
Sequential Specifications
for Precise Hardware Exceptions
Yulun Yao

Cornell University
Ithaca, NY, USA

yy665@cornell.edu

Drew Zagieboylo
NVIDIA

Westford, MA, USA
dzagieboylo@nvidia.com

Andrew C. Myers
Cornell University
Ithaca, NY, USA

andru@cs.cornell.edu

G. Edward Suh
Cornell University / NVIDIA

Ithaca, NY, USA
suh@ece.cornell.edu

Abstract
Modern processors are difficult to implement because pipelin-
ing makes them inherently parallel. A promising new ap-
proach, demonstrated in the PDL hardware description lan-
guage, is to compile a high-level sequential specification into
an efficient pipelined implementation. This high-level ap-
proach makes design-space exploration and reasoning easier.
However, previous work on this approach does not support
features needed for operating systems: hardware exceptions
like traps and interrupts. The inherently non-sequential na-
ture of these features makes it challenging to give them
a sequential specification. They often require flushing the
pipeline, writing to control state registers (CSRs), or resetting
pipeline state.
In this work, we develop XPDL, which extends PDL to

support hardware exceptions. With this extension, logic for
precise exceptions can be synthesized from a high-level spec-
ification, while maintaining the appealing properties of PDL.
Using RISC-V processor designs, we demonstrate that XPDL
flexibly supports exceptions with no impact on CPI (Cycles
per Instructions), and minor overhead over frequency and
area, and argue that the implementation preserves the one-
instruction-at-a-time semantics of PDL.

CCS Concepts: • Hardware → Hardware description
languages and compilation.

Keywords: Pipelining, Interrupts, Exception Handling

ACM Reference Format:
Yulun Yao, Drew Zagieboylo, Andrew C. Myers, and G. Edward Suh.
2026. Sequential Specifications for Precise Hardware Exceptions. In

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2165-6/26/03.
https://doi.org/10.1145/3760250.3762233

Proceedings of the 31st ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
1 (ASPLOS ’26), March 22–26, 2026, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3760250.3762233

1 Introduction
Traditional hardware description languages (HDL) capture
the concurrent, register-transfer level (RTL) behavior of hard-
ware. They are flexible enough to express high-performance
designs but are difficult to reason about when building com-
plex pipelined processors. Pipelined processors are inher-
ently parallel because in a given cycle they execute multiple
instructions. However, the Instruction Set Architecture (ISA)
specifications that they implement are mostly sequential.
Previous work, PDL [47], bridges the gap between parallel
microarchitecture and sequential architecture with a high-
level, sequential hardware description language (HDL) that
targets processor design. PDL provides assurance that the
behaviors of the pipeline are consistent with instructions
running sequentially, one at a time. This one-instruction-
at-a-time (OIAT) semantics makes PDL easy to write and
reason about. PDL generates processors whose performance
is comparable with RTL implementations.
While PDL supports sequential specifications, ISAs are

not fully sequential [34, 44]. Non-sequential behaviors in-
clude hardware exceptions like interrupts, traps, faults and
aborts. PDL needs support for these features in order to
design processors usable by operating systems. But these
features interact with the pipeline in complex ways: flushing
the pipeline, writing to Control and Status Registers (CSRs),
rolling back transient effects, and resetting pipeline states.
These features can only be implemented with PDL in an
awkward and inefficient way.

To address this limitation, we propose XPDL, an extension
of PDL that introduces pipeline exceptions as a new language
feature. Pipeline exceptions can describe final, atomic, and
exception-handling operations of a pipeline. Pipeline ex-
ceptions are an HDL-level abstraction used to implement a
variety of hardware exceptions: traps, interrupts, etc. The

1

https://doi.org/10.1145/3760250.3762233
https://doi.org/10.1145/3760250.3762233

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Yulun Yao, Drew Zagieboylo, Andrew C. Myers, G. Edward Suh

syntax of pipeline exceptions is lightweight, similar to a fa-
miliar software-level try–throw–catch exception handling
mechanism. This language feature is novel in the hardware
context; in particular, languages used for high-level synthesis
usually do not care about complex control paths [8], and low-
level languages cannot reason about high-level behaviors
like hardware exceptions [6].

Because the compiler preserves OIAT semantics through
static checking, it is easy for programmers to implement
hardware exceptions that are precise [38]. This is an impor-
tant property that modern processors aim to satisfy, since
precise exceptions ensure the processor remains in a well-
defined state, able to safely resume execution after an excep-
tion is handled.
We have implemented XPDL on top of the open-source

PDL compiler [48], and evaluated performance of the re-
sulting circuits. XPDL generates efficient circuits for a wide
range of extra hardware exception logic. Pipelines with hard-
ware exceptions generated by XPDL have the same number
of cycles per instruction (CPI), less than 3.3% decrease in
maximum frequency, and reasonable overhead in area.

In summary, this paper makes the following contributions:

• XPDL, the first high-level sequential HDL with a safe,
expressive abstraction for implementing hardware ex-
ceptions.
• Static-checking rules that preserve OIAT semantics
and help implement precise exceptions.
• An implementation of pipeline exceptions as a synthe-
sizable translation.
• An evaluation of the performance and programma-
bility of XPDL, on several variations of a five-stage
RISC-V processor.

2 Background
2.1 PDL Language Overview
To set the context, we first illustrate the PDL base lan-

guage with an example. Figure 1 depicts an abbreviated 5-
stage pipelined processor. Type information, decoding, and
ALU logic are omitted for brevity. The pipeline is written
like a function, named cpu, with the program counter (pc)
as the argument. The register file (rf), instruction memory
(imem), and data memory (dmem) are memories implemented
by connected modules. Code in this module describes the
functionality of a processor imperatively as a sequence of
stages: instruction fetch and decode, ALU operations, mem-
ory operations, and write-back. Triple dashes (−−−) are stage
separators that abstract pipeline registers; statements within
a stage are combinational. Instructions traverse all ordered
stages in issue order. The recursive call statement spawns
a new instruction, with the provided argument as the next
pc. Spawning the next instruction in an early stage creates
instruction-level parallelism because execution of the next
instruction begins immediately.

