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Sophisticated cryptographic mechanisms for secure computation, such as multi-party

computation (MPC) and homomorphic encryption (HE), allow for computing over en-

crypted data. These mechanisms have the potential to be used in a vast array of ap-

plications, from joint computations between mutually distrusting parties to privacy-

preserving offloading of computation to service providers. While scientific advances

have brought the performance of these mechanisms closer into widespread practical

use, they still remain the purview of experts because of their forbidding programming

models. We argue that compilers are necessary to democratize secure computation: a

compiler would allow developers can write applications without worrying about the

complicated details of using cryptographic mechanisms such as MPC and HE.

To this end, we present two compilers for secure computation. First, we present

Viaduct, an extensible compiler that can target a variety of cryptographic mechanisms.

Developers write Viaduct programs in a security-typed language that allow them to an-

notate data with high-level security policies; the compiler then uses these annotations

to determine which cryptographic mechanism can most efficiently and securely ex-

ecute program components. Second, we present Viaduct-HE, a compiler that targets

homomorphic encryption schemes. Modern HE schemes afford great performance im-

provements through batching many data elements into a single ciphertext, but data

layouts that take advantage of batching most efficiently can be very complicated. De-

velopers write Viaduct-HE programs in a high-level, array-oriented language; the com-

piler then searches for efficient strategies to lay out data in ciphertexts.
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There are countries out there where people speak English. But not like

us—we have our own languages hidden in our carry-on luggage, in our

cosmetics bags, only ever using English when we travel, and then only

in foreign countries, to foreign people. It’s hard to imagine, but English

is their real language! Oftentimes their only language. They don’t have

anything to fall back on or to turn to in moments of doubt.

- Olga Tokarczuk, Flights

The secret in the poet’s heart remains unknown to the secret police, de-

spite their ability to predict his every thought, utterance, andmovement by

monitoring the cerebroscope which he must wear day and night. We can

know which thoughts pass through a man’s mind without understanding

them. Our inviolable uniqueness lies in our poetic ability to say unique

and obscure things, not in our ability to say obvious things to ourselves

alone.

- Richard Rorty, Philosophy and the Mirror of Nature
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CHAPTER 1

INTRODUCTION

Protecting the confidentiality and integrity of data in transit—i.e., data being com-

municated over a network—and data at rest—i.e., data in storage—has been the tra-

ditional raison d’être of cryptography. Mechanisms providing such protection are a

ubiquitous feature of modern computing. For example, HTTPS, which uses Transport

Layer Security (TLS) for encryption, is now the default protocol used in major web

browsers to communicate with web servers [84]. Most operating systems have utili-

ties for encrypting data in persistent storage (e.g., FileVault in macOS, cryptoloop and

dm-crypt in GNU/Linux, BitLocker in Windows).

However, certain applications have stronger requirements that go beyond protect-

ing data in transit and data at rest: they need to protect data in use. These applications

need mechanisms for secure computation.1

1.1 The Need for Secure Computation

The need for secure computation arises primarily when the execution of an applica-

tion is distributed between parties that do not fully trust each other. In such cases,

one party might require that another party, though relied upon to perform some com-

putation for the application, should not be able to acquire sensitive data or be able to

unduly influence some output of the application. For example, an application might

have party B perform some computation that requires A’s private data. The application

1
It is common to use secure computation to refer solely to the protection of the confidentiality of data

in use, and to use verifiable computation to refer to the protection of the integrity of data in use. The term
secure computation is also used sometimes to refer exclusively to a specific cryptographic mechanism,

multi-party computation (MPC). Throughout this document, we use the term secure computation to mean

broadly the protection of either the confidentiality or integrity of data in use, and never specifically to

MPC.
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might use standard cryptography like encryption to protect A’s data en route to B from

eavesdroppers. Once the data reaches B, however, encryption by itself falls short, since

B must somehow perform computations over encrypted data, which is not generally

possible without decryption keys (which we assume is not the case here because of the

mutual distrust between A and B). Thus the application needs mechanisms for secure

computation.

Applications requiring secure computation are becoming more common today;

here we give some typical scenarios.

Cloud hosting. Instead of running applications on premises, many organizations

choose to use the compute and storage of a cloud provider such as Amazon Web Ser-

vices (AWS), Microsoft Azure, or Google Cloud Platform (GCP) for cost savings or con-

venience. At the same time, clients want assurance that cloud providers are properly

executing applications and are not exfiltrating sensitive data from their applications.

Even if a client trusts the cloud provider, compute resources often are virtualized and

host multiple tenants, allowing co-located tenants to mount attacks against an appli-

cation [93].

Decentralized applications. Many systems are designed to be decentralized and to

be run independently in a network crossing many administrative domains. This is

especially the case for blockchains. In this setting, parties who run nodes in the net-

work are not permissioned—i.e., parties can participate in the network freely without

permission—and thus are mutually distrusting, with consensus reached by an estab-

lished protocol (e.g., proof-of-work [81]). Since these networks are public, parties want

to protect sensitive data (e.g., wallet amounts) while still allowing computations over

such data.

2



Trusted Hardware Pure Cryptography
Pros - simple programming model - strong security guarantees

- efficient - portable

Cons - susceptible to side channel attacks - inefficient

- not portable - hard to program

Table 1.1: Trade-offs between secure computation mechanisms.

Third-party services. Organizations who have users of services provided by third

parties might be wary of such services having access to proprietary data. Recently,

Samsung banned employees from using ChatGPT and other generative AI services

after finding confidential company data in a leak [52]. Individualsmight also be reticent

to upload sensitive personal data (e.g., health data, finance data) to such services.

Secure aggregations. Members of a group might find the need to compute some

aggregated information about the group but want to keep their individual information

secret. For example, hospitals might want to share aggregated patient information

with each other, but be wary of releasing sensitive health information about individual

patients.

1.2 Two Approaches to Secure Computation

Mechanisms for secure computation fall broadly into two camps. First, trusted exe-

cution environments (TEEs) such as Intel Software Guard Extensions (SGX) [28] and

Sanctum [29] have special hardware modules (usually called enclaves) that allow ap-

plications to run securely even within a possibly compromised machine. Processors

compute data “in the clear” as normal, but data resident in memory is decrypted / en-

crypted as needed. This provides strong isolation guarantees for applications running

3



in enclaves, ensuring that even a malicious operating system cannot exfiltrate sensitive

data from the application. TEEs also have remote attestation mechanisms that assure

remote clients that the application they intend to interact with is the one actually run-

ning on an enclave, ensuring the integrity of the application’s outputs.

The second class of mechanisms for secure computation are purely cryptographic.

Here we focus on mechanisms distinguished by their ability to support general compu-

tation. There are alsomany cryptographic mechanisms that target specific applications

such as private set intersection [78]; we will not discuss these further.

Multi-party computation (MPC). MPC protocols allow several parties to jointly

compute a function together over their private inputs. The protocol allows the parties

to reveal the output of the function to each other without revealing anything else about

their inputs.

Zero-knowledge proofs (ZKP). Zero-knowledge proofs in general allow one party

(the prover) to provide an attestation that some statement is true without revealing

any other information, allowing another party (the verifier) to believe the statement

without gaining undue knowledge. ZKP protocols can be specifically used by the ver-

ifier to check that the result of a computation locally performed by the prover is cor-

rect. Crucially, the computation can depend on the prover’s secret inputs, and the ZKP

mechanism does not leak anything else about the input except what can be learned

from the result.

Homomorphic encryption (HE). Homomorphic encryption schemes allow compu-

tation directly over ciphertexts. HE schemes are homomorphic in that the ciphertext

operations correspond to plaintext operations: given messages m1 and m2 encrypted
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to ciphertexts c1 and c2, the ciphertext c3 that results from adding c1 and c2 should

decrypt to the message m1 + m2. This allows a party who has access to ciphertext

containing another party’s private data to perform computations without knowing the

actual value of the data. If the example application above used a homomorphic encryp-

tion scheme, party B could securely perform computations over an encrypted copy of

party A’s data.

1.2.1 Trade-offs

Neither of the two classes of secure computation mechanisms are preferable over the

other in all scenarios. The two classes have different trade-offs, which is summarized

by Table 1.1.

In general, because trusted hardware performs computations “in the clear,” it has

better performance and can support larger applications than purely cryptographic

mechanisms. Its programming model is also simple, as legacy applications can be au-

tomatically adapted to run under TEEs [100, 8, 9]. At the same time, trusted hardware

mechanisms have some drawbacks. Trusted hardware ties applications to a particular

hardware architecture, which can be out of scope in certain settings (e.g., military ap-

plications might need to run on government-whitelisted hardware). Portability thus

becomes an issue: applications have to be developed against a specific trusted hard-

ware API, and adding support for new architectures would require rewriting parts of

the application.

The biggest drawback to trusted hardware, however, is that its security guarantees

can be undermined by vulnerabilities due to unforeseen design and implementation

flaws. This holds especially true for Intel SGX, as there have been many attacks target-
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ing it since its introduction [82]. These attacks range from exfiltrating secret data from

an enclave through a variety of side channels (timing, microarchitectural state, mem-

ory access patterns), corruption of enclave computations, and more. Mitigations have

been developed for these vulnerabilities, but their sheer number and wide range can

severely undermine the assurance that trusted hardware’s security guarantees actually

hold.

Purely cryptographic mechanisms, meanwhile, are usually considered to be more

secure than trusted hardware mechanisms. As standard in cryptography, the security

of such mechanisms rests on the assumption that certain mathematical problems are

hard to solve, and that the mechanisms have been properly implemented—for many,

an easier thing to believe than the assumption that the complex trusted hardware de-

signs of Intel or other hardware vendors are secure, and that such designs have been

implemented properly. Purely cryptographic mechanisms are also not tied to specific

hardware, and thus can easily be ported across many different architectures.

At the same time, developing applications using purely cryptographic mechanisms

for secure computation is often much more challenging than developing applications

that use trusted hardware.

First, purely cryptographic mechanisms are less efficient than trusted hardware;

particularly for MPC and HE, the performance hit compared to computation “in the

clear” can be many orders of magnitude. While algorithmic advances and hardware

acceleration can narrow the gap, this performance hit often times imposes a hard limit

on the size of applications that can be developed using purely cryptographic mecha-

nisms.

Another difficulty in developing applications that use purely cryptographic mech-
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anisms for secure computation is the relative lack of programmability of these mecha-

nisms. The use of these mechanisms often requires expressing computation in unintu-

itive ways, and requires cryptographic expertise to develop efficient applications. The

following highlights some of the major issues.

Matching security requirements and guarantees. Cryptographic mechanisms

vary in their computational capabilities, their threat models, and their security guar-

antees. For example, a semi-honest MPC protocol cannot provide guarantees when

parties deviate from the protocol, and zero-knowledge proofs can only attest the re-

sults of computations that depend on the prover’s secret data. At the same time, the

security requirements of a program component have a complex interplay with the trust

assumptions of the parties executing the program, the dependency of the component

to other parts of the program, and more. Determining whether a cryptographic mech-

anism can securely implement a program component—and whether the mechanism is

the most efficient way to implement the component—thus becomes a vexed affair.

Circuit representation of programs. Purely cryptographic mechanisms for secure

computation for the most part have a limited programming model that forces devel-

opers to write their programs in straight-line or “circuit” form. When writing appli-

cations directly against cryptographic libraries, this circuit requirement precludes the

use of standard program constructs such as conditionals, loops, and dynamic memory

accesses. Developers must then transform programs by unrolling loops, multiplexing

(“muxing”) conditionals, and so on.

Parameter selection. Cryptographic mechanisms often have parameters (e.g., key

length) that modulate their guaranteed security level and efficiency. Parameter selec-
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tion is especially complicated for lattice-based homomorphic encryption schemes—the

family of homomorphic encryption schemes most commonly used today—wherein the

efficiency of homomorphic operations and amount of computation supported by the

scheme is extremely sensitive to the encryption parameters initially set. Setting pa-

rameters to ensure both security and efficiency thus requires significant expertise.

Domain-specific optimizations. Some optimizations apply only to a particular

cryptographic mechanism. For example, someMPC protocols can be “mixed” together,

allowing computations to be partitioned into subcomputations that are each computed

by a different protocol [37]. If properly done, the partitioning can place computations

into the protocol that can most efficiently implement them. However, computing ef-

ficient partitionings can be difficult [57]. As another example, homomorphic encryp-

tion schemes often support vectorization, allowing thousands of data elements to be

encrypted in the same ciphertext. Thus programmers must be aware of such domain-

specific optimizations and have cryptographic expertise to write programs with good

performance.

1.3 Compilers for Secure Computation

To alleviate the difficulty of writing programs that use secure computation mecha-

nisms, much prior work have focused on the development of compilers that target

such mechanisms [55, 72, 2, 89, 18, 24, 103, 32, 22, 34, 68, 6, 31, 104, 74, 85, 30]. The

idea is that instead of using a secure computation library directly, developers can in-

stead write their programs in a high-level language and the compiler will do the hard

work of translating the program into an implementation that directly uses the APIs of

secure computation libraries. Instead of application developers shouldering the pro-
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grammability burdens discussed earlier—converting programs to circuits [44, 83] pa-

rameter selection [34], domain-specific optimization [31, 104, 74, 57, 18]—these are

instead handled automatically by the compiler.

In this dissertation, we discuss the design and implementation of compilers that

tackle difficult programmability challenges for secure computation that still remain

largely unresolved.

1.3.1 Extensibility

Existing compilers for secure computation compile to a single cryptographic

mechanism—i.e., anMPC compiler will not generate code that uses ZKP, and vice versa.

Because these compilers support only one mechanism with a fixed security guarantee,

these compilers inherently assume that the security requirements of programs are uni-

form. But programs naturally have heterogenous security requirements: one part of a

program might have a different security requirement than another part.

For instance, consider an “interval” program between three parties A, B, and C.

A and B trust each other to not cheat, but neither one wants to reveal their private

information to the other; meanwhile, C does not trust neither A or B and does not

want to reveal its private information to them, and vice versa. The interval program

computes the smallest interval over which the set of secret points owned by A and B

lie; the program then checks whether a single point owned by C lies inside this interval.

The security policy for the interval program requires that the secret points from A, B

and C be kept secret, and that the only information publically revealed should be the

extent of the interval and whether C’s point lies within it. The first part of the program

(computing the interval of points fromA and B) canmost naturally be implemented as a
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multi-party computation between A and B; the second part of the program (computing

whether C’s point lies within the interval) can most naturally be implemented by C

sending a zero-knowledge proof to A and B. Importantly, a traditional MPC or ZKP

compiler cannot generate this implementation of the interval program, since it uses

both MPC and ZKP.

A compiler for secure computation that reflects the heterogenous security require-

ments thus would be extensible, allowing support a variety of secure computation

mechanisms. Additionally, the ability of such a compiler to automatically match pro-

gram components with mechanisms that can implement them securely and efficiently

would greatly ease application development, allowing programmers to develop secure

distributed programs without expertise in secure computation.

To this end, we develop Viaduct, an extensible compiler for secure computation.

Viaduct allows developers to write programs annotated with information flow la-

bels [38, 80, 7, 96] that define their intended security policy. The compiler then analyzes

these annotations to determine the most efficient cryptographic mechanism that can

securely implement program components.

A major contribution of Viaduct is to extend information flow labels, historically

used to specify security policies, to capture both the security policies of programs and

the security guarantees of cryptographic mechanisms. With the uniform abstraction

of labels, the compiler can easily match security requirements of program components

with security guarantees of secure computation mechanisms. Along with labels, Via-

duct has a set of well-defined extension points to allow developers to easily add new

cryptographic mechanisms and allow the compiler to reason about the cost and com-

putational constraints of such mechanisms. The compiler can thus naturally handle

heterogenous security policies, such that of the interval program.
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1.3.2 Vectorized HE

Modern homomorphic encryption schemes support SIMD computations. Because HE

operations are still orders of magnitude slower than their cleartext counterparts, mak-

ing good use of this SIMD capability by vectorizing HE programs is a particularly im-

portant optimization, as vectorization can drastically reduce the number of HE opera-

tions needed to be executed. At the same time, vectorized HE programs look very dif-

ferent from regular programs, requiring significant expertise to develop. A large litera-

ture of prior have developed expert-written vectorized HE programs [58, 47, 17, 3, 62],

but automatic vectorization of arbitrary HE programs have only recently been ex-

plored [31, 104, 74].

Automatic vectorization for HE is significantly different from other vectorization

regimes, such as compiler support for generating SIMD instructions in modern ISAs.

In particular, vectorized HE has two main constraints that make it novel: (1) very wide

vector widths, on the order of thousands of slots; and (2) limited data movement oper-

ations that preclude arbitrary shuffling of data in vectors. This makes the substantial

literature on superword-level parallelism (SLP) vectorization [65, 76] and loop-nest

vectorization [14] difficult to adapt to this setting, and requires new techniques for the

automatic vectorization of HE programs.

To lower the burden of developing efficiently vectorized HE programs, we develop

Viaduct-HE, a vectorizing compiler for homomorphic encryption. The key design fea-

ture that allows Viaduct-HE to generate efficient HE programs is its array-oriented

source language. This allows the compiler to reason about computations at a much

higher level of abstraction than reasoning about individual operations (i.e., at the level

of arithmetic circuits). With source programs consisting of high-level array operations,
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the compiler can give a simple representation to the layout of data in ciphertexts, which

allows it to quickly search for efficient data layouts.

Together, the Viaduct and Viaduct-HE compilers greatly lower the programmabil-

ity burden of cryptographic mechanisms for secure computation. This democratizes

secure computation, making it a much more easily deployable and appealing technol-

ogy to satisfy the security requirements of applications.

1.4 Roadmap

The rest of this dissertation is as follows. Chapter 2 discusses the design and imple-

mentation of the Viaduct compiler, as well as an evaluation that shows that it is a

feasible approach to developing an extensible compiler for secure computation. Chap-

ter 3 discusses the design and implementation of the Viaduct-HE compiler, as well as

a an evaluation that shows that the prototype implementation can generate efficient

vectorized HE programs that match expert-written HE programs. Finally, Chapter 4

concludes with a summary of the results of this dissertation, and a discussion of pos-

sible future research directions to extend Viaduct and Viaduct-HE.
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CHAPTER 2

VIADUCT: AN EXTENSIBLE COMPILER FOR SECURE COMPUTATION

Modern distributed applications such as federated systems and decentralized

blockchains typically involve parties from multiple administrative domains each with

its own security policy. Companies might be required by law (such as the European

Union’s GDPR [45]) to protect user privacy when they process user data or share it

with other companies. The lack of full trust among parties makes it difficult to develop

such systems, especially when the security requirements necessitate the use of cryp-

tographic mechanisms. Recent efforts from the cryptography community have pushed

these mechanisms from theory to practical deployment [13], but a gap remains: they

still require too much expertise to use successfully [39, 46, 36].

In this chapter we discuss Viaduct, a system that makes it easier for non-expert pro-

grammers to develop secure distributed programs that employ cryptography. It puts a

variety of sophisticated cryptographic mechanisms in the hands of developers, includ-

ing securemultiparty computation (MPC) protocols, zero-knowledge proofs (ZKP), and

commitment schemes. Viaduct’s security-typed language allows developers to annotate

programs with information-flow labels to specify fine-grained security policies regard-

ing the confidentiality and integrity of data and computation. An inference algorithm

allows these annotations to be lightweight, and enables Viaduct to reject inherently in-

secure programs. Viaduct then enforces these policies by compiling high-level source

code to secure distributed programs, automatically choosing efficient use of cryptog-

raphy without sacrificing security. The compiler supports a range of cryptographic

protocols whose security guarantees are characterized using information-flow labels.

New protocols can be added to Viaduct by specifying their security properties and by

implementing well-defined interfaces.
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Figure 2.1: Architecture of Viaduct.

Although prior efforts have attempted to bridge this gap, most existing work fo-

cuses on compiling programs to a fixed set of cryptographic mechanisms. For example,

some focus on compiling programs to MPC (e.g., Wysteria [89], ObliVM [72], SCALE-

MAMBA [5]); others focus on ZKP (e.g., Pinocchio [85], Buffet [106], xjSNARK [64]).

To our knowledge, by providing a unified abstraction to both specify security policies

of programs and to specify security guarantees of cryptographic mechanisms, Viaduct

is the first system to compile secure, distributed programs with an extensible suite of

cryptography.

2.1 Overview

Figure 2.1 gives a high-level overview of Viaduct. Its compiler takes a high-level source

program partially annotated with information-flow labels. The compiler infers labels

consistent with programmer-supplied annotations to determine security requirements

for all program components. Then for each component the compiler selects a protocol

that matches these requirements, guiding the selection with a cost model. The output

14



1 host alice: {A ∧ B←}
2 host bob : {B ∧ A←}
3

4 val a1, a2, a3 = input int alice
5 val b1, b2, b3 = input int bob
6 val a = min(a1, a2, a3)
7 val b = min(b1, b2, b3)
8 val b_richer = declassify a < b to {A ⊓ B}
9 output b_richer to alice , bob

Figure 2.2: Implementation of the historical millionaires’ problem in Viaduct.

Viaduct uses MPC for the comparison a < b, but computes the min-

ima locally.

1 host alice: {A}
2 host bob : {B}
3

4 val n: {B ∧ A←} =
5 endorse (input int bob) from {B}
6 var tries: {A ⊓ B} = 5
7 var win: {A ⊓ B} = false
8 while (0 < tries ∧ !win) {
9 val guess =
10 declassify (input int alice) to {A ⊓ B→}
11 val tguess: {A ⊓ B} =
12 endorse guess from {A ⊓ B→}
13 win = declassify (n == tguess) to {A ⊓ B}
14 tries -= 1
15 }
16 output win to alice , bob

Figure 2.3: Guessing game, where Alice attempts to guess Bob’s secret num-

ber. Viaduct uses zero-knowledge proofs so Alice learns nothingmore

than whether her guesses are correct. Most labels in this code can be

inferred automatically.

is a secure and efficient distributed program, which hosts execute using the Viaduct

runtime system. The Viaduct architecture has a small set of well-defined extension

points, allowing developers to add support for new protocols with relative ease.

We give two examples to motivate and describe the Viaduct compilation process.
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HistoricalMillionaires’ Problem. Our first example is a slightlymodified version of

the “millionaires’ problem” [108]. As in the classic formulation, two individuals, Alice

and Bob, want to determine who has more money without revealing howmuch money

they have to the other person. Rather than comparing their current wealth, in our “his-

torical” variant Alice and Bob want to see who was richer at their poorest. Figure 2.2

shows an implementation of the historical millionaires’ problem in Viaduct. The pro-

gram compares Alice’s lowest wealth with Bob’s, and outputs the answer (b_richer)

to both Alice and Bob.

Viaduct programsmust specify the hosts that participate in the program, alongwith

the authority that each host has, as shown in sections 2.1 to 2.1. All security policies

in Viaduct are represented using security labels (in blue), which are defined formally

in §2.1.1. Security labels capture both confidentiality and integrity. For example, host

alice is given label A ∧B←. Here, B← is the integrity component of B (similarly, B→

is the confidentiality component of B). This label means that Alice fully trusts host

alice (with both confidentiality and integrity), while Bob trusts host alice to execute

the program correctly, but does not trust the host with his secret data.

All variables and expressions in Viaduct carry a security label, which is derived

from the possible flows of information in the program. The variables in sections 2.1

to 2.1 carry the same label as their respective hosts, since they only involve data local

to that host. However, the comparison a < b involves both hosts’ private data, so has

the higher security label A ∧ B. This label corresponds to data that is secret to and

trusted by both principals. Since A ∧ B corresponds to secret data, we require an

explicit declassification to the labelA⊓B, which describes data that both hosts can see

and trust.

During protocol selection (§2.3), Viaduct chooses cryptographic protocols to se-
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curely and efficiently execute our example. The central idea that allows Viaduct to

select protocols automatically is that the security guarantees of protocols can also be

captured by labels. Neither Alice nor Bob alone has enough authority to be responsible

for the comparison, so Viaduct generates the following distributed implementation: Al-

ice and Bob compute their respective minima locally but perform the comparison a < b

in semi-honest MPC. A semi-honest MPC protocol works here because the authority

labels assigned to the hosts indicate that Alice and Bob trust each other’s hosts for in-

tegrity. Without that assumption, Viaduct is instead forced to select another protocol

such as maliciously secure MPC.

There are typically multiple ways to assign protocols to a given program expres-

sion. For example, the computation of Alice’s minimum on §2.1 could be securely

performed in MPC, but since the computation requires the authority of Alice alone, it

is cheaper yet still secure to do the computation locally on Alice’s machine. Using its

cost estimator, Viaduct compiles the optimal program described above.

After protocol selection, Viaduct outputs a distributed program which captures the

required cryptography to execute the source program. Hosts can execute this dis-

tributed program using Viaduct’s runtime system.

Guessing Game. Figure 2.3 presents a contrasting example. Here, Alice and Bob

have security labels A and B respectively, modeling a malicious corruption scenario.

Since they do not trust each other to execute the program correctly, semi-honestMPC is

not applicable. Bob inputs a number n, and Alice has five attempts to guess the number.

Since Bob’s input initially has label B, it must first be endorsed to the label B ∧ A←,

raising integrity so that Bob cannot unilaterally modify the value. This endorsement

requires a cryptographic mechanism to protect the integrity and secrecy of variable n
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throughout program execution.

Viaduct synthesizes a program in which Bob commits to n so that its value remains

secret to Alice but Bob cannot later lie about the committed value. The statement n ==

tguess is computed by having Bob send a zero-knowledge proof (ZKP) to Alice, so that

Alice can trust the outcome but learns no additional information. All other variables

are replicated in plaintext across the two hosts.

These examples show that Viaduct is general, as it treats protocols such as MPC

and ZKP uniformly.

2.1.1 Specifying Security Policies

In Viaduct, security policies capture a notion of authority. Policies are represented

by principals, formulas composed of conjunctions and disjunctions over a set of base

principals {A,B,C, . . .} and two special principals 0 and 1. Principal 0 represents

maximal authority and corresponds to the conjunction of all base principals; principal

1 represents minimal authority and corresponds to the disjunction of all base prin-

cipals. We distinguish authority over confidentiality and over integrity. The security

requirements of information are thus characterized by labels consisting of pairs ⟨pc, pi⟩

of two principals pc and pi, for confidentiality and integrity respectively.

A conjunction of principals p1∧p2 represents combined authority. For confidential-

ity, this means the principal is allowed to read data that p1 may read and also data that

p2 may read. For integrity, the conjunction may influence data that p1 may influence,

and also data p2 may influence. A disjunction p1∨p2 corresponds to common authority,

which may read or influence exactly the data that either p1 and p2 may individually.
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Principals carry a natural partial order based on their authority. We write p1 ⇒ p2

to mean p1 “acts for”, or is at least as trusted as, p2. This relation coincides with logical

implication: for example, p1 ∧ p2 ⇒ p1 and p1 ⇒ p1 ∨ p2.

It is convenient to have syntax that works over both components of labels simul-

taneously. So, we extend 0, 1, ∧, ∨, and⇒ pointwise, and write one principal to mean

that the two components are the same. For example, the annotation {A} denotes the

label ⟨A,A⟩. To talk about confidentiality and integrity separately, we use projections,

writing ℓ→ for the confidentiality projection of ℓ and ℓ← for its integrity. Thus, {B

∧ A←} expands to ⟨B,B ∧ A⟩, meaning Bob’s sole confidentiality and the combined

integrity of Alice and Bob. These projections are defined formally as follows:

⟨pc, pi⟩→ ≜ ⟨pc, 1⟩ ⟨pc, pi⟩← ≜ ⟨1, pi⟩.

The reflection operator [109] swaps the two components:

JJJJ

(⟨pc, pi⟩) ≜ ⟨pi, pc⟩.

Viaduct programs assign labels to hosts to indicate the amount of trust placed in them,

but there are also labels on data. The important insight, borrowed from FLAM [7], is

that the same set of labels can be used to talk about both authority and information flow.

When placed on data, a label takes on an information flow interpretation, specifying

the minimum authority required to read and influence that data. As in FLAM, standard

operations from information flow literature can be reformulated in terms of authority:

ℓ1 ⊑ ℓ2 ⇐⇒ ℓ→2 ⇒ ℓ→1 and ℓ←1 ⇒ ℓ←2 (flows to)

ℓ1 ⊔ ℓ2 ≜ (ℓ1 ∧ ℓ2)→ ∧ (ℓ1 ∨ ℓ2)← (join)

ℓ1 ⊓ ℓ2 ≜ (ℓ1 ∨ ℓ2)→ ∧ (ℓ1 ∧ ℓ2)← (meet)

The flows-to relation ℓ1 ⊑ ℓ2 orders information flow policies: it means label ℓ1 is

more permissive about the use of information than ℓ2. The join ℓ1⊔ℓ2 is more restrictive
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than both ℓ1 and ℓ2, and the meet ℓ1 ⊓ ℓ2 is more permissive than either ℓ1 or ℓ2. The

most restrictive label—that of completely secret, untrusted data—is 0→ = ⟨0, 1⟩, and

the least restrictive (public, trusted data) is 0← = ⟨1, 0⟩.

A key property of this model, inherited from FLAM, is that labels form a bounded

distributive lattice under both (⇒,∧,∨, 0, 1) and (⊑,⊓,⊔, 0←, 0→). This property is

important for inferring labels that were not explicitly given by the programmer (§2.2.2).

2.1.2 Threat Model

Compiled programs run in a distributed setting in which each host executes a single

thread concurrently with other hosts. Hosts communicate via message passing over

secure, private, asynchronous channels. There is no shared memory that spans multi-

ple hosts. We assume the attacker cannot observe wall-clock timing. Additionally, we

are not concerned with availability, so the attacker can halt execution at any time.

In the setting of Viaduct, there is no single notion of an attacker. For example,

in the historical millionaires problem, neither Alice nor Bob fully trust the other. To

Alice, Bob is a potential attacker; Alice expects her security requirements to be met

as long as the behavior of Bob’s (partially trusted) host is accurately described by the

label assigned to it (B ∧ A←). Conversely, to Bob, Alice is a potential attacker. Hence,

we are concerned with security versus all possible attackers.

We model the power of an attacker using a label. The attacker can read the data

on a host if the confidentiality of the attacker label is at least as trusted as that of the

host, and can change data and code on the host if the integrity of the attacker label is at

least as trusted as that of the host. We do not consider unreasonable attack scenarios
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in which a host has compromised integrity but still enforces confidentiality.
1

For example, in the historical millionaires’ problem, there are five interesting cor-

ruption scenarios: no corrupted hosts; alice has corrupted confidentiality; bob has

corrupted confidentiality; both have corrupted confidentiality; or both alice and bob

are fully corrupted. The full corruption of a single host is not possible because the

hosts trust each other, so if the integrity of one is corrupted then the other’s integrity

must be corrupted also.

2.1.3 Label Inference

Viaduct selects a protocol for every piece of data and computation in the program based

on their authority requirements, represented as labels. Intuitively, program compo-

nents must be executed by protocols with enough authority to defend the confiden-

tiality of host inputs and the integrity of host outputs. These authority requirements

are captured formally by a type system (§2.2.1), and Viaduct uses a novel inference al-

gorithm (§2.2.2) to compute for all program components the minimum-authority labels

that still respect the information-flow constraints on the program.

The only required label annotations on Viaduct programs are the authority labels

on host declarations and labels on declassify/endorse expressions—all labels on vari-

ables can be elided, making annotation burden low. As we show in our evaluation, in

practice these required annotations are enough to capture programmer intent: min-

imally annotated programs compile to the same distributed programs as their fully

annotated versions.

1
The semi-honest and malicious threat models common in cryptography correspond to corrupting

only hosts’ confidentiality and corrupting both hosts’ confidentiality and integrity respectively.
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2.1.4 Protocol Selection

After label inference, Viaduct performs protocol selection, which assigns a protocol to

compute and store each subexpression and variable. Protocols encompass storage and

computation performed “in the clear” as well as cryptographic mechanisms such as

commitments, MPC and zero-knowledge proofs.

