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Abstract
This paper presents secure program partitioning, a language-based
technique for protecting confidential data during computation in
distributed systems containing mutually untrusted hosts. Confiden-
tiality and integrity policies can be expressed by annotating pro-
grams with security types that constrain information flow; these
programs can then be partitioned automatically to run securely on
heterogeneously trusted hosts. The resulting communicating sub-
programs collectively implement the original program, yet the sys-
tem as a whole satisfies the security requirements of participat-
ing principals without requiring a universally trusted host machine.
The experience in applying this methodology and the performance
of the resulting distributed code suggest that this is a promising way
to obtain secure distributed computation.

1. Introduction
A significant challenge for computer systems, especially dis-

tributed systems, is maintaining the confidentiality and integrity of
the data they manipulate. Existing techniques cannot ensure that
an entire computing system satisfies a security policy for data con-
fidentiality and integrity.1 Standard mechanisms, such as access
control and encryption, are essential tools for ensuring that sys-
tem components do not violate these security policies. However,
for systems that contain non-trivial computational components, ac-
cess control and encryption are much less helpful for ensuring (and
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proving) that the system obeys the desired security policies.
A requirement that controls the end-to-end use of data in a secure

system is an information-flow policy [3, 4, 7, 8, 15]. Information-
flow policies are the natural way to specify confidentiality and in-
tegrity requirements because these policies constrain how infor-
mation is used by the entire system, rather than simply regulating
which principals (users, machines, programs, or other entities) can
read or modify the data at particular points during execution. An in-
formal example of such a confidentiality policy is “the information
contained in my bank account file may be obtained only by me and
the bank managers.” Because it controls information rather than
access, this policy is considerably stronger than the similar access
control policy, “only processes authorized by me or bank managers
may open the file containing my bank account information.” This
paper addresses the problem of how to practically specify and en-
force information-flow policies in distributed systems.

A promising approach for describing such policies is the use
of security-typed languages [1, 17, 27, 35, 42, 46, 50]. In this
approach, explicit program annotations specify restrictions on the
flow of information, and the language implementation (the com-
piler and run-time system) rejects programs that violate the restric-
tions. The program does not have to be trusted to enforce the secu-
rity policy; only the compiler must be trusted. Static analysis also
offers advantages over run-time enforcement because any purely
run-time mechanism can enforce only safety properties, which ex-
cludes many useful information-flow policies [40].

To date, security-typed languages have addressed information-
flow security in systems executed on a single trusted host. This
assumption is unrealistic, particularly in scenarios for which infor-
mation-flow policies are most desirable—when multiple principals
need to cooperate but do not entirely trust one another. Simple
examples of such scenarios abound: email services, web-based
shopping and financial planning, business-to-business transactions,
and joint military information systems. We expect sophisticated,
collaborative, inter-organizational computation to become increas-
ingly common; some way is needed to assure that data confiden-
tiality is protected.

The general problem with these collaborative computations is
ensuring that the security policies of all the participants are en-
forced. When participants do not fully trust each others’ hosts, it
is necessary to distribute the data and computational work among
the hosts. This distribution creates a new threat to security: the
hosts used for computation may cause security violations—either
directly, by leaking information, or indirectly, by carrying out com-
putations in a way that causes other hosts to leak information. Of
course, the program itself may also cause security violations. Be-
cause existing single-host techniques address this problem, we fo-
cus on the new threat, untrusted hosts.
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Figure 1: Secure program partitioning

In this paper, we present secure program partitioning, a novel
way to protect the confidentiality of data for computations that ma-
nipulate data with differing confidentiality needs on an execution
platform comprising heterogeneously trusted hosts. Figure 1 illus-
trates the key insight: The security policy can be used to guide the
automatic splitting of a security-typed program into communicat-
ing subprograms, each running on a different host. Collectively,
the subprograms perform the same computation as the original; in
addition, they satisfy all the participants’ security policies without
requiring a single universally trusted host. We are primarily inter-
ested in enforcing confidentiality policies; in this setting, however,
enforcement of confidentiality requires enforcement of simple in-
tegrity policies as well.

The splitter receives two inputs: the program, including its confi-
dentiality and integrity policy annotations, and also a set of signed
trust declarations stating each principal’s trust in hosts and other
principals. The goal of secure program partitioning is to ensure that
if a host h is subverted, the only data whose confidentiality or in-
tegrity is threatened is data owned by principals that have declared
they trust h.

It is useful to contrast this approach with the usual development
of secure distributed systems, which involves the careful design
of protocols for exchanging data among hosts in the system. By
contrast, our approach provides the following benefits:

� Stronger security: Secure program partitioning can be ap-
plied to information-flow policies; most distributed systems
make no attempt to control information flow. It can also be
applied to access control policies, which are comparatively
simple to enforce with this technique.

� Decentralization: Collaborative computations can be car-
ried out despite incomplete trust. In addition, for many com-
putations, there is no need for a universally trusted host. Each
participant can independently ensure that its security policies
are enforced.

� Automation: Large computing systems with many partici-
pating parties contain complex, interacting security policies
that evolve over time; automated enforcement is becoming
a necessity. Secure program partitioning permits a compu-
tation to be described as a single program independent of
its distributed implementation. The partitioning process then
automatically generates a secure protocol for data exchange
among the hosts.

� Explicit policies: Security-typed programs force policy de-
cisions to be made explicit in the system design, making

them auditable and automatically verifiable. Type checking
can then reveal subtle design flaws that make security viola-
tions possible.

Secure program partitioning has the most value when strong pro-
tection of confidentiality is needed by one or more principals, the
computing platform consists of differently trusted hosts, there is
a generally agreed-upon computation to be performed, and secu-
rity, performance, or functionality considerations prevent the entire
computation from being executed on a single host. One example
of a possible application is an integrated medical information sys-
tem that stores patient and physician records, raw test data, and
employee records, and supports information exchange with other
medical institutions. Another example is an automated business-
to-business procurement system, in which profitable negotiation by
the buyer and supplier depends on keeping some data confidential.

This paper describes Jif/split, our implementation of secure pro-
gram partitioning, which includes a static checker, program splitter,
and run-time support for the distributed subprograms. We present
simple examples of applying this approach and give performance
results that indicate its practicality.

Our system can express security policies that control covert and
overt storage channels. However, certain classes of information-
flow policies are not controlled by our system: timing and termina-
tion channels, which would be more important in a malicious-code
setting. Language-based work on timing and termination flows,
largely orthogonal to this work, is ongoing elsewhere (e.g., [2, 42]).

The rest of the paper is structured as follows. The next section
describes the model for writing secure programs in a Java-like lan-
guage that permits the specification of information-flow policies.
Section 3 describes the assumptions about the networked environ-
ment, and discusses the assurance that secure program partitioning
can provide in this environment. Section 4 describes the static con-
ditions that are imposed when a program is split, including addi-
tional static checks needed in a distributed environment. Section 5
covers the dynamic (run-time) checks that are needed in addition
to prevent attackers from violating the assumptions of the static
checking. Section 6 describes the partitioning translation, includ-
ing the optimization techniques for arriving at efficient split pro-
grams. Section 7 gives details of our prototype implementation and
reports performance results. Section 8 discusses the trusted com-
puting base and shows that it can be made small and localized to
trusted hosts. Related and future work is considered in Sections 9
and 10. Section 11 concludes.

2. Secure Programming Model
The Jif/split program splitter extends the compiler for Jif [27,

29], a security-typed extension to Java that incorporates confiden-
tiality labels from the decentralized label model [28]. In this model,
principals can express ownership in data; the correctness of secure
partitioning is defined in terms of this idea of ownership. The la-
bel model supports selective declassification, a feature needed for
realistic applications of information-flow control.