1 pipe cpu(pc)[rf, imem, dmem]{

2 spec_check ();

3 acquire(imem[pc], R);

4 insn <- imem[pc]; / / n o n−b l o c k i n g a s s i g nmen t
5 release(imem[pc]);

6 --- / / I n s n F e t c h − [Reg] −> Decode
7 spec_check ();

8 s <- spec_call cpu(pc+1);

9 / / Some d e c o d e l o g i c h e r e
10 acquire(rf[rs1], R); / / r s 2 om i t t e d
11 alu_arg1 = rf[rs1];

12 release(rf[rs1]);

13 reserve(rf[rd], W);

14 --- / / Decode − [Reg] −> E x e c u t e
15 spec_barrier ();

16 alu_out = alu(args∗); / / compute l o g i c
17 npc = calc_npc(args∗); / / b ranch t a r g e t
18 if (npc == pc+1){ verify(s)}

19 else {invalidate(s); call cpu(npc);}

20 --- / / E x e c u t e − [Reg] −> MemOps
21 acquire(dmem[alu_out]);

22 if (isStore(op)) {dmem[alu_out] <- data;}

23 if (isLoad(op)) {dmem_out <- dmem[alu_out];}

24 else {dmem_out = alu_out ;}

25 release(dmem[alu_out]);

26 --- / / MemOps − [Reg] −> Wr i t eBack
27 block(rf[rd]);

28 rf[rd] <- dmem_out;

29 release(rf[rd]);

30 }

Figure 1. 5-stage CPU in PDL

PDL uses pipeline locks (blue syntax) to govern shared
resources and prevent hazards. The block and release op-
erations define critical sections where only the instruction
owning the lock can enter, or else stalls until it is safe to
read or write. The order of lock ownership is set by reserve
operations; in-order reservations preserve the illusion of
in-order execution and avoid data hazards. An acquire is
syntactic sugar for reserve and block within a single cycle.
A release operation relinquishes lock ownership and, for
write locks, commits pending writes.

Speculative execution can be managed through the specu-
lation API (brown syntax). The spec_call at line 8 spawns a
speculative instruction running the next (pc+1) instruction—
essentially a next-line predictor. It returns a handle referenc-
ing the new speculative instruction. The current instruction
can later verify or invalidate it, depending on whether
the prediction was correct. At line 18, a verified instruction
becomes non-speculative, whereas an invalidated instruc-
tion is killed and a new non-speculative instruction issued
using call. Operations spec_check and spec_barrier ask
the current instruction to check its speculative state and to
terminate on misspeculation. Instructions entering stages

2

Sequential Specifications for Precise Hardware Exceptions ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

following spec_barrier must be non-speculative. PDL au-
tomatically generates hardware tables to track speculation.

Through its APIs for pipeline locks and speculation, PDL
gives the programmer fine-grained control over pipeline mi-
croarchitecture. This programming model facilitates design-
space exploration over different pipelined implementations
of the same ISA.

2.2 Hardware Exceptions
Operating systems require processors to implement a set of
non-sequential behaviors specified in ISAs. These behaviors
require the hardware to flush and halt the pipeline, roll back
uncommitted effects, and reset the pipeline state. They differ
in how they are raised, how they are processed and resolved,
and whether they occur synchronously or asynchronously.
While these behaviors have diverse semantics, they share a
common trait—they disrupt the normal instruction execu-
tion flow and are both atomic and final. We refer to these
behaviors as hardware exceptions.

The literature uses inconsistent terminology regarding ex-
ceptions; Table 1 clarifies our terminology. While support for
hardware exceptions varies across different ISAs [1, 17], we
adopt and modify the taxonomy from early work in precise
interrupts [26], which best distinguishes different types of
exceptions.
Badly implemented hardware exceptions can introduce

security vulnerabilities: Meltdown [22] is one notorious ex-
ample. It exploits speculative execution and exception han-
dling to leak privileged memory that should be inaccessible
to user-space programs. The attack relies on speculative exe-
cution temporarily bypassing access checks, allowing secret
data to be extracted via cache side channels. Microarchi-
tectural replay attacks also leverage pipeline flushes from
exceptions [37]. These attacks highlight the complexity of
hardware exceptions and the need for a clear definition of
correctness.

2.3 Precise Hardware Exceptions
Operating systems require precise exceptions to be function-
ally correct [46]. Per Smith et al. [38], a precise exception
maintains a state corresponding to a sequential model of
execution. Processors implement precise exceptions to en-
able restarting and recovery of earlier pipeline states, ease of
software debugging, and safe virtual memory. With precise
exceptions, an exception is considered to occur during the ex-
ecution of a single instruction, which we call the exceptional
instruction.

Precise exceptions satisfy three conditions:

1. All instructions preceding the exceptional instruction
execute and correctly modify architectural state.

2. Instructions after the exceptional instruction are un-
executed and have no effect on the architectural state.

3. An exceptional instruction behaves atomically—it ei-
ther completes fully or has not started execution.

A precise exception effectively causes instructions to be
inserted into a sequence of regular program instructions,
but execution still behaves sequentially with respect to this
expanded stream of instructions.

2.4 Motivation
Hardware exceptions are a fundamental, security-critical pro-
cessor feature, requiring dedicated sections in ISA specifica-
tions [4, 36], and even for high-level languages [25]. However,
implementing precise hardware exceptions is challenging,
and better methods are needed. Traditional implementations
of precise exceptions require microarchitectural structures to
track the exceptional state of instructions—including reorder
buffers, history buffers, future register files, and checkpoint-
ing [13, 38]. Their typical RTL implementation is deeply inte-
grated with other control logic, making it more challenging
to reason about processor correctness and security.

Traditionally, implementing precise hardware exceptions
relies on verification, treating hardware exceptions like other
pipeline behaviors. Commonly, behavioral specifications are
extracted directly from the RTL implementation, but this
method is both costly and error-prone [23]. Model-checking
and formal verification frameworks struggle to scale to large
designs, demanding significant human expertise [7].