Each protocolP carries an associated authority labelL(P ), which approximates the

security guarantees the protocol provides. Given a program component withminimum

authority requirement ℓ, protocol selection only assigns P to execute that component

ifL(P )⇒ ℓ—that is, ifP meets the authority requirement for the program component.

Intuitively, given a program s and protocol P , we may imagine an ideal function-

ality P s
(in the style of UC [20]) which executes the program fragments of s that are

assigned to P . The fragments of s that are assigned to P may depend on the computa-

tional abilities of P . For example, if P is a commitment protocol, then P s
is only able

to store values but not perform any computations. If P is an MPC protocol, then P s

can execute computations that can be translated into circuits—the standard interface

for MPC implementations.

P s
guarantees that the storage and computation it performs are protected at label

L(P ). In particular, the adversary cannot observe storage or computation performed

by P s
unless its confidentiality is at least L(P ); dually, the adversary cannot influence

storage or computation performed by P s
unless its integrity is at least L(P ).

Examples of protocols and their corresponding authority labels are given in Ta-

ble 2.1. Following the above intuition for the security of functionalities P s
, the author-

ity label of protocols are determined to be the least authority required of the adversary
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Protocol Authority label

Local(h) L(h)
Replicated(H)

d
h∈H L(h)

Commitment(hp, hv) L(hp) ∧ L(hv)←
ZKP(hp, hv) L(hp) ∧ L(hv)←
MAL-MPC(H)

∧
h∈H L(h)

SH-MPC(H)
let I =

∨
h∈H L(h)←(

JJJJ

(I) ∨
∧

h∈H L(h)→
)
∧ I

Table 2.1: Example protocols and security labels that represent their authority.

to corrupt the protocol (in confidentiality or integrity). We explain the example proto-

cols below:

Local(h). No cryptography is performed, and data is stored and computations per-

formed on host h in the clear. It provides exactly the authority of h.

Replicated(H). Data and computations are replicated on all hosts in set H , and

replicated data is checked for equality when necessary. This protocol provides con-

fidentiality

∨
h∈H L(h)→ since all hosts hold the plaintext value. It provides integrity∧

h∈H L(h)← since all hosts must corrupt their local values for the value to be globally

corrupted. Together, these labels form the label

d
h∈H L(h).

Commitment(hp, hv). Data is stored on hp and commitments are placed on hv.

Commitments are computationally inexpensive but usually no computations can be

performed with them. Commitments increase integrity without sacrificing confiden-

tiality. Its confidentiality is L(hp)→ since only hp holds the plaintext value, while hv

only holds a commitment. Its integrity is (L(hp)∧L(hv))← for the same reason as for

replication.

ZKP(hp, hv). A zero-knowledge proof protocol where hp is the prover and hv is

the verifier. The prover computes over its private data and sends the result to the
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verifier, along with a proof that attests the value computed is correct. The proof reveals

nothing about the private data except what can be gleaned from the result itself. Zero-

knowledge proofs provide the same authority as commitments, for essentially the same

reason: the prover holds all secret information and performs all computation, while

the verifier only holds information which allows it to believe in the correctness of the

result, but nothing more.

MAL-MPC(H). A corrupt-majority, maliciously secure multiparty computation

protocol [49, 21, 19] performed by hostsH . The protocol allows hosts to jointly perform

a computation over their private inputs, keeping these inputs secret to the other hosts

and revealing only the result. The label

∧
h∈H L(h) reflects that the confidentiality

(resp., integrity) of data computed in MPC is compromised only if all participating

hosts have compromised confidentiality (resp. integrity).

SH-MPC(H). A corrupt-majority, semi-honest secure multiparty computation

protocol performed by hosts H . While the combined authority label is complex, its

confidentiality and integrity projections are easy to understand. The integrity is equal

to

∨
h∈H L(h)←, since the integrity of the MPC computation may be compromised if

any host behaves maliciously. The confidentiality is equal to(∨
h∈H

JJJJ

(L(h)←)

)
∨

(∧
h∈H

L(h)→
)
.

The first disjunct captures the fact that confidentiality guarantees are discarded if

the integrity of any host is compromised. The second disjunct states that, if all hosts

follow the protocol correctly, the adversary can only learn the state of intermediate

MPC computations if all hosts have corrupted confidentiality. Overall, this means that

in order to compromise confidentiality guarantees of semi-honest MPC, either the in-

tegrity of any host or the confidentiality of all hosts must be compromised.
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cleartext

(1)
val a1, a2, a3 = input int
val am = min(a1, a2, a3)
send am to (MPC(a,b),a)

(3)
val res = recv (MPC(a,b),a)
output res

MPC

(2)
val t_am = recv (Local(a),a)
val am = InputGate(t_am)
val bm = DummyInputGate()
val lt = LTGate(am, bm)
val v = ExecuteCircuit(lt)
send v to (Replicated(a,b),a)

Alice (a)

cleartext

(1)
val a1, a2, a3 = input int
val bm = min(a1, a2, a3)
send bm to (MPC(a,b),a)

(3)
val res = recv (MPC(a,b),b)
output res

MPC

(2)
val am = DummyInputGate()
val t_bm = recv (Local(b),b)
val bm = InputGate(t_bm)
val lt = LTGate(am, bm)
val v = ExecuteCircuit(lt)
send v to (Replicated(a,b),b)

Bob (b)

Figure 2.4: Execution of the compiled distributed program for the historical mil-

lionaires’ problem using a cleartext back end and an MPC back end.

Sends and receives are over protocol–host pairs (P, h). These mes-

sages are processed by the back end for protocol P at host h.

In particular, for the historicalmillionaires’ example, the label of SH-MPC(alice, bob)

is A ∧ B. This is because hosts alice and bob are both assumed to have the high in-

tegrity of (A∧B)←. If alice and bob only have their own integrity, however, then the

label is computed to be A ∨ B. The protocol only has enough authority to perform

computations over data public to both hosts, and neither host trusts the result. Indeed,

semi-honest MPC offers little to no benefit if any host has lower integrity than any

other.
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2.1.5 Runtime

Viaduct provides a modular runtime system for executing compiled distributed pro-

grams, implemented as an interpreter. All hosts run the interpreter with the same

compiled program, which then executes each host’s portion of the program. During

execution, the interpreter calls out to back ends implementing the cryptographicmech-

anisms used in the program. Back ends translate computations in the source language

into their cryptographic realizations. For instance, the back ends for MPC and ZKP in

our implementation build a circuit representation of the program as it executes.

Protocol back ends can send data to and receive data from each other, supporting

the composition of protocols. Source-level declassification and endorsement induce

this communication. For example, in Figure 2.2 on §2.1, the computation a < b is de-

classified from label A ∧ B to A ⊓ B. This declassification causes the MPC protocol

between Alice and Bob to execute its stored circuit for this comparison, and to output

the result in cleartext.

Figure 2.4 shows the execution of the program compiled by Viaduct for the histor-

ical millionaires’ problem. The program runs as follows. (1) First, the cleartext back

ends on Alice and Bob’s machines receive input locally and compute their respective

minima. The back ends send the minima as secret inputs to their respective MPC back

ends, which create input gates for these inputs. (2) Next, the MPC back ends on Alice

and Bob’s machines each create an operation gate that compares Alice and Bob’s secret

inputs. The back ends jointly execute the circuit with the comparison result as output,

which they send to their respective cleartext back ends. (3) Finally, the cleartext back

ends on Alice and Bob’s machines both receive from their MPC back ends and output

the result.
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Temporaries t ∈ T
Assignables x ∈ X
Hosts h ∈ H
Labels ℓ ∈ L
Base Types β ::= unit | bool | int
Data Types D ::= Cellβ | Arrayβ

Values v ::= () | true | false | i ∈ Z
Unary Operators op1 ::= not | − | . . .
Binary Operators op2 ::= ∧ | ∨ | + | × | = | . . .
Methods m ::= get | set | . . .
Atomic Expr. a ::= v | t
Expressions e ::=

| a | opn(a1, . . . , an) | x.m(a1, . . . , an)
| declassify a to ℓ | endorse a from ℓ
| inputβ h | output a to h

Statements s ::=
| let t = e in s | new x = D(a1, . . . , an) in s
| if a then s1 else s2 | b : loop s | break b
| s1; s2 | skip

Figure 2.5: Abstract syntax of Viaduct’s source language.

2.2 Source Language

The syntax for Viaduct’s source language, a simplified version of the surface language,

is given in Figure 2.5. The language supports base types such as booleans and integers,

along with their usual operators. Surface-level assignables (val and var declarations)

and arrays are uniformly represented as data types, a restricted form of objects. Like

regular objects, they are created using constructors (new declarations) and contain

methods. For simplicity, we only include three data types: immutable/mutable cells,

which model surface-level assignables, and arrays. Arrays are dynamically sized but

statically allocated: the size of an array can depend on values known only at run time,

but array references cannot be rebound to different names or stored in arrays.
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We distinguish between fully evaluated atomic expressions a, and expressions e

that evaluate to values and may have side effects. Methods include get and set op-

erations for both mutable cells and arrays (for which they take an index as an ex-

tra argument). Input/output expressions allow programs to interact with hosts. The

declassify expression marks locations where private data is explicitly allowed to flow

to public data, while the endorse expression marks locations where untrusted data is

explicitly allowed to influence trusted data.

Statements consist of let-bindings, assignable declarations, as well as the usual

conditionals, loops, and sequential composition. Temporaries bind values while

assignables bind instances of data types. We require all intermediate computations

to be let-bound by a temporary, enforcing a variant of A-normal form [41]. We use the

more general loop-until-break statements instead of the more traditional while loops,

simplifying the conversion to A-normal form. A break statement (break b) includes

an identifier b that names the loop it breaks out of. While loops are recovered easily:

while e do s ≜ b : loop (if e then s else break b).

2.2.1 Label Checking

Viaduct’s type system enforces secure information flow in a standard way. The type

system serves two purposes. First, it helps programmers ensure there are no unin-

tended information flows: secrets are not leaked to and data is not corrupted by unau-

thorized principals. Second, it specifies what labels can be assigned to variables and

expressions that the user did not explicitly annotate.

Figure 2.6 presents label checking rules for expressions and selected statements.

Expressions are checked by the judgment Γ; pc ⊢ e : ℓ, which means that e has la-
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Γ ⊢ a : ℓ Γ; pc ⊢ e : ℓ
Γ ⊢ v : ℓ

Γ(t) = ℓt ℓt ⊑ ℓ

Γ ⊢ t : ℓ

Γ ⊢ ai : ℓ
Γ; pc ⊢ opn(a1, . . . , an) : ℓ

Γ(x) = ℓx pc ⊑ ℓx
Γ ⊢ ai : ℓx ℓx ⊑ ℓ

Γ; pc ⊢ x.m(a1, . . . , an) : ℓ

pc ⊑ ℓt Γ ⊢ a : ℓf ℓ←f = ℓ←t
ℓ→f ⊑ ℓ→t ⊔ JJJJ

(ℓ←f ) ℓt ⊑ ℓ

Γ; pc ⊢ declassify a to ℓt : ℓ

pc ⊑ ℓt Γ ⊢ a : ℓf ℓ→f = ℓ→t
ℓ←f ⊑ ℓ←t ⊔ JJJJ

(ℓ→f ) ℓt ⊑ ℓ

Γ; pc ⊢ endorse a from ℓf : ℓ

pc ⊑ L(h) L(h) ⊑ ℓ

Γ; pc ⊢ inputβ h : ℓ

pc ⊑ L(h) Γ ⊢ a : L(h)
Γ; pc ⊢ output a to h : ℓ

Γ; pc ⊢ s Γ; pc ⊢ e : ℓ pc ⊑ ℓ
(Γ, t : ℓ); pc ⊢ s

Γ; pc ⊢ let t = e in s

Γ ⊢ ai : ℓ pc ⊑ ℓ
(Γ, x : ℓ); pc ⊢ s

Γ; pc ⊢ new x = D(a1, . . . , an) in s

pc ⊑ pc ′ Γ ⊢ a : pc ′

Γ; pc ′ ⊢ s1 Γ; pc ′ ⊢ s2
Γ; pc ⊢ if a then s1 else s2

pc ⊑ pc′ (Γ, b : pc ′); pc ′ ⊢ s
Γ; pc ⊢ b : loop s

Γ(b) = ℓb pc ⊑ ℓb

Γ; pc ⊢ break b

Γ; pc ⊢ s1 Γ; pc ⊢ s2
Γ; pc ⊢ s1; s2 Γ; pc ⊢ skip

Figure 2.6: Information flow checking rules for expressions and statements.

bel ℓ under the context on the left. Here, Γ is a finite partial map from temporaries,

assignables, or loop names to labels:

Label Contexts Γ ::= · | Γ, t : ℓ | Γ, x : ℓ | Γ, b : ℓ

The program counter label pc is a standard way to prevent implicit flows of information

via control flow [95]. The rules for method calls and input/output expressions differ

from those in standard security-typed languages in that they also include premises

with pc checks. These checks are required because these expressions may induce com-
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munication between hosts, and hosts may learn secrets based on which requests they

receive. Prior work that targets the distributed setting contains similar checks to con-

trol read channels [112].

Statement checking rules have the form Γ; pc ⊢ s; they are largely standard [95].

Because we assume attackers cannot observe timing nor analyze traffic, the rule for

conditional statements does not require branches to have the same timing behavior or

effects (e.g., method calls, input/output).

Nonmalleable Information Flow Control. Information flow type systems typically

aim to enforce a compositional security property such as noninterference [48]. Nonin-

terference is a strong property but it is too restrictive for practical applications, which

usually have a more nuanced policy for secure information flow. Hence, like most

languages supporting information flow control (e.g., [79, 87, 16]), Viaduct allows pro-

grammers to signify the exceptions to a noninterference policy through downgrading

expressions.

Downgrading enables information flows that would violate noninterference, so it

can be dangerous. This is especially true in the distributed setting, where storage

and computation can be performed by hosts that one does not fully trust. Downgrad-

ing confidentiality (declassification) allows secret information to be treated as public

information—a necessity for many applications, but doing so might allow a corrupted

host to control when information is released or what information is released. Down-

grading integrity (endorsement) allows untrusted information to be treated as trusted

information, but might enable a corrupted host to trick an honest one into accepting

mauled secrets.

The property of nonmalleable information flow control (NMIFC) [23] prevents both
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of these abuses of downgrading by combining two properties: robust declassifica-

tion [111] and transparent endorsement [23]. Robust declassification requires that prin-

cipals to which data is declassified could not have influenced either the decision to

declassify or the data itself. Meanwhile, transparent endorsement prevents trusting

mauled secrets by ensuring that information can only be endorsed if the providing

principal can read it.

The declassification and endorsement rules in Figure 2.6 enforce NMIFC using the

reflection operator JJJJ

 (§2.1.1). The rules prevent the program from downgrading in-

formation with compromised labels [109], in which confidentiality exceeds integrity.

These rules generate authority requirements that prevent the Viaduct compiler from

placing data and computation on insufficiently trustworthy hosts. For example, con-

sider a program where a server releases secret information to a client when the client

guesses the correct password:

host server: {S}, client: {1}

val info: int{S}, pw: int{S}, guess: int{1}

if (declassify (pw == guess) to {1})

output (declassify info to {1}) to client

This program violates robust declassification, because the decision to declassify info

depends on (low-integrity) guess. Without the restrictions on downgrading, Viaduct

could compile the program to store the guard pw == guess (with label 1) on the client.

The client could simply claim to the server that its guess is correct! For this program

to type-check with NMIFC, endorsement is needed to make the guard high-integrity.

A naive programmer might think to endorse the entire guard, but this (nontranspar-

ent) endorsement could still be compiled in a way that lets an untrusted host supply

its value. The correct solution is to explicitly endorse guess before declassifying the
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ℓ1 ⊑ ℓ2 ; C(ℓ2)⇒ C(ℓ1), I(ℓ1)⇒ I(ℓ2)

ℓ→f ⊑ ℓ→t ⊔ JJJJ

(ℓ←f ) ; I(ℓf) ∧ C(ℓt)⇒ C(ℓf)

ℓ←f ⊑ ℓ←t ⊔ JJJJ

(ℓ→f ) ; I(ℓf)⇒ C(ℓf) ∨ I(ℓt)

Figure 2.7: Translating flows-to constraints over labels to acts-for constraints

over label components.

comparison; since guess is not secret, the endorsement is transparent. The resulting

labels correctly force Viaduct to put the comparison on the server.

2.2.2 Label Inference

Checking secure information flow is not enough; for protocol selection, the compiler

also needs the labels of all expressions. We present an algorithm to infer these labels.

As in prior work on inferring information flow labels [79, 87], information flow

checking reduces to a system of flows-to (⊑) constraints over label constants and label

variables. Type inference collects these premises from Figure 2.6, and generates fresh

label variables for labels that appear in a premise of a rule but not its conclusion (e.g., pc ′

in the rule for if statements). The inference algorithm finds a label-variable assignment

that satisfies all the constraints, if possible.

The algorithm computes the minimum-authority solution, the choice of labels

requiring the least amount of confidentiality and integrity for each component.

Minimum-authority labels are desirable because higher authority is achieved only

through more trust or costly cryptography.

First, we translate the flows-to (⊑) constraints over labels, which appear in rule

32



Constraint Update rule

L1 ⇒ L2 Li+1
1 := Li

1 ∧ Li
2

L1 ∧ p2 ⇒ L3 Li+1
1 := Li

1 ∧ (p2→ Li
3)

L1 ⇒ L2 ∨ L3 Li+1
1 := Li

1 ∧ (Li
2 ∨ Li

3)

Table 2.2: Update rules for solving acts-for constraints.

premises, to acts-for (⇒) constraints over the underlying label components as shown

in Figure 2.7. Here, C(ℓ) and I(ℓ) are functions that project the confidentiality and

integrity components, respectively, of label ℓ. These components are constants pwhen

the label is known, and variables L otherwise.

We then adapt the algorithm of Rehof and Mogensen [91] for iteratively solving

semilattice constraints. All principal variables are initialized to 1 and unsatisfied con-

straints are used to update variables repeatedly, until a fixed point is reached, according

to the rules in Table 2.2. Constraints of the form L1 ⇒ L2 or L1 ⇒ L2 ∨ L3 are used

to perform the corresponding update.

However, the rules in Figure 2.7 can also generate constraints of the formL1∧p2 ⇒

L3, arising from the typing rule for robust declassification. The term p2 is always a con-

stant since Viaduct requires annotations on declassify operations, so the value of L1

can be updated safely to p2 → L3, which denotes the weakest authority p such that

p ∧ p2 ⇒ L3. The label p is also known as the relative pseudocomplement of p2 with

respect to L3. When a lattice supports the→ operation, it is a Heyting algebra [94], al-

lowing each update rule to lower the left-hand-side variable to the minimum authority

satisfying the constraint. Any free distributive lattice, such as our lattice of principals,

is a Heyting algebra.

We prove that the iterative analysis we use for label inference always terminates

and computes the minimum-authority solution. First, we construct the → operator
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over the lattice of principals, which occurs in the update rules.

Constructing the Relative Pseudo-Complement

We show that any free distributive lattice, like our lattice of principals, is a Heyting

algebra, and thus the relative pseudocomplement operator (→) we use in our label

inference algorithm (§2.2.2) is well-defined. While this is a standard result in algebra,

we believe it is illuminating to see the actual construction, as we use its concrete value

to compute minimum-authority labels.

Free Distributive Lattices. Let P be an arbitrary set. The standard construction for

the free distributive lattice over P takes finite sets of finite subsets of P as elements,

which we write as

{Ai}i∈[n] (where Ai ⊆ P ).

An element of this form is interpreted as a join of meets, that is, {Ai}i∈[n] intuitively

stands for (∧
A1

)
∨ . . . ∨

(∧
An

)
.

In addition to every Ai being finite, we require that there is no Ai and Aj such

that Ai ⊆ Aj for i ̸= j since this makes Aj redundant per our interpretation (i.e.

(
∧
Ai) ∨ (

∧
Aj) =

∧
Ai). We assume all such components are dropped implicitly.

Define

{Ai}i∈[n] ∨ {Bj}j∈[m] = {Ai}i∈[n] ∪ {Bj}j∈[m]

and

{Ai}i∈[n] ∧ {Bj}j∈[m] = {Ai ∪Bj | i ∈ [n], j ∈ [m]}.
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It is straightforward to verify that these definitions satisfy the properties for being the

join and the meet, respectively. It is also easy to see that

0 = {} and 1 = {{}}.

Finally, ordering can be derived in the standard way for distributive lattices:

A ≤ B ⇐⇒ A ∨B = B.

Wefind it useful to have amore direct definition, whichwe can derive by expanding

the previous definition:

{Ai}i∈[n] ≤ {Bj}j∈[m] ⇐⇒ ∀i ∈ [n].∃j ∈ [m].Bj ⊆ Ai.

Heyting Algebras. A Heyting algebra is a bounded distributive lattice where every

inequality of the form

A ∧X ≤ B

has a greatest solution. This solution is named A→B to appeal to logical intuition as

A→ B is the weakest (i.e. the greatest) proposition such that A ∧ (A→ B) logically

implies B. We show that every free distributive lattice forms a Heyting algebra.

Define

{Ai}i∈[n]→{Bj}j∈[m] =
∧
i∈[n]

{Bj \ Ai | j ∈ [m]}.

First, we claim this is in fact a solution to the above inequality, that is,

{Ai}i∈[i] ∧
∧
i∈[n]

{Bj \ Ai | j ∈ [m]} ≤ {Bj}j∈[j].
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Proof. By applying the definition of ∧ repeatedly (i + 1 times), we can rewrite the

left-hand side as

{Ai ∪ (Bj1 \ A1) ∪ . . . ∪ (Bjn \ An) | i ∈ [n], j1, . . . , jn ∈ [m]}.

Using the direct definition of≤ from before, it suffices to show that there exists j ∈ [m]

such that

Bj ⊆ Ai ∪ (Bj1 \ A1) ∪ . . . ∪ (Bjn \ An)

for all i, j1, . . . , jn. Picking j = ji, we get

Bji ⊆ Ai ∪ (Bji \ Ai) ⊆ Ai ∪ (Bj1 \ A1) ∪ . . . ∪ (Bjn \ An).

Next, we need to prove that this solution is the greatest. Assume there is anX such

that A ∧X ≤ B where A = {Ai}i∈[n], B = {Bj}j∈[m], and X = {Xk}k∈[o]. Our goal

is to show

{Xk}k∈[o] ≤
∧
i∈[n]

{Bj \ Ai | j ∈ [m]}.

Proof. Using the universal property of ∧ and the direct definition of ≤ from before, it

is sufficient to prove

∀i ∈ [n], k ∈ [o].∃j ∈ [m].Bj \ Ai ⊆ Xk.

Let i and k be arbitrary. Since {Ai} ≤ A and {Xk} ≤ X , we know

{Ai} ∧ {Xk} ≤ A ∧X ≤ B =⇒ ∃j ∈ [m].Bj ⊆ Ai ∪Xk

=⇒ ∃j.Bj \ Ai ⊆ Xk.
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Termination and Optimality of Label Inference

It is well-known that iterative analysis always terminates given that the function de-

fined by the update rules is monotone, and that the lattice over which the algorithm

runs is of finite height [61]. Because the update rules take the meet of the current so-

lution with some other lattice element, it is immediate that the function is monotone.

Because it is the free distributive lattice, all elements of the principal lattice can be

represented in normal form as a join of meets of atomic principals, and thus is of finite

size when the set of atomic principals is finite. Thus the principal lattice is of finite

height as long as it is generated from a finite set of atomic principals. We know any

program can only reference a finite set of unique atomic principals in its text since any

program has a finite set of labels in its text, and each label can only mention a finite

set of atomic principals. Thus for any program, the principal lattice is of finite height.

Finally, we show that the algorithm computes the optimal (minimum-authority)

solution. It is also well-known by appeal to Kleene’s fixed-point theorem that iterative

analysis computes the greatest-fixpoint solution of amonotone function. Thus to prove

optimality it is sufficient to show that any solution to the constraints must lower-bound

the current solution computed from the update rules, and thus must lower-bound the

greatest-fixpoint solution computed by the algorithm.

Proof. Weprove the statement by induction over the number of iterations performed by

iterative analysis. The base case is immediate since all principal variables are initialized

to 1, the top of the principal lattice.

To prove the inductive case, we perform a case analysis over the update rules:

Case 1: Li+1
1 := Li

1 ∧ Li
2. This update rule is for constraint L1 ⇒ L2, and thus for any
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solution ψ it must be the case that ψ(L1)⇒ ψ(L2). By the induction hypothesis,

we know ψ(L1) ⇒ Li
1 and ψ(L2) ⇒ Li

2, and thus ψ(L1) ⇒ Li
2 by transitivity.

Since ∧ is the greatest lower bound, ψ(L1)⇒ Li
1 ∧ Li

2 = Li+1
1 , as needed.

Case 2: Li+1
1 := Li

1 ∧ (p2→ Li
3). This update rule is for L1 ∧ p2 ⇒ L3, and thus for

any solution ψ it must be the case that ψ(L1) ∧ p2 ⇒ ψ(L3). By the inductive

hypothesis we know that ψ(L1)⇒ Li
1 and ψ(L3)⇒ Li

3, and thus ψ(L1)∧ p2 ⇒

Li
3 by transitivity. By definition we know p2→Li

3 is the greatest principal p such

that p ∧ p2 ⇒ Li
3, so ψ(L1) ⇒ p2 → Li

3. Since ∧ is the greatest lower bound,

ψ(L1)⇒ Li
1 ∧ (p2→ Li

3) = Li+1
1 as needed.

Case 3: Li+1
1 := Li

1 ∧ (Li
2 ∨ Li

3). This update rule is for constraint L1 ⇒ L2 ∨ L3, so

for any solution ψ it must be the case that ψ(L1) ⇒ ψ(L2) ∨ ψ(L3). By the

inductive hypothesis we know that ψ(L1)⇒ Li
1 and ψ(L2)⇒ Li

2 and ψ(L3)⇒

Li
3. Thus ψ(L1)⇒ ψ(L2) ∨ ψ(L3)⇒ Li

2 ∨ Li
3 and since ∧ is the greatest lower

bound, ψ(L1)⇒ Li
1 ∧ (Li

2 ∨ Li
3) = Li+1

1 as needed.

2.3 Protocol Selection

The protocol selection phase of Viaduct assigns a protocol to each program component.

Formally, a protocol assignment is a function Π : (T ∪ X) → P from temporaries and

assignables to protocols. For a temporary t, Π(t) is the protocol that executes the

expression associated with t. Similarly, Π(x) is the protocol that stores and responds

to method calls on the data type instance bound to x.
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Π |= e : P Π |= s

Π |= v : P

comm(Π(t), P )

Π |= t : P

Π |= ai : P

Π |= opn(a1, . . . , an) : P

Π |= ai : Π(x)

Π |= x.m(a1, . . . , an) : Π(x)

Π |= a : P

Π |= declassify a to ℓ : P

Π |= a : P

Π |= endorse a from ℓ : P Π |= inputβ h : Local(h)

Π |= a : Local(h)

Π |= output a to h : Local(h)

L(Π(t))⇒ L(t)
Π |= e : Π(t) Π |= s

Π |= let t = e in s

L(Π(x))⇒ L(x)
Π |= ai : Π(x) Π |= s

Π |= new x = D(a1, . . . , an) in s

hosts(Π, s1) ∪ hosts(Π, s2) ⊆ visible(Π(t)) Π |= s1 Π |= s2

Π |= if t then s1 else s2

Π |= s

Π |= b : loop s Π |= break b

Π |= s1 Π |= s2

Π |= s1; s2 Π |= skip

Figure 2.8: Rules for the validity of a protocol assignment.

2.3.1 Validity of Protocol Assignments

Figure 2.8 outlines the conditions under which a protocol assignment is valid. The

judgement Π |= e : P means that expression e can be executed by protocol P under

assignment Π. Similarly, the judgement Π |= s means that Π is a valid assignment for

statement s.

We now describe the rules for validity. The rule for temporaries states that t can
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Π(s) : 2P hosts(Π, s) : 2H

Π(let t = e in s) = Π(t) ∪ Π(s)

Π(new x = D(a1, . . . , an) in s) = Π(x) ∪ Π(s)

Π(if a then s1 else s2) = Π(s1) ∪ Π(s2)

Π(b : loop s) = Π(s)

Π(break b) = Π(b : loop s)

Π(s1; s2) = Π(s1) ∪ Π(s2)

Π(skip) = ∅

hosts(Π, s) =
⋃

P∈Π(s) hosts(P )

Figure 2.9: Protocols and hosts involved in the execution of a statement. Here,

hosts(P ) is the set of hosts that protocol P runs on, which is specified

individually for each protocol.

cost(Π, let t = e in s) =

cexec(Π(t), e) +
∑

P∈readers(Π,t,s)

ccomm(Π(t), P ) + cost(Π, s)

cost(Π, if a then s1 else s2) = max(cost(Π, s1), cost(Π, s2))

cost(Π, b : loop s) = Wloop × cost(Π, s)

cost(Π, s1; s2) = cost(Π, s1) + cost(Π, s2)

cost(Π, s) = 0 otherwise

Figure 2.10: Abstract cost model.

visible(Local(h)) = {h}
visible(Replicated(H)) = H

visible(Commitment(hp, hv)) = {hp}
visible(ZKP(hp, hv)) = {hp}

visible(MAL-MPC(H)) = ∅
visible(SH-MPC(H)) = ∅

Figure 2.11: For each protocol, the set of hosts for whom data stored in that pro-

tocol is visible.
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only be read by protocol P if Π(t), the protocol storing t, can communicate with P ,

written comm(Π(t), P ). Not all pairs of protocols can communicate; the customizable

protocol composer, discussed further in §2.4.1, defines the valid set of protocol compo-

sitions.

Other rules restrict where certain expressions can be executed. A method call on x

must be executed by Π(x), the protocol that stores x. Similarly, input/output expres-

sions must be executed locally on the relevant host.

The rules for temporary and assignable declarations ensure that the protocol se-

lected for a temporary or assignable has enough authority to securely store it. Formally,

the label L(Π(t)) of the protocol storing temporary t must act for (⇒) the minimum

required authority label L(t) computed for t in §2.2.2 (and similarly for assignables).

Labels L(Π(t)) are the ones explained in Table 2.1.

The rule for conditional statements ensures that all hosts involved in the execution

of a conditional statement (Figure 2.9) can learn which branch is taken. The side con-

dition requires that the hosts participating in the execution of either branch (s1 or s2)

must be contained in the set of hosts for whom the result computed by the protocol

executing the guard is visible (visible(Π(t))). This side condition is only checked if

the guard is a temporary; if the guard is a literal, then the side condition is trivially

true (any hosts can learn the value of a literal). Where necessary, the Viaduct compiler

removes these guard visibility constraints by multiplexing [75] conditional statements

into straight-line code. This allows, for example, the compilation of conditionals with

secret guards that require execution in MPC.

Note that visible(P ) ⊆ hosts(P )—that is, it can be the case that for some of the

hosts involved in a protocol P , the result of some computation executed in the protocol
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is not visible to them. Figure 2.11 shows the definition of visible(·) for a variety of

protocols. For example, if data is stored in a commitment or a ZKP protocol, then it

is only visible to the prover. For data stored in MPC, the data is visible to none of the

hosts.

2.3.2 Cost of Protocol Assignments

There can be many valid protocol assignments that securely realize a source program.

To select an optimal assignment, Viaduct attributes a cost to each assignment using

an abstract cost model, shown in Figure 2.10. Developers can instantiate the abstract

model by modifying the customizable cost estimator, which specifies cexec(P, s), the

cost of executing statement s in protocol P ; ccomm(P1, P2), the cost of communicat-

ing between P1 and P2; and the global constant Wloop, the number of times a loop is

assumed to execute when its iteration count is not statically known.