2.1 Security Labels
Central to the model is the notion of a principal, which is an

entity (e.g., user, process, party) that can have a confidentiality or
integrity concern with respect to data. Principals can be named in
information-flow policies and are also used to define the authority
possessed by the running program. The authority at a point in the
program is simply a set of principals that are assumed to autho-
rize any action taken by the program at that point. Different pro-
gram points may have different authority, which must be explicitly
granted by the principals in question.



Security labels express confidentiality policies on data in a pro-
gram; they provide the core vocabulary of the overall system secu-
rity policy. A simple label is written fo:r1,r2,...,rng, meaning
that the labeled data is owned by principal o, and that o permits the
data to be read by principals r1 through rn (and, implicitly, o).

Data may have multiple owners, each controlling a different com-
ponent of its label. The label fo1:r1,r2; o2:r1,r3g, for exam-
ple, contains two components and says that owner o1 allows read-
ers r1 and r2 and owner o2 allows readers r1 and r3. Because all
of the policies described by a label must be obeyed, only r1 will
be able to read data with this annotation. Such composite labels
arise naturally in collaborative computations: for example, if x has
label fo1:r1,r2g and y has label fo2:r1,r3g, then the sum x +

y has the composite label intfo1:r1,r2; o2:r1,r3g, which ex-
presses the conservative requirement that the sum is subject to both
the policy on x and the policy on y.

In this paper, the decentralized label model is extended with label
components that specify integrity. The label f?:p1,...,png spec-
ifies that principals p1 through pn trust the data—they believe the
data to be computed by the program as written. (Because integrity
policies have no owner, a question mark is used in its place.) This
is a weak notion of trust; its purpose is to protect security-critical
information from damage by subverted hosts. Labels combining
integrity and confidentiality components also arise naturally.

We write L1 v L2 if the label L1 is less restrictive than the label
L2. Intuitively, data with label L1 is less confidential than data with
label L2—more principals are permitted to see the data, and, conse-
quently, there are fewer restrictions on how data with label L1 may
be used. For example, fo:rg vfo:g holds because the left label
allows both o and r to read the data, whereas the right label admits
only o as a reader.

The relation v is a pre-order whose equivalence classes form a
distributive lattice; we write t and u for the lattice join and meet
operations, respectively. The label join operation combines the re-
strictions on how data may be used. As in the example above, if x
has label L1 and y has label L2, the sum x + y has label L1 t L2,
which includes the restrictions of both.

For any label L, the functions C(L) and I(L) extract the confi-
dentiality and integrity parts of L, respectively. Because confiden-
tiality and integrity are duals [4], if L1 v L2, then L2 must specify
at least as much confidentiality and at most as much integrity as L1.
This interpretation is consistent with the idea that labels represent
restrictions on how data may be used; data with higher integrity has
fewer restrictions on its use.

Types in Jif are labeled, allowing the programmer to declare vari-
ables and fields that include security annotations. For example, a
value with type intfo:rg is an integer owned by principal o and
readable by r. When unlabeled Java types are written in a program,
the label component is automatically inferred.

Every program expression has a labeled type that indicates an
upper bound (with respect to the v order) of the security of the
data represented by the expression. Jif’s type-checking algorithm
prevents labeled information from being downgraded, or assigned
a less-restrictive label (i.e., lower in the lattice). In general, down-
grading results in a loss of confidentiality or a spurious increase in
claimed integrity. The type system tracks data dependencies (infor-
mation flows) to prevent unintentional downgrading.

2.2 Declassification
Systems for enforcing information-flow policies have often run

into practical difficulties. In part this has resulted from their basis
in the security property of noninterference [15], which captures the

requirement that data labeled L cannot affect any data whose label
is not at least as restrictive. Noninterference allows the expression
of controls on the end-to-end information flow within a system, but
it does not provide sufficient expressive power: realistic systems
require limited violations of noninterference, such as the ability
to release encrypted data. An important feature of the decentral-
ized label model is the ability to write computations that include
controlled forms of downgrading, providing an escape hatch from
strict noninterference.

Downgrading confidentiality is called declassification; it is pro-
vided in Jif by the expression declassify(e, L), which allows
a program acting with sufficient authority to declassify the expres-
sion e to label L. A principal p’s authority is needed to perform
declassifications of data owned by p. For example, owner o can
add a reader r to a piece of data by declassifying its label from
fo:g to fo:rg.

The integrity counterpart to declassify is endorse, which al-
lows a principal to declare trust in a piece of data based on infor-
mation outside the program text. For example, a principal might
endorse a message after verifying that it has been signed by a
trusted principal. Neither declassify nor endorse has a run-
time cost; they simply change the label of the security type of their
argument.

2.3 Implicit Flows
One complication for security-typed languages is implicit flows,

which arise from the control flow of the program. Consider this
example in which four program points (A–D) are indicated by ar-
rows:

"Aif x then "By = true; else "Cy = false;"D

This code creates a dependency between the value x, which has
type boolean{L}, and the value stored in y—the code is equivalent
to the assignment y = x. For this assignment to be secure, y’s
label must be at least as restrictive as L. Note that in the example
information flows from x to y even though only constant values are
assigned to y.

To control these implicit information flows, a label is assigned to
each program point, indicated by the arrows. From a confidential-
ity standpoint, the label captures the information that can be learned
by knowing that the program reached that point during execution;
from an integrity standpoint, it captures the integrity of the infor-
mation that determines the control flow to that point. In this exam-
ple, if the label of program point "A is LA, the label at point "B is
LA t L because reaching point "B depends on both reaching point
"A and the value of x, which has label L. Similarly, "C also has
label LA t L. Reaching point "D depends only on reaching point
"A (both branches fall through to point "D), so it has label LA.

Because naming program points is quite cumbersome, we intro-
duce a special label, pc, which is the label of the program counter
at each program point. Which program point pc refers to is usu-
ally clear from context, so we might say “the pc inside the branch
is LA t L.” To conservatively control implicit flows, the label for
any expression in the program includes the pc label for that pro-
gram point. For example, it means that the assignment y = true

is allowed only if y’s label is at least as restrictive as LA t L, which
correctly captures y’s dependency on x.

Using the labels provided by the programmer and the inferred pc
label, the compiler is able to statically verify that all of the informa-
tion flows apparent in the program text satisfy the label constraints
that prevent illegal information flows from occurring. If the pro-
gram does not satisfy the security policy, it is rejected.



1 public class OTExample {

2 int{Alice:; ?:Alice} m1;

3 int{Alice:; ?:Alice} m2;

4 boolean{Alice:; ?:Alice} isAccessed;

5
6 int{Bob:} transfer{?:Alice} (int{Bob:} n)

7 where authority(Alice) {

8 int tmp1 = m1;

9 int tmp2 = m2;

10 if (!isAccessed) {

11 isAccessed = true;

12 if (endorse(n, {?:Alice}) == 1)

13 return declassify(tmp1, {Bob:});

14 else

15 return declassify(tmp2, {Bob:});

16 }

17 else return 0;

18 }

19 }

Figure 2: Oblivious transfer code

2.4 Language Features
In addition to these changes to the Java type system, Jif adds a

number of constructs for creating secure programs. The following
are germane to this paper:

� An optional authority clause on method declarations de-
scribes the authority available in the body of the method.
Code containing such a clause can be added to the system
only with the permission of the principals named in it.

� Optional label bounds on the initial and final pc labels of a
method. For example, the method signature

intfL1g mfIg(intfL2g x): fFg

means that the method m can only be called when pc v I. It
takes an integer x with label L2 and returns an integer labeled
L1. Upon exiting m, the condition pc v F holds.

Jif also introduces some limitations to Java, which apply to this
work as well. The most important is that programs are assumed
to be sequential: the Thread class is not available. This limitation
prevents an important class of timing channels whose control is an
open research area. Providing support for full-fledged threaded and
concurrent distributed programming is the focus of ongoing work
[22, 41, 42].