An alternative approach is to raise the level of abstraction
with correct-by-design languages. However, it is currently
either impossible or awkward to describe hardware excep-
tions in those languages. For example, while speculative
loop pipelining (SLP) [10] exposes commit and rollback to
the language level, it serves as an optimization technique
that enables speculation in HLS compilation but does not
address how to implement exceptional behavior efficiently.
PDL has a similar problem: the only way it can describe

non-sequential behavior is using speculation—every instruc-
tion could speculate on the absence of exceptions, with ex-
ceptions causing misspeculation.
However, this approach would be inefficient because ex-

ceptions and speculation have very different area–time per-
formance tradeoffs. PDL handles misspeculations in one cy-
cle but requires area-intensive hardware records for every
speculative instruction executing in parallel. While misspec-
ulations are frequent, exceptions are relatively uncommon
in most workloads. Exceptions, unlike mispredictions, do
not demand low-latency handling in most systems, as their
impact on common-case performance is minimal.
Note that we do not make any quantified assumptions

about exception frequency; even in syscall-heavy scenarios,
the actual exception-triggered behavior is limited to syscall
entry and exit, which is minimal compared to the duration of
the system call itself. Most of the actual work is performed by
software handlers running as regular instructions, without

3

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Yulun Yao, Drew Zagieboylo, Andrew C. Myers, G. Edward Suh

Category Characteristics Example

Aborts and Faults Synchronous; arise from unexpected in-
struction behavior. Faults are recoverable
(instruction can be retried), whereas aborts
are severe and non-recoverable.

Page fault: Occurs when a program ac-
cesses a memory page not currently
mapped in RAM. The OS loads the missing
page and retries the instruction.

Traps and System Instructions Synchronous; raised by specific instruc-
tions as expected behavior. Used for control
or debugging.

System call instruction: The instruction ini-
tiates a transfer of control from user space
to kernel space.

Interrupts Asynchronous; triggered by external hard-
ware devices, such as I/O signals, which
are independent of instruction execution.

Keyboard interrupt: The OS executes an in-
terrupt handler before resuming the origi-
nal program.

Table 1. Categories of Hardware Exceptions

requiring any special architectural mechanisms. As a result,
timing performance for exceptions is generally less critical.

It is awkward—and sometimes impossible—to express the
control behavior that exceptions require using only the spec-
ulation mechanism. Exceptions trigger diverse behaviors
whose description demands an expressive language, whereas
speculation is a microarchitectural optimization that should
not affect ISA-visible behavior. Mixing exception-handling
logic with common-case code in the pipeline body violates
separation of concerns.
Modern microarchitectures already treat exceptions and

mispredictions differently for these reasons. It motivates
adding a separate language-level construct that can express
exceptions. Furthermore, integrating hardware exception
support into PDL remains promising because its OIAT se-
mantics aid in making exceptions precise. And hardware
exceptions enhance PDL’s expressiveness, making it more
applicable to real-world hardware designs.

3 Approach
3.1 Overview

Pipeline exceptions are an intuitive extension to the PDL
language to support logic for hardware exceptions. They
could also be applied to other sequential HDL abstractions
such as HLS.
A pipeline exception disrupts the normal execution flow

of an instruction. When an exception is raised, the excep-
tional instruction is replaced with a special pipeline bubble
containing information related to the exception. When the
bubble reaches the end of the pipeline, preceding instructions
have already been committed, and the exceptional instruc-
tion is passed to a hardware exception handler. The pipeline
is flushed and stopped before this handler executes, and sub-
sequent instructions leave no effect on hardware state. If

1 pipe cpu(pc)[rf, imem, dmem, csr]{

2 / / I n s n F e t c h S t g
3 --- / / I n s n F e t c h (I F) −> Decode (DE)
4 / / Decode S t g
5 if (isInvalid(insn)) {throw(ERR_INV);}

6 --- / / Decode (DE) −> E x e c u t e (EX)
7 / / E x e c u t e S t g
8 --- / / E x e c u t e (EX) −> MemOps (MM)
9 / / MemOps S t g
10 --- / / MemOps (MM) −> Wr i t eBack (WB)
11 block(rf[rd]);

12 rf[rd] <- rd_data;

13 commit: / / (CM) i f no e x c e p t i o n
14 release(rf[rd]);

15 release(dmem[alu_out]);

16 except(error_code): / / (RB) i f e x c e p t i o n
17 / / EX1 : Save e x c e p t i o n i n f o t o CSRs
18 --- / / E x c e p t S t g 1 (EX1) −> E x c e p t S t g 2 (EX2)
19 call cpu(handler_pc); / / C a l l h a nd l e r
20 }

Figure 2. Invalid Instruction Example in xPDL

no exceptions are raised, instructions execute and commit
normally, as if no exceptions are implemented.
Figure 2 shows an XPDL program that extends the pro-

cessor implementation from Figure 1 to support a simple
illegal-instruction exception. Figure 3 shows the datapath
of the corresponding processor. Conceptually, an XPDL pro-
gram comprises two pipelines: a main pipeline that executes
committing instructions, and a separate pipeline that only
processes exceptional instructions.

The decode (DE) stage has a new throw statement (line 6)
with the appropriate error code as its argument. Executing
throw marks the current instruction as exceptional. This
information, along with the error code, is passed along the

4

Sequential Specifications for Precise Hardware Exceptions ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

Figure 3. Data path for 5-stage CPU with pipeline exceptions

datapath. At the end of the pipeline body (light green), two
code blocks are appended: the commit block (dark green) and
the except block (red). The commit block contains logic for
instruction commit, while the except block handles cases
where an exception is raised. We call the commit and except
blocks final blocks because all their effects are final: they
cannot be squashed or rolled back. In this example, the com-
mit block contains release statements to both write locks,
effectively committing the writes, whereas the except block
saves information about the exception into the CSRs and
spawns a new instruction redirecting the pc address to the
software exception handler. Before entering the except block,
the pipeline is flushed, and an implicit rollback (RB) stage
removes all uncommitted changes to architectural state and
releases all locks.

3.2 Language
The syntax for pipeline exceptions is lightweight: the pro-
grammer only needs to specify 1) a commit block containing
a sequence of committing operations, 2) an except block con-
taining all exception handling operations and a signature
that defines exception arguments, and 3) a throw statement
with arguments matching the except-block signature. The
throw statement does not check the condition of raising
an exception, as PDL’s base language is expressive enough
to describe the condition, including exception priorities. In
addition to exception arguments, pipeline arguments and
references to module connections are in the environment
of the except block, as they are often used for exception
handling. Transient pipeline states, except those passed to
exception arguments, are not part of the environment.
An XPDL pipeline can have only one commit block and

one except block. This facilitates the reuse of rollback logic
but does not reduce the expressiveness of the language, as
conditionals can be used over different exception argument
values. For expressiveness, the pipeline body, the commit
block, and the except block can each have an arbitrary num-
ber of stages. We refer to the concatenation of the pipeline

body and the commit block as the extended body. It describes
the execution of non-exceptional instructions. Note that
stage separators are not required between the pipeline body
and the commit block; the first stage of the commit block
can be merged into the last stage of the pipeline body, so
no microarchitectural change is needed for non-exceptional
instructions.