Our implementation configures cexec to assign a small cost to executing “in the

clear” and a large cost to the use of cryptography, so the compiler avoids the use of

cryptography except when required for security. We also configure the communication

cost ccomm to minimize data movement. For example, a frequently accessed public

variable would be replicated on two hosts so that each host has a local copy. Placing

the variable only on one of the hosts could reduce storage cost but entails frequently

sending its value to the other host.
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Constraint B ::= true | false | B ∧B | B ∨B | ¬B
Cost Expression C ::= n | C + C | n× C | max(C,C) | B ? C

Figure 2.12: Abstract syntax for constraints and cost expressions in an optimiza-

tion problem.

φ |= αt,P ⇐⇒ φ(αt,P ) = true

φ |= αx,P ⇐⇒ φ(αx,P ) = true

φ |= B1 ∧B2 ⇐⇒ φ |= B1 and φ |= B2

φ |= B1 ∨B2 ⇐⇒ φ |= B1 or φ |= B2

φ |= ¬B ⇐⇒ φ ̸|= B

Figure 2.13: Tarski-style semantics for constraint satisfaction.

2.3.3 Computing an Optimal Protocol Assignment

To compute an optimal protocol assignment given a program s, the Viaduct compiler

constructs a optimization problem over a set of assignment proposition variables αt,P ,

which when true witnesses the fact that temporary t is assigned to be executed at

protocol P , and αx,P , which when true witnesses the fact that assignable x is stored

at protocol P . The optimization problem consists of a conjunction of constraints B

JnKφ = n

JC1 + C2Kφ = JC1Kφ + JC2Kφ
Jn× CKφ = n× JCKφ

JB ? CKφ =

{
JCKφ if φ |= B

0 otherwise

Figure 2.14: Evaluation function for cost expressions.
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s; (B,C, PH) skip ; (true, 0,⊥) break b; (true, 0,⊥)

s1 ; (B1, C1, PH1) s2 ; (B2, C2, PH2)

s1; s2 ; (B1 ∧B2, C1 + C2, PH1 ⊔ PH2)

s; (B,C, PH)

b : loop s; (B,Wloop × C,PH)

s1 ; (B1, C1, PH1) s2 ; (B2, C2, PH2)

Bv =
∧
h∈H

(PH1 ⊔ PH2)(h) =⇒ oneof({αt,P | P ∈ viable(t) ∧ h ∈ visible(P )})

if t then s1 else s2 ; (Bv ∧B1 ∧B2,max(C1, C2), PH1 ⊔ PH2)

s; (Bs, Cs, PHs) V P = viable(t)
RS = reads(e) fα = λP.αt,P Bexec = constrain-exec(V P, fα)

Bread = constrain-read(V P, fα, RS) Bmethod = constrain-method(t, e)
C = possible-cost(V P, fα, λP. cexec(P, e), RS) PH = possible-hosts(V P, fα)

let t = e in s; (Bexec ∧Bread ∧Bmethod ∧Bs, C + Cs, PH ⊔ PHs)

s; (Bs, Cs, PHs)
V P = viable(x) RS = reads({a1, . . . , an}) fα = λP.αx,P

Bexec = constrain-exec(V P, fα) Bread = constrain-read(V P, fα, RS)
C = possible-cost(V P, fα, λP. cexec(P,D), RS) PH = possible-hosts(V P, fα)

new x = D(a1, . . . , an) in s; (Bexec ∧Bread ∧Bs, C + Cs, PH ⊔ PHs)

Figure 2.15: Rules to generate optimization problem.

and cost expression C . The syntax for these are given in Figure 2.12. Constraints are

Boolean expressions over the set of assignment variables; cost expressions describe

“linear” arithmetic expressions. Additionally, the conditional cost expression B ? C

has cost denoted by C when B is satisfied; otherwise it has 0 cost.

A solution to the problem is a model φ that maps assignment variables to truth

values such that B is satisfied. Satisfaction is captured by judgment φ |= B defined in

Figure 2.13. When constraint B and cost expression C are generated from a statement

s, then a solution φ corresponds to a protocol assignment Π such that

Π(t) = P ⇐⇒ φ |= αt,P Π(x) = P ⇐⇒ φ |= αx,P Π |= s.
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Note that constraints generated from s ensure that Π is well-defined. That is, if φ |=

αt,P then for any P ′ ̸= P , φ ̸|= αt,P ; a similar constraint holds for when φ |= αx,P .

An optimal solution φopt to the optimization problem is one that minimizes the

value of the cost expression as given by an evaluation function J·Kφ that maps cost

expressions to N-valued cost valuations, as given in Figure 2.14:

φopt = arg min
φ∈{φ|φ|=B}

JCKφ .

In the prototype implementation of the Viaduct compiler (§2.5), we use an off-the-shelf

solver to compute φopt given a constraint B and cost expression C .

Finally, from an optimal solution we can construct an optimal protocol assignment

Πopt such that

Πopt = arg min
Π∈{Π|Π|=s}

cost(Π, s).

Protocol Factory. To construct the optimization problem, the compiler draws the set

of available protocols from the customizable protocol factory. Developers wishing to

add new protocols to Viaduct must extend the protocol factory so that the compiler

can generate assignments with these protocols during protocol selection.

The protocol factory defines a function viable : T ∪ X → 2P that returns a set of

viable protocols that can execute a let-binding or declaration. Though customizable,

the set of viable protocolsmust still respect the authority requirements of the computed

labels for temporaries and assignables; that is, it must be the case that

∀P ∈ viable(t).L(P )⇒ L(t) and ∀P ∈ viable(x).L(P )⇒ L(x).

The protocol factory allows developers to specify limitations regarding the use of par-

ticular protocols, which is important because in general cryptographic protocols are
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limited in the storage and computation they can perform. For example, commitment

protocols may be unable to compute over commitments. Other protocols may lack

support for certain operators.

Constructing the Optimization Problem. The compiler uses set of syntax-directed

rules to generate an optimization problem from a program. The rules have the form

s ; (B,C, PH), which means that statement s generates constraint B, cost expres-

sion C , and participating hosts map PH , which maps each host to a proposition that

determines the conditions when the host is deemed to be participating in the execu-

tion of s. The distinguished map ⊥ maps every host to false, meaning that no hosts

are participating under any circumstance. Maps can be merged using the ⊔ operator,

which returns a map where a host is deemed to be participating when either input map

deem it to be participating:

(PH1 ⊔ PH2)(h) = PH1(h) ∨ PH2(h).

Before we discuss the constraint generation rules, we define some auxilliary func-

tions. We define a function oneof(·) that takes as input a set of constraints and then

returns a new constraint that ensures exactly one of the input constraints is true:

oneof({B1, . . . , Bn}) =
n∨

i=1

(∧
j ̸=i

(¬Bj) ∧Bi

)
.

The function can-send(P ) returns the set of protocols that can send data to a protocol

P :

can-send(P ) = {P ′ | comm(P ′, P )}.

We lift the function viable to consider only the set of viable functions that can send

data to some protocol:

viable(t, P ) = viable(t) ∩ can-send(P ) viable(x, P ) = viable(x) ∩ can-send(P ).
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Finally, we lift the function reads from single expressions to a set of expressions:

reads({e1, . . . , en}) =
n⋃

i=1

reads(ei).

Figure 2.15 shows the rules for constructing the optimization problem. The rule

for skip generates a constraint true, cost 0, and participating hosts map⊥; this means

that it does not generate any constraints about the protocol assignment, does not cost

anything to execute, and no hosts execute it. The rule for sequencing statement s1; s2

requires that the constraints generated for s1 and s2 both hold; combines their costs

together; and generates a hosts map such that a host participates in executing the

sequence if it participates in executing either s1 or s2.

Meanwhile, the rule for conditionals requires that the constraints for both branches

s1 and s2 must hold; the conditional accrues the cost of the most expensive branch; and

also generates a hosts map such that a host participates in executing the conditional if

it participates in executing either branch. Furthermore, rule generates a constraint for

the visibility of the guard by ensuring that if a host h participates in executing either

branch, then the guard must be computed by a viable protocol P whose result is visible

to the host (i.e., h ∈ visible(P )).

The rules for let-bindings and assignable declarations are similar and rely on a few

auxilliary functions to define their generated constraints, cost expressions, and partic-

ipating hosts maps. First, the constrain-exec function takes in a set of viable protocols

and a function fα that takes in a viable protocol and returns its associated assignment

variable. In turn constrain-exec returns a constraint that ensures that exactly one of

the assignment variables associated with a viable protocol is true.

constrain-exec(V P, fα) = oneof({fα(P ) | P ∈ V P}).

Next, the constrain-read function takes in a set of viable protocols V P , a function
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fα that takes in a viable protocol and returns its associated assignment variable, and a

set of read temporaries RS. In turn, constrain-read returns a constraint that ensures

that for every viable protocol P , the let-bindings of the temporary variables in RS

must be assigned to a protocol that can send data to P .

constrain-read(V P, fα, RS) =∧
P∈V P

(
fa(P ) =⇒

∧
t′∈RS

oneof({αt′,P ′ | P ′ ∈ viable(t′, P )})

)
.

Next, the constrain-method function ensures that a method call whose result is

bound to temporary t is executed by the same protocol storing the receiver of the call:

constrain-method(t, e) =


∧

P∈viable(x) αt,P ⇐⇒ αx,P if e = x.m(a1, . . . , an)

true otherwise

Next, the possible-cost function takes in a set of viable protcols V P ; a function fα

that takes in a viable protocol and returns and assignment variable; a function fc that

takes in a protocol P and returns the execution cost associated with P ; and a set of

read temporaries RS. In turn, it returns a cost expression that sets the execution and

communication cost of choosing from the set of viable protocols in V P and the set of

viable protocols for each read temporary in RS.

possible-cost(V P, fα, fc, RS) =

∑
P∈V P

fα(P ) ?

fc(P ) + ∑
t′∈RS

∑
P ′∈viable(t′,P )

αt′,P ′ ? ccomm(Π(t), P
′)

 .

Finally, the possible-hosts function takes in a set of viable protocols V P and a func-

tion fα that takes in a viable protocol and returns its associated assignment variable.

In turn, the function returns a participating hosts map where each host is mapped to
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the disjunction of assignment variables of viable protocols where the host participates

in the execution of the protocol.

possible-hosts(V P, fα) =
⊔

P∈V P

⊔
h∈hosts(P )

⊥[h 7→ fα(P )].

Example. Consider the following source program to be executed by hosts a and b:

let t1 = 1 + 1 in let t2 = t1 × 2 in skip

and the following data from the compiler’s extension points:

1. viable(t1) = {P1, P3}, viable(t2) = {P1, P2}

2. hosts(P1) = {a}, hosts(P2) = {b}, hosts(P3) = {a, b}

3. cexec(P1, _) = 5, cexec(P2, _) = 5, cexec(P3, _) = 3

4. ccomm(P1, P1) = 0, ccomm(P3, P2) = 1

5. comm(P1, P1), ¬ comm(P3, P1)

6. comm(P3, P2), ¬ comm(P1, P2)

Then the compiler generates the following constraint:

oneof({αt1,P1 , αt1,P3}) ∧ oneof({αt2,P1 , αt2,P2})

∧ (αt2,P1 =⇒ oneof({αt1,P1})) ∧ (αt2,P2 =⇒ oneof({αt1,P3}))

and the following cost expression:

αt1,P1 ? cexec(P1, 1 + 1) + αt1,P3 ? cexec(P3, 1 + 1)

+ αt2,P1 ? (cexec(P1, t1 × 2) + αt1,P1 ? ccomm(P1, P1))

+ αt2,P2 ? (cexec(P2, t1 × 2) + αt1,P3 ? ccomm(P3, P2)) .
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From this optimization problem the compiler then computes the optimal assignment

Πopt where Πopt(t1) = P3 and Πopt(t2) = P2. This assignment gives makes the cost

expression evaluate to 9; the other valid protocol assignment Π would be such that

Π(t1) = P1 and Π(t2) = P1, which makes the cost expression evaluate to 10.

2.4 Viaduct Runtime

Once it has computed a protocol assignment, the Viaduct compiler outputs a program

where every let-binding and assignable declaration is annotated with the protocol that

will execute it. This annotated program can be executed by the Viaduct runtime, which

consists of an extensible interpreter that interacts with a set of protocol back ends, each

of which implement a set of protocols. The interface for protocol back ends is straight-

forward: back ends must implement methods to execute let-bindings and assignable

declarations, and methods to communicate with other protocol back ends.

Each host runs a copy of the interpreter with the annotated program as input. For

each statement, the interpreter checks whether the host participates in its execution, as

defined by hosts(Π, ·)—if not, the statement is treated like skip. If a host participates

in executing a let-binding or a declaration, the interpreter calls the back end for the

protocol assigned to the statement. To execute a conditional, the host retrieves the

cleartext value of the guard from the protocol back end that stores it, and executes

the appropriate branch. The validity rules for protocol assignments ensure the host is

allowed to see the cleartext value, and that it is able to retrieve it.
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2.4.1 Protocol Composition

The protocol back end executing a let-binding must send the computed value to back

ends executing statements that read the bound temporary. How one back end sends a

value to another depends on the protocols involved. For example, a statement executed

in Replicated(h1, h2) reading a temporary computed in SH-MPC(h1, h2) corresponds

to executing an MPC circuit and revealing the output to the hosts. On the other hand,

a temporary computed in Local(h3) might not meaningfully be read by a statement

executed under SH-MPC(h1, h2) as it is unclear how the MPC back end should read

local data from an unrelated host.

Viaduct uses the customizable protocol composer to define the set of source and

destination protocols that can communicate. The composer translates communication

between two protocols to a set of messages between hosts participating in the proto-

cols. Developers who want to extend Viaduct with support for a new protocol must

enumerate the set of allowed compositions for the protocol and ensure that such com-

positions are secure.

Formally, the protocol composer translates communication between two protocols

P1 and P2 to a set of messages, each of the form (P1, h1)
a−→ (P2, h2), where the back

end for protocol P1 at host h1 sends a message to the back end for protocol P2 at host

h2 along port a. For a pair (P, h), it must be the case that h ∈ hosts(P ). The Viaduct

runtime handles the delivery of these messages between back ends.

Each protocol provides a set of ports that define how its back end processes input

from another protocol back end. The ZKP protocol, for instance, has two ports: a secret

input port, and a public input port. The ZKP back end treats data from the secret input

port as the secret input of the prover, while it treats data from its public input port as
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data known to both the prover and verifier.

Recalling the previous example, when SH-MPC(h1, h2) sends a value to

Replicated(h1, h2), the MPC back ends in h1 and h2 jointly execute a circuit in an

MPC protocol. The MPC back end at h1 then sends the revealed circuit output to the

cleartext back end (which implements the Replicated protocol) at h1 along its cleartext

port. There is a correspondingmessage between theMPC and cleartext back ends at h2.

Step (3) in Figure 2.4, which depicts execution of the historical millionaires’ problem,

shows this protocol composition in the context of a larger program.

We know give some examples of protocol composition, where the sending proto-

col is denoted as s and the receiving protocol is denoted as r. The ct port of various

protocols stands for cleartext input; the in port of the MPC protocol represents secret

input from a host; the cc port of the Commitment protocol represents creating a com-

mitment; the occ and ohc ports of the Local protocol respectively represent receiving

the cleartext value of an opened commitment and the commitment itself.

• s = Local(h1), r = SH-MPC(h1, h2). The induced communication is (s, h1)
in−→

(r, h1). Intuitively, this means that an input gate for h1 in created the current

MPC circuit.

• s = Local(hp), r = Commitment(hp, hv). The induced communication is

(s, hp)
cc−→ (r, hp). Intuitively, this means that hp creates and then sends a com-

mitment to hv.

• s = Replicated(h1, h2), r = Local(h1). The induced communication is

(s, h1)
ct−→ (r, h1). Intuitively, this means that h1 locally reads data that is repli-

cated between h1 and h2.

• s = SH-MPC(h1, h2), r = Replicated(h1, h2). The induced communication is
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(s, h1)
ct−→ (r, h1) and (s, h2)

ct−→ (r, h2). Intuitively, this means that the current

MPC circuit is executed and its result is sent to both h1 and h2.

• s = Commitment(hp, hv), r = Local(hv). The induced communication is

(s, hp)
occ−→ (r, hv) and (s, hv)

ohc−−→ (r, hv). Intuitively, this means that the com-

mitment created by hp and stored by hv is opened.

• s = ZKP(hp, hv), r = Local(hv). The induced communication is (s, hv)
ct−→

(r, hv). Intuitively, this means that the result of a computation performed by hp

and its accompanying zero-knowledge proof is sent to hv, who then uses the

proof to validate the result.

These examples illustrate our insight that protocol composition is a general abstraction

to represent the use of cryptographic mechanisms. The creation of a commitment and

its opening; the execution of an MPC circuit and the revealing of its output; a prover

sending a zero-knowledge proof to a verifier—all of these are captured by a composition

of one protocol with another.

2.5 Implementation

We implemented the Viaduct compiler in about 20 KLoC of Kotlin code, which includes

code for the parser, the label constraint solver, protocol selection, and the runtime

system. The codewritten against the compiler’s extension points—the protocol factory,

the protocol composer, the cost estimator, and the protocol back ends—runs to about 4

KLoC. Viaduct uses the Z3 SMT solver [35] to solve the optimization problem generated

during protocol selection.

The compiler supports the more liberal surface syntax seen in Figure 2.2 and Fig-
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ure 2.3, as well as functions with bounded polymorphism on parameter labels. The

compiler specializes functions at each call site, allowing different compiled implemen-

tations for the same function.

We implemented four protocol back ends for Viaduct:

Local/Replicated. The cleartext back end executes code in Local and Replicated pro-

tocols. It maintains a store for objects that directly represent the temporaries and

assignables of the source program. Computations performed by the cleartext back end

are executed directly.

SH-MPC. This back end links Viaduct to ABY, a library for two-party semi-honest

MPC [37]. It maintains a store of gate objects that represent circuit components to

be executed by ABY. Computations performed by the back end build gate objects that

represent the operation performed (e.g., an addition in the source program creates an

ADD gate).

The ABY back end executes a circuit when the result of some gate object computed

at MPC must be communicated to another protocol, as specified by the protocol com-

poser extension point (e.g. MPC sends the result of a computation to the Replication

protocol). Given a gate object set as the output of a circuit, the back end computes

the (transitive) dependencies of the gate, all the way back to input gates (created when

a protocol—e.g. Local—sends data to the in gate of the MPC protocol). The back end

then executes the dependencies until the output gate can be executed. To avoid re-

computation of shared subcircuits, the back end partitions the circuit into subcircuits

and executes these in topological order (where edges between subcircuits are induced

when the result of a subcircuit is used as input by another subcircuit).
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The ABY framework supports execution of circuits in three different schemes—

arithmetic sharing, boolean sharing, and Yao’s garbled circuits—as well as conversions

between these, allowing for execution of mixed-protocol circuits. Viaduct represents

each scheme as a separate protocol, but all three are implemented by a single back

end. To generate efficient mixed circuits, we follow Demmler et al. [37] and Ishaq

et al. [57] and estimate inputs to the cost estimator by measuring execution time of

individual operations under a particular scheme and conversions between schemes.

We perform measurements for two settings: low-latency, high-bandwidth (LAN), and

high-latency, low-bandwidth (WAN).
2
Thus the cost estimator has two modes, each of

which optimizes compiled programs for a specific network environment.

Commitment. This back end manages commitments, implemented using SHA-256

hashes of data along with a nonce. The back end for the commitment creator maintains

a store of cleartext values along with metadata for commitments. The back end for the

commitment receiver maintains the set of commitments, as hashes. The commitment

back end cannot support computation.

ZKP. This back end links to libsnark [1], a library for zkSNARKs (zero-knowledge

Succinct Non-interactive ARguments of Knowledge). This back end maintains a store

of circuit gate objects. The prover and verifier both manage cleartext values for the

public inputs to the proof, while only the prover manages cleartext values for the secret

inputs. To ensure the prover cannot modify secret inputs mid-execution, all secret

inputs are “committed” by sending their hash to the verifier. All proofs that use a

secret input then include a clause that equates the input to the pre-image of the hash

2
Existing work such as Büscher et al. [18] and Ishaq et al. [57] focus on optimizing mixed circuits for

ABY specifically, and as such these employ more sophisticated reasoning about cost for ABY circuits.

We consider it future work to incorporate such techniques into Viaduct.

55



Protocols Selection

Benchmark LAN / WAN LoC Ann Vars Time

battleship RZ / RZ 79 12 1022 1.0

bet CLRY / CLRY 79 7 1022 1.0

biometric match ALRY / ALRY 40 8 708 2.0

guessing game RZ / RZ 16 6 193 0.4

HHI score ALRY / LRY 22 3 285 1.1

historical millionaires LRY / LRY 17 3 187 0.7

interval RYZ / RYZ 45 9 660 2.8

k-means ARY / RY 82 3 1684 7.9

k-means (unrolled) ARY / RY 174 3 3629 29.0

median RY / RY 36 6 386 1.0

rock-paper-scissors CR / CR 56 6 741 1.0

two-round bidding LRY / LRY 34 4 575 1.7

Table 2.3: Benchmark programs. Protocols give the protocols used in the com-

piled program for either the LANorWAN setting. Legend for protocols

used: A, B, Y–ABY arithmetic/boolean/Yao sharing; C–Commitment;

L–Local; R–Replicated; Z–ZKP. Ann gives the minimum number of

label annotations needed to write the program. Selection gives the

number of symbolic variables and run time in seconds for protocol se-

lection, averaged across five runs.

held by the verifier.

The libsnark library requires proving and verifying keys to be generated for each

unique circuit before the protocol is executed. The current prototype requires a

“dummy” run of the compiled program to generate these keys.

2.6 Evaluation

To evaluate Viaduct, we address these research questions:

• Is the Viaduct source language expressive enough?

56



Bool Yao

Benchmark LAN WAN Comm LAN WAN Comm

bio. match 3.6 95.9 56.0 2.8 7.1 52.3

HHI score 0.8 9.7 7.0 0.5 1.6 2.7

hist. million. 1.0 90.6 4.8 0.6 1.6 3.1

k-means 56.5 696.1 1273.1 44.4 117.4 1051.3

median 11.5 1098.7 197.1 12.8 35.4 327.8

2-R bidding 17.3 184.7 233.0 17.8 184.5 233.0

Opt-LAN Opt-WAN

Benchmark LAN WAN Comm LAN WAN Comm

bio. match 1.0 2.2 3.9 same as Opt-LAN

HHI score 0.3 1.1 0.5 0.3 0.9 0.6

hist. million. 0.3 0.7 0.005 same as Opt-LAN

k-means 17.7 35.8 180.0 same as Yao

median 0.7 31.7 1.0 same as Opt-LAN

2-R bidding 3.1 155.5 4.7 same as Opt-LAN

Table 2.4: Run time (in seconds) and communication (in MB) of select bench-

mark programs, averaged across five runs. Bool and Yao are naive

assignments using boolean sharing and Yao sharing respectively to

execute MPC computations. Opt-LAN and Opt-WAN are optimal as-

signments generated by Viaduct for the LAN andWAN setting respec-

tively. Optimal time and communication for a benchmark and execu-

tion setting pair are in bold.

LAN WAN

Benchmark Time Slowdown Time Slowdown

bio. match 0.4 150% 1.5 50%

HHI score 0.3 0% 1.0 10%

hist. million. 0.3 0% 0.7 0%

k-means 1.2 1380% 4.1 770%

median 0.5 40% 31.5 0%

2-R bidding 1.6 90% 154.7 0%

Table 2.5: Run time (in seconds) of LAN-optimized benchmarks hand-written to

use ABY directly and the slowdown of running the same benchmarks

through the Viaduct runtime in LAN and WAN settings.
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• Is its compilation performance acceptable?

• Does it generate efficient distributed programs?

• Howmuch does label inference reduce the annotation burden for programmers?

• What is the overhead of the runtime system?

Experiments used Dell OptiPlex 7050 machines with an 8-core Intel Core i7 7th Gen

CPU and 16GB of RAM. Note that for experiments involving time measurements, the

numbers reported are over 5 trials and the relative standard error is at most 6% of the

sample mean.

2.6.1 Expressiveness of Source Language

Table 2.3 shows the benchmarks used for the experiments and the cryptography syn-

thesized by Viaduct for each benchmark. Several are from prior work, rewritten in the

Viaduct source language. Host configurations are either semi-honest, as in Figure 2.2,

where hosts A and B trust each other for integrity; mutually distrusting as in Figure 2.3;

or are “hybrid” configurations where A and B trust each other but host C is trusted by

neither.

The benchmarks are as follows.

• battleship: model of the board game.

• bet: C bets who wins historical millionaires game between A and B.

• biometric match: compute the minimum distance of a sample to a database of

biometric data.

• guessing game: same as in fig. 2.3.
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• HHI score: computes Herfindahl–Hirschman index for market concentration

(from [105]).

• historical millionaires: same as in fig. 2.2.

• interval: A and B compute interval of their combined points, then C attests its

point is in the interval.

• k-means: cluster secret points from A and B.

• k-means: k-means with 3 unrolled iterations.

• median: compute median of A and B’s lists (from [60]).

• rock-paper-scissors: A and B commit to moves and then play rock-paper-

scissors for a fixed number of rounds.

• two-round bidding: A and B bid for a list of items.

Our benchmarks show that Viaduct can compile programswhose security demands

a variety of cryptographicmechanisms. With hybrid configurations (interval, bet), Via-

duct combinesMPC and ZKP to implement different components of a single distributed

program. Code for selected benchmarks can be found in Appendix A.

2.6.2 Scalability of Compilation

The twomain phases of the Viaduct compiler are label inference and protocol selection.

Our benchmarks indicate that the overhead of label inference is negligible: at most

several hundred milliseconds. As seen in Table 2.3, the overhead for protocol selection

is more significant, but still on the order of several seconds for most benchmarks. The

longest running benchmark, k-means, performs most of its computations in MPC. In
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this case, it may be harder to converge to the optimal solution since the solver generates

a large mixed circuit, choosing between the three MPC schemes supported by ABY.

2.6.3 Cost of Compiled Programs

To show that Viaduct can compile efficient distributed programs, we chose a subset

of our benchmarks requiring the use of MPC and compared the execution of optimal

programs generated by Viaduct—for each benchmark, one optimized for local area net-

works (LAN) and another for wide area networks (WAN) —with naive protocol assign-

ments that perform all computation in MPC. The naive ABY assignments use either

boolean sharing or Yao garbled circuits, since arithmetic sharing can only perform

arithmetic operations. We measured executions in a 1 Gbps LAN and simulated WAN

(100 Mbps bandwidth and 50 ms latency). We configured ABY to use 32-bit integers

and set its security parameter to 128 bits.

Table 2.4 summarizes our results. For some benchmarks (HHI score, hist. million-

aires, median, two-round bidding), computation can be securely moved from MPC to

cleartext protocols, making execution much more efficient. Even for benchmarks that

require computations to be almost entirely in MPC (bio. match, k-means), Viaduct

chooses efficient mixed circuits that perform much better than the naive assignments

entirely in boolean sharing or Yao circuits. Viaduct replicates the result in Büscher et al.

[18] (which specifically targets the ABY framework) in choosing a mix of arithmetic

and Yao circuits as optimal assignments for the two benchmarks from that paper, with

the exception of the k-means benchmark in the WAN setting.
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2.6.4 Annotation Burden of Security Labels

Security-typed languages add some annotation burden when writing programs. In

practice, labels on host declarations and downgrading operations suffice to specify in-

tended security policies in Viaduct programs. To substantiate this claim, we created

two versions of each benchmark program. In one, every variable has a label annota-

tion; in the other, “erased” version, all such labels are omitted.

For all benchmarks, Viaduct generates the same compiled program for the fully

labeled and the erased versions. Although the inferred labels for the erased programs

are not exactly the same as in their manually labeled counterparts, the differences do

not affect the protocols chosen.
3
TheAnn column in Table 2.3 counts label annotations

on erased programs. This is the minimum number of annotations needed to write the

program: effectively, the number of downgrades plus the number of host declarations,

each of which need an authority label. The table shows that the annotation burden is

low: most benchmarks need only a few label annotations.

2.6.5 Overhead of Runtime System

The Viaduct runtime introduces some overhead compared to using cryptographic li-

braries like ABY directly. To measure this overhead, we translated Viaduct’s LAN-

optimized outputs for the MPC benchmarks in Table 2.4 to directly use the ABY frame-

work’s API. We then measured the performance of these hand-written programs in the

3
This mostly occurs with data publicly known to hosts (e.g. loop indices, array lengths). Given hosts

Alice and Bob, a fully-annotated benchmark might have label A ⊓ B for the data, but Viaduct infers

label (A ∧B)← in the erased version.
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LAN and WAN settings.
4

Table 2.5 gives running times for the hand-written programs and the overhead of

using the Viaduct runtime. For most benchmarks, the Viaduct runtime incurs an over-

head of at most 150% in the LAN setting; the overhead is reduced to at most 50% in the

WAN setting where network delay is a more significant factor. This overhead is due

to the cost of interpretation and dynamic circuit generation, and can be eliminated by

moving circuit generation to compile time [72, 18].

The markedly larger overhead of the k-means benchmark is due to Viaduct re-

computing intermediate results. The benchmark has 8 outputs; while Viaduct evalu-

ates 8 smaller MPC circuits each with one output, the hand-written version evaluates

one larger circuit with 8 outputs, taking advantage of shared intermediate computa-

tions. The compiler could, with additional analysis, determine when output gates can

be grouped and executed in the same circuit. We leave this to future work.

2.7 Related Work

Compilation to Cryptographic Protocols. The idea of compiling a high-level pro-

gram to a cryptographic protocol has been explored in the context of multiparty com-

putation [55] (e.g., Fairplay [75], SCVM [71], ObliVM [72], OblivC [110], Wysteria [89],

HyCC [18], SCALE-MAMBA [5]), and that of zero-knowledge proofs (e.g., Pinoc-

chio [85], Geppetto [30], Buffet [106], xjSNARK [64]). Earlier work is generally limited

to the domain of a particular fixed cryptographic task (e.g., MPC or ZKP); Viaduct’s

novelty is synthesizing efficient protocols across cryptographic tasks. Like SCVM [71],

4
Running LAN-optimized programs in the WAN setting does not skew the results since Table 2.4

shows that LAN-optimized programs perform roughly the same as WAN-optimized programs in the

WAN setting.
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Viaduct can synthesize “hybrid” programs that perform computations locally, repli-

cated between hosts, or under MPC. This is impossible in the simple two-point label

model that many MPC compilers [5, 72] use, which only distinguish between public

(low) and secret (high) information. Viaduct also does not fix the number of hosts in a

program (unlike [72, 71, 75]), nor fix compiling programs only under a semi-honest or

malicious setting (unlike [89, 72, 71, 64, 106, 85]).

Program Partitioning. Another line of related work [112, 114, 42, 43] describes dis-

tributed computations using sequential programs and captures security requirements

using information-flow labels. The Jif/split compiler [112, 114] synthesizes simple

cryptographic primitives such as cryptographic commitments to satisfy security con-

straints that would otherwise be impossible without relying on trusted principals. Un-

like Viaduct, Jif/split is not extensible to new protocols. Later work [42, 43] proves

computational soundness for a similar system under a strong attacker that controls

the network and some of the hosts. However, this work does not support replicating

computations (only data replication is supported), or the other protocols that Viaduct

supports.

2.8 Summary

The prototype implementation of the Viaduct compiler compiles high-level, security-

typed programs into efficient distributed programs that employ a variety cryptographic

mechanisms to ensure security. With the unified abstraction of information flow labels,

the compiler is extensible and can support multiple cryptographic mechanisms, a first

for compilers that target secure computation. Our evaluation shows that the approach

is practical, and paves the way to a unified framework for developing distributed pro-
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grams with strong security requirements.
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CHAPTER 3

VIADUCT-HE: A COMPILER FROM ARRAY PROGRAMS TO VECTORIZED

HOMOMORPHIC ENCRYPTION

Homomorphic encryption (HE), which allows computations to be performed on en-

crypted data, has recently emerged as a viable way for securely offload computation.