2.5 Oblivious Transfer Example
Figure 2 shows a sample program that we will use as a running

example. It is based on the well-known Oblivious Transfer Prob-
lem [11, 36], in which the principal Alice has two values (here rep-
resented by fields m1 and m2), and Bob may request exactly one of
the two values. However, Bob does not want Alice to learn which
of the two values was requested. We chose this example because it
is short, has interesting security issues, and has been well studied:
for instance, it is known that a trusted third party is needed for a
secure distributed implementation [6].2

2Probabilistic solutions using two hosts exist, but these algorithms
leak small amounts of information. Because Jif’s type system is
geared to possibilistic information flows, these probabilistic algo-
rithms are rejected as potentially insecure. Ongoing research [16,
45, 39] attempts to address probabilistic security.

Alice’s secret data is represented by fields m1 and m2. The pol-
icy fAlice:; ?:Aliceg indicates that these fields are owned by
Alice, that she lets no one else read them, and that she trusts their
contents. The boolean isAccessed records whether Bob has re-
quested a value yet.

Lines 6 through 18 define a method transfer that encapsulates
the oblivious transfer protocol. It takes a request, n, owned by Bob,
and returns either m1 or m2 depending on n’s value. Note that be-
cause Alice owns m1 and m2, releasing the data requires declassi-
fication (lines 13 and 15). Her authority, needed to perform this
declassification, is granted by the authority clause on line 7.

Ignoring for now the temporary variables tmp1 and tmp2 and the
endorse statement, the body of the transfer method is straight-
forward: Line 10 checks whether Bob has made a request already.
If not, line 11 records the request, and lines 12 through 15 return
the appropriate field after declassifying them to be visible by Bob.
If Bob has already made a request, transfer simply returns 0.

The simplicity of this program is deceptive. For example, the pc
label at the start of the transfer method must be bounded above
by the label f?:Aliceg, as indicated on line 6. The reason is that
line 11 assigns true into the field isAccessed, which requires
Alice’s integrity. If the program counter at the point of assignment
does not also have Alice’s trust, the integrity of isAccessed is
compromised.

Other subtle interactions between confidentiality, integrity, and
trust explain the need for the temporary variables and endorsement.
We shall discuss these interactions throughout the rest of the paper
as we describe security considerations in a distributed environment.
One benefit of programming in a security-typed language is that the
compiler can catch many subtle security holes even though the code
is written in a style that contains no specification of how the code
is to be distributed.

3. Assumptions and Assurance
The goal of secure program partitioning is to take a security-

typed source program and a description of trust relationships and
(if possible) produce a distributed version of the same program that
executes securely in any consistent environment. This section dis-
cusses our assumptions about the distributed environment and de-
scribes the confidentiality and integrity assurance that can be pro-
vided in this environment.

3.1 Target environment
Clearly, any secure distributed system relies on the trustworthi-

ness of the underlying network infrastructure. Let H be a set of
known hosts, among which the program is to be distributed. We
assume that pairwise communication between two members of H
is reliable, in-order, and cannot be intercepted by hosts outside H
or by the other members of H . Protection against interception can
be achieved efficiently through well-known encryption techniques
(e.g, [43, 48]); for example, each pair of hosts can use symmetric
encryption to exchange information, with key exchange via public-
key encryption. We assume that the same encryption mechanisms
permit each member of H to authenticate messages sent and re-
ceived by one another.

To securely partition a program, the splitter must know the trust
relationships between the participating principals and the hosts H .
To capture this information, we need two pieces of data about each
host h:

� A confidentiality label Ch that describes an upper bound on
the confidentiality of information that can be sent securely to
host h.



� An integrity label Ih describing which principals trust data
received from h.

These trust declarations are public knowledge—that is, they are
available on all known hosts—and are signed by the principals in-
volved. We assume the existence of a public-key infrastructure that
makes digital signatures feasible.

Consider a host A owned by Alice but untrusted by Bob, and a
host B owned by Bob and untrusted by Alice. A reasonable trust
model might be:

CA = fAlice:g IA = f?:Aliceg

CB = fBob:g IB = f?:Bobg

Because Bob does not appear as an owner in the label CA, this de-
scription acknowledges that Bob is unwilling to send his private
data to host A. Similarly, Bob does not trust information received
from A because Bob does not appear in IA. The situation is sym-
metric with respect to Alice and Bob’s host.

Next, consider hosts T and S that are partially trusted by Alice
and Bob:

CT = fAlice:;Bob:g IT = f?:Aliceg

CS = fAlice:;Bob:g IS = f?:g

Alice and Bob both trust T not to divulge their data incorrectly;
on the other hand, Bob believes that T may corrupt data—he does
not trust the integrity of data received from T . Host S is also trusted
with confidential data, but neither Alice nor Bob trust data gener-
ated by S.

We will use hosts A, B, T , and S when discussing various par-
titions of the oblivious transfer algorithm in what follows.

3.2 Security assurance
Our goal is to ensure that the threats to a principal’s confidential

data are not increased by the failure or subversion of an untrusted
host that is being used for execution. Bad hosts—hosts that fail
or are subverted—have full access to the part of the program exe-
cuting on them, can freely fabricate apparently authentic messages
from bad hosts, and can share information with other bad hosts.
Bad hosts may execute concurrently with good hosts, whereas good
hosts preserve the sequential execution of the source language—
there is only one good host executing at a time. However, we as-
sume that bad hosts are not able to forge messages from good hosts,
nor can they generate certain capabilities to be described later.

It is important to distinguish between intentional and uninten-
tional release of confidential information. It is assumed that the
declassify expressions in the original program intentionally re-
lease confidential data—that the principal authorizing that declas-
sification trusts the program logic controlling its use. However, bad
hosts should not be able to subvert this logic and cause more data
to be released than intended. In programs with no declassify ex-
pressions, the failure or subversion of an untrusted host should not
cause data to be leaked.

The security of a principal is endangered only if one or more
of the hosts that the principal trusts is bad. Suppose the host h
is bad and let Le be the label of an expression in the program.
The confidentiality of the expression’s value is endangered only if
C(Le) v Ch; correspondingly, the expression’s integrity may have
been corrupted only if Ih v I(Le).

If Alice’s machine A from Section 3.1 is compromised, only data
owned by Alice may be leaked, and only data she trusts may be
corrupted. Bob’s privacy and integrity are protected. By contrast,
if the semi-trusted machine T malfunctions, Alice and Bob’s data
may be leaked, but only Alice’s data may be corrupted because only
she trusts the integrity of the machine.

If there are multiple bad machines, they may cooperate to leak or
corrupt more data. Our system is intended to enforce the following
property:

Security Assurance: The confidentiality of an expres-
sion e is not threatened by a set Hbad of bad hosts un-
less C(Le) v h2Hbad

Ch; its integrity is not threat-

ened unless
h2Hbad

Ih v I(Le).

Providing this level of assurance involves two challenges: (1)
Data with a confidentiality label (strictly) higher than Ch should
never be sent (explicitly or implicitly) to h, and data with an in-
tegrity label lower than Ih should never be accepted from h. (2)
Bad hosts should not be able to exploit the downgrading abilities
of more privileged hosts, causing them to violate the security pol-
icy of the source program. The next two sections describe how a
combination of static and dynamic mechanisms achieves this goal.

4. Static Security Constraints
At a high level, the partitioning process can be seen as a con-

straint satisfaction problem. Given a source program and the trust
relationships between principals and hosts, the splitter must assign
a host in H to each field, method, and program statement in the
program. This fine-grained partitioning of the code is important
so that a single method may access data of differing confidential-
ity and integrity. The primary concern when assigning hosts is to
enforce the confidentiality and integrity requirements on data; effi-
ciency, discussed in Section 6, is secondary. This section describes
the static constraints on host selection.