3.3 Synthesis
In XPDL, the synthesis of a pipeline that never uses excep-
tions is the same as for base PDL; for a pipeline using excep-
tions, new language syntax is translated into an extended
PDL syntax that adds some new internal constructs gener-
ated and used only by the compiler. The extended internal
syntax is inaccessible to the programmer, because it is danger-
ous: using it in the pipeline body could lead to inconsistent
hardware states.

To represent the exceptional state of instructions and the
pipeline at the PDL level, the compiler uses two new expres-
sions: 1) an instruction-specific local exception flag lef that
marks whether the current instruction is exceptional, and 2)
a module-level exception flag gef that indicates whether the
pipeline is currently in exception-handling mode. Further
internal operations are added for flushing the pipeline and
rolling back pipeline state: 1) 𝑎𝑏𝑜𝑟𝑡 resets lock states, revok-
ing lock ownership and clearing all uncommitted writes, 2)
pipeclear clears all pipeline (stage) registers for all stages in
the pipeline body; 3) specclear resets records for speculative
instructions. The semantics of these operations differ from
invalidate in that they reset the pipeline back to a clean
state rather than undo effects of some instructions.
Figure 4 describes our translation strategy formally. A

translation rule takes the form S[[𝑎]] ≜ 𝑏. It translates any
matching XPDL statement 𝑎 into a new PDL statement 𝑏.
S[[·]] is defined by structural induction on terms, so terms
on the right-hand side may be further expanded. For brevity,
some side conditions are explained informally in the text.

5

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Yulun Yao, Drew Zagieboylo, Andrew C. Myers, G. Edward Suh

S [[𝑐ℎ - - - 𝑐𝑡]] ≜ if gef skip

else 𝑐ℎ

- - - S [[𝑐𝑡]] (𝑐ℎ has one stage)

S [[commit: 𝑐𝑐]] ≜ 𝑐𝑐

S [[except(𝑎𝑟𝑔𝑠):𝑐𝑒]] ≜ gef ← true;
- - - skip . . . - - - skip (n times)

- - - pipeclear; specclear;

abort(𝑀1); . . . ; abort(𝑀𝑛);

- - - 𝑐𝑒 ; gef ← false

S [[𝑐𝑏 , commit:𝑐𝑐, except(𝑎𝑟𝑔𝑠):𝑐𝑒]] ≜
S [[𝑐𝑏]];
if lef S [[except(𝑎𝑟𝑔𝑠):𝑐𝑒]]
else S [[commit: 𝑐𝑐]]

S [[throw (𝑎𝑟𝑔𝑠)]] ≜ lef = true;

𝑒𝑎𝑟𝑔1 = 𝑎𝑟𝑔𝑠1; . . . ;𝑒𝑎𝑟𝑔𝑛 = 𝑎𝑟𝑔𝑠𝑛

Figure 4. Translation rules for new syntax

Figure 5 illustrates the translated pipeline for handling the in-
valid instruction exception in Figure 2, providing a concrete
example.

1 / / . . Same as o r i g i n a l program
2 / / Decode S t g
3 if (isInvalid(insn)) {lef <- True;

4 earg0 <- ERR_INV ;}

5 / / . . Same as o r i g i n a l program
6 block(rf[rd]);

7 rf[rd] <- rd_data;

8 if(lef){

9 gef <- True;

10 ---

11 pipeclear; specclear;

12 abort(rf[rd]);

13 abort(dmem[alu_out]);

14 ---

15 / / EX1 : Save e x c e p t i o n i n f o t o CSRs
16 ---

17 call cpu(handler_pc); / / C a l l h a nd l e r
18 gef <- False;

19 } else {

20 release(rf[rd]);

21 release(dmem[alu_out]);

22 }

Figure 5. Post Translation Pipeline

The compiler creates gef as a 1-bit shared register, and
lef as a per-instruction boolean variable that is passed along
the datapath, becoming one 1-bit register per stage.

In the first rule, the pipeline body is viewed as a sequence
of stages, delimited by stage separators, where 𝑐ℎ is the first

Figure 6. Padding stages translation

Figure 7. Control path diagram (new logic only)

stage and 𝑐𝑡 holds the remaining stages. For each stage in
the pipeline body, an additional control path observes gef
as illustrated in Figure 7. Setting gef causes later stages to
do nothing. This translation strategy ensures that execution
of the except block is mutually exclusive with execution of
the main pipeline body.
As shown in Figure 3, final blocks are converted into a

single conditional block, dependent on lef . If lef is not set,
statements in the commit block are executed. Otherwise, gef
is set to enter exception handling mode.
The compiler then generates 𝑛 padding stages, where 𝑛

equals the number of commit stages. Figure 6 shows the
effect of padding stages: rollback is delayed so all previous
committing instructions can finish. The command skip is a
no-op that does not modify program state. If the commit
block has no new stages—the commit block has only one
stage and it is merged with last stage of pipeline body—
no padding stages will be added. Padding stages are logical
constructs–—a simple register guard can be used instead of
generating actual pipeline stages.

In the rollback stage (RB), the pipeline is flushed: the XPDL
compiler generates a pipeclear that captures all pipeline reg-
isters before the final blocks and clears them. The compiler
also generates 𝑎𝑏𝑜𝑟𝑡 statements for every lock used in the
pipeline (𝑀𝑖 , 𝑖 ∈ N) and a specclear statement that clears the
speculative record. Figure 7 shows this extra control path.
Following the RB stage, except block statements are executed.

6

Sequential Specifications for Precise Hardware Exceptions ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

At the end of the except block, gef is unset, and the pipeline
returns to normal.
Stages in the final block always execute, provided the

pipeline registers are non-empty.
The throw statements are translated into a set of assign-

ments, where lef is set, and values of arguments passed into
the throw statements are copied to the canonicalized except
block arguments (𝑒𝑎𝑟𝑔𝑖 , 𝑖 ∈ N).

