, 2(4), Dec.
1999.

[28] J. M. Kleinberg. Hubs, authorities, and communities.
ACM Computing Surveys, Dec. 1999. Available:
<http:

//www.acm.org/pubs/articles/journals/surveys/

1999-31-43es/a5-kleinberg/a5-kleinberg.pdf>.

[29] V. Kluev. Compiling document collections from the
internet. SIGIR Forum, 34(2), Fall 2000. Available at
<http:

//www.acm.org/sigir/forum/F2000/Kluev00.pdf>.

[30] S. Lawrence and C. L. Giles. Accessibility of
information on the Web. Nature, 400(8), July 1999.

[31] R. Lempel and S. Moran. SALSA: the stochastic
approach for link-structure analysis. ACM Transations
on Information Systems, 19(2):131–160, Apr. 2001.

[32] A. K. McCallum, K. Nigam, J. Rennie, and
K. Seymore. Automating the construction of internet
portals with machine learning. Information Retrieval
Journal, 3:127–163, 2000.

[33] F. Menczer and R. K. Belew. Adaptive Retrieval
Agents: Internalizing Local Context and Scaling up to
the Web, pages 1–45. 1999.

[34] S. Mukherjea. Organizing topic-specific Web
information. In Proceedings of the Eleventh ACM
Conference on Hypertext and Hypermedia, pages
133–141, San Antonio, Tx, May 2000. Available:
<http://www.acm.org/pubs/articles/proceedings/

hypertext/336296/p133-mukherjea/

p133-mukherjea.pdf>.

[35] S. Mukherjea. WTMS: A system for collecting and
analyzing topic-specific Web information. In
Proceedings of the 9th International World Wide Web
Conference: The Web: The Next Generation,
Amsterdam, May 2000. Elsevier. Available:
<http://www9.org/w9cdrom/293/293.html> (current
as of August 2001).

[36] P. Mutschke. Enhancing information retrieval in
federated bibliographic data sources using author
network based strategems. In Proceedings of the 5th
European Conference ECDL, Darmstadt, Germany,
pages 287–299, Sept. 2001.

[37] M. Najork and A. Heydon. High-performance Web
crawling. Technical Report Research Report 173,
Compaq SRC, Sept. 2001. Available at <http:

//gatekeeper.research.compaq.com/pub/DEC/SRC/

research-reports/abstracts/src-rr-173.html>.

[38] M. Najork and J. Wiener. Breadth-first search

crawling yields high-quality pages. In Proceedings of
the 10th International World Wide Web Conference,
Hong Kong, May 2001. ACM. Available:
<http://www10.org/cdrom/papers/208/>.

[39] G. Salton. Automatic Information Organization and
Retrieval. McGraw-Hill, New York, 1968.

[40] B. Saulnier. Portal power. Cornell Engineering
Magazine, pages 16–21, Fall 2001. Available: <http:

//www.engineering.cornell.edu/engrMagazine/>.

[41] R. Stata, K. Bharat, and F. Maghoul. The term
vector database: Fast access to indexing terms for
Web pages. In Proceedings of the 9th International
World Wide Web Conference: The Web: The Next
Generation, Amsterdam, May 2000. Elsevier.
Available:
<http://www9.org/w9cdrom/159/159.html>.

[42] D. Voss. Better searching through science. Science,
293(5537):2024, 2001. Available: <http://www.

sciencemag.org/cgi/content/full/293/5537/2024>.

[43] P. Willet. Recent trends in hierarchical document
clustering: a critical review. Information Processing &
Management, 24:577–597, 1988.

[44] I. H. Witten, D. Bainbridge, and S. J. Boddie. Power
to the people: End-user building of digital library
collections. In Proceedings of the first ACM/IEEE-CS
joint conference on Digital Libraries, pages 94–103,
2001. Available:
<http://www.acm.org/pubs/articles/proceedings/

dl/379437/p94-witten/p94-witten.pdf>.

[45] I. H. Witten, R. J. McNab, S. J. Boddie, and
D. Bainbridge. Greenstone: A comprehensive
open-source digital library software system. In 5th
ACM Conference on Digital Libraries, San Antonio,
Texas, June 2 - June 7, 2000, also titled ACM
Proceedings of Digital Libraries, 2000 (DL2000), San
Antonio, Texas, pages 113–121, 2000. Available:
<http://www.acm.org/pubs/articles/proceedings/

dl/379437/p94-witten/p94-witten.pdf>.

[46] O. Zamir and O. Etzioni. Web document clustering: a
feasibility demonstration. In SIGIR 98, Melbourne,
Australia, 1998.

[47] L. L. Zia. The NSF national science, technology,
engineering, and mathematics education digital library
(NSDL) program: New projects and a project report.
D-Lib Magazine: The Magazine of Digital Library
Research, 7(11), Nov. 2001.