4.1 Field and Statement Host Selection
Consider the field m1 of the oblivious transfer example. It has

label fAlice:; ?:Aliceg, which says that Alice owns and trusts
this data. Only certain hosts are suitable to store this field: hosts
that Alice trusts to protect both her confidentiality and integrity.
If the field were stored elsewhere, the untrusted host could vio-
late Alice’s policy, contradicting the security assurance of Sec-
tion 3.2. The host requirements can be expressed using labels:
fAlice:g v Ch and Ih v f?:Aliceg. The first inequality says
that Alice allows her data to flow to h, and the second says that
Alice trusts the data she receives from h. In general, for a field f

with label Lf we require

C(Lf ) v Ch and Ih v I(Lf):

This same reasoning further generalizes to the constraints for lo-
cating an arbitrary program statement, S. Let U(S) be the set of
values used in the computation of S and let D(S) be the set of lo-
cations S defines. Suppose that the label of the value v is Lv and
that the label of a location l is Ll. Let

Lin =
v2U(S)Lv and Lout = l2D(S)Ll

A host h can execute the statement S securely, subject to con-
straints similar to those for fields.

C(Lin) v Ch and Ih v I(Lout)

4.2 Preventing Read Channels
The rules for host selection for fields in the previous section are

necessary but not sufficient in the distributed environment. Because
bad hosts in the running system may be able to observe read re-
quests from good hosts, a new kind of implicit flow is introduced:
a read channel in which the request to read a field from a remote
host itself communicates information.



For example, a naive implementation of the oblivious transfer
example of Figure 2 exhibits a read channel. Suppose that in im-
plementing the method transfer, the declassify expressions
on lines 13 and 15 directly declassified the fields m1 and m2, re-
spectively, instead of the variables tmp1 and tmp2. According to
Bob, the value of the variable n is private and not to be revealed to
Alice. However, if m1 and m2 are stored on Alice’s machine, Alice
can improperly learn the value of n from the read request.

The problem is that Alice can use read requests to reason about
the location of the program counter. Therefore, the program counter
at the point of a read operation must not contain information that
the field’s host is not allowed to see. With each field f , the static
checker associates a confidentiality label Locf that bounds the se-
curity level of implicit flows at each point where f is read. For
each read of the field f , the label Locf must satisfy the constraint
C(pc) v Locf . Using this label Locf , the confidentiality con-
straint on host selection for the field is:

C(Lf )t Locf v Ch

To eliminate the read channel in the example while preventing
Bob from seeing both m1 and m2, a trusted third party is needed.
The programmer discovers this problem during development when
the naive approach fails to split in a configuration with just the hosts
A and B as described in Section 3.1. The error pinpoints the read
channel introduced: arriving at line 13 depends on the value of n,
so performing a request for m1 there leaks n to Alice. The splitter
automatically detects this problem when the field constraint above
is checked.

If the more trusted host T is added to the set of known hosts, the
splitter is able to solve the problem, even with the naive code, by
allocating m1 and m2 on T , which prevents Alice from observing the
read request. If S is used in place of T , the naive code again fails to
split—even though S has enough privacy to hold Alice’s data, fields
m1 and m2 can’t be located there because Alice doesn’t trust S not
to corrupt her data. Again, the programmer is warned of the read
channel, but this time a different solution is possible: adding tmp1

and tmp2 as in the example code give the splitter enough flexibility
to copy the data to S rather than locating the fields there. Whether S
or T is the right model for the trusted host depends on the scenario;
what is important is that the security policy is automatically verified
in each case.

4.3 Declassification Constraints
Consider the oblivious transfer example from Alice’s point of

view. She has two private pieces of data, and she is willing to re-
lease exactly one of the two to Bob. Her decision to declassify the
data is dependent on Bob not having requested the data previously.
In the example program, this policy is made explicit in two ways.
First, the method transfer explicitly declares that it uses her au-
thority, which is needed to perform the declassification. Second,
the program itself tests (in line 10) whether transfer has been
invoked previously—presumably Alice would not have given her
authority to this program without this check to enforce her policy.

This example shows that it is not enough simply to require that
any declassify performed on Alice’s behalf executes on a host
she trusts to hold the data. Alice also must be confident that the
decision to perform the declassification, that is, the program execu-
tion leading to the declassify, is performed correctly.

The program counter label summarizes the information depen-
dencies of the decision to arrive at the corresponding program point.
Thus, a declassify operation using the authority of a set of prin-
cipals P introduces the integrity constraint: I(pc) v IP where IP
is the label f?:p1; : : : ; png for pi 2 P . This constraint says that

Val getField(HostID h, Obj o, FieldID f)

Val setField(HostID h, Obj o, FieldID f, Val v)

void forward(HostID h, FrameID f, VarID var, Val v)

void rgoto(HostID h, FrameID f, EntryPt e, Token t)

void lgoto(Token t)

Token sync(HostID h, FrameID f, EntryPt e, Token t)

Figure 3: Run-time interface

each principal p whose authority is needed to perform the declas-
sification must trust that the program has reached the declassify
correctly.

Returning to the oblivious transfer example, we can now explain
the need to use the endorse operation. Alice’s authority is needed
for the declassification, but, as described above, she must also be
sure of the integrity of the program counter when the program does
the declassification. Omitting the endorse when testing n on line
12 would lower the integrity of the program counter within the
branches—Alice doesn’t trust that n was computed correctly, as
indicated by its (lack of an) integrity label on line 6. She must add
her endorsement to n, making explicit her agreement with Bob that
she doesn’t need to know n to enforce her security policy.

Using the static constraints just described, the splitter finds a set
of possible hosts for each field and statement. This process may
yield many solutions, or none at all—for instance, if the program
manipulates data too confidential for any known host. When no so-
lution exists, the splitter gives an error indicating which constraint
is not satisfiable. We have found that the static program analysis
is remarkably useful in identifying problems with apparently se-
cure programs. When more than one solution exists, the splitter
chooses hosts to optimize performance of the distributed system,
as described in Section 6.

5. Dynamic Enforcement
In the possible presence of bad hosts that can fabricate messages,

run-time checks are required to ensure security. For example, ac-
cess to an object field on a remote host must be authenticated to pre-
vent illegal data transfers from occurring. Thus, the information-
flow policy is enforced by a combination of static constraints (con-
trolling how the program is split) and dynamic checks to ensure
that running program obeys the static constraints.

When a program is partitioned, the resulting partitions contain
both ordinary code to perform local computation and calls to a spe-
cial run-time interface that supports host communication. Figure 3
shows the interface to the distributed run-time system.3 There are
three operations for transferring data between hosts: getField,
setField, and forward; and three operations for transferring con-
trol between hosts: rgoto, lgoto, and sync. These operations
define building blocks for a protocol that exchanges information
among the hosts running partitions.

The rgoto and lgoto control operations are primitive constructs
for transferring control from one program point to another that is lo-
cated on a different host. In general a program partition comprises
a set of code fragments that offer entry points to which rgoto and
lgoto transfer control. These two kinds of goto operations are
taken from a low-level security-typed language for which it has
been proven that every well-typed program automatically enforces
noninterference [50].

3We have simplified this interface for clarity; for instance, the ac-
tual implementation provides direct support for array manipulation.



The run-time interface describes all the ways that hosts can in-
teract. To show that bad hosts cannot violate the security assurance
provided by the system, it is therefore necessary to consider each
of the run-time operations in turn and determine what checks are
needed to enforce the assurance condition given in Section 3.2.

5.1 Access Control
The simplest operations provided by the run-time interface are

getField and setField, which perform remote field reads and
writes. Both operations take a handle to the remote host, the object
that contains the field, and an identifier for the field itself. The
setField operation also takes the value to be written.