3.4 Locks
Locks in PDL are abstractions formemory interfaces equipped
with stalling and bypassing logic. They encapsulate pipeline
states for different microarchitectural elements.

XPDL’s translation strategy simplifies pipeline state man-
agement by leveraging locks. Rollback of pipeline states is
managed through rollback of locks. Some PDL locks already
provide checkpoint and rollback mechanisms for handling
misspeculations. However, exceptions are relatively uncom-
mon, whereas misspeculations are frequent. PDL handles
misspeculations in one cycle but requires area-intensive hard-
ware records for every speculative instruction executing in
parallel. This difference in area–time tradeoff motivates a
different rollback implementation.

To address this tradeoff, real processors use different mech-
anisms, depending upon the frequency of rollback. For in-
stance, rename tables often have a snapshot for each spec-
ulative branch, but will use multi-cycle rollback to handle
exception instructions [2, 35].
XPDL’s new API, 𝑎𝑏𝑜𝑟𝑡 , provides a unified approach for

different locks to rollback to a point where precise exceptions
can be maintained. Calling 𝑎𝑏𝑜𝑟𝑡 on a lock logically resets
any transient microarchitectural state for that lock.

We briefly describe how we extend locks to support 𝑎𝑏𝑜𝑟𝑡 :
Bypass Queue: A bypass queue provides in-order mem-

ory writes. Writes are cached and can be passed to later
reads. In this case, aborting the state can be achieved by just
removing the cached writes; later instructions are squashed
and their reads do not affect correctness.

RenamingRegister:To support rollback, we store a snap-
shot of the register mapping table and the free list of available
physical registers at checkpoint creation. Since register files
are typically small, this approach is feasible despite its higher
storage cost. On rollback, we restore the previous register
mapping and reclaim any physical registers allocated after
the checkpoint, ensuring that previous instructions are com-
mitted correctly.
In contrast to the XPDL approach, complex processors

often implement more centralized control circuits, relying
on scoreboards or, in machines that uses Tomasulo’s algo-
rithm [42] reservation stations. Both mechanisms can be
modified to add a small field to store exceptional state. Toma-
sulo’s algorithm naturally handles non-committing writes in
reservation stations; scoreboard machines rely on a range of
mechanisms like write buffers or renaming registers. These

approaches are more area-efficient because theye have cen-
tralized bookkeeping logic, while in the modular approach
of XPDL, a small overhead is added because each memory
module does its own bookkeeping.

3.5 Static Checking
All static analyses from base PDL are performed prior to
the translation to ensure the correctness of XPDL programs.
Most of these checks are generic, such as checking whether
the value from a memory read is available at its use. For
pipelines that include an except block, XPDL conducts two
separate runs on most static analysis passes: one for the
extended body and one for the except block. These static
checks are exhaustive because all program paths lead to
either commit or except. XPDL adds further static checks:

Rule 1: The except block must be self-contained, so all pend-
ing architectural state changes are complete before an instruc-
tion exits the block. This entails three requirements:

a) An instruction may acquire a write lock on memory
and modify it, but must release the lock before exiting
the except block.

b) Reads are forbidden from asynchronous memory or other
pipelines at the end of the except block, to prevent indef-
inite stalls.

c) A recursive call statement (which spawns a new instruc-
tion in the main pipeline) can only be in the last stage
of the except block, to maintain atomicity of the except
block.

Rule 2: Final blocks must be non-speculative and cannot
spawn new speculative instructions. Hence, instructions are
never squashed in final blocks. Spawning speculative instruc-
tions in final blocks is unnecessary since an instruction has
almost finished execution of an instruction and possesses
full information for the next pc. Consequently, spec_check,
spec_barrier, and spec_call statements are not allowed
within the final blocks.

Rule 3:Write locks acquired in the pipeline body must be
released within the commit block and not before. This rule
prevents changes to memory states in the main body. As a
result, undecided instructions will not produce any effects,
and the order in which instructions take effect aligns with
their entry into the final block.
Rule 4: No stateful operations are allowed in the commit

block, with the exception of releasing a lock. Stateful opera-
tions include spawning new instructions, acquiring locks,
and speculation-related operations. Combining this rule with
our translation strategy gives us a safe happens-before [21]
relationship between an exceptional instruction and preced-
ing committing instructions: the effects of those instructions
must happen before the effects of the exceptional instruction.
XPDL’s static checks restrict how pipelines can be struc-

tured, which can make certain designs either impossible or
7

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Yulun Yao, Drew Zagieboylo, Andrew C. Myers, G. Edward Suh

less efficient. These constraints have several implications for
processor design:
a) Handling exception while running other instructions

is impossible. This is a limiting factor to our processor
design; there is latency to interrupt handling because the
pipeline must be cleaned up first.

b) Only one exception can be processed at a time. This lim-
its the throughput of control instructions to a maximum
of one per pipeline completion (i.e., 1 / number of stages),
which could bottleneck workloads with frequent excep-
tions.

c) Communication between exceptional and non-exception-
al instructions is limited. The only communication chan-
nel is via architectural state such as datapathmemories or
registers. Control and status registers (CSRs), for instance,
must be modeled as ordinary visible registers—unlike
conventional processors which often use separate con-
trol paths or microarchitectural signaling.

d) Since there are no side-effects such as resource con-
tention or residual microarchitectural state, exceptional
instructions leave no visible trace, thus preventing Melt-
down-style vulnerabilities.

e) Exception handling is strictly non-speculative. Misspec-
ulative instructions cannot raise exceptions. In scenarios
where exceptions must be handled with minimal latency
(e.g., real-time systems), this design can introduce delays
if misspeculation keeps happening.