Efficient libraries [25] and hardware acceleration [90, 92] have improved performance

to be acceptable for practical use in a diverse range of applications such as the Password

Monitor in the Microsoft Edge web browser [66], privacy-preserving machine learn-

ing [47], privacy-preserving genomics [63], and private information retrieval [77].

Writing programs to be executed under HE, however, remains a forbidding chal-

lenge [103]. In particular, modern HE schemes support data encodings that allow for

single-instruction, multiple data (SIMD) computation with very long vector widths but

limited data movement capability.
1
SIMD parallelism allows developers to recoup the

performance loss of executing programs in HE, but taking advantage of this capabil-

ity requires significant expertise: efficient vectorized HE programs requires carefully

laying out data in ciphertexts and interleaving data movement operations with com-

putations. There is a large literature on efficient, expert-written vectorized HE imple-

mentations [58, 47, 17, 3, 62].

Prior work has developed compilers to ease the programmability burden of HE,

but most work has targeted specific applications [33, 101, 12, 11, 3, 73], or focuses on

challenges other than vectorization [34, 68, 32, 6]. Some HE compilers do attempt to

generate vectorized implementations for arbitrary programs, but either fix simple data

layouts for all programs [104] or require users to provide at least some information

about complex data layouts [31, 74].

1
Also known as ciphertext “packing” or “batching” in the literature.
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We make the important observation that the complex, expert-written data layouts

targeting specific applications in prior work are made possible by array-level reason-

ing. That is, given an array as input to an HE program, searching for an efficient layout

amounts to asking such questions as “should this dimension of the array be vectorized

in a single ciphertext, or be exploded along multiple ciphertexts?” This kind of rea-

soning is not reflected in the prior work on HE compilers, but as we show, it enables

vectorized HE implementations with expert-level efficiency.

With this inmind, we reframe the problem of compiling efficient vectorizedHE pro-

grams as two separate problems. First, a program must be “tensorized” and expressed

as an array program. Inmany cases, this step is actually unnecessary, since the program

can already be naturally expressed as operations over arrays. This is true for many HE

applications, such as secure neural network inference. Once expressed as a computa-

tion over arrays, the space of possible vectorization schedules for the program can be

given a simple, well-defined representation. This makes the “last-mile” vectorization

of array programs much more tractable than the vectorization of arbitrary imperative

programs.

This “tensorize-then-vectorize” approach is arguably already present in the liter-

ature. For example, Malik et al. [73] developed an efficient vectorized HE implemen-

tation for evaluating decision forests by expressing the evaluation algorithm as a se-

quence of element-wise array operations and matrix–vector multiplication, and then

using an existing kernel [53] to implement matrix–vector multiplication efficiently.

In this paper, we aim to tackle the challenge of generating vectorized HE imple-

mentations for array programs. To this end, we propose Viaduct-HE, a vectorizing HE

compiler for an array-oriented source language. Viaduct-HE simultaneously generates

the complex data layouts and operations required for efficient HE implementations.
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Unlike in prior work [31, 74], this process is completely automatic: the compiler needs

no user hints to generate complex layouts. The compiler leverages the high-level array

structure of source programs to give a simple representation for possible vectorization

schedules, allowing it to efficiently explore the space of schedules and find efficient

data layouts. Once a schedule has been found, the compiler can further optimize the

program by translating it to an intermediate representation amenable to term rewrit-

ing.

Viaduct-HE is designed to be extensible: after optimization, the compiler translates

circuits into a loop nest representation designed for easy translation into operations

exposed by HE libraries, allowing for the straightforward development of back ends

that target new HE implementations. The compiler also has well-defined extension

points for customizing the exploration of vectorization schedules and for estimating

the cost of HE programs.

3.1 Background on Homomorphic Encryption

Homomorphic encryption schemes allow for operations on ciphertexts, enabling com-

putations to be securely offloaded to third parties without leaking information about

the encrypted data. Such schemes are homomorphic in that ciphertext operations cor-

respond to plaintext operations: given encryption and decryption functions Enc and

Dec, for a function f there exists a function f ′ such that f(x) = Dec(f ′(Enc(x))).

In a typical setting involving homomorphic encryption, a client encrypts their data

with a private key and sends the ciphertext to a third-party server. The server per-

forms operations over the ciphertext, and then sends the resulting ciphertext back to

the client. The client can then decrypt the ciphertext to get the actual result of the

computation.
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We target modern lattice-based homomorphic encryption schemes such as

BFV [40], BGV [15], and CKKS [26]. In these schemes, ciphertexts can encode many

data elements at once. Thus we can treat ciphertexts as vectors of data elements. Ho-

momorphic computations are expressed as addition and multiplication operations over

ciphertexts. Addition and multiplication execute element-wise over encrypted data el-

ements, allowing for SIMD processing: given ciphertexts x = Enc([x1, x2, . . . , xn])

and y = Enc([y1, y2, . . . , yn]), homomorphic addition ⊕ and multiplication ⊗ operate

such that

Dec(x⊕ y) = [x1 + y1, x2 + y2, . . . , xn + yn]

Dec(x⊗ y) = [x1 × y1, x2 × y2, . . . , xn × yn].

There are analogous addition and multiplication operations between ciphertexts and

plaintexts, which also have a vector structure. This allows computation over cipher-

texts using data known to the server. For example, it is common tomultiply a ciphertext

with a plaintextmask consisting of 1s and 0s to zero out certain slots of the ciphertext.

Along with addition and multiplication, rotation facilitates data movement, cycli-

cally shifting the slots of data elements by a specified amount. For example,

Dec(rot(−1, x)) = [x2, x3, . . . , xn, x1] Dec(rot(2, x)) = [xn−1, xn, x1, . . . , xn−2].

3.1.1 Programmability Challenges

While vectorized homomorphic encryption presents a viable approach to secure com-

putation, there are many challenges to developing programs that use it. Such chal-

lenges include the lack of support for data-dependent control flow that forces pro-

grams to be written in “circuit” form; the selection of cryptographic parameters that
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Figure 3.1: Row-wise layout for matrix multiplication.
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Figure 3.2: Diagonal layout for matrix multiplication.

are highly sensitive to the computations being executed; the management of cipher-

text noise; and the interleaving of low-level “ciphertext maintenance” operations with

computations [103].

Here we focus on the challenge of writing vectorized programs that use the SIMD

capability of HE schemes. Efficiently vectorized HE programs are very different from

programs in other regimes supporting SIMD. We now highlight some of the novelties

of vectorizing in the HE regime.

Very long vector widths. Vector widths in HE ciphertexts are large powers of two—

on the order of thousands when the scheme’s parameters are set to appropriate security
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levels [4]. To take advantage of such a large number of slots, often times HE pro-

grams are structured in counterintuitive ways. For example, the convolution kernel

in Gazelle [58] applies a filter to all output pixels simultaneously. COPSE [73] evalu-

ates decision forests by evaluating all branches at once and then applies masking to

determine the right classification label for an input.

Limited data movement. Although ciphertexts can be treated as vectors, they have

a very limited interface. In particular, one cannot index into a ciphertext to retrieve

individual data elements. All operations are SIMD and compute on entire ciphertexts

at once. Thus expressing computation that operates on individual data elements as

ciphertext operations can be challenging. One might consider naive approaches to

avoid such difficulties; for example, ciphertexts can be treated as single data elements

by only using their first slot. Failure to restructure programs to take advantage of the

SIMD capability of HE, however, exacts a steep performance hit: in many cases, orders

of magnitude in slowdown [104].

So in practice, data elements must be packed in ciphertexts to write efficient HE

programs. However, packing creates new problems: if an operation requires data on

different slots, ciphertexts must be rotated to align the operands. One is thus forced

to interleave data movement and computation, but determining how to schedule these

together efficiently can be difficult.

Because rotation operations provide limited data movement, the initial data layout

in ciphertexts has a great impact on the efficiency of HE programs. One layout might

aggressively pack data to minimize the number of ciphertexts the client needs to send

and also minimize the computations the server needs to perform, but might require

too many rotations; another layout might not aggressively pack data into ciphertexts
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to avoid the necessity of data movement operations, but might force greater client

communication and the server to perform more computations.

Example: Matrix–vectormultiplication. To illustrate the challenges of developing

vectorized HE programs, consider the two implementations of matrix–vector multipli-

cation. In both a matrix a is multiplied with a vector x; the vectors containing data

elements from a are in blue, while the vectors containing data elements from x are in

red; the output vectors of the multiplication are in purple.

Figure 3.1 shows a row-wise layout for the program, where the each of the blue

vectors represents a row from a. A single red vector contains the vector x. The figure

shows the computation of a dot product for one row of a and x; First, the vectors are

multiplied, and then the product vector is rotated and added with itself multiple times

to compute the sum. This pattern, which we call rotate-and-reduce, is common in the

literature [31, 104, 62] and it exploits it allows for computing reductions in a logarith-

mic number of operations relative to the number of elements.
2
Here 4 elements can be

summed with 2 rotations and 2 additions. The row-wise layout results in the dot prod-

uct outputs to be spread out in 4 ciphertexts, which can preclude further computation

(they cannot be used as a packed vector in another matrix–vector multiplication, say)

and induce a lot of communication if the server sends these outputs to the client.

Figure 3.2 shows the “generalized diagonal” layout from Halevi and Shoup [53].

Here the vectors contain diagonals from array a: the first vector contains the main di-

agonal; the second vector contains a diagonal shifted to the right and wrapped around;

and so on. These vectors are then multiplied with the vector containing x, but rotated

2
The pattern is sometimes called “rotate-and-sum,” but it clearly also applies to products as well.

It requires the dimension size to be a power of two and the reduction operator to be associative and

commutative, which is true for addition and multiplication.
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Figure 3.3: Viaduct-HE compiler architecture.

an appropriate number of slots. The layout of the product vectors allow the sum to be

computed simply by adding the vectors together, as the product elements for different

rows are packed in the same vector but elements for the same row are “exploded” along

multiple vectors.

In total, the diagonal layout requires only 3 rotations and 3 additions, compared

to the 8 additions and 8 rotations required by the row-wise layout. Additionally, the

outputs are packed in a single vector, which can be convenient for further computations

(it can be used as input to anothermatrix–vectormultiplication) or for returning results

to the client with minimal communication.

3.2 Compiler Overview

Figure 3.3 shows the architecture of the Viaduct-HE compiler. It takes as input

an array program and generates both code run by the client, which sends inputs and

receives program results, and by the server, which performs the computations that im-

plement the source program. The compiler has well-defined extension points to con-

trol different aspects of the compilation process. To describe this process in detail, we

consider the compilation of a program that computes the distance of a client-provided
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1 input a: [4, 4] from server
2 input x: [4] from client
3 for j: 4 {
4 sum(for i: 4 {
5 (a[j][i] - x[i]) *
6 (a[j][i] - x[i])
7 })
8 }

Figure 3.4: Source code of distance program.

1 let out =
2 sum_vec(i: 4,
3 (at - rot(i, xt)) *
4 (at - rot(i, xt)))

Figure 3.5: Circuit representation of distance program.

1 at = PlaintextArray ([4])
2 tmp0 = Vec(a, Roll (1,0), [0,0], [(2,0,0,{(0,1)}])
3 at[0] = encode(tmp0)
4 ...
5 xt = CiphertextArray ([4])
6 xt[0] = Vec(x, Id, [0], [(4,0,0,{(0,1)})])
7 ...
8 out = CiphertextArray ([])
9 for i in range (4) {
10 inst1 = rot(C,i,xt[i])
11 inst2 = sub(CP,inst1 ,at[i])
12 inst3 = mul(C,inst2 ,inst2)
13 out = add(C,out ,inst3)
14 }

Figure 3.6: Loop-nest representation of distance program.
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1 a = Array [4][4];
2 x = Array [4];
3 out = Array [4]
4 for (j = 0; j < 4; j++) {
5 acc = 0;
6 for (i = 0 ; i < 4; i++) {
7 acc += (a[j][i] - x[i]) * (a[j][i] - x[i]);
8 }
9 out[j] = acc;
10 }

Figure 3.7: Distance program in a traditional imperative language.

point (x) against a list of test points known to the server (a).

3.2.1 Source Language

Figure 3.4 shows the source code for the distance program. It specifies that a is a 2D

array provided as input by the server, with an extent of 4 on both dimensions; similarly,

x is a 1D array provided as input by the client, with an extent of 4. Thus a is assumed to

be known to the server and thus is in plaintext, while x is in ciphertext since it comes

from the client. The two for nodes each introduce a new dimension to the output

array; they also introduce the index variables i and j, which are used to index into the

input arrays a and x. The dimension introduced by the inner for node is reduced with

the sum operator, so the output array has one dimension. Conceptually, the program

computes the distance of x from the rows of a, each of which represents a point. An

equivalent implementation in a traditional imperative language would look like the

following program on Figure 3.7.

Figure 3.8 defines the abstract syntax for the source language. Programs consist of a

sequence of inputs and let-bound expressions followed by an output expression whose
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Integer z ∈ Z Natural n ∈ N Index variable i, j, k Array variable a, b, c

Shape sh ::= [n1, . . . , nd]
Party pt ::= client | server
Operator ⊙ ::= + | − | ×
Index in ::= i | z | in⊙ in
Expression e ::= z | ie | e⊙ e | reduce⊙,n(e) | for i : n {e}
Index Expression ie ::= a | ie[in]
Statement s ::= let a = e in s | input a : sh from pt in s | e

Figure 3.8: Abstract syntax for the source language.

result the server sends to the client. Expressions uniformly denote arrays; scalars

are considered zero-dimensional arrays. The expression input a : sh from pt in e de-

notes an array with shape sh received as input from pt, which is either the client or

the server. Input arrays from the client are treated as ciphertexts, while input arrays

from the server are treated as plaintexts. Operation expression e1 ⊙ e2 denotes an

element-wise operation over equal-dimension arrays denoted by e1 and e2, while re-

duction expression reduce⊙,n(e) reduces the n-th dimension of the array denoted by

e using ⊙.

The expression for i : n {e} adds a new outermost dimension with extent n to the

array denoted by e, while e[in]—also referred throughout as an indexing site—indexes

the outermost dimension of an array. Only array variables, introduced by inputs or

let-bindings, can be indexed. The compiler also imposes some restrictions on indexing

expressions. Particularly, index variables cannot be multiplied together (e.g. a[i*j]),

as compiler analyses assume that the dimensions of indexed arrays are traversed with

constant stride.
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3.2.2 Scheduling

The source program is an abstract representation of computation over arrays; it rep-

resents the algorithm—the what—of an HE program. The vectorization schedule—how

data will be represented by ciphertext and plaintext and how computations will be

performed by HE operations—is left unspecified by the source program. Because its

source language is array-oriented, the vectorization schedules for Viaduct-HE pro-

grams have a simple representation, allowing the compiler to manipulate such sched-

ules and search for efficient ones during its scheduling stage. The compiler provides

extension points to control both how the search space of schedules is explored and

how the cost of schedules are assessed.

Like matrix multiplication, the distance program can be given a row-wise layout

and a diagonal layout. The diagonal layout similarly requires less rotation and addition

operations. The scheduling stage of the compiler can search for these schedules and

assess their costs.

3.2.3 Circuit Representation

Once an efficient schedule has been found, the circuit generation stage of the compiler

uses it to translate the source program into a circuit representation. The circuit rep-

resentation represents information about the ciphertexts and plaintexts required in an

HE program, as well as operations to be performed over these, at a very abstract level.

The compiler has circuit transformation stages that leverage the algeraic properties of

circuits to rewrite them into more efficient forms. Circuits are designed to facilitate

optimization: a single circuit expression can represent many computations, so circuit
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rewrites can optimize many computations simultaneously.

Figure 3.5 shows the circuit representation for the distance program with the diag-

onal layout. The sum_vec operation represents a summation of 4 different vectors to-

gether into one vector. The 4 vectors each represent a the result of a squared difference

computation between vector containing a generalized diagonal of array a (represented

by the variable at) and a rotated vector containing array v (represented by the variable

xt).

3.2.4 Loop-nest Representation

Circuits represent HE computations at a very high level. This makes the circuit rep-

resentation amenable to optimization, but makes generation of target code difficult.

After circuit programs have been optimized, the circuit lowering stage of the compiler

translates circuit programs into a “loop-nest” representation. Loop-nest programs are

imperative programs that are much closer in structure to target code. Once in the

loop-nest representation, the code generation stage of the compiler generates target

code using a back end for a specific HE library. The compiler can generate code for a

different HE library just by swapping out the back end it uses. Back ends only need

to translate loop-nest programs to target code, so adding support for new back ends is

straightforward.

Figure 3.6 shows the loop-nest representation for the distance program. It contains

code to explicitly fill in the variables at and xtwith the vectors that will be used in com-

putations. The summation is now represented as an explicit for loop that accumulates

squared distance computations in an out variable.
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a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

dim 1

dim
 0

Figure 3.9: Array traversals in the distance program.

3.3 Scheduling

The scheduling stage begins by first translating source programs into an intermediate

representation that eliminates explicit indexing constructs. From there, the compiler

generates an initial schedule and explores the search space of vectorization schedules.

3.3.1 Index-free Representation

The index-free representation is similar to the source language, except that for nodes

are eliminated and indexing sites are replaced with pair (is, at) of a unique identifier

(is) and an array traversal (at) that summarizes the contents of the array denoted by

the indexing site. Array traversals are arrays generated from indexing another array.

Figure 3.9 shows the array traversals in the distance program. The traversal in red is

from indexing array a; the traversal in blue is from indexing array x. Note that the

dimension 0 is introduced by the for j node in the source program, while dimension

1 is introduced by the for i node. The traversal of array x repeats along dimension 0

because it is not indexed by j and thus does not change along that dimension.
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Formally, array traversals have three components: the name of the indexed array;

the integer offsets at which the traversal begins, defined by a list of integers with a

length equal to the number of dimensions of the indexed array; and a list of traver-

sal dimensions (td). We write a(z1, . . . , zm)[td1, . . . , tdn] to denote a n-dimensional

traversal of an m-dimensional array. Array traversals can define positions that are

out-of-bounds; for example, offsets can be negative even though all index positions in

an array start at 0.

Each traversal dimension has an extent specifying its size and a set of content dimen-

sions that specify how the dimensions traverses the indexed array. Content dimensions

have a dimension index and a stride. For example, a traversal dimension (4, {0 :: 2})

defines a traversal of an array along its zeroth dimension that spans 4 elements, where

only every other element is traversed (i.e. the stride is 2). Traversal dimensions can

have empty content dimension sets, whichmeans that the array traversal does not vary

along the dimension. We call these traversal dimensions empty.

For example, the index-free representation for the distance program is

1 sum(1, ((at1 ,atr) - (xt1 ,xtr)) * (((at2 ,atr) - (xt2 ,xtr))).

Variables at1 and at2 represent indexing sites with traversal atr that indexes array a;

variables xt1 and xt2 represent indexing sites with traversal xtr that indexes array x.

The array traversals denoted by these indexing sites is as follows:

atr = a(0, 0)[(4, {0 :: 1}), (4, {1 :: 1})] xtr = x(0)[(4, {}), (4, {0 :: 1})].

The traversal atr defines a 4x4 array where dimension 0 traverses dimension 0 of input

array a with stride 1, and dimension 1 traverses dimension 1 of array a with stride 1.

Meanwhile, the traversal xtr also defines a 4x4 array, but its dimension 0 is empty and

its dimension 1 traverses the only dimension of input array x with stride 1.
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a11 a12 a13 a14 x1 x2 x3 x4 d1 d1 d1 d1

{0:4::1} [1:4::1] {0:4::1} [RR(4)]

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

d2 d2 d2 d2

d3 d3 d3 d3

d4 d4 d4 d4

Figure 3.10: Row-wise layout. Induces 5 input vectors, 4 output vectors, 8 ad-

ditions, 8 rotations (2 adds and rotates per vector with rotate-and-

reduce).

a11 a22 a33 a44 x1 x2 x3 x4

d1 d2 d3 d4

roll(1,0); {1:4::1} [0:4::1] {}[0:4::1]

a12 a23 a34 a41

a13 a24 a31 a42

a14 a21 a32 a43

x2 x3 x4 x1

x3 x4 x1 x2

x4 x1 x2 x3

Figure 3.11: “Diagonal” layout. Induces 5 input vectors, 1 output vector, 3 addi-

tions, 3 rotations.

3.3.2 Representing Schedules

Schedules define a layout for the array traversals denoted by each indexing site in the

index-free representation. The layout determines how an array traversal is represented

as a set of vectors. One can think of layouts as a kind of traversal of array traversals

themselves. Because of this, layouts are defined similarly to array traversals, except

they do not specify offsets, as layouts always have offset 0 along every traversal di-

mension.
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Layouts are built from schedule dimensions which denote some part of an array

traversal. We write the syntax i : n :: s for a schedule dimension with dimension

index i, extent n, and stride s. For example, a schedule dimension 0 : 4 :: 2 defines a

4-element section of an array traversal along its zeroth dimension that contains only

every other element (i.e. the stride is 2).

Concretely, layouts consist of the following: (1) a set of exploded dimensions; (2) a

list of vectorized dimensions; and (3) a preprocessing operation. Exploded dimensions

define parts of the array traversal that will be laid out in different vectors, while vector-

ized dimensions define parts that will be laid out in every vector. The ordering of vec-

torized dimensions defines their ordering on a vector: the beginning of the list defines

the outermost vectorized dimensions, while the end defines the innermost vectorized

dimensions. Preprocessing operations change the contents of the array traversal be-

fore being laid out into vectors, which allow for the representation of complex layouts.

We write p{ed1, . . . , edm}[vd1, . . . , vdn] to denote a schedule with preprocessing p,m

exploded dimensions (ed) and n vectorized dimensions (vd). When p is the identity

preprocessing operation, it is often omitted from the schedule.

Figure 3.10 and Figure 3.11 show two different schedules for the distance program.

The vectors of at1 and at2 are in red, while the vectors of xt1 and xt2 are in blue.

Their respective layouts are given below the vectors. Finally, the vectors of the distance

program’s output is in purple, and the output layout is given below. Note that array

traversals for at and xt must have the same layout since their arrays are multiplied

together, and operands of element-wise operations must have the same layout.

Figure 3.10 represents a row-wise layout, where the entirety of dimension 1 of at

and xt are vectorized while the entirety dimension 0 is exploded into multiple vectors.

Thus traversal at is represented by 4 vectors, one for each of its rows; since traver-
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sal xt has 4 equal rows, it is represented by a single vector. Meanwhile, Figure 3.11

represents a “diagonal” layout; it is similar to a column-wise layout where each vector

contains a column, but the roll preprocessing operation rotates the rows along the

columns, where the rotation amount progressively increases. As discussed in §3.1, a

similar diagonal layout was originally specified in Halevi and Shoup [53] as an efficient

implementation of matrix–vector multiplication, but here we see that the schedule ab-

straction can capture its essence, allowing the compiler to generalize and use it for

other programs.

Note that exploded dimensions have a name associated with them; in the above

syntax, the name for exploded dim i is di. These names are used to uniquely iden-

tify vectors induced by the layout. During circuit generation, the names of exploded

schedule dimensions will be used as variables that parameterize circuit expressions.

Preprocessing. A preprocessing operation in a layout transforms an array traversal

before laying it out into vectors. Formally, a preprocessing operation is a permutation

over elements of the array traversal. Thus we can think of preprocessing operations as

functions from element positions to element positions. Given an n-dimensional array

traversal at, applying preprocessing operation p over at defines a new traversal such

that the element at position x1, . . . , xn is the element at position p(x1, . . . , xn) of at.

For example, the identity preprocessing operation is the trivial permutation that maps

element positions to themselves: id = λ(x1, . . . , xn).(x1, . . . , xn). Given that both

dimensions i and j of an array traversal both have extent n, we can define the roll

preprocessing operation as follows:

roll(a, b) = λ(x1, . . . , xa, . . . , xb, . . . , xn).(x1, . . . , xa + xb % n, . . . , xb, . . . xn).
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Applying layouts. When applied to an array traversal, a layout generates a set of

vectors that contain parts of the array indexed by the traversal. Formally, a vector

contains four components: the name of the indexed array; a preprocessing operation;

a list of integer offsets; and a list of traversal dimensions. As with preprocessing in a

layout, a preprocessing operation in a vector transforms an array before its contents

are laid out in the vector. We write a.p(z1, . . . , zm)[vtd1, . . . , vtdn] to denote a vector

indexing an m-dimensional array a with preprocessing p and n traversal dimensions

(vtdi). Again p is usually elided when it is the identity preprocessing operation. Vector

traversal dimensions are similar to array traversal dimensions, except they also track

elements that are out-of-bounds. A vector can have out-of-bounds values either be-

cause its dimensions extend beyond the extents of the indexed array or the extents of

the array traversal from which it is generated. We write (n, obl, obr, {cd1, . . . , cdm})

to denote a vector traversal dimension with extent n,m content dimensions, a left out-

of-bounds extent obl, and a right out-of-bounds extent obr. The left out-of-bounds and

right out-of-bounds extents count the number of positions in a dimension that are out-

of-bounds to the left and right of the in-bounds positions respectively. The compiler

enforces the semantics that out-of-bounds values have value 0.

Given a layout with n exploded dimensions each with extent ni, applying the lay-

out to an array traversal generates

∏
ni vectors, one for each distinct combination of

positions that can be defined along exploded dimensions. We call each such combina-

tion a coordinate. For example, when applied to array traversal at, the diagonal layout

for the distance program generates 4 vectors, one for each distinct positions that the
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exploded dimension named i can take:

{i 7→ 0} 7→ a.roll(1, 0)(0, 0)[(4, 0, 0, {0 :: 1})]

{i 7→ 1} 7→ a.roll(1, 0)(0, 1)[(4, 0, 0, {0 :: 1})]

{i 7→ 2} 7→ a.roll(1, 0)(0, 2)[(4, 0, 0, {0 :: 1})]

{i 7→ 3} 7→ a.roll(1, 0)(0, 3)[(4, 0, 0, {0 :: 1})].

This represents the same vectors for traversal at visually represented in Figure 3.11.

3.3.3 Searching for Schedules

To search for an efficient schedule for the program, the scheduling stage begins with

an initial schedule where the layouts for all indexing sites contain only exploded di-

mensions. Thus in this schedule elements of arrays are placed in individual vectors.

While very inefficient, the initial schedule can be defined for any program. To explore

the search space of schedules, the scheduling stage uses a set of schedule transformers

that take a schedule as input and returns a set of “nearby” schedules. To assess both

the validity of a schedule visited during search, the compiler attempts to generate a

circuit from the schedule. If a circuit is successfully generated, it is applied to a cost

estimator function to determine the cost of the schedule.

The schedule transformers in the prototype implementation of the compiler include

the following.

Vectorize dimension transformer. This transformer takes an exploded dimension

from a layout and vectorizes it:

p{. . . , (da) ia : na :: sa, . . .}[. . .] ; p{. . .}[. . . , ia : na :: sa].
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Importantly, this transformer only generates vectorized dimensions with extents that

are powers of two; if the exploded dimension is not a power of two, the transformer

will round up the vectorized dimension’s extent to the nearest one. The transformer

imposes this limit on vectorized dimensions to simplify reasoning about correctness:

vectors only wrap around correctly when their size divides the slot counts of cipher-

texts and plaintexts without remainder, and these slot counts are always powers of two.

This limitation also allows the circuit generation stage to uniformly use the rotate-and-

reduce pattern.

Tiling transformer. This transformer takes an exploded dimension and tiles it into

an outer dimension and an inner dimension. That is, given that extent na can be split

into n tiles each of size t (i.e., ea = tn), it performs the following transformation:

p{. . . , (da) ia : na :: sa, . . .}[. . .] ; p{. . . , (d′a) ia : t :: sa, (d′′a) ia : n :: sat, . . .}[. . .]

where d′i and d
′′
i are fresh exploded dimension names.

Roll transformer. This transformer applies a roll preprocessing operation to a lay-

out:

id{. . . , (da) ia : n :: sa, . . .}[ib : n :: sb, . . .] ;

roll(a, b){. . . , (da) ia : n :: sa, . . .}[ib : n :: sb, . . .].

The transformer only applies when dimension a is exploded, dimension b is the out-

ermost vectorized dimension and their extents match. The following conditions must

also hold:

• the traversal dimensions a and b are not tiled;

• a and b have content dimension sets with size at most 1;
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• if a or b has content dimension set {d :: s}, the extent of d must be the same as

the extents of a and b and stride s must equal 1;

• the dimension in the indexed array traversed by a and b, if any, must not be

traversed in other dimensions.

These conditions ensure that layouts with roll preprocessing can be materialized.

Epochs. The search space for vectorization schedules is large. To control the amount

of time that scheduling takes, the search is staggered into epochs. During an epoch, the

configuration of schedule transformers is fixed such that only a subset of the search

space is explored. When nomore schedules can be visited, the epoch ends; a new epoch

then begins with the schedule transformers updated to allow exploration of a bigger

subset of the search space. The compiler runs a set number of epochs, after which it

uses the most efficient schedule found to proceed to later stages of compilation.

The prototype implementation of the Viaduct-HE compiler uses epochs to control

how schedule dimensions are split by the tiling transformer, which is the main cause

of search space explosion. The tiling transformer gradually increases the number of

schedule dimensions it splits as the number of scheduling epochs increase.

3.4 Circuit Generation

The circuit generation stage takes a schedule and index-free program as input and at-

tempts to generate a circuit program. The design of the circuit representation reflects

the fact that many computations in HE programs are structurally similar. Thus a cir-

cuit expression denotes not just a single HE computations, but rather a family of HE
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Dimension variable d ∈ D Array name a Vector v
Plaintext var φp Ciphertext var φc Offset var φo

Circuit value map cmτ ∈ (D × · · · × D ⇀ N× · · · × N)⇀ τ

Offset oe ::= d | z | oe⊙ oe | φo

Expression ce ::= φp | φc | z | ce⊙ ce
| rot(oe, ce) | reduce-vec⊙(d : n, ce)

Statement cs ::= let a : [d1 : n1, . . . , dn : nn] = ce | cs; cs | skip
Object co ∈ O ::= Const(z) | Mask((n, n, n)) | Vec(v)
Registry cr ::= φo 7→ cmZ, cr | φp 7→ cmO, cr | φc 7→ cmO, cr | ·

Figure 3.12: Abstract syntax for circuit programs.

Array Materializer A Layout ℓ
Index-free expression fe Index-free statement fs
Schedule dimension sd Exploded dimension ed
Output Vectorized Dimension ovd ::= i : n :: s | R(n) | RR(n)
Output Layouts oℓ ::= ∗ | p{ed1, . . . , edm}[ovd1, . . . , ovdn]
Schedule Σ ::= Σ, is : ℓ | ·
Input Context Γ ::= Γ, a : sh | ·
Expression Context ∆ ::= ∆, a : (sh, oℓ) | ·

Figure 3.13: Syntax for circuit generation.

computations. Expressions are parameterized by dimension variables, and an expres-

sion represents a different computation for each combination of values (coordinates)

these variables take.