These requests are dispatched by the run-time system to the ap-
propriate host. Suppose h1 sends a field access request to h2. Host
h2 must perform an access control check to determine whether to
satisfy the request or simply ignore it, while perhaps logging any
improper request for auditing purposes. A read request for a field
f labeled Lf is legal only if C(Lf ) v Ch1 , which says that h1 is
trusted enough to hold the data stored in f . Similarly, when h1
tries to update a field labeled Lf , h2 checks the integrity constraint
Ih1 v I(Lf ), which says that the principals who trust f also trust
h1. These requirements are the dynamic counterpart to those used
for host selection (see Section 4.1).

Note that because field and host labels are known at compile
time, an access control list can be generated for each field, and
thus label comparisons can be optimized into a single lookup per
request. There is no need to manipulate labels at run time.

5.2 Data Forwarding
Another difficulty with moving to a distributed setting is that the

run-time system must provide a mechanism to pass data between
hosts without violating any of the confidentiality policies attached
to the data. The problem is most easily seen when there are three
hosts and the control flow h1 �! l �! h2: execution starts on
h1, transfers to l, and then completes on h2. Hosts h1 and h2 must
access confidential data d (and are trusted to do so), whereas l is not
allowed to see d. The question is how to make d securely available
to h2. Clearly it is not secure to transfer d in plaintext between the
trusted hosts via l.

There are essentially two solutions to this problem: pass d via l in
encrypted form, or forward d directly to h2. We chose to implement
the second solution. After hosts have been assigned, the splitter
infers statically where the data forwarding should occur, using a
standard definition-use dataflow analysis. The run-time interface
provides an operation forward that permits a local variable to be
forwarded to a particular stack frame on a remote host. The same
mechanism is used to transmit a return value to a remote host. Data
forwarding requires that the recipient validate the sender’s integrity,
as with setField.

5.3 Control Transfer Integrity
So far, we have not addressed the issue of concurrency, which

is inherently a concern for security in distributed systems. The
problem of protecting confidentiality in a concurrent setting is dif-
ficult [47, 42], and we do not attempt to solve the general case
here. Instead, we take advantage of the single-threaded nature of
the source program by using the idea that the integrity of the pro-
gram counter obeys a stack discipline.

Consider a scenario with three hosts: h1 and h2 have high in-
tegrity, and l has relatively lower integrity (that is, its integrity is
not equal to or greater than that of h1 or h2). Because the program
has been partitioned into code fragments, each host is prepared to
accept control transfers at multiple entry points, each of which be-

gins a different code fragment. Some of the code fragments on h1
and h2 make use of the greater privilege available due to higher
integrity (e.g., the ability to declassify certain data).

Suppose the source program control flow indicates control trans-
fer in the sequence h1 �! l �! h2. A potential attack is for
l to improperly invoke a privileged code fragment residing on h2,
therefore violating the behavior of the original program and possi-
bly corrupting or leaking some data. Hosts h1 and h2 can prevent
these attacks by simply denying l the right to invoke entry points
that correspond to privileged code, but this strategy prevents h2
from using its higher privileges after control has passed through
l—even if this control transfer was supposed to occur according to
the source program.

We have developed a mechanism to prevent these illegal control
transfers, based on a stack discipline for manipulating capabilities.
The intuition is that the block structure and sequential behavior of
the source program, which are embodied at run-time by the stack of
activation records, induce a similar LIFO property on the program
counter’s integrity. The deeper the stack, the more data the program
counter depends on, and consequently, the lower its integrity.

This correspondence between stack frames and pc integrity is
not perfect because the pc label need not decrease in lock step with
every stack frame. A single stack frame may be used by a block
of code that is partitioned across several hosts of differing integrity,
for example. Nevertheless, this correspondence suggests that we
use a stack discipline based on integrity to regulate control trans-
fers. To distinguish between the stack of activation records (whose
elements are represented by FrameID objects) and the stack of host
control transfers, we refer to the latter as the ICS—integrity control
stack.

Informally, in the scenario above, the first control transfer (from
h1 to l) pushes a capability for return to h2 onto the ICS, after
which computation is more restricted (and hence may reside on a
less trusted machine). The second control transfer (from l to h2)
consumes the capability and pops it off the ICS, allowing h2 to re-
gain its full privileges. The idea is that before transferring control
to l, trusted machines h1 and h2 agree that the only valid, privi-
leged entry point between them is the one on h2. Together, they
generate a capability for the entry point that h1 passes to l on the
first control transfer. Host l must present this capability before be-
ing granted access to the more privileged code. Illegal attempts to
transfer control from l to h1 or to h2 are rejected because h1 and
h2 can validate the (unique) capability to transfer control from l.

5.4 Example Control Flow Graph
Figure 3 shows the signatures for the three control transfer facil-

ities: rgoto (for “regular” control transfers that do not affect the
ICS), lgoto (for “LIFO” transfers—ICS pops), and sync (for gen-
erating capabilities—ICS pushes). The capabilities are represented
as Token objects. In addition to the code fragment to be jumped to
(given by the EntryPt argument), control transfer is to a specific
stack frame (given by FrameID) on a particular host.

We describe in detail the operation of these mechanisms in the
next section, but first it is helpful to see an example of their use.

Figure 4 shows the control-flow graph of a possible splitting
of the oblivious transfer example in a host environment that con-
tains Alice’s machine A, Bob’s machine B and the partially trusted
server, T from Section 3.1. We have chosen this simple exam-
ple because it presents an interesting partitioning without being too
large to describe here. For completeness, we describe the unopti-
mized behavior; optimizations that affect the partitioning process
and run-time performance are discussed in Sections 6 and 7.



int {Bob:;?:Bob} n = ...;
forward(T,...,n);
lgoto(t1)

...,e4,t0);
rgoto(A,...,e6,t2);

if (n==0) {
  retval = tmp1;
  lgoto(t2);
} else {
  retval = tmp2;
  lgoto(t2);
}

...
t1 = sync(T,...,e2,t0);
rgoto(B,...,e6,t1);

tmp1 = m1;
tmp2 = m2;
if (!isAccessed) {
  isAccessed = true;

...
  forward(T,...,tmp2);
  rgoto(T,...,e3,t2);
} else {
  retval = 0;
  forward(T,...,retval);
  lgoto(t2);
}

int {Bob:;} r = retval;
lgoto(t0); // exit program
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sync
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t0 lgoto
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Figure 4: Control flow graph of the oblivious transfer program

For lack of space, we show only a fragment of the main4 method.
Host T initially has control and possesses a single capability t0,
which is on top of the ICS. Bob’s host is needed to initialize n—his
choice of Alice’s two fields. Recall that f?:Bobg 6v f?:Aliceg,
which means that B is relatively less trusted than T . Before trans-
ferring control to B, T sync’s to a suitable return point (entry e2),
which pushes a new capability, t1, onto the ICS (hiding t0). The
sync operation then returns this fresh capability token, t1, to e1.

Next, T passes t1 to entry point e5 on B via rgoto. There,
Bob’s host computes the value of n and returns control to T via
lgoto, which requires the capability t1 to return to a host with
relatively higher integrity. Upon receiving this valid capability, T
pops t1, restoring t0 as the top of the ICS. If instead B maliciously
attempts to invoke any entry point on either T or A via rgoto,
the access control checks deny the operation. The only valid way
to transfer control back to T is by invoking lgoto with one-time
capability t1. Note that this prevents Bob from initiating a race to
the assignment on line 11 of the example, which might allow two
of his transfer requests (one for m1 and one for m2) to be granted
and thus violate Alice’s declassification policy.

Alice’s machine must check the isAccessed field, so after B
returns control, T next syncs with the return point of transfer
(the entry point e4), which again pushes new token t2 onto the
ICS. T then transfers control to e6 on A, passing t2. The entry
point e6 corresponds to the beginning of the transfer method.