3.6 Interrupts

1 volatile pending; / / I n t e r r u p t p end ing s i g n a l
2 / / N o n− i n t e r r u p t p i p e l i n e l o g i c s om i t t e d
3 if(isIntEnabled && pending != NONE){

4 int_code = get_int_type(pending, mask);

5 / / D e c i d e whe the r and which i n t t o hand l e
6 throw(int_code);}

7 commit: / / No change t o commit
8 except(error_code):

9 pending <- NONE;

10 / / Un s e t t o a cknow l edge i n t e r r u p t
11 CSR[MCAUSE] <- error_code; / / Save c au s e
12 / / L o g i c f o r d i f f e r e n t e x c e p t i o n t y p e s
13 ---

14 call cpu(handler_pc);

Figure 8. Interrupt example in xPDL

Figure 8 presents a simple example of interrupt handling
in XPDL. The source of the interrupt is the pending register,
which every instruction checks to determine whether a pend-
ing interrupt is waiting to be processed—provided interrupts
are currently enabled. It then reads the mask register and
applies precedence logic to decide which interrupt to handle.
It then raises an exception through throw and resolves the

interrupt with user-defined logic in the except block: unset
the interrupt pending signal to acknowledge handling of this
interrupt; save the error code and possibly other informa-
tion; call an interrupt handler. XPDL is expressive enough
to describe a variety of interrupt-handling logic.
Note that this pending register is marked with a new

volatile type annotation. While the annotation is remi-
niscent of the volatile keyword in C, its semantics are not
quite the same. There are some similarities: (1) there is at
least one external writer whose behavior is unpredictable; (2)
all readers must observe the most recent value, with changes
becoming visible immediately after the write; if clocks are
synchronized, this means the new value is observable in the
next cycle. (3) a single read or write is atomic and final.

XPDL uses volatile on connected memories that may be
modified by external devices, effectively describing device
registers. Volatile memories are unique in that instructions in
the pipeline cannot lock them. For volatile memories, XPDL
limits the placement of reads only to non-speculative, in-
order regions of the pipeline (including final blocks), and
of writes only to final blocks. A given volatile memory can
only be read or written by one instruction at a time. XPDL
does not impose a limit on the number of volatile memories
that can be connected to a pipeline, allowing programmers
to incorporate multiple interrupt sources.

Figure 9. Non-reentrant and Reentrant interrupts

The above rules provide an ordering guarantee: for any
two instructions in program order, the later instruction will
always read the more recent value from the volatile memories.
Hence, at any given time, if an instruction captures the cur-
rent state of the interrupt signal, later instructions cannot
observe older states. This guarantees correctness for both
non-reentrant and reentrant interrupts (Figure 9) — non-
reentrant interrupts are handled strictly in the order they
were raised; for reentrant interrupts, the later interrupt can
correctly preempt the earlier interrupt.
This ordering guarantee corresponds to sequential con-

sistency [20]: both the XPDL pipeline and external devices
observe memory updates in the same global order, and that
order respects the program order of both the pipeline and the

8

Sequential Specifications for Precise Hardware Exceptions ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

external devices. This assumes that external devices access
volatile memory in a sequential manner. Under this consis-
tency model, when an instruction in an XPDL pipeline reads
from a volatile memory, it observes the most recent commit-
ted write according to the global order. This behavior aligns
with the semantics of precise exceptions, as instructions
never see stale or out-of-order memory updates.

There is no strict requirement for interrupts to be resolved
immediately, as they are inherently asynchronous. For ex-
ample, a timer interrupt is bound to real-time clocks rather
than hardware cycles. Additionally, many architectures allow
interrupts to be delayed or masked [3, 5].

Since interrupts originate from device-specific hardware,
their implementation falls outside the scope of XPDL. How-
ever, device-specific hardware, including interrupt controllers,
can be implemented as RTL libraries and imported into XPDL
as needed.

3.7 Propagating Exceptions

Figure 10. Multi-pipe with decentralized exceptions

An XPDL program describes a single core system, yet may
contain multiple pipelines. Figure 10 illustrates a proces-
sor that includes a pipelined CPU, a pipelined cache, and a
pipelined division unit. The pipelines must be structured as a
tree hierarchy, where inter-pipeline calls are blocking—sub-
pipelines act as service providers for their callers. Designing
exceptions for such a program is an interesting problem be-
cause each pipeline can raise its own exceptions. For example,
the division unit may raise a division by zero exception, the
pipelined cache may trigger a TLB miss, and a cache miss
itself can be considered a local exception for the cache.
In XPDL, each pipeline can have its own except block,

and exceptions from different pipelines do not interact. This
design strikes a balance by ensuring precise exceptions at
the local level of each pipeline, while avoiding the overhead
of maintaining unnecessary global consistency of exception
states across the entire program.
Programmers have the flexibility to choose which excep-

tions to propagate, while still being able to easily maintain
precise exceptions across pipeline boundaries when needed.
If an exception can be resolved locally within a pipeline, then
it should not be propagated to the parent of this pipeline.
For instance: a cache miss can be resolved locally, but an

access violation must be propagated to the CPU. In the latter
scenario, programmers can explicitly propagate the excep-
tional state through data responses and raise exceptions in
the CPU.

This design decision also benefits processor performance,
as programmersmay occasionally prefer imprecise exceptions—
maintaining precise exceptions under high-latency events
are both unnecessary and costly [12].

4 Evaluation
We implemented the XPDL language extension in approxi-
mately 2k lines of Scala [29], BlueSpec [28] and Verilog [41]
code on top of PDL to extend the compiler and implement
new hardware methods. Using software simulation [45], we
tested the correctness of our approach using both small test
cases, covering different pipeline microarchitectures, and
large-scale tests that run real programs with system calls
and interrupts on RISC-V processors.
Our evaluation aims to answer the following research

questions:

RQ1: Does XPDL allow rich expression of hardware excep-
tions in an HDL with sequential semantics?

RQ2: Can XPDL support hardware exceptions with a rea-
sonable area and performance overhead?

RQ3: Does XPDL preserve the ease of programming and
reasoning of PDL?

4.1 RQ1: Expressiveness
To our best knowledge, XPDL is expressive enough to de-
scribe all behaviors specified in the RISC-V privileged ISA
manual. This does not rule out XPDL’s ability to describe
other ISAs—pipeline exceptions are an ISA-agnostic language
feature.

To evaluate the expressiveness of XPDL, we implemented
several processors that implement various forms of exception
handling on top of a baseline implementation. Our baseline
is a 5-stage RV32IM processor with speculative execution,
renaming registers, a write queue for data memory, and no
CSRs. We implemented variants supporting 1) fatal excep-
tions (illegal instructions and memory accesses); 2) system
calls and interrupts that use traps as a handling mechanism;
and 3) CSR instructions supporting up to 32 CSRs. And we
implemented a processor incorporating all of these excep-
tions.