Figure 3.12 shows the abstract syntax for circuit programs. A circuit program con-

sists of a sequence of let statements that bind the results of expressions to array names;

the last of these statements defines a distingished output array (out) whose results will

be sent to the client. A statement let a : [d1 : n1, . . . , dn : nn] = ce declares an array a

whose contents is computed by expression ce. Note that ce is parameterized by dimen-

sion variables di each with extent ni, which means that ce represents
∏
ni different
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A; Σ; Γ;∆ ⊢ fe; ce : (sh, oℓ) A; Σ; Γ;∆ ⊢ fs; cs

∗ <: sh ∗ <: oℓ p{. . .}[RR(n), ovd2, . . . , ovdn] <: p{. . .}[ovd2, . . . , ovdn]

CGen-Literal

A; Σ; Γ;∆ ⊢ z ; z : (∗, ∗)

CGen-Op

A; Σ; Γ;∆ ⊢ fe1 ; ce1 : (sh, oℓ)
A; Σ; Γ;∆ ⊢ fe2 ; ce2 : (sh, oℓ)

A; Σ; Γ;∆ ⊢ fe1 ⊙ fe2 ; ce1 ⊙ ce2 : (sh, oℓ)

CGen-Input-Index

Σ(is) = ℓ Γ(a) = sha
a = tr-array(at) sh = tr-shape(at)
materialize-input(A, sha, at, ℓ) ; ce

A; Σ; Γ;∆ ⊢ (is, at) ; ce : (sh, ℓ)

CGen-Expr-Index

Σ(is) = ℓ ∆(a) = (sha, oℓa)
a = tr-array(at) sh = tr-shape(at)
materialize-expr(A, sha, oℓa, at, ℓ) ; ce

A; Σ; Γ;∆ ⊢ (is, at) ; ce : (sh, ℓ)

CGen-Reduce

sh1 = [n0, . . . , nn−1, nn, nn+1, . . . , nd−1] sh2 = [n0, . . . , nn−1, nn+1, . . . , nd−1]
A; Σ; Γ;∆ ⊢ fe; ce : (sh1, oℓ1) reduce-layout(n, oℓ1) ; (oℓ2, dl)

A; Σ; Γ;∆ ⊢ reduce⊙,n(fe) ; gen-reduce⊙(ce, dl) : (sh2, oℓ2)

CGen-Input

A; Σ; Γ, a : sh; ∆ ⊢ fs; cs

A; Σ; Γ;∆ ⊢ input a : sh from pt in fe; cs

CGen-Let

oℓ = p{(d1) i1 : n1 :: s1, . . . , (dn) in : nn :: sn}[. . .]
A; Σ; Γ;∆ ⊢ fe; ce : (sh, oℓ) A; Σ; Γ;∆, a : (sh, oℓ) ⊢ fs; cs

A; Σ; Γ;∆ ⊢ let a = fe in fs; let a : [d1 : n1, . . . , dn : nn] = ce; cs

Figure 3.14: Rules for circuit generation.
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computations, one for each distinct combination of values that the variables can take.

Because expressions can vary depending on the coordinates their dimension variables

take, circuit programs are accompanied by a circuit registry data structure that records

information about the exact values expressions take at a particular coordinate.

Circuit expressions include literals (z) and operations (ce1 ⊙ ce2) as in source pro-

grams. Expression rot(oe, ce) rotates the vector denoted by ce by an offset oe. Offsets

can include literals, operations, index variables, and offset variables (φo); the latter two

allows rotation amounts to vary depending on the values of in-scope dimension vari-

ables. The value of an offset variable at a particular coordinate is defined by a map that

is stored in the registry that comes with the circuit program. Ciphertext (φc) and plain-

text (φp) variables define a family of ciphertext and plaintext vectors respectively. Like

offset variables, the exact vector these variables represent at a particular coordinates is

defined by a map in the registry. These vectors can contain parts of input arrays and

result arrays of prior expressions; additionally, plaintext variables can also represent

constant vectors, which contain the same value in all of its slots, and mask vectors,

which can be multiplied to another vector to zero out some of its slots. Masks are de-

fined by a list of dimensions [(n1, lo1, hi1), . . . , (nn, lon, hin)], where ni is the extent

of the dimension i and [loi, hii] is the defined interval for dimension i. The mask has

value 1 in slots within defined intervals and 0 in slots outside of defined intervals.

Finally, the expression reduce-vec⊙(d : n, ce) defines a computation where multi-

ple vectors are reduced to a single vector with operation⊙. If the reduction expression

is parameterized by dimension variables d1, . . . , dn with extents n1, . . . , nn, then the

expression represents

∏
ni different vectors, each ofwhichwere computed by reducing

d vectors together. Thus the expression ce is parameterized by variables d1, . . . , dn, d.
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v11 v12 v21 v22

[0:2::1, R(2)]

v12 v21 v22 v11

r1 # r2 # +

Figure 3.15: A reduced vectorized dimension.

3.4.1 Translation Rules for Circuit Generation

The translation into the circuit representation is mostly standard across programs, with

the exception of the translation of indexing sites. The compiler uses a set of array

materializers that lower the array traversals denoted by indexing sites into vectors and

circuit operations according to a specific layout. We discuss them in detail in §3.4.2.

Figure 3.13 and Figure 3.14 shows the rules for generating a circuit program from

the index-free representation. The judgment defines both the translation to a circuit as

well as the conditions that must hold for the translation to be successful. The expres-

sion translation judgment has form A; Σ; Γ;∆ ⊢ fe ; ce : (sh, ℓ), which means that

given an array materializer configuration A, schedule Σ, input context Γ, and expres-

sion context ∆, the index-free expression fe can be translated to circuit expression

ce, where the computation defined by ce has shape sh and output layout ℓ. The out-

put layout defines how the results are laid out in vectors. The input context defines

the shapes of input arrays in scope, while the expression context defines the shape

and output layout of let-bound arrays in scope. The statement translation judgment

A; Σ; Γ;∆ ⊢ fs ; cs has a similar form to expression translations. Additionally,

judgment sh1 <: sh2 means that shape sh1 can be coerced to shape sh2, and similarly

oℓ1 <: oℓ2 means that output layout oℓ1 can be coerced to oℓ2.
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Output layouts. Note that output layouts are more general than the layouts defined

by schedules. First, they can be the “wildcard” layout (∗), which can be coerced into

any layout. Second, vectorized dimensions can take other forms. A reduced dimension

(R(n)) represents a dimension in a vector with extent n, but since it is reduced only

the first position of the dimension has an array element; the rest of the dimension

contain invalid values. A vectorized dimension becomes a reduced dimension when

its contents are rotated-and-reduced. Figure 3.15 shows the output layout for vector

with a starting layout of [0 : 2 :: 1, 1 : 2 :: 1] after its inner dimension has been

reduced.

When the outermost vectorized dimension is rotated-and-reduced, however, the

elements of the dimension wrap around such that the result of the reduction repeats

along the extent of the dimension. This can be seen in the row-wise layouts for matrix–

vector multiplication (Figure 3.1) and the distance program (Figure 3.10). In that case,

a vectorized dimension with extent n becomes a reduced repeated dimension (RR(n)).

Output layouts with reduced repeated dimensions can be coerced into layouts that drop

such dimensions.

Translations. The translations of literals (CGen-Literal) and operations (CGen-

Op) are straightforward; CGen-Op additionally ensures that the operands have the

same shape and output layout. The translations for indexing sites (CGen-Input-Index

and CGen-Expr-Index) use the compiler’s array materializer configurationA to lower

an array traversal into a layout specified by the schedule. The functions tr-array and

tr-shape return the indexed array and shape of an array traversal respectively; the

functions materialize-input and materialize-expr are part of the interface of array

materializers and, if successful, return a circuit expression representing the vectors

of the array traversal in the required layout. The translations for statements (CGen-
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Input, CGen-Let, CGen-Output) add array information to the context. Note that the

translation for let statements additionally uses the exploded dimensions of the output

layout of its body expression circuit as dimension variables to parameterize the circuit.

The translation of reduction expressions (CGen-Reduce) are more involved. Given

reduce⊙,n(fe) and that fe is translated to ce, the output layout oℓ1 of ce is transformed

to an output layout oℓ2 that reflects the reduction by the reduce-layout function,

which returns oℓ2 layout as well as the list of schedule dimensions (dl) in ℓ1 that were

reduced. Let i be the traversal dimension index referenced by a schedule dimension sd

in ℓ1. Then there are three possible cases:

• When i < n, then sd remains in ℓ2 unchanged.

• When i > n, then sd remains in ℓ2 but now references traversal dimension index

i− 1.

• When i = n and sd is exploded, it is removed from ℓ2 entirely and added to

the list of reduced schedule dimnesions dl. When i = n and sd is vectorized

with extent n, it is either replaced with a reduced dimension R(n) or a reduced

repeated dimension R(n) depending on its position. sd is added to the list of re-

duced schedule dimensions dl alongwith its block size (b), which is intuitively the

number of vector slots between array elements whose positions have different

values of i. It is defined the product of the extents of the vectorized dimensions

that come after sd in the layout. For example, if sd is the innermost vectorized

dimension (i.e., it is the last element in a layout’s list of vectorized dimensions),

then b = 1. The block size is a parameter used by the rotate-and-reduce pattern

that will compute the reduction for the vectorized dimension.

Note that reduce-layout fails when the preprocessing operation of the layout can-
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gen-reduce⊙(ce, []) = ce

gen-reduce⊙(ce, [(d) i : n :: s] + tl) = gen-reduce⊙(reduce-vec⊙(d : n, ce), tl)

gen-reduce⊙(ce, [(i : n :: s, b)] + tl) = gen-reduce⊙(rot-reduce⊙(b, n, ce), tl)

rot-reduce⊙(b, 1, ce) = ce

rot-reduce⊙(b, n, ce) = rot-reduce⊙(b, n/2, ce⊙ rot(b(n/2), ce))

Figure 3.16: Definition of gen-reduce⊙.

not be successfully transformed by the reduce-preprocess function, which is spe-

cific to each preprocessing operation. Given identity preprocessing operation (id),

reduce-preprocess always succeeds and returns id unchanged. Meanwhile, given

preprocessing roll(a, b) and reduced dimension index n reduce-preprocess returns

either id when n = a or roll(a, b) when b ̸= n ̸= a. When n = b, reduce-preprocess

is not defined and fails. Intuitively, reducing dimension a transforms roll into id since

it only changes the positions of elements along a. Meanwhile, reducing dimension

b would reduce array elements together that originally had positions with different

values for a before roll was applied, which is invalid.

Finally, the gen-reduce⊙ function, defined in Figure 3.16, generates the circuit

expressions necessary to translate the reduction. It takes the list of reduced schedule

dimensions generated by reduce-layout and for each schedule dimension either adds

a reduce-vec expression to the circuit, if the dimension is exploded, or generates a

rotate-and-reduce pattern, if the dimension is vectorized.
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3.4.2 Array Materialization

Array materializers allow the compiler to customize how a layout is applied to an array

traversal. They can be triggered to run only for certain array traversals and layouts,

and thus can use specialized information about these to enable complex translations.

Array materializers implement two main functions. The materialize-input func-

tion materializes an array traversal indexing an input array. It takes as input the shape

of the indexed array (sha), the array traversal itself (at), and the layout for the traver-

sal specified by the schedule (ℓ). The materialize-expr function materializes an array

traversal indexing an array that is the output of a let-bound statement. It takes simi-

lar input to materialize-input with the addition of the output layout of the indexed

array (oℓa).

Vector Derivation. The prototype implementation of the Viaduct-HE compiler has

two array materializers. The first is the default materializer that is triggered on layouts

with no preprocessing. When materializing traversals of input arrays, it attempts to

minimize the number of input vectors required by deriving vectors from one another.

When materializing traversals of let-bound arrays, it attempts to derive vectors of the

traversal from the vectors defined by the output layout of the indexed array; material-

ization fails if some vector for the traversal cannot be derived.

Intuitively, a vector v1 can be derived from another vector v2 if all the array el-

ements traversed by v1 are contained in v2 in the same relative positions, although

rotation and masking might be required for the derivation. For example, consider the

layout ℓ for traversal kt of 4x4 client input array k:

kt = k(0, 0)[(2, {0 :: 1}), (4, {0 :: 1})] ℓ = {(i) 0 : 2 :: 1}[1 : 4 :: 1].
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r1 # r2 #

✕

1 0 1 0

r1 0 r2 0

0 r1 0 r2

r1 r1 r2 r2 +

Figure 3.17: Clean-and-fill pattern.

Applying ℓ to kt yields two vectors:

{i 7→ 0} 7→ k(1, 0)[(3, 0, 1, {0 :: 1})] {i 7→ 1} 7→ k(0, 0)[(4, 0, 0, {0 :: 1})].

Then the vector at {i 7→ 0} can be derived from the vector at {i 7→ 1} by rotating

the latter by -1 and masking its 4th slot. The materializer then generates the circuit

expression rot(φo, φc)×φp for the kt and adds the following mappings to the registry:

φc 7→{{i 7→ 0} 7→ Vec(k(0, 0)[(4, 0, 0, {0 :: 1})]),

{i 7→ 1} 7→ Vec(k(0, 0)[(4, 0, 0, {0 :: 1})])}

φo 7→{{i 7→ 0} 7→ −1, {i 7→ 1} 7→ 0}

φp 7→{{i 7→ 0} 7→ Mask((4, 0, 2)), {i 7→ 1} 7→ Const(1)}.

Besides rotation and masking, if a vector has an empty dimension it can be derived

from a vector that contains a reduced dimension in the same position using a “clean-

and-fill” routine, seen in Figure 3.17 [3][33, Figure 1]. This is useful for deriving vectors

of traversals that index let-bound arrays.

Roll Materializer. The other array materializer used by the Viaduct-HE compiler is

specifically for layouts with a roll preprocessing operation. Given traversal dimensions

a and b, let a = (n, cda) and b = (n, cdb). There are three possible cases:
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• Case 1: cda = {}. Then the contents of the array traversal do not change along a,

so the roll preprocessing does not do anything. The traversal will be materialized

as if the layout has no preprocessing.

• Case 2: cda = {ia :: 1} and cdb = {ib :: 1}. Then the traversal will be materi-

alized as if the layout has no preprocessing, but the vectors generated will have

preprocessing roll(ia, ib).

• Case 3: cda = {ia :: 1} and cdb = {}. Then the traversal will be materialized

as if the layout has no preprocessing, but only for vectors where {b 7→ 0}. To

materialize a vector at coordinate c = {. . . , b 7→ v, . . .} where v ̸= 0, the vector

at coordinate c[b 7→ 0] (i.e. c but with b set to 0) is rotated amount v.

Example. Consider the distance example from Figure 3.4 compiled with the diagonal

layout. Traversals at and xt are defined as follows:

at = a(0, 0)[(4, {0 :: 1}), (4, {1 :: 1})] xt = x(0)[(4, {}), (4, {0 :: 1})].

The diagonal layout is defined as roll(1, 0){(i) 1 : 4 :: 1}[0 : 4 :: 1]. Thus when

we apply the layout to at, case 2 above holds. So the materializer returns ciphertext

variable φc as the circuit expression representing at and φc is mapped to the following

in the circuit registry:

{i 7→ 0} 7→ a.roll(1, 0)(0, 0)[(4, 0, 0, {0 :: 1})]

{i 7→ 1} 7→ a.roll(1, 0)(0, 1)[(4, 0, 0, {0 :: 1})]

{i 7→ 2} 7→ a.roll(1, 0)(0, 2)[(4, 0, 0, {0 :: 1})]

{i 7→ 3} 7→ a.roll(1, 0)(0, 3)[(4, 0, 0, {0 :: 1})].

When we apply the layout to xt, case 3 holds. Thus the materializer returns
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ce+ 0 = ce ce× 1 = ce ce× 0 = 0 ce1 − ce2 = ce1 + (−1× ce2)

ce1 × (ce2 + ce3) = (ce1 × ce2) + (ce1 × ce3)

rot(oe1 + oe2, ce) = rot(oe1, rot(oe2, ce))

rot(oe, ce1) + rot(oe, ce2) = rot(oe, ce1 + ce2)

reduce-vec+(d : n, z × ce) = z × reduce-vec+(d : n, ce)

reduce-vec+(d1 : n1, reduce-vec+(d2 : n2, ce)) =
reduce-vec+(d2 : n2, reduce-vec+(d1 : n1, ce))

d ̸∈ dim-vars(oe)

reduce-vec⊙(d : n, rot(oe, ce)) = rot(oe, reduce-vec⊙(d : n, ce))

Figure 3.18: Select identities for circuit optimization.

rot(i, φc) as the circuit expression representing xt and φc is mapped to the follow-

ing in the circuit registry:

{i 7→ 0} 7→ x(0)[(4, 0, 0, {0 :: 1})] {i 7→ 1} 7→ x(0)[(4, 0, 0, {0 :: 1})]

{i 7→ 2} 7→ x(0)[(4, 0, 0, {0 :: 1})] {i 7→ 3} 7→ x(0)[(4, 0, 0, {0 :: 1})].

Note that an offset variable is not needed here, because the value of the rotation coin-

cides exactly with the value that the exploded dimension i takes.

3.5 Circuit Transformations

Once a circuit is generated for the source program, the compiler has additional stages

to further optimize the circuit before it generates target code.
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Ce(φc,m) = (0, cipher) Ce(φp,m) = (0,plain)

Ce(ce1,m) = (v1, τ1) Ce(ce2,m) = (v2, τ2)

Ce(ce1 ⊙ ce2,m) = (v1 + v2 +mW(⊙τ1,τ2), τ1 ⊔ τ2)

Ce(ce,mn) = (v, τ)

Ce(reduce-vec⊙(d : n, ce),m) = (v +m(n− 1)W(⊙τ,τ ), τ)

Ce(ce,m) = (v, τ)

Ce(rot(oe, ce),m) = (v +mW(rotτ ), τ)

Ce(ce,Πi ni) = (v, τ)

Cs(let a : [d1 : n1, . . . , dn : nn] = ce) = v

Cs(cs1) = v1 Cs(cs2) = v2

Cs(cs1; cs2) = v1 + v2

Figure 3.19: Circuit cost function.

3.5.1 Circuit Optimization

The scheduling stage of the compiler can find schedules with data layouts that result

in efficient HE programs. However, there are optimizations leveraging the algebraic

properties of HE operations that are missed by scheduling. The circuit optimization

stage uses these algebraic properties to rewrite the circuit into an equivalent but more

efficient form. The compiler performs efficient term rewriting through equality satura-

tion [98, 107], applying rewrites to an e-graph data structure that compactly represents

many equivalent circuits.

Figure 3.18 contains some identities that hold for circuit expressions. Because ho-

momorphic addition and multiplication operate element-wise, one can view HE pro-

grams algebraically as product rings; thus the usual ring properties hold. Circuit iden-

tities also express properties of rotations and reductions. For example, rotation dis-
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tributes over addition and multiplication: adding or multiplying vectors and then ro-

tating yields the same result as rotating the vectors individually first and then adding

or multiplying. Provided that the rotation amount oe does not depend on the value of

the dimension variable that is being reduced (i.e. the variable is not in dim-vars(oe))

rotating vectors individually by oe and then reducing them together is the same as

reducing the vectors first and then rotating the result.

Computing cost. Extraction of efficient circuits from the e-graph is guided by the

cost function defined in Figure 3.19. Note that this is the same cost function that guides

the search for efficient schedules during the scheduling stage. The function Ce takes

an expression ce and its multiplicity m and returns the cost v of the expression as

well as its type τ , which could either be plain or cipher. Types are ordered such

that plain ⊑ cipher; the type for binary operations is computed from the join of its

operand types according to this ordering. The cost function is parameterized by a cus-

tomizable function W that weights operations according to their type. For example,

W might give greater cost to operations between ciphertexts than to operations be-

tween plaintexts. The cost function also adds costs for other features of a circuit, such

as the number of input vectors required (which can be computed from the circuit reg-

istry) and the multiplication depth of circuits, which is an important proxy metric for

ciphertext noise that should be minimized to avoid needing using costlier encryption

parameters [31].

3.5.2 Plaintext Hoisting

Not all data in an HE program are ciphertexts; instead some data such as constants

and server inputs are plaintexts. Because plaintext values are known by the server,
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cs⇝ cs di : ni ⊣ ce : τ ⇝ (cs, ce)

di : ni ⊣ φp : plain⇝ (skip, φp) di : ni ⊣ z : plain⇝ (skip, z)

di : ni ⊣ φc : cipher⇝ (skip, φc)

di : ni ⊣ ce1 : τ ⇝ (cs1, ce
′
1) di : ni ⊣ ce2 : τ ⇝ (cs2, ce

′
2)

di : ni ⊣ ce1 ⊙ ce2 : τ ⇝ (cs1; cs2, ce
′
1 ⊙ ce′2)

di : ni ⊣ ce1 : plain⇝ (skip, ce1)
di : ni ⊣ ce2 : cipher⇝ (cs2, ce

′
2) a, φp fresh

di : ni ⊣ ce1 ⊙ ce2 : cipher⇝
(
cs2; let a : [di : ni] = ce1, φp ⊙ ce′2

)
di : ni, d : n ⊣ ce : τ ⇝ (cs, ce′)

di : ni ⊣ rot(oe, ce) : τ ⇝ (cs, rot(oe, ce′))

di : ni, d : n ⊣ ce : τ ⇝ (cs, ce′)

di : ni ⊣ reduce-vec⊙(d : n, ce) : τ ⇝ (cs, reduce-vec⊙(d : n, ce′))

di : ni ⊣ ce : τ ⇝ (cshoisted, ce
′)

let a : [di : ni] = ce⇝ cshoisted; let a : [di : ni] = ce′
cs1 ⇝ cs′1 cs2 ⇝ cs′2

cs1; cs2 ⇝ cs′1; cs
′
2

Figure 3.20: Rules for plaintext hoisting.

operations between such values can be executed natively, which is more efficient than

execution under HE. The plaintext hoisting stage finds circuit components that can be

hoisted out and executed natively.

The compiler performs plaintext hoisting by finding maximal circuit subexpres-

sions that perform computations only on plaintexts. Once a candidate subexpression

is found, the compiler creates a let statement with the subexpression as its body. In the

original circuit, the subexpression is replaced with a plaintext variable; in the circuit

registry this variable is mapped to vectors that reference the output of the created let
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statement.

The rules defining the plaintext hoisting pass are in Figure 3.20. The hoisting judg-

ment for statements has the form cs ⇝ cs′, where input cs is transformed into cs′.

Meanwhile the hoisting judgment for expressions has the form di : ni ⊣ ce : τ ⇝

(cs, ce′), where ce is an input circuit expression with type τ parameterized by dimen-

sions di : ni, which results in a sequence of hoisted expressions cs and new transformed

expression ce′. The most important rule is for ce1⊙ ce2 where ce1 and ce2 respectively

have types plain and cipher (or vice versa); in this case, ce1 is a maximal plaintext

subexpression that can be computed natively, so it is hoisted out into a new circuit

statement bound to array name a, and it is replaced with plaintext variable φp in the

transformed expression. The circuit registry is then updated so that φp points to values

of the new array a. The rule for let statements hoists subexpressions cs from the body

expression ce and then prepends these to a transformed let statement with a new body

expression ce′.

Note the hoisting defined by the rules are over-eager: e.g., a plaintext variable added

to a ciphertext variable is hoisted out. In this case, the plaintext hoisting pass in the

compiler deviates from the rules and will not hoist the plaintext variable into its own

let statement. In practice, the compiler only hoists “complex” plaintext expressions (i.e.

expressions that are not values).

3.6 Circuit Lowering

The circuit representation facilitates optimizations but is hard to translate into target

code. The circuit lowering stage takes a circuit program as input and generates a loop-

nest program that closely resembles target code. Back ends then only need to translate
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Instruction ID i Array name a Dimension name d Vector v
Value type τv ::= native (N) | plain (P) | cipher (C)
Instruction type τi ::= native (N) | cipher-plain (CP) | cipher (C)
Array reference ρa ::= a | ρa[d]
Reference ρ ::= i | ρa
Constructor c ::= Arrayτv

(n) | Const(n) | Mask((n, n, n)) | Vec(v)
Expression le ::= z | le⊙ le | d | ρ | c | encode(ρa)
Statement ls ::= skip | ls; ls | i← ⊙τi(ρ, ρ) | i← rotτi(le, ρ)

| ρa := le | for d in range(n) { ls }

Figure 3.21: Abstract syntax for loop-nest programs.

loop-nest programs to target code to add compiler support for HE libraries.

Figure 3.21 defines the abstract syntax of loop-nest programs. Programs manipu-

late arrays of vectors, which can come in three different value types. Native vectors

represent data in the “native” machine representation; they cannot be used in HE com-

putations. Plaintext vectors are encoded as HE plaintexts and can be used in HE com-

putations. Ciphertext vectors are encrypted data from the client. Computations are

represented as sequences of instructions, which are tagged with an instruction type

that represents the types of their operands. Statements include instructions, assign-

ments to arrays, and for loops. Server inputs are first declared as native vectors, and

then explicitly encoded into plaintexts using the encode expression. Explicit repre-

sentation of encoding allows the compiler to generate code to encode the results of

computations over native vectors.

Circuit lowering translates a circuit statement let a : [d1 : n1, . . . , dn : nn] = ce by

first generating a sequence of prelude statements that fill arrayswith registry values for

offset, ciphertext, and plaintext variables used in ce. The translation for the statement

itself consists of a nest of n for-loops, one for each of the dimension variables di. The

body of the loop nest is the translation for ce.
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Translation of most expression forms are straightforward. Literals are replaced

with references to plaintext vectors that contain the literal value in all slots. Operations

and rotations are translated as instructions. The expression form reduce-vec⊙(d :

n, ce) is translated by declaring an array a and a new loop that iterates over d. The body

of the loop contains the translation for ce and its output is stored in the newly declared

array a. After the loop, a sequence of instructions then computes the reduction as a

balanced tree of operations; this is particularly important to minimize multiplication

depth.
3

Finally, a value numbering analysis over circuits prevents redundant computations

in the translation to loop-nest instructions. For example, in Figure 3.6 the difference

between a test point and the client-provided point is only computed once; the result is

then multiplied with itself to compute the squared difference.

3.7 Implementation

We have implemented a prototype version of the Viaduct-HE compiler in about 13k

LoC of Rust. The compiler uses the egg [107] equality saturation library for the circuit

optimization stage. We configure egg to use the LP extractor, which lowers e-graph ex-

traction as an integer linear program.
4
The compiler’s cost estimator is tuned to reflect

the relative latencies of operations and to give lower cost to plaintext-plaintext op-

erations than ciphertext-ciphertext or ciphertext-plaintext operations (which must be

executed in HE), driving the optimization stage toward circuits with plaintext hoistable

components.

3
When reducing with addition, where noise growth is not a concern, the loop instead accumulates

values directly into a at the end of each iteration.

4
The default LP extractor implementation of the egg library uses the COIN-OR CBC solver [27].
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Benchmark Vector Size Configuration Exec Time (s)
baseline e1-o0 e2-o0 e2-o1

conv-simo 4096 62.21 0.10 — 0.09
conv-siso 4096 15.58 0.04 — 0.03
distance 2048 0.54 0.37 0.17 —

double-matmul 4096 74.84 0.07 — —

retrieval-256 8192 120.12 0.70 — —

retrieval-1024 8192 585.08 1.92 1.01 —

set-union-16 8192 93.98 1.01 — —

set-union-128 16384 >3600 11.65 — —

Table 3.1: Execution time for benchmark configurations, in seconds.

Benchmark Scheduling (s) Circuit Opt (s)
e1 e2 o1

conv-simo 9.43 100.03 0.003

conv-siso 1.27 14.09 0.08

distance 0.04 6.28 6.42

double-matmul 0.64 5.84 42.47

retrieval-256 0.05 0.80 170.45

retrieval-1024 0.56 16.99 5.52

set-union-16 0.06 1.66 3.60

set-union-128 7.59 663.23 9.71

Table 3.2: Compilation time for benchmark configurations, in seconds.

We have implemented a back end that targets the BFV [40] scheme implementation

of the SEAL homomorphic encryption library [25]. The compiler generates Python

code that calls into SEAL using the PySEAL [99] library. The back end consists of

about 1k LoC of Rust and an additional 500 lines of Python. It performs a use analysis

to determine whenmemory-efficient in-place versions of SEAL operations can be used.

We use the numpy library [54] to pack arrays into vectors.
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3.8 Evaluation

To evaluate Viaduct-HE, we ran experiments to determine the efficiency of vectorized

HE programs generated by the compiler and to determine whether its compilation

process is scalable. We used benchmarks that are either common in the literature or

have been adapted from prior work. Our benchmarks are larger than those used to

evaluate Porcupine [31] and Coyote [74].

Experimental setup. We ran experiments on a Dell OptiPlex 7050 machine with an

8-core Intel Core i7 7th Gen CPU and 32 GB of RAM. All numbers reported are aver-

aged over 5 trials, with relative standard error below 8 percent.
5
We use the following

programs as benchmarks:

• conv. A convolution over a 1-channel 32x32 client-provided imagewith a server-

provided filter of size 3 and stride 1. The conv-siso variant (single-input, single-

output) applies a single filter to the image, while the conv-simo variant (single-

input,multiple-output) applies 4 filters to the image.

• distance-64. The distance program from §3.2, but points have 64 dimensions

and there are 64 test points.

• double-matmul. Given 16x16 matricesA1,A2, andB, computesA2×(A1×B).

• retrieval. A private information retrieval example where the user queries a key-

value store. The retrieval-256 variant has 256 key-value pairs and 8 bit keys,

while retrieval-1024 has 1024 pairs and 10 bit keys.

5
With the exception for the execution time reported for circuit optimization; there relative standard

error is below 25 percent. The higher error is from the extractor calling into an external LP solver.
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• set-union (from Viand et al. [104]). An aggregation from two key-value stores

A and B. The program sums all the values in A and the values in B that do not

share a key with some value in A. In the set-union-16 variant A and B each

have 16 key-value pairs and 4 bit keys, while in set-union-128 A and B each

have 128 key-value pairs and 7 bit keys.

We compiled these programs with various target vector sizes, shown in Table 3.1.
6

The source code and compiled programs for all benchmarks are in the supplementary

materials.

3.8.1 Efficiency of Compiled Programs

To determine whether the Viaduct-HE compiler can generate efficient vectorized HE

programs, we compared compiled benchmarks against baseline HE implementations

using simple vectorization schedules. These baselines do not match the efficiency of

expert-written implementations, but they illustrate the importance of vectorization

schedules in the performance of HE programs. The baseline implementations are as

follows:

• For conv-siso and conv-simo, each vector contains all the input pixels used to

compute the value of a single output pixel.

• For distance-64 the baseline implementation is the row-wise layout from Fig-

ure 3.10.

• For double-matmul the input matricesA1 andB for the first multiplication are

stored in vectors column- or row-wise to allow a single multiplication and then

6
The reported vector size in Table 3.1 is half of the polynomial modulus degree parameter N , since

in BFV vector slots are arranged as a 2×N/2matrix such that rotation cyclically shifts elements within

rows.
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rotate-and-reduce to compute a single output entry. This output layout forces

A2 to be stored as one matrix entry per vector.

• For retrieval and set-union, keys and values are stored in individual vectors.

We compared baseline implementations against implementations generated with

different configurations of the Viaduct-HE compiler. For scheduling and circuit opti-

mization, we test two configurations each: e1 schedules for one epoch, such that the

tiling transformer is disabled; e2 schedules for two epochs; o0 disables circuit opti-

mization; o1 runs circuit optimization such that equality saturation stops after either a

timeout of 60 seconds or an e-graph size limit of 500 e-nodes. We did not find any op-

timization improvements in further increasing these limits. We use the configuration

combinations e1-o0, e2-o0, and e2-o1 in experiments.

Table 3.1 shows the results the average execution time of each benchmark under

different configurations. We timed out the execution of the set-union-128 baseline

after 1 hour. For all benchmarks, Viaduct-HE implementations run faster than the

baselines, with speedups ranging from 50 percent (1.45x for distance-64 with config-

uration e1-o0) to several orders of magnitude (over 1000x for double-matmul). The

bulk of the speedups come from the scheduling stage: only the conv variants show

performance differences between o0 and o1, since in most benchmarks circuit opti-

mization generates the same initial circuit. We believe this is because the compiler

already uses domain-specific techniques like rotate-and-reduce to generate efficient

circuits before optimization, making it hard to improve on the initial circuit. Also note

that most benchmarks found the optimal schedule after 1 epoch; only distance and

retrieval-1024 have more efficient schedules in configuration e2 compared to e1.