Alice’s machine performs the comparison, and either denies ac-
cess to Bob by returning to e4 with lgoto using t2, or forwards
the values of m1 and m2 to T and hands back control via rgoto to
e3, passing the token t2. If Bob has not already made a request,
T is able to check n and assign the appropriate value of tmp1 and

4We omitted the main method and constructors from Figure 2 to
simplify the presentation; they contain simple initialization code.
We also omit the details of FrameID objects, which are unimportant
for this example.

tmp2 to retval, then jump to e4 via t2. The final block shows T
exiting the program by invoking the capability t0.

5.5 Control Transfer Mechanisms
This section describes how rgoto, lgoto, and sync manipulate

the ICS, which is itself distributed among the hosts, and defines the
dynamic checks that must occur to maintain the desired integrity
invariant.

A capability token t is a tuple fh; f; egkh containing a HostID,
a FrameID, and an EntryPt. To prevent forgery and ensure unique-
ness, the tuple is appended to its hash with h’s private key and a
nonce.

The global ICS is represented by a collection of local stacks, as
shown in Figure 5. Host h’s local stack, sh, contains pairs of tokens
(t; t0) as shown. The intended invariant is that when the top of h’s
stack, top(sh), is (t; t0), then t is the token most recently issued
by h. Furthermore, the only valid lgoto request that h will serve
must present the capability t. The other token, t0, represents the
capability for the next item on the global stack; it is effectively a
pointer to the tail of the global ICS.

To show that these distributed stacks enforce a global stack or-
dering on the capabilities, we prove a stronger invariant of the
protocol operations [51]. Whenever control is transferred to low-
integrity hosts, there is a unique re-entry point on high-security
hosts that permits high-integrity computation. This uniqueness en-
sures that if a low-integrity host is bad, it can only jeopardize the
security of low-integrity computation.

The recipients of control transfer requests enforce the ordering
protocol. Assume the recipient is the host h, and the initiator of
the request is i. The table in Figure 6 specifies h’s action for each
type of request. We write e(f; t) for local invocation of the code
identified by entry point e in stack frame f , passing the token t as
an additional argument.

This approach forces a stack discipline on the integrity of the
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Figure 5: Distributed implementation of the global stack

control flow: rgoto may be used to transfer control to an entry
point that requires lesser or equal integrity; lgoto may transfer
control to a higher-integrity entry point—provided that the higher-
integrity host previously published a capability to that entry point.
These capabilities can be used at most once: upon receiving an
lgoto request using the valid capability t, h pops its local capabil-
ity stack, thereby invalidating t for future uses. Calls to sync and
lgoto thus come in pairs, with each lgoto consuming the capa-
bility produced by the corresponding sync.

Just as we have to dynamically prevent malicious hosts from im-
properly accessing remote fields, we must also ensure that bad hosts
cannot improperly invoke remote code. Otherwise, malicious hosts
could indirectly violate the integrity of data affected by the code.
Each entry point e has an associated dynamic access control label
Ie that regulates the integrity of machines that may remotely invoke
e. The receiver of an rgoto or sync request checks the integrity
of the requesting host against Ie as shown in Figure 6. The label
Ie is given by (

v2D(e)Lv)u IP , where D(e) is the set of vari-
ables and fields written to by the code in e and IP is the integrity
label of the principals, P , whose authority is needed to perform any
declassifications in e.

The translation phase described in the next section inserts control
transfers into the source program. To prevent confidentiality and
integrity policies from being violated by the communications of
the transfer mechanisms themselves, there are constraints on where
rgoto and sync may be added.

Suppose a source program entry point e is assigned to host i, but
doing so requires inserting an rgoto or sync to another entry point
e0 on host h. The necessary constraints are:

C(pc) v Ch Ii v Ie0 Ie v Ie0 :

The first inequality says that i can’t leak information to h by per-
forming this operation. The second inequality says that host i has
enough integrity to request this control transfer. This constraint
implies that the dynamic integrity checks performed by h are guar-
anteed to succeed for this legal transfer—the dynamic checks are
there to catch malicious machines, not well-behaved ones. Finally,
the third constraint says that the code of the entry point e itself has
enough integrity to transfer the control to e0. Furthermore, because
sync passes a capability to h, it requires the additional constraint
that Ih v I(pc), which limits the damage h can do by invoking the
capability too early, thus bypassing the intervening computation.

These enforcement mechanisms do not attempt to prevent denial
of service attacks, as such attacks do not affect confidentiality or in-
tegrity. These measures are sufficient to prevent a bad low-integrity
host from launching race-condition attacks against the higher in-
tegrity ones: hosts process requests sequentially, and each capabil-
ity offers one-shot access to the higher integrity hosts.

rgoto(h; f; e; t)

Transfers control to the entry
point e in frame f on the host
h. Host i’s current capability
t is passed to h.

if (Ii v Ie) f

e(f; t);
g else ignore;

lgoto(t) (where t = fh; f; egkh )

Pops h’s local control stack
after verifying the capability
t; control moves to entry
point e in frame f on host h,
restoring privileges.

if (top(sh)==(t,t
0
)) f

pop(sh);

e(f; t0);
g else ignore;

sync(h; f; e; t)

Host h checks i’s integrity; if
sufficient, h returns to i a new
capability (nt) for entry point
e in frame f .

if (Ii v Ie) f

nt = fh; f; egkh;

push(sh; (nt; t));
send(i; nt);

g else ignore;

Figure 6: Host h’s response to transfer requests from i

While our restrictive stack-based control transfer mechanism is
sufficient to provide the security property of Section 3.2, it is not
necessary; there exist secure systems that lie outside the behaviors
expressible by the ICS. However, following the stack discipline
is sufficient to express many interesting protocols that move the
thread of control from trusted hosts to untrusted hosts and back.
Moreover, the splitter determines when a source program can obey
the stack ordering and generates the protocol automatically.

6. Translation
Given a program and host configuration, the splitting translation

is responsible for assigning a host to each field and statement. The
Jif/split compiler takes as input the annotated source program and
a description of the known hosts. It produces as output a set of Java
files that yield the final split program when compiled against the
run-time interface. There are several steps to this process.

In addition to the usual typechecking performed by an ordinary
Java compiler, the Jif/split front end collects security label infor-
mation from the annotations in the program, performing label in-
ference when annotations are omitted. This process results in a
set of label constraints that capture the information flows within
the program. Next, the compiler computes a set of possible hosts
for each statement and field, subject to the security constraints de-
scribed in Section 4. If no host can be found for a field or statement,
the splitter conservatively rejects the program as being insecure.

There may also be many valid host assignments for each field or
statement, in which case performance drives the host selection pro-
cess. The splitter uses dynamic programming to synthesize a good
solution by attempting to minimize the number of remote control
transfers and field accesses, two operations that dominate run-time
overhead. The algorithm works on a weighted control-flow graph
of the program; the weight on an edge represents an approximation
to the run-time cost of traversing that edge.

This approach also has the advantage that principals may indi-
cate a preference for their data to stay on one of severally equally
trusted machines (perhaps for performance reasons) by specifying
a lower cost for the preferred machine. For example, to obtain the
example partition shown in Figure 4, Alice also specifies a prefer-
ence for her data to reside on host A, causing fields m1, m2, and



isAccessed to be located on host A. Without the preference dec-
laration, the optimizer determines that fewer network communica-
tions are needed if these fields are located at T instead. This alter-
native assignment is secure because Alice trusts the server equally
to her own machine.

After host selection, the splitter inserts the proper calls to the run-
time, subject to the constraints described in Section 5. An lgoto

must be inserted exactly once on every control flow path out of
the corresponding sync, and the sync–lgoto pairs must be well
nested to guarantee the stack discipline of the resulting commu-
nication protocol. The splitter also uses standard dataflow analysis
techniques to infer where to introduce the appropriate data forward-
ing.