We briefly outline how we extended the baseline with sys-
tem calls and CSR instructions [44]. In the decode stage, an
instruction throws an exception whenever it is a system call,
a return (exit of a system call), or a CSR instruction. CSR in-
structions do affect subsequent instructions, but using locks
to guard CSRs would be expensive and CSR instructions
are rare. Hence, it is practical to implement them as excep-
tions. The except block supports each instruction according
to specification: system calls and return instructions store

9

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Yulun Yao, Drew Zagieboylo, Andrew C. Myers, G. Edward Suh

exception information to CSRs and redirect pc to a software
exception handler or return address. CSR instructions are
similar but read or write from data registers. To implement
multiple privilege levels, we could store the current privilege
level in a CSR, read it every cycle but only write it in the
except block.

Figure 11. Interrupt handling overview

While there are many advanced hardware interrupt con-
trollers with ever-growing features, interrupt handling fol-
lows a general process. Figure 11 generalizes the example
from Figure 8, and sketches this interrupt handling pro-
cess [16, 24, 43] and how programmers use XPDL to provide
hardware support. Memory-mapped interrupt controllers
are marked volatile. In the pipeline body, every instruc-
tion reads (interrupts) pending, mask, and enable registers
processes it accordingly to specification, and throws an ex-
ception if the current pending interrupt can be handled. The
remaining hardware implementation is similar to system-
call handling—it redirects pc to a software exception handler.
The only difference in the except block is disabling/enabling
interrupts and writing the interrupt-pending CSR to claim
or complete the interrupt.
Appending exception-handling logic to the end of the

pipeline has a few implications. First, unless a storage unit
only reads or writes at the end of the pipeline, it must be able
to manage intermediate state, and support rollback and com-
mit operations—e.g., support checkpointing on their states,
or hold writes till commit points. Second, exceptional instruc-
tions may take longer to finish, potentially delaying CSR
instructions and, more critically, interrupt handling. While
many processors poll and handle interrupts at the beginning
of the pipeline, this design is not feasible in XPDL. Third,
logic currently cannot be shared between the main pipeline
and the except block, nor implement actual non-local control
flow in specific pipeline stages.

4.2 RQ2: Area and Performance Overhead
To evaluate the area overheads of the various XPDL-generated
processors, we synthesize hardware [15] and place-and-route
[14], with a 163.93 MHz clock and 45 nm FreePDK [39] tech-
nology. For performance overhead, we measured the CPI
number, maximum frequency, and compilation time of these
processors.

We break down the area usage of XPDL implementations
to analyze where the overhead comes from and whether it
can be mitigated: 1) Register Files and CSRs: the area cost is
inevitable as we need to addmore control registers to support
hardware functionalities; 2) Pipeline registers: our compila-
tion strategy may introduce extra pipeline registers—hand-
written hardware can optimize resource usage by reusing
existing pipeline registers for exception handling; 3) Combi-
national logic: cost for combinational logic is mostly intrinsic,
as functional logic is required to process exceptions regard-
less how the hardware is implemented. Comparing against
non-XPDL processors is not our goal, as we are evaluating
our language exception rather than PDL. Moreover, each
non-XPDL processor has a unique microarchitecture, with
exception-handling logic deeply intertwined with the control
path, making direct comparisons impractical.
Figure 12 presents the results. Each bar is divided into

three sections with black lines, where the left section shows
the area for Register Files and CSRs, the middle section adds
up all stage registers and the right section includes all com-
binational logic. The numbers on each bar are cumulative:
we first implement the first exception (1○ on the diagram
for each group) to the baseline, along with its corresponding
handling logic, then add additional exceptions on top (2○, 3○).
Within each group, the majority of area differences (up to
65% of the total) are in the area to support CSRs. The mean-
ingful overhead comes from differences in stage registers as
we introduce multiple new stages and new local variables,
which are propagated through the data path. For CSR in-
structions, complex decoding logic increases the area by 10%.
Nevertheless, there is plenty of logic reuse. For exceptions
that share similar handling logic, the cost of supporting ad-
ditional exceptions is almost negligible, and even for the
combined example, the total area cost is still much less than
the sum of the areas of each group.
We measured performance for the above examples on

three different metrics:
Cycles Per Instructions (CPI): Processors that imple-

ment exceptions should not have a worse CPI than those
that do not, as long as no exceptions occur during execution.
We verify this through RTL simulation [45]. Our benchmark
is MachSuite, which we use to generate binaries for RV32IM.
Using the same external microarchitecture modules (bypass-
ing and stalling logic, memory interface, and pipeline sepa-
rator placements), all processors perform equally (1.59 CPI
for MachSuite-aes [33]).

10

Sequential Specifications for Precise Hardware Exceptions ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

Figure 12. Area of processor implementations in 𝜇𝑚2

Maximum frequency:With the same technology [39]
and same configuration for both synthesis and place-and-
route, the maximum frequency at which our generated pro-
cessors can operate reflects the quality of our design, as it
is determined by the longest critical paths. Comparing our
processor that implements all exceptions to the baseline pro-
cessor, we observe 3.3% reduction in maximum frequency
(169.49 MHz v.s. 163.93 MHz). All experiments used medium-
effort synthesis settings, and there is room to further opti-
mize the implementation. A quick test on a Xilinx FPGA also
validates result (both close to 65.6 MHz) [11, 32].

Compilation time: To show that XPDL enables fast pro-
totyping of processor pipelines, we measure the end-to-end
time to compile an XPDL program down to Verilog on a stan-
dard Linux server. This compilation is a two-step process: 1)
XPDL to Bluespec; 2) Bluespec to Verilog. For a baseline pro-
cessor, XPDL compiles the design in 15.34 seconds, with 8.13
seconds for XPDL to Bluespec and 7.21 seconds for Bluespec
to Verilog. For a processor that implements all exceptions,
compilation takes 15.50 seconds, with 8.17 seconds for XPDL
to Bluespec and 7.33 seconds for Bluespec to Verilog. Most
time in the compiler is spent in type inference and type
checking, which are needed to verify lock placement and
correctness of speculation, relying on the Z3 SMT solver [9].
Overall, compilation is fast and supporting exceptions does
not add significant overhead.