The implementations generated by Viaduct-HE make efficient use of the SIMD ca-

pabilities of HE with sophisticated layouts. For distance-64, the e1-o0 configuration
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x1 x3 x5 … x63 x1 x3 x5 …

x2 x4 x6 … x64 x2 x4 x6 …

Figure 3.22: Layout for client point in e2-o0 implementation of distance-64.

generates the diagonal layout from Figure 3.11, which reduces the necessary amount

of rotations and additions compared to the row-wise baseline layout. The e2-o0 con-

figuration generates an even more efficient layout by using all 2048 vector slots avail-

able: the even and odd coordinates of the client point are packed in separate vectors

and each coordinate is repeated 64 times, allowing the squared difference of each even

(resp. odd) coordinate with the corresponding even (resp. odd) coordinate of each test

point to be computed simultaneously. Figure 3.22 shows the layout for the client point.

Meanwhile, for retrieval-256 the compiler generates a layout where the entire key

array and the query are each stored in single vectors. Each bit of the query is repeated

256 times, allowing the equality computation with the corresponding bit of each key

to be computed all at once. For retrieval-1024, a similar layout to retrieval-256 is

not possible because there are too many keys to store in a single vector. Instead, the e1

configuration explodes the key array bit-wise: each bit of a key is stored in a separate

vector, and the corresponding bits of all 1024 keys are packed in the same vector. The

e2 configuration, as in distance-64, stores the even and odd bits of keys in separate

vectors to use more of the available 8192 vector slots, making it even more efficient.
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3.8.2 Comparison with Expert-written HE Programs

The HE programs generated by the Viaduct-HE compiler are not only dramatically

more efficient than the baseline implementations, they also sometimes match or even

improve upon expert-written implementations found in the literature.

The conv-simo implementation generated by Viaduct-HE is basically the “packed”

convolution kernel defined in Gazelle [58]: both store the image in a single ciphertext,

while the values of all 4 filters at a single position are packed in a single plaintext. The

image ciphertext is then rotated to align with the filter ciphertexts; since the filter size

is 3x3, 9 rotated image ciphertexts and 9 filter plaintexts are multiplied together, and

then summed. This computes the convolution for all output pixels at once. The conv-

siso implementation is similar, but instead packs columns of the filter into a plaintext

instead of single values.

The o1 configurations of conv-siso and conv-simo use algebraic properties of

circuits to optimize the implementation further. Given image ciphertext c, mask m,

and plaintext filter f , instead of computing (c × m) × f in HE as two ciphertext-

plaintext operations, circuit optimization rewrites the computation as c × (m × f),

allowing m × f to be hoisted out of HE and computed natively. This is exactly the

“punctured plaintexts” technique, also from Gazelle.

For double-matmul, Viaduct-HE generates an implementation where each ma-

trix is laid out in a single vector. Importantly, even though A1 and A2 are both left

operands to multiplication, their layouts are different because the layout of A2 must

account for the output layout of A1 × B. The generated implementation is similar to

the expert implementation found in Dathathri et al. [33, Figure 1], but avoids a “clean-

and-fill” operation required to derive an empty dimension from a reduced vectorized
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dimension. The Viaduct-HE implementation avoids this operation by moving the re-

duced vectorized dimension as the outermost dimension in the vector, thus making it a

reduced repeated dimension in the output layout of the first multiplication. The expert

implementation takes 0.06 seconds compared to 0.04 seconds taken by the Viaduct-HE

implementation, a 1.5x speedup.

Finally, set-union-128 is originally a benchmark for the HECO compiler [104].

The program computes a mask that zeroes out elements of B with keys that are in

A, and then adds the sum of values in A with the sum of masked values in B. The

implementation generated by the HECO compiler is over 40x slower than an expert-

written solution: as in the e1 configuration of retrieval-1024, it packs each bit of a

key in separate vector, and the corresponding bits of all 128 keys are packed in the

same vector. The bits are repeated within each vector such that the computation of

masks for all pairs of keys in A and B can be done simultaneously. The Viaduct-HE

compiler generates exactly this expert solution.

3.8.3 Scalability of Compilation

To determine whether the Viaduct-HE compilation process is scalable, we measured

the compilation time for each benchmark, with the same scheduling and optimization

configurations from RQ1. Table 3.2 shows the compilation times for the benchmarks.

The two main bottlenecks for compilation are the scheduling and circuit optimization

stages, with their sum constituting almost all compilation time.

With 1 epoch, scheduling atmost takes 10 seconds; however, with 2 epochs schedul-

ing takes up to 11 minutes (set-union-128). This is because the tiling transformer

vastly increases the search space, as it finds many different ways to split dimensions.
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We find that scheduling is mainly hampered by the fact that circuit generation must

be attempted for every visited schedule, as it is currently the only way to determine

whether a schedule is valid. In particular, circuit generation is greatly slowed down

by array materialization, as in many schedules (especially those with many exploded

dimensions), the default array materializer generates thousands of vectors and then

tries to derive these vectors from one another, so that scheduler has an accurate count

of features such as the number of input vectors and rotations. Speeding up scheduling

by estimating such features without array materialization is an interesting research

direction.

Meanwhile, circuit optimization time is completely dominated by extraction. In

all compilations, equality saturation stops in less than a second, but extraction takes

longer (almost 3 minutes for retrieval-256) because the LP extractor must solve an

integer linear program.

3.9 Related Work

Vectorized HE for Specific Applications. There is a large literature on develop-

ing efficient vectorized HE implementations of specific applications, particularly for

machine learning. Some work such as Cryptonets [47], Gazelle [58], LoLa [17], and

HyPHEN [62] develop efficient vectorized kernels for neural network inference. Other

work such as SEALion [101] and nGraph-HE [12, 11] provide domain-specific com-

pilers for neural networks. CHET [33] automatically selects from a fixed set of data

layouts for neural network inference kernels. HeLayers [3] is similar to CHET in au-

tomating layout selection, but can also search for efficient tiling sizes for kernels, akin

to the tiling transformer in Viaduct-HE. COPSE [73] develops a vectorized implemen-
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tation of decision forest evaluation.

Compilers for HE. The programmability challenges of HE have inspired much re-

cent work on HE compilers [103]. HE compilers face similar challenges as compilers

for multi-party computation [55, 2, 89, 18, 24], such as lowering programs to a circuit

representation. At the same time, HE has unique programmability challenges that are

not comparable to other domains. Some HE compilers such as Alchemy [32], Cin-

gulata [22], EVA [34], HECATE [68], and Ramparts [6], focus on other programma-

bility concerns besides vectorization, such as selection of encryption parameters and

scheduling “ciphertext maintenance” operations. Lobster [67] uses program synthesis

and term rewriting to optimize HE circuits, but it focuses on boolean circuits and not

on vectorized arithmetic circuits.

Recent work have tackled the challenge of automatically vectorizing programs for

HE. Porcupine [31] proposes a synthesis-based approach to generating vectorized HE

programs from an imperative source program. However, Porcupine requires the devel-

oper to provide the data layout for inputs and can only scale up to HE programs with

a small number of instructions. HECO [104] attempts to solve the scalability issue by

analyzing indexing operations in the source program in lieu of program synthesis, but

fixes a simple layout for all programs, leaving many optimization opportunities out

of reach. Coyote [74] uses search and LP to find efficient vectorizations of arithmetic

circuits, balancing vectorization opportunities with data movement costs. Coyote can

vectorize “irregular” programs that are out of scope for Viaduct-HE. At the same time,

though it can generate layouts for HE programs, Coyote still requires user hints for

“noncanonical” layouts. Also, Coyote appears to be less scalable than Viaduct-HE, as

compiling a 16x16 matrix multiplication requires decomposition into 4x4 matrices that

are “blocked” together.
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Array-oriented Languages. In the taxonomy given by Paszke et al. [86], the

Viaduct-HE source language is a “pointful” array-oriented language with explicit in-

dexing constructs, in contrast to array “combinator” languages such as Futhark [56] and

Lift [97]. The Viaduct-HE source language is thus similar in spirit to languages such as

ATL [10, 70], Dex [86], and Tensor Comprehensions [102]. In particular, the separation

of algorithm and schedule in Viaduct-HE is inspired by the Halide [88] language and

compiler for image processing pipelines. Although the source language of Viaduct-HE

is similar to Halide’s—both are pointful array languages—Viaduct-HE schedules have

very different concerns from Halide schedules. On one hand, Halide schedules rep-

resent choices such as what order the values of an image processing stage should be

computed, and the granularity at which stage results are stored; on the other hand,

Viaduct-HE schedules represent the layout of data in ciphertext and plaintext vectors.

3.10 Summary

With its array-oriented source language, the Viaduct-HE compiler can give a simple

representation for vectorization schedules and find sophisticated data layouts compa-

rable to expert HE implementations. The compiler also has representations to allow for

algebraic optimizations and for easy implementation of back ends for newHE libraries.

Overall, the Viaduct-HE compiler drastically lowers the programmability burden of

vectorized homomorphic encryption.
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CHAPTER 4

CONCLUSION

Wehave discussed the design and implementation of two compilers for secure com-

putation, Viaduct and Viaduct-HE. Each of these compilers tackles important and un-

resolved programmability issues that impede the adoption of secure computation. The

Viaduct compiler is extensible and allows programs with heteregenous security re-

quirements to be compiled to a variety of secure computation mechanisms, address-

ing a limitation of all prior work. Meanwhile, the Viaduct-HE compiler can generate

highly optimized, expert-level HE programs that fully use the SIMD capabilities of HE

schemes. Together, they address some of the important programmability issues with

using secure computation mechanisms.

4.1 Future Research Directions

While Viaduct and Viaduct-HE make significant advances to the programmability of

secure computation, many fruitful research directions remain unexplored. We high-

light some here.

4.1.1 Availability Labels

The label model of Viaduct captures confidentiality and integrity properties. In light of

the “CIA” model of security, the lack of availability labels is an obvious lacuna. The ca-

pability to reason about availability would allow Viaduct to extend its support beyond

cryptographic protocols into protocols for distributed systems in general. Availability

labels in Viaduct source programs would allow developers to express requirements like
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“Bob should not be able to influence whether Alice receives the result of this compu-

tation,” and “A majority of Alice, Bob and Chuck must collude to prevent Dana from

receiving the result.” Availability labels would also allow Viaduct to approximate ap-

proximate the guarantees of fault-tolerant protocols such as quorum replication [113]

and factor in availability concerns during protocol selection.

4.1.2 Trusted Hardware and Special Purpose Mechanisms

The current implementation of the Viaduct compiler focuses on purely cryptographic

mechanisms for general-purpose secure computation: multi-party computation, zero-

knowledge proofs, and homomorphic encryption. Extending support for trusted hard-

ware and special purpose cryptographic mechanisms would give the Viaduct compiler

a more comprehensive suite of mechanisms to target, but both pose novel challenges.

Trusted Hardware. Unlike the current protocols currently supported by Viaduct,

trusted hardware cannot be given a fixed authority label: in principle, an enclave can

have any label, since its authority is derived from the trust conferred to it by parties.
1

For example, an enclave that Alice (A) and Bob (B) fully trust would have the secret

keys to decrypt their private data and to sign messages on their behalf. The authority

label of the enclave would then be A ∧ B. The confidentiality and integrity guaran-

tees of trusted hardware ensure that even if the machine hosting the enclave becomes

corrupted, the adversary would not be able to acquire Alice or Bob’s private data, and

would not be able to sign messages on their behalf.

Adding support for trusted hardware in Viaduct thus complicates protocol selec-

1
Gollamudi et al. [51] arrives at this conclusion by modeling enclaves as “computational principals”

to whom parties can delegate.
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tion: instead of generating as output a mapping from program components to proto-

cols, if an enclave is used in the program then the protocol selection must now also

output the required delegations for enclaves. Concretely, the delegations for an en-

clave are the set of secret keys for encryption and signing that the enclave has access

to. Delegations can be factored into the cost model, to minimize the number of se-

cret keys that an enclave has access to. While there is some prior work in program

partitioning for trusted hardware that focuses on splitting a program running a sin-

gle machine [69, 50], the approach to extend Viaduct outlined above would support

distributed program partitioning for enclaves.

Special PurposeMechanisms. Special purpose mechanisms for secure computation

include private set intersection and oblivious RAM (ORAM). As their name implies,

these mechanisms are only support specific computations. Private set intersection

mechanisms, as the name implies, only support an intersection operation between two

set data types, where each set contains private data by a party. Oblivious RAMmecha-

nisms, meanwhile, allow an array stored by a server to be indexed by a client, without

the server determining the access pattern used by the client (e.g., the access pattern is

considered private data of the client).

Some support for such mechanisms is actually already in the Viaduct compiler: the

protocol selection stage can impose syntactic restrictions that limit the kinds of opera-

tions that a protocol can be used for. For example, the protocol selection stage ensures

that commitment protocol only stores data and performs no computation. Adding sup-

port for an oblivious RAM protocol to Viaduct would involve adding a similar syntactic

restriction that ensures the protocol only performs array indexing operations.

Adding support for private set intersection, meanwhile, requires adding a new set
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data type to the source language and operations over this data type. To avoid the

proliferation of data types baked into the compiler, it would be interesting to add plug-

in support for declaring new data types. A data type declartion would abstractly define

a set of operations over the data type (i.e., like a Java interface). Plug-ins to other parts

of the compiler would then allow compiling operations over new data types to special

purpose mechanisms.

For example, to add support for a private set intersectionmechanism, one can imag-

ine the following workflow:

• Declare interface for new data type IntSetwith a variety of operations, including

an intersection operation:

1 interface IntSet {

2 fun add(e: Int);

3 fun contains(e: Int): Bool;

4 fun intersect(other: IntSet): IntSet; // return new set

5 }

• Declare new PSI protocol with an appropriate authority label.
2
In the protocol

selection, stage add constraints such that PSI(A,B) can implement the intersect

(other: IntSet) operation given that the receiver is stored in protocol Local(A)

and the other argument is a set stored in protocol Local(B).

• Modify cost model to track cost of performing intersect in the PSI protocol.

• Modify the protocol composer such that the PSI protocol can communicate with

Replication(A,B). This allows the PSI protocol to reveal the intersection to both

parties A and B.

2
It should be the same authority as that of MPC in the same threat model (semi-honest or malicious).
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• Implement the PSI back end, which involves encoding the local sets fromA and B,

running the PSI protocol, and then decoding the result back into an intersection

set that both A and B can access locally.

4.1.3 Connecting Viaduct and Viaduct-HE

Finally, connecting Viaduct and Viaduct-HE togetherwould address the lack of HE sup-

port in the current prototype implementation of the Viaduct compiler. This is mostly

straightforward, but the main challenge is to lift programs from Viaduct’s impera-

tive source language to Viaduct-HE’s array source language. As we saw in Figure 3.7,

Viaduct-HE programs correspond to a loop-nest program in a traditional imperative

language. If a Viaduct programs look like one of these loop-nest programs, then lift-

ing it to a Viaduct-HE programs is simple. If Viaduct programs are more complicated,

however, it is an open question how such liftings are to be done. We can take the lit-

erature on verified lifting as an inspiration: for example, Kamil et al. [59] use program

synthesis techniques to automatically lift legacy Fortran programs (read: imperative

programs) into Halide programs (read: array programs), which can then be optimized

by the Halide compiler. One can imagine a similar technique for lifting Viaduct pro-

grams into Viaduct-HE programs.
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APPENDIX A

SELECTED BENCHMARKS FOR VIADUCT

The following sections have the Viaduct source code for a select number of bench-

marks and a description of the distributed programs that the compiler generates for

each.

For the benchmarks used in RQ5, we also include the Kotlin code for the “bare ABY”

programs with which we compared the performance of Viaduct compiled programs.

The programs use the Kotlin JNI shim to ABY that the Viaduct compiler uses for its

ABY back end. The Kotlin code for the most part uses the ABY API directly using the

ABYParty class; the only code that is specific to Viaduct is ABYCircuitBuilder, which is

a class that contains references to the arithmetic, and boolean, and Yao circuit objects

used to build gates; and Host, which is a wrapper to the String class that contains the

name of the current host.

Participating hosts each run a copy of the Kotlin program, so the code uses the

ABY API builds the circuit for both hosts (named alice and bob by convention). In

some cases the code is the same for both hosts; in other cases the code slightly differs

(e.g. alice builds an IN gate while bob build a DummyIN gate), which case the code cases

on which is the current host (supplied by the host parameter).

A.1 Battleship

This benchmark runs a game of battleship between Alice and Bob: each player main-

tains a set of ships located on a map, and then take turns attacking locations where

they think an enemy ship resides. Unlike the original board game, in this version the

board is one-dimensional and each ship is only 1 unit long.
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To execute this program, each player provides the coordinates of their ships as in-

put, which is stored in a private array (Lines 8–11). Then the players execute a cheating

detection routine (Lines 20–30): each player reveals to the other player that their ships

are not placed in the same location. In the compiled distributed program, this routine

is implemented with each player sending zero-knowledge proofs to attest that the lo-

cations for each pair of their ships are not equal. A zero-knowledge proof is required

here to prevent leaking the locations of the ships.

Alice and Bob then take turns attacking coordinates where they think an enemy

ship is located, until one of them sinks all of the ships of the other. On Alice’s turn,

she takes a location to attack as input (appendix A.1) and sends this location to Bob,

who then sends zero-knowledge proofs attesting whether Alice has sunk one of his

battleships (Lines 46–52). Again, zero-knowledge proofs are required here to prevent

leaking the locations of ships. Bob’s turn is symmetric to Alice’s.

host alice : {A}
host bob : {B}

// load inputs into endorsed arrays ,
// so that they cannot be modified further
val aships = Array[int]{A ∧ B<-}(5);
val bships = Array[int]{B ∧ A<-}(5);
for (var i: int = 0; i < 5; i+=1) {

aships[i] = endorse (input int from alice) from {A};
bships[i] = endorse (input int from bob) from {B};

}

var awins: bool{A ⊓ B} = false;

// if someone put multiple battleships in the same cell ,
// they automatically lose
var acheated: bool{A ⊓ B} = false;
var bcheated: bool{A ⊓ B} = false;

for (var j: int{A ⊓
B} = 0; j < 5 ∧ !acheated ∧ !bcheated; j += 1) {

for (var k: int{A ⊓
B} = j + 1; k < 5 ∧ !acheated ∧ !bcheated; k += 1) {
if (declassify (aships[j] == aships[k]) to {A ⊓ B}) {

acheated = true;
}

if (declassify(bships[j] == bships[k]) to {A ⊓ B}) {
bcheated = true;
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}
}

}

if (! acheated ∧ !bcheated) {
var ascore: int{A ⊓ B} = 0;
var bscore: int{A ⊓ B} = 0;

var playing: bool{A ⊓ B} = true;
var aturn: bool{A ⊓ B} = true;

// keep playing until someone sinks all the other person 's
battleships

while (playing) {
if (aturn) {

val amove: int{A ⊓ B->} =
declassify (input int from alice) to {A ⊓

B->};
var amove_trusted: int{A ⊓ B} = endorse amove from {A ⊓

B->};
var ahit: bool{A ⊓ B} = false;
for (var aj: int{A ⊓

B} = 0; aj < 5; aj += 1) {
if (declassify (bships[aj] == amove_trusted) to {A ⊓

B}) {
ascore += 1;
bships[aj] = 0;
ahit = true;

}
}

output ahit to alice;
output ahit to bob;
aturn = false;

} else {
var bmove: int{B ⊓ A->} =

declassify (input int from bob) to {B ⊓
A->};

val bmove_trusted: int{A ⊓ B} = endorse bmove from {B ⊓
A->};

var bhit: bool{A ⊓ B} = false;
for (var bj: int{A ⊓ B} = 0; bj < 5; bj += 1) {

if (declassify (aships[bj] == bmove_trusted) to {A ⊓
B}) {

bscore += 1;
aships[bj] = 0;
bhit = true;

}
}

output bhit to alice;
output bhit to bob;
aturn = true;

}
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playing = ascore < 5 ∧ bscore < 5;
}

awins = ascore == 5;
output awins to alice;
output awins to bob;

} else {
output bcheated to alice;
output bcheated to bob;

}

A.2 Biometric Matching

This benchmark computes the minimum Euclidean distance of Bob’s sample to some

region in Alice’s database, a common routine in bioinformatics. The Euclidean distance

is computed by the match function, which takes as input two points in Alice’s database

(db1, db2) and Bob’s sample (s1, s2) and returns the Euclidean distance between these,

given as the out parameter res. Note that the labels for the formal parameters of match

are upper-bounds; in the Viaduct source language, the concrete label of the arguments

at a call site can be referenced in the body of a function by using the parameter name

corresponding to the argument, as seen in the labels for dist1 and dist2 (Lines 8–9).

In the compiled implementation generated by Viaduct, Alice and Bob store their

respective database and samples locally and then use an MPC protocol to compute the

minimum Euclidean distance.

host alice: {A ∧ B<-}
host bob: {B ∧ A<-}

fun match(
db1: int{A ∧ B<-}, db2: int{A ∧ B<-}, s1: int{B ∧ A<-}, s2: int{B
∧ A<-},

res: out int{A ∧ B}
) {

val dist1: int{db1 ∧ s1} = db1 - s1;
val dist2: int{db2 ∧ s2} = db2 - s2;
out res = (dist1 * dist1) + (dist2 * dist2);

}
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val n: int{A ⊓ B} = 500;
val d: int{A ⊓ B} = 2;

val a_db = Array[int]{A ∧ B<-}(n * d);
val b_sample = Array[int]{B ∧ A<-}(d);

for (var i: int{A ⊓ B} = 0; i < n*d; i += 1) {
a_db[i] = input int from alice;

}

for (var i: int{A ⊓ B} = 0; i < d; i += 1) {
b_sample[i] = input int from bob;

}

match(a_db[0], a_db[1], b_sample [0], b_sample [1], val init_min)
;

var min_dist: int{A ∧ B} = init_min;

for (var i: int{A ⊓ B} = 0; i < n; i += 1) {
match(a_db[(i*d)], a_db[(i*d)+1], b_sample [0], b_sample [1],
val dist);

if (dist < min_dist) {
min_dist = dist;

}
}

val result: int{A ⊓ B} = declassify min_dist to {A ⊓ B};
output result to alice;
output result to bob;

The program is compiled to one semantically equivalent to the Kotlin program

below that uses ABY directly.

fun match_alice(db1: Int , db2: Int): Share {
val tmp = builder.arithCircuit.putINGate(db1.toBigInteger (),
BITLEN , builder.role)

val tmp1 = builder.arithCircuit.putDummyINGate(BITLEN)
val dist1 = builder.arithCircuit.putSUBGate(tmp , tmp1)

val tmp3 = builder.arithCircuit.putINGate(db2.toBigInteger (),
BITLEN , builder.role)

val tmp4 = builder.arithCircuit.putDummyINGate(BITLEN)
val dist2 = builder.arithCircuit.putSUBGate(tmp3 , tmp4)

val tmp8 = builder.arithCircuit.putMULGate(dist1 , dist1)
val tmp11 = builder.arithCircuit.putMULGate(dist2 , dist2)
val tmp12 = builder.arithCircuit.putADDGate(tmp8 , tmp11)
return builder.yaoCircuit.putA2YGate(tmp12)

}

fun match_bob(s1: Int , s2: Int): Share {
val tmp = builder.arithCircuit.putDummyINGate(BITLEN)
val tmp1 = builder.arithCircuit.putINGate(s1.toBigInteger (),
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BITLEN , builder.role)
val dist1 = builder.arithCircuit.putSUBGate(tmp , tmp1)

val tmp3 = builder.arithCircuit.putDummyINGate(BITLEN)
val tmp4 = builder.arithCircuit.putINGate(s2.toBigInteger (),
BITLEN , builder.role)

val dist2 = builder.arithCircuit.putSUBGate(tmp3 , tmp4)

val tmp8 = builder.arithCircuit.putMULGate(dist1 , dist1)
val tmp11 = builder.arithCircuit.putMULGate(dist2 , dist2)
val tmp12 = builder.arithCircuit.putADDGate(tmp8 , tmp11)
return builder.yaoCircuit.putA2YGate(tmp12)

}

fun benchLANBiomatch(host: Host , aby: ABYParty , builder:
ABYCircuitBuilder) {

val n = 500
val d = 4

when (host) {
'alice ' => {

val a_db = Array <Int >(n * d) { 0 }
var i = 0
while (i < n * d) {

a_db[i] = input.nextInt ()
i += 1

}

var min_dist = match_alice(a_db[0], a_db [1])
var i_2 = 0
while (i_2 < n) {

val db1 = a_db[i_2 * d]
val db2 = a_db[(i_2 * d) + 1]
val dist = match_alice(db1 , db2)
val tmp50 = builder.yaoCircuit.putGTGate(min_dist , dist

)
val mux = builder.yaoCircuit.putMUXGate(dist , min_dist ,

tmp50)
min_dist = mux
i_2 += 1

}

val out = builder.yaoCircuit.putOUTGate(min_dist , Role.
ALL)

executeABYCircuit(aby)
println(out.clearValue32.toInt())

}

'bob ' => {
val b_sample = Array <Int >(d) { 0 }
var i = 0
while (i < d) {

b_sample[i] = input.nextInt ()
i += 1

}
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var min_dist = match_bob(b_sample [0], b_sample [1])
var i_2 = 0
while (i_2 < n) {

val s1 = b_sample [0]
val s2 = b_sample [1]
val dist = match_bob(s1, s2)
val tmp50 = builder.yaoCircuit.putGTGate(min_dist ,

dist)
val mux = builder.yaoCircuit.putMUXGate(dist ,

min_dist , tmp50)
min_dist = mux
i_2 += 1

}

val out = builder.yaoCircuit.putOUTGate(min_dist , Role.
ALL)

executeABYCircuit(aby)
println(out.clearValue32.toInt())

}

else => throw ViaductInterpreterError('unknown host ')
}

}

A.3 Interval

This benchmarks computes the interval in which Alice and Bob’s private points reside,

and then checks whether Chuck’s private point resides in the interval. In the compiled

implementation generated by the Viaduct compiler, Alice and Bob execute anMPC pro-

tocol to compute the interval in which their points lie (Lines 23–appendix A.3). They

then send the interval to Chuck, who sends either Alice or Bob a zero-knowledge proof

to attest whether his point lies within the interval (appendix A.3). If Alice receives the

zero-knowledge proof, she verifies and then sends the result to Bob, and then they both

output the result. The case where Bob receives the zero-knowledge proof is symmetric.

host alice : {A ∧ B<-}
host bob : {B ∧ A<-}
host chuck : {C}

// Chuck can read these public parameters ,
// but doesn 't need to trust them since he is not using them
val a_num_points: int{A ⊓ B ⊓ C->} = 5;
val b_num_points: int{A ⊓ B ⊓ C->} = 5;
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val num_points: int{A ⊓ B ⊓ C->} = a_num_points + b_num_points;

val chuck_point: int{C ∧ (A∧B)<-} =
endorse (input int from chuck) to {C ∧ (A∧B)<-} from {C};

val points = Array[int]{A ∧ B}(num_points);
for (var i: int{A ⊓ B ⊓ C->} = 0; i < a_num_points; i += 1) {

points[i] = input int from alice;
}

for (var i: int{A ⊓ B ⊓ C->} = 0; i < b_num_points; i += 1) {
points[a_num_points+i] = input int from bob;

}

var min_point: int{A ∧ B} = points [0];
var max_point: int{A ∧ B} = points [0];

for (var i: int{A ⊓ B ⊓ C->} = 1; i < num_points; i += 1) {
min_point = min(min_point , points[i]);
max_point = max(max_point , points[i]);

}

val min_point_public: int{A ⊓ B ⊓ C->} =
declassify min_point to {A ⊓ B ⊓ C->};

val max_point_public: int{A ⊓ B ⊓ C->} =
declassify max_point to {A ⊓ B ⊓ C->};

val min_point_trusted: int{A ⊓ B ⊓ C} =
endorse min_point_public from {A ⊓ B ⊓ C->};

val max_point_trusted: int{A ⊓ B ⊓ C} =
endorse max_point_public from {A ⊓ B ⊓ C->};

val in_interval: bool{C ∧ (A∧B)<-} =
min_point_trusted <= chuck_point ∧ chuck_point <=
max_point_trusted;

// Chuck doesn 't need to trust this because
// it will not be part of his output
val in_interval_public: bool{A ⊓ B ⊓ C->} =

declassify in_interval to {A ⊓ B ⊓ C};

output in_interval_public to alice;
output in_interval_public to bob;
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A.4 k-means clustering

This benchmark runs a k-means clustering algorithm over Alice and Bob’s private

data points. The compiled implementation executes the algorithm in an MPC protocol

(Lines 25–79). After the algorithm finishes, the coordinates of the cluster centroids are

declassified to both participants (Lines 82–86).

host alice : {A ∧ B<-}
host bob : {B ∧ A<-}

val a_len: int{A ⊓ B} = 50;
val b_len: int{A ⊓ B} = 50;
val len: int{A ⊓ B} = a_len + b_len;
val dim: int{A ⊓ B} = 2;
val num_clusters: int{A ⊓ B} = 4;
val num_iter: int{A ⊓ B} = 3;

val data = Array[int]{A ∧ B}(len * dim);

// load data
for (var i: int{A ⊓ B} = 0; i < a_len * dim; i += 1) {

data[i] = input int from alice;
}

for (var i: int{A ⊓ B} = 0; i < b_len * dim; i += 1) {
data[(a_len*dim) + i] = input int from bob;

}

val clusters = Array[int]{A ∧ B}(num_clusters * dim);

// initialize by picking data points as centroids in a stride
val stride: int{A ⊓ B} = len / num_clusters;
for (var c: int{A ⊓ B} = 0; c < num_clusters; c += 1) {

for (var d: int{A ⊓ B} = 0; d < dim; d += 1) {
clusters [(c*dim)+d] = data[( stride*c*dim)+d];

}
}

for (var iter: int{A ⊓ B} = 0; iter < num_iter; iter += 1) {
// assign points to clusters
val best_clusters = Array[int]{A ∧ B}(len);
for (var i: int = 0; i < len; i += 1) {

// initialize to first cluster
var best_dist: int{A ∧ B} = 0;
var best_cluster: int{A ∧ B} = 0;
for (var d: int{A ⊓ B} = 0; d < dim; d += 1) {

val sub: int{A ∧ B} = data[(i*dim)+d] - clusters[d];
best_dist += sub * sub;

}
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for (var c: int{A ⊓ B} = 1; c < num_clusters; c += 1) {
var dist: int{A ∧ B} = 0;
for (var d: int{A ⊓ B}; d < dim; d += 1) {

val sub: int{A ∧
B} = data[(i*dim)+d] - clusters [(c*dim)+d];

dist += sub * sub;
}

best_cluster = dist < best_dist ? c : best_cluster;
}

best_clusters[i] = best_cluster;
}

// update cluster centroids
for (var c: int{A ⊓ B} = 0; c < num_clusters; c += 1) {

val new_centroid_sum = Array[int]{A ∧ B}(dim);
var num_points: int{A ∧ B} = 0;
for (var i: int = 0; i < len; i += 1) {

val in_cluster: bool{A ∧ B} = best_clusters[i] == c;

for (var d: int{A ⊓ B} = 0; d < dim; d += 1) {
new_centroid_sum[d] += in_cluster ? data[(i*dim)+d] :

0;
}

if (in_cluster) {
num_points += 1;

}
}

for (var d: int{A ⊓ B} = 0; d < dim; d += 1) {
clusters [(c*dim)+d] = num_points > 0 ?