Finally, the splitter produces Java files that contain the final pro-
gram fragments. Each source Jif class C translates to a set of classes
C$Hosti, one for each known host hi 2 H . In addition to the trans-
lated code fragments, each such class contains the information used
by the runtime system for remote references to other classes. The
translation of a field includes accessor methods that, in addition to
the usual get and set operations, also perform access control checks
(which are statically known, as discussed in Section 4). In addi-
tion, each source method is represented by one frame class per host.
These frame classes correspond to the FrameID arguments needed
by the runtime system of Figure 3; they encapsulate the part of the
source method’s activation record visible to a host.

7. Implementation
We have implemented the splitter and the necessary run-time

support for executing partitioned programs. Jif/split was written
in Java as a 7400-line extension to the existing Jif compiler. The
run-time support library is a 1700-line Java program. Communica-
tion between hosts is encrypted using SSL (the Java Secure Socket
Extension (JSSE) library, version 1.0.2) [18]. To prevent forging,
tokens for entry points are hashed using the MD5 implementation
from the Cryptix library, version 3.2.0 [5].

To evaluate the impact of our design, we implemented several
small, distributed programs using the splitter. Because we are using
a new programming methodology that enforces relatively strong
security policies, direct comparison with the performance of other
distributed systems was difficult; our primary concern was security,
not performance. Nevertheless, the results are encouraging.

7.1 Benchmarks
We have implemented a number of programs in this system. The

following four are split across two or more hosts:

� List compares two identical 100 element linked lists that
must be located on different hosts because of confidential-
ity. A third host traverses the lists.

� OT is the oblivious transfer program described earlier in the
paper. One hundred transfers are performed.

� Tax simulates a tax preparation service. A client’s trading
records are stored on a stockbroker’s machine. The client’s
bank account is stored at a bank’s machine. Taxes are com-
puted by a tax preparer on a third host. The principals have
distinct confidentiality concerns, and declassify is used
twice.

� Work is a compute-intensive program that uses two hosts but
communicates relatively little.

Writing these programs requires adding security policies (labels)
to some type declarations from the equivalent single-machine Java

Metric List OT Tax Work OT-h Tax-h

Lines 110 50 285 45 175 400

Elapsed time (sec) 0.51 0.33 0.58 0.49 0.28 0.27

Total messages 1608 1002 1200 600 800 800
forward (�2) 400 101 300 0 - -
getField (�2) 2 100 0 0 - -
lgoto 402 200 0 300 - -
rgoto 402 400 600 300 - -

Eliminated (�2) 402 600 400 300 - -

Table 1: Benchmark measurements

program. These annotations are 11–25% of the source text, which
is not surprising because the programs contain complex security
interactions and little real computation.

7.2 Experimental Setup
Each subprogram of the split program was assigned to a differ-

ent physical machine. Experiments were run on a set of three 1.4
GHz Pentium 4 PCs with 1GB RAM running Windows 2000. Each
machine is connected to a 100 Mbit/second Ethernet by a 3Com
3C920 controller. Round-trip ping times between the machines av-
erage about 310 �s. This LAN setting offers a worst-case scenario
for our analysis—the overheads introduced by our security mea-
sures are relatively more costly than in an Internet setting. Even
for our local network, network communication dominates perfor-
mance. All benchmark programs were run using SSL, which added
more overhead: the median application-to-application round-trip
time was at least 640 �s for a null Java RMI [37] call over SSL.

All benchmarks were compiled with version 1.3.0 of the Sun
javac compiler, and run with version 1.3.0 of the Java HotSpot
Client VM. Compilation and dynamic-linking overhead is not in-
cluded in the times reported.

7.3 Results
For all four benchmarks, we measured both running times and

total message counts so that performance may be estimated for
other network configurations. The first row of Table 1 gives the
length of each program in lines of code. The second row gives
the median elapsed wall-clock time for each program over 100 trial
runs. The following rows give total message counts and a break-
down of counts by type (forward and getField calls require two
messages). The last row shows the number of forward messages
eliminated by piggybacking optimizations described below.

For performance evaluation, we used Java RMI to write refer-
ence implementations of the Tax and OT programs and then com-
pared them with our automatically generated programs. These re-
sults are shown in the columns OT-h and Tax-h of Table 1. Writ-
ing the reference implementation securely and efficiently required
some insight that we obtained from examining the corresponding
partitioned code. For example, in the OT example running on the
usual three-host configuration, the code that executes on Alice’s
machine should be placed in a critical section to prevent Bob from
using a race condition to steal both hidden values. The partitioned
code automatically prevents the race condition.

The hand-coded implementation of OT ran in 0.28 seconds; the
automatically partitioned program ran in 0.33 ms, a slowdown of
1.17. The hand-coded version of Tax also ran in 0.27 seconds;
the partitioned program ran in 0.58 seconds, a slowdown of 2.17.
The greater number of messages sent by the partitioned programs
explains most of this slowdown. Other sources of added overhead
turn out to be small:



� Inefficient translation of local code

� Run-time checks for incoming requests

� MD5 hashing to prevent forging and replaying of tokens

The prototype Jif/split compiler attempts only simple optimiza-
tions for the code generated for local use by a single host. The
resulting Java programs are likely to have convoluted control flow
that arises as an artifact of our translation algorithm—the interme-
diate representation of the splitter resembles low-level assembly
code more than Java. This mismatch introduces overheads that the
hand-coded programs do not incur. The overhead could be avoided
if Jif/split generated Java bytecode output directly; however, we
leave this to future work.

Run-time costs also arise from checking incoming requests and
securely hashing tokens. These costs are relatively small: The cost
of checking incoming messages is less than 6% of execution time
for all four example programs. The cost of token hashing accounted
for approximately 15% of execution time across the four bench-
marks. Both of these numbers scale with the number of messages
in the system. For programs with more substantial local computa-
tions, we would expect these overheads to be less significant.

For a WAN environment, the useful point of comparison between
the hand-coded and partitioned programs is the total number of
messages sent between hosts. Interestingly, the partitioned Tax and
OT programs need fewer messages for control transfers than the
hand-coded versions. The hand-coded versions of OT and Tax each
require 400 RMI invocations. Because RMI calls use two mes-
sages, one for invocation and one for return, these programs send
800 messages. While the total messages needed for the Jif/split ver-
sions of OT and Tax are 1002 and 1200, respectively, only 600 of
these messages in each case are related to control transfers; the rest
are data forwards. The improvement over RMI is possible because
the rgoto and lgoto operations provide more expressive control
flow than procedure calls. In particular, an RMI call must return
to the calling host, even if the caller immediately makes another
remote invocation to a third host. By contrast, an rgoto or lgoto
may jump directly to the third host. Thus, in a WAN environment,
the partitioned programs are likely to execute more quickly than
the hand-coded program because control transfers should account
for most of the execution time.

7.4 Optimizations
Several simple optimizations improve system performance:

� Calls to the same host do not go through the network.

� Hashes are not computed for tokens used locally to a host.

� Multiple data forwards to the same recipient are combined
into a single message and also piggybacked on lgoto and
rgoto calls when possible. As seen in Table 1, this reduces
forward messages by more than 50% (the last row is the
number of round trips eliminated).

A number of further simple optimizations are likely to be effec-
tive. For example, much of the performance difference between
the reference implementation of OT and the partitioned implemen-
tation arises from the server’s ability to fetch the two fields m1 and
m2 in a single request. This optimization (combining getField

requests) could be performed automatically by the splitter as well.
Currently, forward operations that aren’t piggybacked with con-

trol transfers require an acknowledgment to ensure that all data is
forwarded before control reaches a remote host. It is possible to
eliminate the race condition that necessitates this synchronous data

forwarding. Because the splitter knows statically what forwards
are expected at every entry point, the generated code can block un-
til all forwarded data has been received. Data transfers that are
not piggybacked can then be done in parallel with control transfers.
However, this optimization has not been implemented.