(new_centroid_sum[d] / num_points) : clusters [(c*dim)+d
]);
}

}
}

// declassify clusters
for (var h: int{A ⊓

B} = 0; h < num_clusters * dim; h += 1) {
val public_cluster: int{A ⊓ B} = declassify clusters[h] to {A ⊓
B};

output public_cluster to alice;
output public_cluster to bob;

}

The program is compiled to one semantically equivalent to the Kotlin program

below that uses ABY directly.

fun kmeans(host: Host , aby: ABYParty , builder:
ABYCircuitBuilder) {
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val a_len = 50
val b_len = 50
val len = a_len + b_len
val dim = 2
val num_clusters = 4
val num_iterations = 3

// YaoABY
val data = Array <Share?>(len * dim) { null }

when (host) {
'alice ' => {

var i = 0
while (i < a_len * dim) {

val x = input.nextInt ()
data[i] = builder.yaoCircuit.putINGate(x.toBigInteger ()

, BITLEN , builder.role)
i += 1

}

var i_1 = 0
while (i_1 < b_len * dim) {

data[(a_len * dim) + i_1] = builder.yaoCircuit.
putDummyINGate(BITLEN)

i_1 += 1
}

}

'bob ' => {
var i = 0
while (i < a_len * dim) {

data[i] = builder.yaoCircuit.putDummyINGate(BITLEN)
i += 1

}

var i_1 = 0
while (i_1 < b_len * dim) {

val x = input.nextInt ()
data[(a_len * dim) + i_1] =

builder.yaoCircuit.putINGate(x.toBigInteger (), BITLEN
, builder.role)

i_1 += 1
}

}

else => throw Error('unknown host ')
}

// ArithABY
val clusters = Array <Share?>( num_clusters * dim) { null }
val stride = len / num_clusters

var c = 0
while (c < num_clusters) {

var d = 0
while (d < dim) {

clusters [(c * dim) + d] =
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builder.arithCircuit.putY2AGate(data[( stride * c * dim)
+ d], builder.boolCircuit)

d += 1
}
c += 1

}

var iter = 0
while (iter < num_iterations) {

// YaoABY
val best_clusters = Array <Share?>(len) { null }

// assignment phase
var i = 0
while (i < len) {

var best_dist = builder.arithCircuit.putCONSGate (0.
toBigInteger (), BITLEN)

var best_cluster = builder.yaoCircuit.putCONSGate (0.
toBigInteger (), BITLEN)

// initialize point to first cluster
var d = 0
while (d < dim) {

val tmp62 =
builder.arithCircuit.putB2AGate(

builder.boolCircuit.putY2BGate(data[(i * dim) + d
])

)
val sub = builder.arithCircuit.putSUBGate(tmp62 ,

clusters[d])
val tmp68 = builder.arithCircuit.putMULGate(sub , sub)
best_dist = builder.arithCircuit.putADDGate(best_dist ,

tmp68)

d += 1
}

// assign point to nearest cluster
var c2 = 1
while (c2 < num_clusters) {

var dist = builder.arithCircuit.putCONSGate (0.
toBigInteger (), BITLEN)

var d2 = 0
while (d2 < dim) {

val tmp80 =
builder.arithCircuit.putB2AGate(

builder.boolCircuit.putY2BGate(data[(i * dim)
+ d2])

)
val sub = builder.arithCircuit.putSUBGate(tmp80 ,

clusters [(c2 * dim) + d2])
val tmp90 = builder.arithCircuit.putMULGate(sub , sub)
dist = builder.arithCircuit.putADDGate(dist , tmp90)
d2 += 1

}

val tmp91 = builder.yaoCircuit.putA2YGate(dist)
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val tmp92 = builder.yaoCircuit.putA2YGate(best_dist)
val tmp93 = builder.yaoCircuit.putGTGate(tmp92 , tmp91)
val tmp94 = builder.yaoCircuit.putCONSGate(c2.

toBigInteger (), BITLEN)
val tmp96 = builder.yaoCircuit.putMUXGate(tmp94 ,

best_cluster , tmp93)
best_cluster = tmp96
c2 += 1

}

best_clusters[i] = best_cluster
i += 1

}

// update phase
var c3 = 0
while (c3 < num_clusters) {

// YaoABY
val new_centroid_sum = Array <Share?>(dim) {

builder.yaoCircuit.putCONSGate (0. toBigInteger (),
BITLEN)

}
var num_points = builder.yaoCircuit.putCONSGate (0.

toBigInteger (), BITLEN)
var i2 = 0
while (i2 < len) {

val tmp108 = builder.yaoCircuit.putCONSGate(c3.
toBigInteger (), BITLEN)

val in_cluster = builder.yaoCircuit.putEQGate(
best_clusters[i2], tmp108)

var d3 = 0
while (d3 < dim) {

val tmp121 =
builder.yaoCircuit.putMUXGate(

data[(i2 * dim) + d3],
builder.yaoCircuit.putCONSGate (0. toBigInteger ()

, BITLEN),
in_cluster

)

new_centroid_sum[d3] = builder.yaoCircuit.putADDGate(
new_centroid_sum[d3], tmp121)

d3 += 1
}

val op =
builder.yaoCircuit.putADDGate(

num_points ,
builder.yaoCircuit.putCONSGate (1. toBigInteger ()

, BITLEN)
)

val mux = builder.yaoCircuit.putMUXGate(op, num_points ,
in_cluster)

num_points = mux
i2 += 1

}
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var d4 = 0
while (d4 < dim) {

val tmp132 =
builder.yaoCircuit.putGTGate(

num_points ,
builder.yaoCircuit.putCONSGate (0. toBigInteger ()

, BITLEN)
)

val tmp136 =
Aby.putInt32DIVGate(builder.yaoCircuit , num_points ,

new_centroid_sum[d4])

val tmp142 =
builder.yaoCircuit.putA2YGate(clusters [(c3 * dim) +

d4])

clusters [(c3 * dim) + d4] =
builder.arithCircuit.putB2AGate(

builder.boolCircuit.putY2BGate(
builder.yaoCircuit.putMUXGate(tmp136 , tmp142 ,

tmp132)
)

)

d4 += 1
}

c3 += 1
}

iter += 1
}

var h = 0
var out_gates = Array <Share?>( num_clusters * dim) {

builder.arithCircuit.putCONSGate (0. toBigInteger (), BITLEN)
}
while (h < num_clusters * dim) {

out_gates[h] = builder.arithCircuit.putOUTGate(clusters[h],
Role.ALL)
h += 1

}

aby.execCircuit ()

var i = 0
while (i < num_clusters * dim) {

println(out_gates[i]!!. clearValue32.toInt())
i += 1

}
}
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A.5 Rock–Paper–Scissors

Alice and Bob play a game of rock–paper–scissors.

In the compiled implementation, Alice and Bob input their moves ahead of time

and send each other commitments to their moves (Lines 10–13). Then the turns of the

game are played by opening the commitments to Alice and Bob’s moves for that turn

and awarding the winning player a point (Lines 19–53). If a player’s input is invalid,

the other player is awarded a point. At the end of the game, the winner is determined

and sent as output to the players (Lines 56–58).

host alice : {A}
host bob : {B}

val num_turns: int{A ⊓ B} = 3;
var a_score: int{A ⊓ B} = 0;
var b_score: int{A ⊓ B} = 0;
val a_moves = Array[int]{A ∧ B<-}(num_turns);
val b_moves = Array[int]{B ∧ A<-}(num_turns);

for (var i: int{A ⊓ B} = 0; i < num_turns; i += 1) {
a_moves[i] = endorse (input int from alice) from {A};
b_moves[i] = endorse (input int from bob) from {B};

}

for (var turn: int{A ⊓ B} = 0; turn < num_turns; turn += 1) {
val a_move: int{A ∧ B<-} = a_moves[turn];
val b_move: int{B ∧ A<-} = b_moves[turn];

val a_move_public: int{A ⊓ B} = declassify a_move to {A ⊓ B};
val b_move_public: int{A ⊓ B} = declassify b_move to {A ⊓ B};

// 1 = rock; 2 = paper; 3 = scissors;
val a_valid: bool{A ⊓
B} = 1 <= a_move_public ∧ a_move_public <= 3;

val b_valid: bool{A ⊓
B} = 1 <= b_move_public ∧ b_move_public <= 3;

// alice cheats
if (! a_valid ∧ b_valid) {

b_score += 1;
}

// bob cheats
if (a_valid ∧ !b_valid) {

a_score += 1;
}
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// neither cheat
if (a_valid ∧ b_valid) {

if (a_move_public < b_move_public ∧ b_move_public < 3) {
b_score += 1;

}

if (b_move_public < a_move_public ∧ a_move_public < 3) {
a_score += 1;

}

if (a_move_public == 1 ∧ b_move_public == 3) {
a_score += 1;

}

if (b_move_public == 1 ∧ a_move_public == 3) {
b_score += 1;

}
}

}

val a_wins: bool{A ⊓ B} = a_score > b_score;
output a_wins to alice;
output a_wins to bob;

A.6 Two-Round Bidding

Alice and Bob participate in auctions for n items. The auction occurs in two rounds.

First, Alice and Bob place bids on each item. The first-round winner for each item is

then revealed. Next, Alice and Bob place a second bid on each item. The overall winner

for an item is the person who places the highest average bid between the two rounds.

To prevent leaking the actual values of their bids, which is supposed to be kept

private, Alice and Bob execute an MPC protocol to perform the comparisons between

their bids (appendix A.6 and appendix A.6). The rest of the program can be executed

in cleartext.

host alice: {A ∧ B<-}
host bob: {B ∧ A<-}

val n: int{A ⊓ B} = 500; // number of items to bid
val abids1 = Array[int]{A ∧ B<-}(n);
val abids2 = Array[int]{A ∧ B<-}(n);
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val bbids1 = Array[int]{B ∧ A<-}(n);
val bbids2 = Array[int]{B ∧ A<-}(n);

// round 1
for (var i: int{A ⊓ B} = 0; i < n; i += 1) {

abids1[i] = input int from alice;
bbids1[i] = input int from bob;

}

// reveal first -round winners
for (var i: int{A ⊓ B} = 0; i < n; i += 1) {

val winner: bool = declassify abids1[i] < bbids1[i] to {A ⊓
B};

output winner to alice;
output winner to bob;

}

// round 2
for (var i: int{A ⊓ B} = 0; i < n; i += 1) {

abids2[i] = input int from alice;
bbids2[i] = input int from bob;

}

// reveal overall winners
for (var i: int{A ⊓ B} = 0; i < n; i += 1) {

val abid: int{A ∧ B<-} = (abids1[i] + abids2[i]) / 2;
val bbid: int{B ∧ A<-} = (bbids1[i] + bbids2[i]) / 2;
val winner: bool{A ⊓ B} = declassify abid < bbid to {A ⊓
B};

output winner to alice;
output winner to bob;

}

The program is compiled to one semantically equivalent to the Kotlin program

below that uses ABY directly.

fun twoRoundBidding(host: Host , aby: ABYParty , builder:
ABYCircuitBuilder) {

val n = 500
when (host) {

'alice ' => {
val abids1 = Array <Int >(n) { 0 }
val abids2 = Array <Int >(n) { 0 }

var i = 0
while (i < n) {

abids1[i] = input.nextInt ()
i += 1

}

var i_1 = 0
while (i_1 < n) {

val tmp15 =
builder.yaoCircuit.putINGate(

abids1[i_1]. toBigInteger (), BITLEN , builder.role
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)
val tmp17 = builder.yaoCircuit.putDummyINGate(BITLEN)
val tmp18 = builder.yaoCircuit.putGTGate(tmp17 , tmp15)
val tmp19 = builder.yaoCircuit.putOUTGate(tmp18 , Role.

ALL)

aby.execCircuit ()

val winner = tmp19.clearValue32.toInt()

aby.reset()

println(winner)

i_1 += 1
}

var i_2 = 0
while (i_2 < n) {

abids1[i_2] = input.nextInt ()
i_2 += 1

}

var i_3 = 0
while (i_3 < n) {

val abid =
builder.yaoCircuit.putINGate(

(( abids1[i_3] + abids2[i_3]) / 2).toBigInteger (),
BITLEN ,
builder.role

)
val bbid = builder.yaoCircuit.putDummyINGate(BITLEN)
val tmp46 = builder.yaoCircuit.putGTGate(bbid , abid)
val tmp47 = builder.yaoCircuit.putOUTGate(tmp46 , Role.

ALL)

aby.execCircuit ()

val winner_1 = tmp47.clearValue32.toInt()

aby.reset()

println(winner_1)

i_3 += 1
}

}

'bob ' => {
val bbids1 = Array <Int >(n) { 0 }
val bbids2 = Array <Int >(n) { 0 }

var i = 0
while (i < n) {

bbids1[i] = input.nextInt ()
i += 1

}
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var i_1 = 0
while (i_1 < n) {

val tmp15 = builder.yaoCircuit.putDummyINGate(BITLEN)
val tmp17 =

builder.yaoCircuit.putINGate(
bbids1[i_1]. toBigInteger (), BITLEN , builder.role

)
val tmp18 = builder.yaoCircuit.putGTGate(tmp17 , tmp15)
val tmp19 = builder.yaoCircuit.putOUTGate(tmp18 , Role.

ALL)

aby.execCircuit ()

val winner = tmp19.clearValue32.toInt()

aby.reset()

println(winner)

i_1 += 1
}

var i_2 = 0
while (i_2 < n) {

bbids1[i_2] = input.nextInt ()
i_2 += 1

}

var i_3 = 0
while (i_3 < n) {

val abid = builder.yaoCircuit.putDummyINGate(BITLEN)
val bbid =

builder.yaoCircuit.putINGate ((
(bbids1[i_3] + bbids2[i_3]) / 2).toBigInteger (),
BITLEN ,
builder.role

)
val tmp46 = builder.yaoCircuit.putGTGate(bbid , abid)
val tmp47 = builder.yaoCircuit.putOUTGate(tmp46 , Role.

ALL)

aby.execCircuit ()

val winner_1 = tmp47.clearValue32.toInt()

aby.reset()

println(winner_1)

i_3 += 1
}

}

else => throw ViaductInterpreterError('unknown host ')
}

}
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APPENDIX B

SELECTED BENCHMARKS FOR VIADUCT-HE

This section contains the source code and implementations generated by the Via-

duct compiler, given in the loop-nest representation.

B.1 Source code

conv-simo
input img: [32 ,32] from client
input filter: [4,3,3] from server
for x: 30 {

for y: 30 {
for out: 4 {

sum(for i: 3 {
sum(for j: 3 {

img[x + i][y + j] * filter[out][i][j]
})

})
}

}
}

conv-siso
input img: [32 ,32] from client
input filter: [3,3] from server
for x: 30 {

for y: 30 {
sum(for i: 3 {

sum(for j: 3 {
img[x + i][y + j] * filter[out][i][j]

})
})

}
}

distance
input point: [64] from client
input tests: [64 ,64] from server
for i: 64 {

sum(for j: 64 {
(point[j] - tests[i][j]) * (point[j] - tests[i][j])

})
}

138



matmul-2
input A1: [16 ,16] from server
input A2: [16 ,16] from server
input B: [16 ,16] from client
let res =

for i: 16 {
for j: 16 {

sum(for k: 16 { A1[i][k] * B[k][j] })
}

}
in
for i: 16 {

for j: 16 {
sum(for k: 16 { A2[i][k] * res[k][j] })

}
}

retrieval-256
input keys: [256 ,8] from client
input values: [256] from client
input query: [8] from client
let mask =

for i: 256 {
product(for j: 8 {

1 - ((query[j] - keys[i][j]) * (query[j] - keys[i][j]))
})

}
in
sum(values * mask)

retrieval-1024
input keys: [1024 ,10] from client
input values: [1024] from client
input query: [10] from client
let mask =

for i: 1024 {
product(for j: 10 {

1 - ((query[j] - keys[i][j]) * (query[j] - keys[i][j]))
})

}
in
sum(values * mask)

set-union-16
input a_id: [16, 4] from client
input a_data: [16] from client
input b_id: [16, 4] from client
input b_data: [16] from client
let a_sum = sum(a_data) in
let b_sum =
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sum(for j: 16 {
b_data[j] *
product(for i: 16 {

1 -
product(for k: 4 {

1 - ((a_id[i][k] - b_id[j][k]) * (a_id[i][k] - b_id[j][
k]))

})
})

})
in
a_sum + b_sum

set-union-128
input a_id: [128, 7] from client
input a_data: [128] from client
input b_id: [128, 7] from client
input b_data: [128] from client
let a_sum = sum(a_data) in
let b_sum =

sum(for j: 128 {
b_data[j] *
product(for i: 128 {

1 -
product(for k: 7 {

1 - ((a_id[i][k] - b_id[j][k]) * (a_id[i][k] - b_id[j][
k]))

})
})

})
in
a_sum + b_sum

B.2 Implementations

conv-simo e1-o0
val v_img_1: C = vector(img(0, 0)[(32, 0, 0 {1 :: 1}), (4, 0,

0, {}), (32, 0, 0 {0 :: 1})])
val v_filter_1: N = vector(filter(0, 2, 2)[(30, 0, 2, {}), (4,

0, 0 {0 :: 1}), (30, 0, 2, {})])
val v_filter_2: N = vector(filter(0, 2, 1)[(30, 0, 2, {}), (4,

0, 0 {0 :: 1}), (30, 0, 2, {})])
val v_filter_3: N = vector(filter(0, 0, 1)[(30, 0, 2, {}), (4,

0, 0 {0 :: 1}), (30, 0, 2, {})])
val v_filter_4: N = vector(filter(0, 1, 2)[(30, 0, 2, {}), (4,

0, 0 {0 :: 1}), (30, 0, 2, {})])
val v_filter_5: N = vector(filter(0, 2, 0)[(30, 0, 2, {}), (4,

0, 0 {0 :: 1}), (30, 0, 2, {})])
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val v_filter_6: N = vector(filter(0, 0, 2)[(30, 0, 2, {}), (4,
0, 0 {0 :: 1}), (30, 0, 2, {})])

val v_filter_7: N = vector(filter(0, 0, 0)[(30, 0, 2, {}), (4,
0, 0 {0 :: 1}), (30, 0, 2, {})])

val v_filter_8: N = vector(filter(0, 1, 0)[(30, 0, 2, {}), (4,
0, 0 {0 :: 1}), (30, 0, 2, {})])

val v_filter_9: N = vector(filter(0, 1, 1)[(30, 0, 2, {}), (4,
0, 0 {0 :: 1}), (30, 0, 2, {})])

val mask_1: N = mask ([(32, 0, 30), (4, 0, 3), (32, 0, 30)])
encode(v_filter_3)
encode(v_filter_4)
encode(v_filter_1)
encode(v_filter_9)
encode(v_filter_5)
encode(v_filter_7)
encode(v_filter_8)
encode(v_filter_2)
encode(v_filter_6)
encode(mask_1)
var pt2: P[3][3] = 0
pt2 [0][0] = v_filter_7
pt2 [0][1] = v_filter_8
pt2 [0][2] = v_filter_5
pt2 [1][0] = v_filter_3
pt2 [1][1] = v_filter_9
pt2 [1][2] = v_filter_2
pt2 [2][0] = v_filter_6
pt2 [2][1] = v_filter_4
pt2 [2][2] = v_filter_1
var __out: C = 0
var __reduce_2: C = 0
for i2 in range (3) {

var __reduce_1: C = 0
for i7 in range (3) {

instr1 = rot(CC, ((0 + (-128 * i7)) + (-1 * i2)),
v_img_1)

instr3 = mul(CP, instr1 , mask_1)
instr5 = mul(CP, instr3 , pt2[i7][i2])
instr6 = add(CC, __reduce_1 , instr5)
__reduce_1 = instr6

}
instr8 = add(CC, __reduce_2 , __reduce_1)
__reduce_2 = instr8

}
__out = __reduce_2

conv-simo e2-o1
val v_img_1: C = vector(img(0, 0)[(32, 0, 0 {0 :: 1}), (4, 0,

0, {}), (32, 0, 0 {1 :: 1})])
val v_filter_1: N = vector(filter(0, 0, 2)[(30, 0, 2, {}), (4,

0, 0 {0 :: 1}), (30, 0, 2, {})])
val v_filter_2: N = vector(filter(0, 2, 0)[(30, 0, 2, {}), (4,

0, 0 {0 :: 1}), (30, 0, 2, {})])
val v_filter_3: N = vector(filter(0, 1, 1)[(30, 0, 2, {}), (4,

0, 0 {0 :: 1}), (30, 0, 2, {})])
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val v_filter_4: N = vector(filter(0, 0, 0)[(30, 0, 2, {}), (4,
0, 0 {0 :: 1}), (30, 0, 2, {})])

val v_filter_5: N = vector(filter(0, 2, 1)[(30, 0, 2, {}), (4,
0, 0 {0 :: 1}), (30, 0, 2, {})])

val v_filter_6: N = vector(filter(0, 0, 1)[(30, 0, 2, {}), (4,
0, 0 {0 :: 1}), (30, 0, 2, {})])

val v_filter_7: N = vector(filter(0, 1, 2)[(30, 0, 2, {}), (4,
0, 0 {0 :: 1}), (30, 0, 2, {})])

val v_filter_8: N = vector(filter(0, 2, 2)[(30, 0, 2, {}), (4,
0, 0 {0 :: 1}), (30, 0, 2, {})])

val v_filter_9: N = vector(filter(0, 1, 0)[(30, 0, 2, {}), (4,
0, 0 {0 :: 1}), (30, 0, 2, {})])

val mask_1: N = mask ([(32, 0, 30), (4, 0, 3), (32, 0, 30)])
var pt2: P[3][3] = 0
pt2 [0][0] = v_filter_4
pt2 [0][1] = v_filter_9
pt2 [0][2] = v_filter_2
pt2 [1][0] = v_filter_6
pt2 [1][1] = v_filter_3
pt2 [1][2] = v_filter_5
pt2 [2][0] = v_filter_1
pt2 [2][1] = v_filter_7
pt2 [2][2] = v_filter_8
var __partial_1: N[3][3] = 0
for i2 in range (3) {

for i6 in range (3) {
instr2 = mul(N, mask_1 , pt2[i6][i2])
__partial_1[i2][i6] = instr2

}
}
for i2 in range (3) {

for i6 in range (3) {
encode(__partial_1[i2][i6])

}
}
var __out: C = 0
var __reduce_2: C = 0
for i2 in range (3) {

var __reduce_1: C = 0
for i6 in range (3) {

instr4 = rot(CC, ((-128 * i2) + (-1 * i6)), v_img_1)
instr6 = mul(CP, instr4 , __partial_1[i2][i6])
instr7 = add(CC, __reduce_1 , instr6)
__reduce_1 = instr7

}
instr9 = add(CC, __reduce_2 , __reduce_1)
__reduce_2 = instr9

}
__out = __reduce_2

conv-siso e1-o0
val v_img_1: C = vector(img(0, 0)[(30, 0, 2 {0 :: 1}), (3, 0, 1

{0 :: 1}), (32, 0, 0 {1 :: 1})])
val v_filter_1: N = vector(filter(0, 0)[(30, 0, 2, {}), (3, 0,

1 {0 :: 1}), (30, 0, 2, {})])
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val v_filter_2: N = vector(filter(0, 1)[(30, 0, 2, {}), (3, 0,
1 {0 :: 1}), (30, 0, 2, {})])

val v_filter_3: N = vector(filter(0, 2)[(30, 0, 2, {}), (3, 0,
1 {0 :: 1}), (30, 0, 2, {})])

val mask_1: N = mask ([(32, 0, 30), (4, 0, 3), (32, 0, 30)])
encode(v_filter_3)
encode(v_filter_2)
encode(v_filter_1)
encode(mask_1)
var pt2: P[3] = 0
pt2[0] = v_filter_1
pt2[1] = v_filter_2
pt2[2] = v_filter_3
var __out: C = 0
var __reduce_1: C = 0
for i4 in range (3) {

instr1 = rot(CC, (0 + (-1 * i4)), v_img_1)
instr3 = mul(CP, instr1 , mask_1)
instr5 = mul(CP, instr3 , pt2[i4])
instr6 = add(CC, __reduce_1 , instr5)
__reduce_1 = instr6

}
instr8 = rot(CC, -64, __reduce_1)
instr9 = add(CC, __reduce_1 , instr8)
instr10 = rot(CC, -32, instr9)
instr11 = add(CC, instr9 , instr10)
__out = instr11

conv-siso e2-o1
val v_img_1: C = vector(img(0, 0)[(3, 0, 1 {0 :: 1}), (30, 0, 2

{0 :: 1}), (32, 0, 0 {1 :: 1})])
val v_filter_1: N = vector(filter(0, 0)[(3, 0, 1 {0 :: 1}),

(30, 0, 2, {}), (30, 0, 2, {})])
val v_filter_2: N = vector(filter(0, 2)[(3, 0, 1 {0 :: 1}),

(30, 0, 2, {}), (30, 0, 2, {})])
val v_filter_3: N = vector(filter(0, 1)[(3, 0, 1 {0 :: 1}),

(30, 0, 2, {}), (30, 0, 2, {})])
val mask_1: N = mask ([(4, 0, 3), (32, 0, 30), (32, 0, 30)])
val const_neg1: N = const(-1)
var pt2: P[3] = 0
pt2[0] = v_filter_1
pt2[1] = v_filter_3
pt2[2] = v_filter_2
var __partial_1: N[3] = 0
for i0 in range (3) {

instr2 = mul(N, mask_1 , pt2[i0])
__partial_1[i0] = instr2

}
encode(const_neg1)
for i0 in range (3) {

encode(__partial_1[i0])
}
var __out: C = 0
var __reduce_1: C = 0
for i0 in range (3) {
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instr4 = rot(CC, (i0 * -1), v_img_1)
instr6 = mul(CP, instr4 , __partial_1[i0])
instr7 = add(CC, __reduce_1 , instr6)
__reduce_1 = instr7

}
instr9 = rot(CC, -2048, __reduce_1)
instr10 = add(CC, __reduce_1 , instr9)
instr11 = rot(CC, -1024, instr10)
instr12 = add(CC, instr11 , instr10)
__out = instr12

distance e1-o0
val v_point_1: C = vector(point (0)[(64, 0, 0 {0 :: 1})])
val v_tests_1: N = vector(tests.Roll (1,0)(0, 29)[(64, 0, 0 {0

:: 1})])
val v_tests_2: N = vector(tests.Roll (1,0)(0, 27)[(64, 0, 0 {0

:: 1})])
val v_tests_3: N = vector(tests.Roll (1,0)(0, 44)[(64, 0, 0 {0

:: 1})])
val v_tests_4: N = vector(tests.Roll (1,0)(0, 55)[(64, 0, 0 {0

:: 1})])
val v_tests_5: N = vector(tests.Roll (1,0)(0, 57)[(64, 0, 0 {0

:: 1})])
val v_tests_6: N = vector(tests.Roll (1,0)(0, 2)[(64, 0, 0 {0 ::

1})])
val v_tests_7: N = vector(tests.Roll (1,0)(0, 26)[(64, 0, 0 {0

:: 1})])
val v_tests_8: N = vector(tests.Roll (1,0)(0, 35)[(64, 0, 0 {0

:: 1})])
val v_tests_9: N = vector(tests.Roll (1,0)(0, 61)[(64, 0, 0 {0

:: 1})])
val v_tests_10: N = vector(tests.Roll (1,0)(0, 0)[(64, 0, 0 {0

:: 1})])
val v_tests_11: N = vector(tests.Roll (1,0)(0, 9)[(64, 0, 0 {0

:: 1})])
val v_tests_12: N = vector(tests.Roll (1,0)(0, 17)[(64, 0, 0 {0

:: 1})])
val v_tests_13: N = vector(tests.Roll (1,0)(0, 20)[(64, 0, 0 {0

:: 1})])
val v_tests_14: N = vector(tests.Roll (1,0)(0, 12)[(64, 0, 0 {0

:: 1})])
val v_tests_15: N = vector(tests.Roll (1,0)(0, 22)[(64, 0, 0 {0

:: 1})])
val v_tests_16: N = vector(tests.Roll (1,0)(0, 11)[(64, 0, 0 {0

:: 1})])
val v_tests_17: N = vector(tests.Roll (1,0)(0, 18)[(64, 0, 0 {0

:: 1})])
val v_tests_18: N = vector(tests.Roll (1,0)(0, 60)[(64, 0, 0 {0

:: 1})])
val v_tests_19: N = vector(tests.Roll (1,0)(0, 54)[(64, 0, 0 {0

:: 1})])
val v_tests_20: N = vector(tests.Roll (1,0)(0, 63)[(64, 0, 0 {0

:: 1})])
val v_tests_21: N = vector(tests.Roll (1,0)(0, 38)[(64, 0, 0 {0

:: 1})])
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val v_tests_22: N = vector(tests.Roll (1,0)(0, 7)[(64, 0, 0 {0
:: 1})])

val v_tests_23: N = vector(tests.Roll (1,0)(0, 16)[(64, 0, 0 {0
:: 1})])

val v_tests_24: N = vector(tests.Roll (1,0)(0, 5)[(64, 0, 0 {0
:: 1})])

val v_tests_25: N = vector(tests.Roll (1,0)(0, 21)[(64, 0, 0 {0
:: 1})])

val v_tests_26: N = vector(tests.Roll (1,0)(0, 47)[(64, 0, 0 {0
:: 1})])

val v_tests_27: N = vector(tests.Roll (1,0)(0, 24)[(64, 0, 0 {0
:: 1})])

val v_tests_28: N = vector(tests.Roll (1,0)(0, 43)[(64, 0, 0 {0
:: 1})])

val v_tests_29: N = vector(tests.Roll (1,0)(0, 48)[(64, 0, 0 {0
:: 1})])

val v_tests_30: N = vector(tests.Roll (1,0)(0, 36)[(64, 0, 0 {0
:: 1})])

val v_tests_31: N = vector(tests.Roll (1,0)(0, 53)[(64, 0, 0 {0
:: 1})])

val v_tests_32: N = vector(tests.Roll (1,0)(0, 32)[(64, 0, 0 {0
:: 1})])

val v_tests_33: N = vector(tests.Roll (1,0)(0, 1)[(64, 0, 0 {0
:: 1})])

val v_tests_34: N = vector(tests.Roll (1,0)(0, 3)[(64, 0, 0 {0
:: 1})])

val v_tests_35: N = vector(tests.Roll (1,0)(0, 30)[(64, 0, 0 {0
:: 1})])

val v_tests_36: N = vector(tests.Roll (1,0)(0, 42)[(64, 0, 0 {0
:: 1})])

val v_tests_37: N = vector(tests.Roll (1,0)(0, 59)[(64, 0, 0 {0
:: 1})])

val v_tests_38: N = vector(tests.Roll (1,0)(0, 6)[(64, 0, 0 {0
:: 1})])

val v_tests_39: N = vector(tests.Roll (1,0)(0, 13)[(64, 0, 0 {0
:: 1})])

val v_tests_40: N = vector(tests.Roll (1,0)(0, 15)[(64, 0, 0 {0
:: 1})])

val v_tests_41: N = vector(tests.Roll (1,0)(0, 40)[(64, 0, 0 {0
:: 1})])

val v_tests_42: N = vector(tests.Roll (1,0)(0, 51)[(64, 0, 0 {0
:: 1})])

val v_tests_43: N = vector(tests.Roll (1,0)(0, 8)[(64, 0, 0 {0
:: 1})])

val v_tests_44: N = vector(tests.Roll (1,0)(0, 37)[(64, 0, 0 {0
:: 1})])

val v_tests_45: N = vector(tests.Roll (1,0)(0, 46)[(64, 0, 0 {0
:: 1})])

val v_tests_46: N = vector(tests.Roll (1,0)(0, 56)[(64, 0, 0 {0
:: 1})])

val v_tests_47: N = vector(tests.Roll (1,0)(0, 39)[(64, 0, 0 {0
:: 1})])

val v_tests_48: N = vector(tests.Roll (1,0)(0, 58)[(64, 0, 0 {0
:: 1})])

val v_tests_49: N = vector(tests.Roll (1,0)(0, 25)[(64, 0, 0 {0
:: 1})])

val v_tests_50: N = vector(tests.Roll (1,0)(0, 62)[(64, 0, 0 {0
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:: 1})])
val v_tests_51: N = vector(tests.Roll (1,0)(0, 28)[(64, 0, 0 {0

:: 1})])
val v_tests_52: N = vector(tests.Roll (1,0)(0, 34)[(64, 0, 0 {0

:: 1})])
val v_tests_53: N = vector(tests.Roll (1,0)(0, 23)[(64, 0, 0 {0

:: 1})])
val v_tests_54: N = vector(tests.Roll (1,0)(0, 10)[(64, 0, 0 {0

:: 1})])
val v_tests_55: N = vector(tests.Roll (1,0)(0, 14)[(64, 0, 0 {0

:: 1})])
val v_tests_56: N = vector(tests.Roll (1,0)(0, 33)[(64, 0, 0 {0

:: 1})])
val v_tests_57: N = vector(tests.Roll (1,0)(0, 4)[(64, 0, 0 {0

:: 1})])
val v_tests_58: N = vector(tests.Roll (1,0)(0, 41)[(64, 0, 0 {0

:: 1})])
val v_tests_59: N = vector(tests.Roll (1,0)(0, 50)[(64, 0, 0 {0

:: 1})])
val v_tests_60: N = vector(tests.Roll (1,0)(0, 52)[(64, 0, 0 {0

:: 1})])
val v_tests_61: N = vector(tests.Roll (1,0)(0, 49)[(64, 0, 0 {0

:: 1})])
val v_tests_62: N = vector(tests.Roll (1,0)(0, 19)[(64, 0, 0 {0

:: 1})])
val v_tests_63: N = vector(tests.Roll (1,0)(0, 45)[(64, 0, 0 {0

:: 1})])
val v_tests_64: N = vector(tests.Roll (1,0)(0, 31)[(64, 0, 0 {0

:: 1})])
val const_neg1: N = const(-1)
encode(v_tests_19)
encode(v_tests_48)
encode(v_tests_52)
encode(v_tests_41)
encode(v_tests_54)
encode(v_tests_42)
encode(v_tests_13)
encode(v_tests_4)
encode(v_tests_11)
encode(v_tests_38)
encode(v_tests_15)
encode(v_tests_53)
encode(v_tests_32)
encode(v_tests_29)
encode(v_tests_18)
encode(v_tests_27)
encode(v_tests_58)
encode(v_tests_47)
encode(v_tests_8)
encode(v_tests_63)
encode(v_tests_7)
encode(v_tests_62)
encode(v_tests_16)
encode(v_tests_31)
encode(v_tests_45)
encode(v_tests_50)
encode(v_tests_20)
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encode(v_tests_56)
encode(v_tests_2)
encode(v_tests_43)
encode(v_tests_10)
encode(v_tests_57)
encode(v_tests_6)
encode(v_tests_34)
encode(v_tests_17)
encode(v_tests_61)
encode(v_tests_3)
encode(v_tests_39)
encode(v_tests_26)
encode(v_tests_35)
encode(v_tests_25)
encode(v_tests_46)
encode(v_tests_36)
encode(v_tests_49)
encode(v_tests_22)
encode(v_tests_23)
encode(v_tests_28)
encode(v_tests_30)
encode(v_tests_12)
encode(v_tests_59)
encode(v_tests_40)
encode(v_tests_33)
encode(v_tests_24)
encode(v_tests_1)
encode(v_tests_44)
encode(v_tests_60)
encode(v_tests_21)
encode(v_tests_37)
encode(v_tests_64)
encode(v_tests_51)
encode(v_tests_9)
encode(v_tests_14)
encode(v_tests_55)
encode(v_tests_5)
encode(const_neg1)
var pt1: P[64] = 0
pt1[0] = v_tests_10
pt1[1] = v_tests_33
pt1[2] = v_tests_6
pt1[3] = v_tests_34
pt1[4] = v_tests_57
pt1[5] = v_tests_24
pt1[6] = v_tests_38
pt1[7] = v_tests_22
pt1[8] = v_tests_43
pt1[9] = v_tests_11
pt1 [10] = v_tests_54
pt1 [11] = v_tests_16
pt1 [12] = v_tests_14
pt1 [13] = v_tests_39
pt1 [14] = v_tests_55
pt1 [15] = v_tests_40
pt1 [16] = v_tests_23
pt1 [17] = v_tests_12

147



pt1 [18] = v_tests_17
pt1 [19] = v_tests_62
pt1 [20] = v_tests_13
pt1 [21] = v_tests_25
pt1 [22] = v_tests_15
pt1 [23] = v_tests_53
pt1 [24] = v_tests_27
pt1 [25] = v_tests_49
pt1 [26] = v_tests_7
pt1 [27] = v_tests_2
pt1 [28] = v_tests_51
pt1 [29] = v_tests_1
pt1 [30] = v_tests_35
pt1 [31] = v_tests_64
pt1 [32] = v_tests_32
pt1 [33] = v_tests_56
pt1 [34] = v_tests_52
pt1 [35] = v_tests_8
pt1 [36] = v_tests_30
pt1 [37] = v_tests_44
pt1 [38] = v_tests_21
pt1 [39] = v_tests_47
pt1 [40] = v_tests_41
pt1 [41] = v_tests_58
pt1 [42] = v_tests_36
pt1 [43] = v_tests_28
pt1 [44] = v_tests_3
pt1 [45] = v_tests_63
pt1 [46] = v_tests_45
pt1 [47] = v_tests_26
pt1 [48] = v_tests_29
pt1 [49] = v_tests_61
pt1 [50] = v_tests_59
pt1 [51] = v_tests_42
pt1 [52] = v_tests_60
pt1 [53] = v_tests_31
pt1 [54] = v_tests_19
pt1 [55] = v_tests_4
pt1 [56] = v_tests_46
pt1 [57] = v_tests_5
pt1 [58] = v_tests_48
pt1 [59] = v_tests_37
pt1 [60] = v_tests_18
pt1 [61] = v_tests_9
pt1 [62] = v_tests_50
pt1 [63] = v_tests_20
var __out: C = 0
var __reduce_1: C[64] = 0
for i6 in range (64) {

instr1 = rot(CC, (0 + i6), v_point_1)
instr3 = sub(CP, instr1 , pt1[i6])
instr4 = mul(CC, instr3 , instr3)
__reduce_1[i6] = instr4

}
instr6 = add(CC, __reduce_1 [21], __reduce_1 [20])
instr7 = add(CC, __reduce_1 [23], __reduce_1 [22])
instr8 = add(CC, instr6 , instr7)
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instr9 = add(CC, __reduce_1 [17], __reduce_1 [16])
instr10 = add(CC, __reduce_1 [19], __reduce_1 [18])
instr11 = add(CC, instr9 , instr10)
instr12 = add(CC, instr8 , instr11)
instr13 = add(CC, __reduce_1 [29], __reduce_1 [28])
instr14 = add(CC, __reduce_1 [31], __reduce_1 [30])
instr15 = add(CC, instr13 , instr14)
instr16 = add(CC, __reduce_1 [25], __reduce_1 [24])
instr17 = add(CC, __reduce_1 [27], __reduce_1 [26])
instr18 = add(CC, instr16 , instr17)
instr19 = add(CC, instr15 , instr18)
instr20 = add(CC, instr12 , instr19)
instr21 = add(CC, __reduce_1 [5], __reduce_1 [4])
instr22 = add(CC, __reduce_1 [7], __reduce_1 [6])
instr23 = add(CC, instr21 , instr22)
instr24 = add(CC, __reduce_1 [1], __reduce_1 [0])
instr25 = add(CC, __reduce_1 [3], __reduce_1 [2])
instr26 = add(CC, instr24 , instr25)
instr27 = add(CC, instr23 , instr26)
instr28 = add(CC, __reduce_1 [13], __reduce_1 [12])
instr29 = add(CC, __reduce_1 [15], __reduce_1 [14])
instr30 = add(CC, instr28 , instr29)
instr31 = add(CC, __reduce_1 [9], __reduce_1 [8])
instr32 = add(CC, __reduce_1 [11], __reduce_1 [10])
instr33 = add(CC, instr31 , instr32)
instr34 = add(CC, instr30 , instr33)
instr35 = add(CC, instr27 , instr34)
instr36 = add(CC, instr20 , instr35)
instr37 = add(CC, __reduce_1 [53], __reduce_1 [52])
instr38 = add(CC, __reduce_1 [55], __reduce_1 [54])
instr39 = add(CC, instr37 , instr38)
instr40 = add(CC, __reduce_1 [49], __reduce_1 [48])
instr41 = add(CC, __reduce_1 [51], __reduce_1 [50])
instr42 = add(CC, instr40 , instr41)
instr43 = add(CC, instr39 , instr42)
instr44 = add(CC, __reduce_1 [61], __reduce_1 [60])
instr45 = add(CC, __reduce_1 [63], __reduce_1 [62])
instr46 = add(CC, instr44 , instr45)
instr47 = add(CC, __reduce_1 [57], __reduce_1 [56])
instr48 = add(CC, __reduce_1 [59], __reduce_1 [58])
instr49 = add(CC, instr47 , instr48)
instr50 = add(CC, instr46 , instr49)
instr51 = add(CC, instr43 , instr50)
instr52 = add(CC, __reduce_1 [37], __reduce_1 [36])
instr53 = add(CC, __reduce_1 [39], __reduce_1 [38])
instr54 = add(CC, instr52 , instr53)
instr55 = add(CC, __reduce_1 [33], __reduce_1 [32])
instr56 = add(CC, __reduce_1 [35], __reduce_1 [34])
instr57 = add(CC, instr55 , instr56)
instr58 = add(CC, instr54 , instr57)
instr59 = add(CC, __reduce_1 [45], __reduce_1 [44])
instr60 = add(CC, __reduce_1 [47], __reduce_1 [46])
instr61 = add(CC, instr59 , instr60)
instr62 = add(CC, __reduce_1 [41], __reduce_1 [40])
instr63 = add(CC, __reduce_1 [43], __reduce_1 [42])
instr64 = add(CC, instr62 , instr63)
instr65 = add(CC, instr61 , instr64)
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instr66 = add(CC, instr58 , instr65)
instr67 = add(CC, instr51 , instr66)
instr68 = add(CC, instr36 , instr67)
__out = instr68

distance e2-o0
val v_point_1: C = vector(point (0)[(64, 0, 0, {}), (32, 0, 0 {0

:: 2})])
val v_point_2: C = vector(point (1)[(64, 0, 0, {}), (32, 0, 0 {0

:: 2})])
val v_tests_1: N = vector(tests(0, 0)[(64, 0, 0 {0 :: 1}), (32,

0, 0 {1 :: 2})])
val v_tests_2: N = vector(tests(0, 1)[(64, 0, 0 {0 :: 1}), (32,

0, 0 {1 :: 2})])
val const_neg1: N = const(-1)
encode(v_tests_2)
encode(v_tests_1)
encode(const_neg1)
var ct1: C[2] = 0
ct1[0] = v_point_1
ct1[1] = v_point_2
var pt1: P[2] = 0
pt1[0] = v_tests_1
pt1[1] = v_tests_2
var __out: C = 0
var __reduce_1: C = 0
for i3i in range (2) {

instr2 = sub(CP, ct1[i3i], pt1[i3i])
instr3 = mul(CC, instr2 , instr2)
instr4 = add(CC, __reduce_1 , instr3)
__reduce_1 = instr4

}
instr6 = rot(CC, -16, __reduce_1)
instr7 = add(CC, __reduce_1 , instr6)
instr8 = rot(CC, -8, instr7)
instr9 = add(CC, instr7 , instr8)
instr10 = rot(CC, -4, instr9)
instr11 = add(CC, instr9 , instr10)
instr12 = rot(CC, -2, instr11)
instr13 = add(CC, instr11 , instr12)
instr14 = rot(CC, -1, instr13)
instr15 = add(CC, instr13 , instr14)
__out = instr15

double-matmul e1-o0
val v_B_1: C = vector(B(0, 0)[(16, 0, 0 {1 :: 1}), (16, 0, 0 {0

:: 1}), (16, 0, 0, {})])
val v_A2_1: N = vector(A2(0, 0)[(16, 0, 0, {}), (16, 0, 0 {0 ::

1}), (16, 0, 0 {1 :: 1})])
val v_A1_1: N = vector(A1(0, 0)[(16, 0, 0, {}), (16, 0, 0 {1 ::

1}), (16, 0, 0 {0 :: 1})])
val mask_1: N = mask ([(16, 0, 15), (16, 0, 0), (16, 0, 15)])
val const_neg1: N = const(-1)
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encode(v_A2_1)
encode(v_A1_1)
encode(mask_1)
encode(const_neg1)
var res: C = 0
instr2 = mul(CP, v_B_1 , v_A1_1)
instr3 = rot(CC, -128, instr2)
instr4 = add(CC, instr2 , instr3)
instr5 = rot(CC, -64, instr4)
instr6 = add(CC, instr4 , instr5)
instr7 = rot(CC, -32, instr6)
instr8 = add(CC, instr6 , instr7)
instr9 = rot(CC, -16, instr8)
instr10 = add(CC, instr8 , instr9)
res = instr10
var ct2: C[1] = 0
ct2[0] = res
var __circ_1: C[1] = 0
for i in range (1) {

instr13 = mul(CP, ct2[i], mask_1)
instr14 = rot(CC, 16, instr13)
instr15 = add(CC, instr13 , instr14)
instr16 = rot(CC, 32, instr15)
instr17 = add(CC, instr15 , instr16)
instr18 = rot(CC, 64, instr17)
instr19 = add(CC, instr17 , instr18)
instr20 = rot(CC, 128, instr19)
instr21 = add(CC, instr19 , instr20)
__circ_1[i] = instr21

}
var __out: C = 0
instr24 = mul(CP, __circ_1 [0], v_A2_1)
instr25 = rot(CC, -8, instr24)
instr26 = add(CC, instr24 , instr25)
instr27 = rot(CC, -4, instr26)
instr28 = add(CC, instr26 , instr27)
instr29 = rot(CC, -2, instr28)
instr30 = add(CC, instr28 , instr29)
instr31 = rot(CC, -1, instr30)
instr32 = add(CC, instr30 , instr31)
__out = instr32

retrieval-256 e1-o0
val v_values_1: C = vector(values (0)[(256, 0, 0 {0 :: 1})])
val v_keys_1: C = vector(keys(0, 0)[(8, 0, 0 {1 :: 1}), (256,

0, 0 {0 :: 1})])
val v_query_1: C = vector(query (0)[(8, 0, 0 {0 :: 1}), (256, 0,

0, {})])
val const_1: N = const (1)
val const_neg1: N = const(-1)
encode(const_1)
encode(const_neg1)
var mask: C = 0
instr3 = sub(CC, v_query_1 , v_keys_1)
instr4 = mul(CC, instr3 , instr3)
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instr5 = mul(CP, instr4 , const_neg1)
instr6 = add(CP, instr5 , const_1)
instr7 = rot(CC, -1024, instr6)
instr8 = mul(CC, instr6 , instr7)
instr9 = rot(CC, -512, instr8)
instr10 = mul(CC, instr8 , instr9)
instr11 = rot(CC, -256, instr10)
instr12 = mul(CC, instr10 , instr11)
mask = instr12
var __out: C = 0
instr15 = mul(CC, v_values_1 , mask)
instr16 = rot(CC, -128, instr15)
instr17 = add(CC, instr15 , instr16)
instr18 = rot(CC, -64, instr17)
instr19 = add(CC, instr17 , instr18)
instr20 = rot(CC, -32, instr19)
instr21 = add(CC, instr19 , instr20)
instr22 = rot(CC, -16, instr21)
instr23 = add(CC, instr21 , instr22)
instr24 = rot(CC, -8, instr23)
instr25 = add(CC, instr23 , instr24)
instr26 = rot(CC, -4, instr25)
instr27 = add(CC, instr25 , instr26)
instr28 = rot(CC, -2, instr27)
instr29 = add(CC, instr27 , instr28)
instr30 = rot(CC, -1, instr29)
instr31 = add(CC, instr29 , instr30)
__out = instr31

retrieval-1024 e1-o0
val v_query_1: C = vector(query (6) [(1024 , 0, 0, {})])
val v_query_2: C = vector(query (9) [(1024 , 0, 0, {})])
val v_query_3: C = vector(query (2) [(1024 , 0, 0, {})])
val v_query_4: C = vector(query (5) [(1024 , 0, 0, {})])
val v_query_5: C = vector(query (7) [(1024 , 0, 0, {})])
val v_keys_1: C = vector(keys(0, 8)[(1024 , 0, 0 {0 :: 1})])
val v_query_6: C = vector(query (4) [(1024 , 0, 0, {})])
val v_keys_2: C = vector(keys(0, 6)[(1024 , 0, 0 {0 :: 1})])
val v_keys_3: C = vector(keys(0, 9)[(1024 , 0, 0 {0 :: 1})])
val v_query_7: C = vector(query (8) [(1024 , 0, 0, {})])
val v_query_8: C = vector(query (3) [(1024 , 0, 0, {})])
val v_keys_4: C = vector(keys(0, 1)[(1024 , 0, 0 {0 :: 1})])
val v_keys_5: C = vector(keys(0, 7)[(1024 , 0, 0 {0 :: 1})])
val v_query_9: C = vector(query (1) [(1024 , 0, 0, {})])
val v_query_10: C = vector(query (0) [(1024 , 0, 0, {})])
val v_keys_6: C = vector(keys(0, 5)[(1024 , 0, 0 {0 :: 1})])
val v_keys_7: C = vector(keys(0, 0)[(1024 , 0, 0 {0 :: 1})])
val v_keys_8: C = vector(keys(0, 2)[(1024 , 0, 0 {0 :: 1})])
val v_keys_9: C = vector(keys(0, 3)[(1024 , 0, 0 {0 :: 1})])
val v_keys_10: C = vector(keys(0, 4)[(1024 , 0, 0 {0 :: 1})])
val v_values_1: C = vector(values (0) [(1024 , 0, 0 {0 :: 1})])
val const_1: N = const (1)
val const_neg1: N = const(-1)
encode(const_1)
encode(const_neg1)
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var ct1: C[10] = 0
ct1[0] = v_query_10
ct1[1] = v_query_9
ct1[2] = v_query_3
ct1[3] = v_query_8
ct1[4] = v_query_6
ct1[5] = v_query_4
ct1[6] = v_query_1
ct1[7] = v_query_5
ct1[8] = v_query_7
ct1[9] = v_query_2
var ct2: C[10] = 0
ct2[0] = v_keys_7
ct2[1] = v_keys_4
ct2[2] = v_keys_8
ct2[3] = v_keys_9
ct2[4] = v_keys_10
ct2[5] = v_keys_6
ct2[6] = v_keys_2
ct2[7] = v_keys_5
ct2[8] = v_keys_1
ct2[9] = v_keys_3
var mask: C = 0
var __reduce_1: C[10] = 1
for i5 in range (10) {

instr3 = sub(CC, ct1[i5], ct2[i5])
instr4 = mul(CC, instr3 , instr3)
instr5 = mul(CP, instr4 , const_neg1)
instr6 = add(CP, instr5 , const_1)
__reduce_1[i5] = instr6

}
instr8 = mul(CC, __reduce_1 [1], __reduce_1 [0])
instr9 = mul(CC, __reduce_1 [7], __reduce_1 [6])
instr10 = mul(CC, __reduce_1 [9], __reduce_1 [8])
instr11 = mul(CC, instr9 , instr10)
instr12 = mul(CC, __reduce_1 [3], __reduce_1 [2])
instr13 = mul(CC, __reduce_1 [5], __reduce_1 [4])
instr14 = mul(CC, instr12 , instr13)
instr15 = mul(CC, instr11 , instr14)
instr16 = mul(CC, instr8 , instr15)
mask = instr16
var __out: C = 0
instr19 = mul(CC, v_values_1 , mask)
instr20 = rot(CC, -512, instr19)
instr21 = add(CC, instr19 , instr20)
instr22 = rot(CC, -256, instr21)
instr23 = add(CC, instr21 , instr22)
instr24 = rot(CC, -128, instr23)
instr25 = add(CC, instr23 , instr24)
instr26 = rot(CC, -64, instr25)
instr27 = add(CC, instr25 , instr26)
instr28 = rot(CC, -32, instr27)
instr29 = add(CC, instr27 , instr28)
instr30 = rot(CC, -16, instr29)
instr31 = add(CC, instr29 , instr30)
instr32 = rot(CC, -8, instr31)
instr33 = add(CC, instr31 , instr32)
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instr34 = rot(CC, -4, instr33)
instr35 = add(CC, instr33 , instr34)
instr36 = rot(CC, -2, instr35)
instr37 = add(CC, instr35 , instr36)
instr38 = rot(CC, -1, instr37)
instr39 = add(CC, instr37 , instr38)
__out = instr39

retrieval-1024 e2-o0
val v_values_1: C = vector(values (0) [(1024 , 0, 0 {0 :: 1})])
val v_query_1: C = vector(query (0)[(8, 0, 0 {0 :: 1}), (1024,

0, 0, {})])
val v_keys_1: C = vector(keys(0, 8)[(2, 0, 6 {1 :: 1}), (1024,

0, 0 {0 :: 1})])
val v_query_2: C = vector(query (8)[(2, 0, 6 {0 :: 1}), (1024,

0, 0, {})])
val v_keys_2: C = vector(keys(0, 0)[(8, 0, 0 {1 :: 1}), (1024,

0, 0 {0 :: 1})])
val const_1: N = const (1)
val const_neg1: N = const(-1)
encode(const_1)
encode(const_neg1)
var ct2: C[2] = 0
ct2[0] = v_keys_2
ct2[1] = v_keys_1
var ct1: C[2] = 0
ct1[0] = v_query_1
ct1[1] = v_query_2
var mask: C = 0
var __reduce_1: C = 1
for i4o in range (2) {

instr3 = sub(CC, ct1[i4o], ct2[i4o])
instr4 = mul(CC, instr3 , instr3)
instr5 = mul(CP, instr4 , const_neg1)
instr6 = add(CP, instr5 , const_1)
instr7 = mul(CC, __reduce_1 , instr6)
__reduce_1 = instr7

}
instr9 = rot(CC, -4096, __reduce_1)
instr10 = mul(CC, __reduce_1 , instr9)
instr11 = rot(CC, -2048, instr10)
instr12 = mul(CC, instr10 , instr11)
instr13 = rot(CC, -1024, instr12)
instr14 = mul(CC, instr12 , instr13)
mask = instr14
var __out: C = 0
instr17 = mul(CC, v_values_1 , mask)
instr18 = rot(CC, -512, instr17)
instr19 = add(CC, instr17 , instr18)
instr20 = rot(CC, -256, instr19)
instr21 = add(CC, instr19 , instr20)
instr22 = rot(CC, -128, instr21)
instr23 = add(CC, instr21 , instr22)
instr24 = rot(CC, -64, instr23)
instr25 = add(CC, instr23 , instr24)
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instr26 = rot(CC, -32, instr25)
instr27 = add(CC, instr25 , instr26)
instr28 = rot(CC, -16, instr27)
instr29 = add(CC, instr27 , instr28)
instr30 = rot(CC, -8, instr29)
instr31 = add(CC, instr29 , instr30)
instr32 = rot(CC, -4, instr31)
instr33 = add(CC, instr31 , instr32)
instr34 = rot(CC, -2, instr33)
instr35 = add(CC, instr33 , instr34)
instr36 = rot(CC, -1, instr35)
instr37 = add(CC, instr35 , instr36)
__out = instr37

set-union-16 e1-o0
val v_b_data_1: C = vector(b_data (0)[(16, 0, 0 {0 :: 1})])
val v_a_id_1: C = vector(a_id(0, 0)[(16, 0, 0 {0 :: 1}), (4, 0,

0 {1 :: 1}), (16, 0, 0, {})])
val v_b_id_1: C = vector(b_id(0, 0)[(16, 0, 0, {}), (4, 0, 0 {1

:: 1}), (16, 0, 0 {0 :: 1})])
val v_a_data_1: C = vector(a_data (0)[(16, 0, 0 {0 :: 1})])
val const_1: N = const (1)
val const_neg1: N = const(-1)
encode(const_1)
encode(const_neg1)
var b_sum: C = 0
instr4 = sub(CC, v_a_id_1 , v_b_id_1)
instr5 = mul(CC, instr4 , instr4)
instr6 = mul(CP, instr5 , const_neg1)
instr7 = add(CP, instr6 , const_1)
instr8 = rot(CC, -32, instr7)
instr9 = mul(CC, instr7 , instr8)
instr10 = rot(CC, -16, instr9)
instr11 = mul(CC, instr9 , instr10)
instr12 = mul(CP, instr11 , const_neg1)
instr13 = add(CP, instr12 , const_1)
instr14 = rot(CC, -512, instr13)
instr15 = mul(CC, instr13 , instr14)
instr16 = rot(CC, -256, instr15)
instr17 = mul(CC, instr15 , instr16)
instr18 = rot(CC, -128, instr17)
instr19 = mul(CC, instr17 , instr18)
instr20 = rot(CC, -64, instr19)
instr21 = mul(CC, instr19 , instr20)
instr22 = mul(CC, v_b_data_1 , instr21)
instr23 = rot(CC, -8, instr22)
instr24 = add(CC, instr22 , instr23)
instr25 = rot(CC, -4, instr24)
instr26 = add(CC, instr24 , instr25)
instr27 = rot(CC, -2, instr26)
instr28 = add(CC, instr26 , instr27)
instr29 = rot(CC, -1, instr28)
instr30 = add(CC, instr28 , instr29)
b_sum = instr30
var a_sum: C = 0
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instr32 = rot(CC, -8, v_a_data_1)
instr33 = add(CC, v_a_data_1 , instr32)
instr34 = rot(CC, -4, instr33)
instr35 = add(CC, instr33 , instr34)
instr36 = rot(CC, -2, instr35)
instr37 = add(CC, instr35 , instr36)
instr38 = rot(CC, -1, instr37)
instr39 = add(CC, instr37 , instr38)
a_sum = instr39
var __out: C = 0
instr42 = add(CC, a_sum , b_sum)
__out = instr42

set-union-128
val v_a_id_1: C = vector(a_id(0, 2)[(128, 0, 0 {0 :: 1}), (128,

0, 0, {})])
val v_b_id_1: C = vector(b_id(0, 1)[(128, 0, 0, {}), (128, 0, 0

{0 :: 1})])
val v_b_id_2: C = vector(b_id(0, 6)[(128, 0, 0, {}), (128, 0, 0

{0 :: 1})])
val v_b_id_3: C = vector(b_id(0, 2)[(128, 0, 0, {}), (128, 0, 0

{0 :: 1})])
val v_a_id_2: C = vector(a_id(0, 0)[(128, 0, 0 {0 :: 1}), (128,

0, 0, {})])
val v_a_data_1: C = vector(a_data (0)[(128, 0, 0 {0 :: 1})])
val v_b_data_1: C = vector(b_data (0)[(128, 0, 0 {0 :: 1})])
val v_a_id_3: C = vector(a_id(0, 4)[(128, 0, 0 {0 :: 1}), (128,

0, 0, {})])
val v_a_id_4: C = vector(a_id(0, 6)[(128, 0, 0 {0 :: 1}), (128,

0, 0, {})])
val v_b_id_4: C = vector(b_id(0, 0)[(128, 0, 0, {}), (128, 0, 0

{0 :: 1})])
val v_b_id_5: C = vector(b_id(0, 3)[(128, 0, 0, {}), (128, 0, 0

{0 :: 1})])
val v_b_id_6: C = vector(b_id(0, 4)[(128, 0, 0, {}), (128, 0, 0

{0 :: 1})])
val v_a_id_5: C = vector(a_id(0, 1)[(128, 0, 0 {0 :: 1}), (128,

0, 0, {})])
val v_b_id_7: C = vector(b_id(0, 5)[(128, 0, 0, {}), (128, 0, 0

{0 :: 1})])
val v_a_id_6: C = vector(a_id(0, 3)[(128, 0, 0 {0 :: 1}), (128,

0, 0, {})])
val v_a_id_7: C = vector(a_id(0, 5)[(128, 0, 0 {0 :: 1}), (128,

0, 0, {})])
val const_1: N = const (1)
val const_neg1: N = const(-1)
encode(const_1)
encode(const_neg1)
var ct2: C[7] = 0
ct2[0] = v_a_id_2
ct2[1] = v_a_id_5
ct2[2] = v_a_id_1
ct2[3] = v_a_id_6
ct2[4] = v_a_id_3
ct2[5] = v_a_id_7
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ct2[6] = v_a_id_4
var ct3: C[7] = 0
ct3[0] = v_b_id_4
ct3[1] = v_b_id_1
ct3[2] = v_b_id_3
ct3[3] = v_b_id_5
ct3[4] = v_b_id_6
ct3[5] = v_b_id_7
ct3[6] = v_b_id_2
var b_sum: C = 0
var __reduce_1: C[7] = 1
for i8 in range (7) {

instr4 = sub(CC, ct2[i8], ct3[i8])
instr5 = mul(CC, instr4 , instr4)
instr6 = mul(CP, instr5 , const_neg1)
instr7 = add(CP, instr6 , const_1)
__reduce_1[i8] = instr7

}
instr9 = mul(CC, __reduce_1 [1], __reduce_1 [0])
instr10 = mul(CC, __reduce_1 [3], __reduce_1 [2])
instr11 = mul(CC, __reduce_1 [5], __reduce_1 [4])
instr12 = mul(CC, instr10 , instr11)
instr13 = mul(CC, instr9 , instr12)
instr14 = mul(CC, __reduce_1 [6], instr13)
instr15 = mul(CP, instr14 , const_neg1)
instr16 = add(CP, instr15 , const_1)
instr17 = rot(CC, -8192, instr16)
instr18 = mul(CC, instr16 , instr17)
instr19 = rot(CC, -4096, instr18)
instr20 = mul(CC, instr18 , instr19)
instr21 = rot(CC, -2048, instr20)
instr22 = mul(CC, instr20 , instr21)
instr23 = rot(CC, -1024, instr22)
instr24 = mul(CC, instr22 , instr23)
instr25 = rot(CC, -512, instr24)
instr26 = mul(CC, instr24 , instr25)
instr27 = rot(CC, -256, instr26)
instr28 = mul(CC, instr26 , instr27)
instr29 = rot(CC, -128, instr28)
instr30 = mul(CC, instr28 , instr29)
instr31 = mul(CC, v_b_data_1 , instr30)
instr32 = rot(CC, -64, instr31)
instr33 = add(CC, instr31 , instr32)
instr34 = rot(CC, -32, instr33)
instr35 = add(CC, instr33 , instr34)
instr36 = rot(CC, -16, instr35)
instr37 = add(CC, instr35 , instr36)
instr38 = rot(CC, -8, instr37)
instr39 = add(CC, instr37 , instr38)
instr40 = rot(CC, -4, instr39)
instr41 = add(CC, instr39 , instr40)
instr42 = rot(CC, -2, instr41)
instr43 = add(CC, instr41 , instr42)
instr44 = rot(CC, -1, instr43)
instr45 = add(CC, instr43 , instr44)
b_sum = instr45
var a_sum: C = 0
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instr47 = rot(CC, -64, v_a_data_1)
instr48 = add(CC, v_a_data_1 , instr47)
instr49 = rot(CC, -32, instr48)
instr50 = add(CC, instr48 , instr49)
instr51 = rot(CC, -16, instr50)
instr52 = add(CC, instr50 , instr51)
instr53 = rot(CC, -8, instr52)
instr54 = add(CC, instr52 , instr53)
instr55 = rot(CC, -4, instr54)
instr56 = add(CC, instr54 , instr55)
instr57 = rot(CC, -2, instr56)
instr58 = add(CC, instr56 , instr57)
instr59 = rot(CC, -1, instr58)
instr60 = add(CC, instr58 , instr59)
a_sum = instr60
var __out: C = 0
instr63 = add(CC, a_sum , b_sum)
__out = instr63
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