8. Trusted Computing Base
An important question for any purported security technique is the

size and complexity of the trusted computing base (TCB). All else
being equal, a distributed execution platform suffers from a larger
TCB than a corresponding single-host execution platform because
it incorporates more hardware and software. On the other hand,
the architecture described here may increase the participants’ con-
fidence that trustworthy hosts are being used to protect their confi-
dentiality.

What does a principal p who participates in a collaborative pro-
gram using this system have to trust? The declaration signed by p

indicates to what degree p trusts the various hosts. By including a
declaration of trust for a host h in the declaration, p must trust the
hardware of h itself, the h’s operating system, and the splitter run-
time support, which (in the prototype implementation) implicitly
includes Java’s.

Currently, the Jif/split compiler is also trusted. Ongoing research
based on certified compilation [26] or proof-carrying code [30]
might be used to remove the compiler from the TCB and instead
allow the bytecode itself to be verified [20].

Another obvious question about the trusted computing base is
to what degree the partitioning process itself must be trusted. It
is clearly important that the subprograms a program is split into
are generated under the same assumptions regarding the trust rela-
tionships among principals and hosts. Otherwise, the security of
principal p might be violated by sending code from different parti-
tionings to hosts trusted by p. A simple way to avoid this problem
is to compute a one-way hash of all the splitter’s inputs—trust dec-
larations and program text—and to embed this hash value into all
messages exchanged by subprograms. During execution, incom-
ing messages are checked to ensure that they come from the same
version of the program.

A related issue is where to partition the program. It is necessary
that the host that generates the program partition that executes on
host h be trusted to protect all data that h protects during execution.
That is, the partitioning host could be permitted to serve in place of
h during execution. A natural choice is thus h itself: each partici-
pating host can independently partition the program, generating its
own subprogram to execute. That the hosts have partitioned the
same program under the same assumptions can be validated using
the hashing scheme described in the previous paragraph. Thus, the
partitioning process itself can be decentralized yet secure.

9. Related Work
There are two primary areas of research related to this work:

static and dynamic enforcement of information-flow policies and
support for transparently distributed computation.

There has been much research on end-to-end security policies
and mandatory access control in multilevel secure systems. Most
practical systems have opted for dynamic enforcement using a mix
of mandatory and discretionary access control, for example as de-
scribed in the Orange Book [9]. These techniques (e.g., [13, 23])
have difficulty controlling implicit information flows accurately.

Static analysis of information flow has a long history, although it
has not been as widely used as dynamic checking. Denning origi-
nally proposed a language to permit static checking [8], but it was



not implemented. Other researchers [24, 25, 12] developed tech-
niques for information-flow checking using formal specifications
and automatic or semi-automatic theorem proving.

Recently, there has been more interest in provably-secure pro-
gramming languages. Palsberg and Ørbæk have developed a simple
type system for checking integrity [33]. Others have taken a sim-
ilar approach to static analysis of secrecy, encoding rules similar
to Denning’s in a type system and showing them to be sound using
programming language techniques [46, 17, 35]. No language of the
complexity of Jif [27] has been proven to enforce noninterference;
also, extended notions of soundness that encompass declassifica-
tion are not yet fully developed. All of these previous language-
based techniques assume execution on a trusted platform.

Program slicing techniques [44] provide information about the
data dependencies in a piece of software. The use of backward
slices to investigate integrity and related security properties has
been proposed [14, 21], but the focus has been on debugging and
understanding existing software.

A number of systems (such as Amoeba and Sprite [10]) auto-
matically redistribute computation across a distributed system to
improve performance, though not security. Various transparently
distributed programming languages have been developed as well;
a good early example is Emerald [19]. Modern distributed inter-
face languages such as CORBA [31] or Java RMI do not enforce
end-to-end security policies.

In our approach, certain parts of the system security policy are
explicit in the labels appearing in the program; others are implicit
in the declassifications and endorsements made in the program text.
There has been some work on specifying end-to-end security for
systems containing downgrading, such as the work on intransitive
noninterference [38, 34] and on robust declassification [49].

Jif and secure program partitioning are complementary to cur-
rent initiatives for privacy protection on the Internet. For exam-
ple, the recent Platform for Privacy Preferences (P3P) [32] pro-
vides a uniform system for specifying users’ confidentiality poli-
cies. Security-typed languages such as Jif could be used for the im-
plementation of a P3P-compliant web site, providing the enforce-
ment mechanisms for the P3P policy.

10. Future Work
The Jif/split prototype has given us insight into the difficulties of

building distributed systems with strong end-to-end information-
flow guarantees, but there is still much room for improvement.

Experience with larger and more realistic programs will be nec-
essary to determine the real trade-offs involved. This paper has fo-
cused on one axis of security, namely protecting confidential data.
Other axes, such as reliability and auditing of transactions, also
play a role in the security of distributed computations, and they
should not be neglected.

Of course security and performance are often at odds, and the
same is true here. Jif/split assumes that the security of the data
is more important than the performance of the system. However,
we believe that encoding the security policy in the programming
language makes this trade-off more explicit: if the performance
of a program under a certain security policy is unsatisfactory, it is
possible to relax the policy (for instance, by declaring more trust in
certain hosts, or by reducing the restrictions imposed by the label
annotations). Under a relaxed policy, the compiler may be able to
find a solution with acceptable performance—the relaxed security
policy spells out what security has been lost for performance. The
prototype allows some control over performance by allowing the
user to specify relative costs of communication between hosts. The
host assignment tries to find a minimum cost solution, but other

constraints could be added—for example, the ability to specify a
particular host for a given field.

Another limitation to the current prototype is that it accepts only
sequential source programs. Providing information-flow guaran-
tees in concurrent systems is a difficult problem, but one that is
important for providing realistic, secure systems. The main ob-
stacle is soundly accounting for information flows that arise due
to synchronization of the processes—without imposing restrictions
that prohibit useful programs. Another difficulty in the concurrent
setting, which we have not addressed in the present work, is the
problem of garbage collection.

More immediately, there are a number of useful features of Jif
that are not yet supported in Jif/split. Full Jif includes an actsfor

relation, which allows the program to determine whether one prin-
cipal has delegated privileges to another, a switch label con-
struct and dynamic labels, which allows labels to be compared and
manipulated at run time, and label polymorphism, which allows
classes to be parameterized by a security level and enables code
re-use. Jif also provides support for tracking information flows
through exceptions and other non-local control transfers.

Some of these features can be straightforwardly incorporated
into Jif/split. The control-transfer mechanisms described in Sec-
tion 5 are already sufficient to express exceptions and non-local
control transfers. Likewise, the actsfor construct presents no
technical difficulties, and could readily be included. Label poly-
morphism could be implemented (at the expense of code bloat) by
duplicating the code for each instantiation of a parameterized class;
we are investigating cleaner solutions. Dynamic labels appear to be
the most difficult feature of Jif to provide in Jif/split. The difficulty
is that our code-partitioning scheme relies on the label information
to transform the program, but dynamic labels aren’t known until
run time. This problem we leave to future work.

11. Conclusion
This paper presents a language-based technique for protection of

confidential data in a distributed computing environment with het-
erogeneously trusted hosts. Security policy annotations specified
in the source program allow the splitter to partition the code across
the network by extracting a suitable communication protocol. The
resulting distributed system satisfies the confidentiality policies of
principals involved without violating their trust in available hosts.
The system also enforces integrity policies, which is needed be-
cause of the interaction between integrity and confidentiality in the
presence of declassification. The Jif/split prototype demonstrates
the feasibility of this architecture. Our experience with example
programs has shown the benefits of expressing security policies ex-
plicitly in the programming language, particularly with respect to
catching subtle bugs.

Collaborative computations carried out among users, businesses,
and networked information systems continue to increase in com-
plexity, yet there are currently no satisfactory methods for deter-
mining whether the end-to-end behavior of these computations re-
spect the security needs of the participants. The work described in
this paper is a novel approach that is a useful step towards solving
this essential security problem.
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