4.3 RQ3: Ease of Programming
Figure 13 quantifies programmer effort in terms of lines of
code (LOC) [27]. This figure has the exact same experimental
setup as Figure 12, and can be interpreted similarly. Starting
from the left, three bar sections now show LOC in pipeline
body and module definition, commit block, and except block,
respectively. There are three takeaways: 1) the commit block
remains the same for all exceptions implemented over the
baseline processor; 2) there is substantial sharing of code in

the except block for a group of exceptions with similar han-
dling mechanisms. 3) even with all exceptions implemented,
the whole processor takes less than 500 LOC. Note that many
of these LOCs are added to describe CSR accesses that are
not in the baseline.

Importantly, XPDL preserves OIAT semantics. It does not
change the behaviors of a pipeline without pipeline excep-
tions. For a pipeline with exceptions, any sequence of non-
exceptional instructions runs through the extended body,
which behaves the same as a simpler pipeline in which all
throws are removed along with conditional checks based on
exception flags. Therefore, any sequence of non-exceptional
instructions adhere to the OIAT semantics enforced by PDL.
For a sequence of instructions that contains one or more ex-
ceptions, our translation strategy (§3.3) and static-checking
rules (§3.4) enforce the three conditions for precise excep-
tions:

1) All instructions preceding the exceptional instruction execute
and correctly modify architectural state.
A well-formed XPDL pipeline has a single final block
placed at the end of the pipeline. Therefore, all instructions
enter the final block in their issue order. Since instructions
cannot be squashed in the final block (Rule 2), commits
from instructions before the exceptional instruction must
always finish. Additionally, all stateful operations are or-
dered before rollback happens (Rule 4), so an exceptional
instruction cannot roll back the effect of preceding com-
mitting instructions.

2) Instructions after the exceptional instruction are unexecuted
and have no effect on the architectural state.
Upon entering the final blocks, an exceptional instruction
sets the pipeline to exception handling mode, stalling in-
structions in the pipeline body and preventing succeeding
instructions from entering the final block, where mem-
ory writes takes effect (Rule 3). In the next stage, it clears

11

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Yulun Yao, Drew Zagieboylo, Andrew C. Myers, G. Edward Suh

Figure 13. #LOC of xPDL for processor implementations

all uncommitted writes by aborting their locks and mak-
ing succeeding instructions no-ops by clearing the stage
registers.

3) An exceptional instruction behaves atomically—it either
completes fully or has not started execution. Exceptional
instructions are treated as unexecuted, as they cannot
commit their changes. Further, they execute alone, and
always finish the except block (Rule 1) before any new
instructions can be spawned. Any such new instruction
executes as if in a fresh pipeline.

Hence, exceptional instructions compose with rest of the
instructions while preserving OIAT semantics, which leads
naturally to correct implementations of precise exceptions.

5 Related Work
High-level synthesis (HLS) [8] tools focus on modeling algo-
rithms and pipeline functionality. They are easy to write and
reason about, but they are insufficient to describe complex
control paths. Kanagawa shares a similar goal with PDL and
XPDL, but does not provide a simple semantics guarantee like
OIAT [31]. It also has difficulty describing the non-sequential
behaviors targeted by XPDL. HeteroCL’s [19] break state-
ment is a shorthand method for producing a priority encoder.
C++ style try–catch statements in HLS tools do not gener-
ate real hardware. They either control simulation or capture
the exceptions of HLS tools themselves. Compared to HLS,
XPDL provides finer-grained control over pipeline behaviors
and easier reasoning.

ISA specification and system modeling languages describe
the specifications of hardware rather than the actual imple-
mentation. Sail [1] captures exceptions with state monads
to achieve precise and finer-grained control over exception
handling. SystemC [30] supports events and event handling
that are well suited to model hardware exceptions. These
languages are used for verification but cannot be synthesized

into real hardware without significant effort. By contrast,
XPDL is fully synthesizable.

Traditionally, hardware exceptions are implemented at
the RTL level, enabling extensive hand-tuning for efficient
hardware. However, the low level of RTLmakes design-space
exploration expensive. Chan et al. [6] abstract checkpoint
and rollback as Verilog extensions to simplify their use, but
the programmer still has to implement rollback logic for
each process state, whereas XPDL automatically generates
rollback logic for different process states. Hazard interfaces
are a recent idea generalizing valid-ready interfaces that can
modularize pipelined circuits with structural, data and con-
trol hazards [18]. While it can help in generating complex
control logic, XPDL excels on fast prototyping and maintain-
ing high-level semantics, and is more focused on processor
pipelines, a challenging and important use case.

Teng and Dubach [40] recently applied continuation-pass-
ing style to the generation of hardware-synthesizable excep-
tions. While their syntactic constructs appear similar (also
adopting a try–catch approach), their goal is different: effi-
ciently translating software-level run-time exceptions into
circuits, to facilitate porting software applications to hard-
ware. In contrast, XPDL targets native hardware designs and
provides novel insights into precise exceptions.

6 Conclusion
XPDL offers a structured and expressive way for high-level
hardware languages to support non-sequential behavior,
thereby enhancing their practical utility by supporting fea-
tures needed by OS software. It is, to the best of our know-
ledge, the first HDL to encapsulate ISA-level hardware excep-
tions in language abstraction, connecting precise exceptions
to OIAT semantics. Although in this work we demonstrate
one concrete implementation of this design through our
compiler, it is not the only possible approach.

12

Sequential Specifications for Precise Hardware Exceptions ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

Acknowledgments
Wewould like to thank Derin Ozturk and Christopher Batten
for providing and assisting with ASIC tools, and Hongzheng
Chen, Niansong Zhang, and Zhiru Zhang for providing and
assisting with FPGA tools. We would also like to thank
Google for a grant supporting this work.

References
[1] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, PrashanthMundkur, MarkWassell,
Jon French, Christopher Pulte, et al. 2019. ISA semantics for ARMv8-A,
RISC-V, and CHERI-MIPS. Proc. ACM on Programming Languages 3,
POPL (2019), 1–31.

[2] Görkem Aşılıoğlu, Emine Merve Kaya, and Oğuz Ergin. 2010.
Complexity-effective rename table design for rapid speculation recov-
ery. In Architecture of Computing Systems-ARCS 2010: 23rd Int’l Conf.,
Hannover, Germany, February 22-25, 2010. Proceedings 23. Springer,
15–24.

[3] Robert Balas, Alessandro Ottaviano, and Luca Benini. 2024. CV32RT:
Enabling fast interrupt and context switching for RISC-V microcon-
trollers. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems (2024).

[4] Drew Barbier and A. C. Palmer Dabbelt. 2020. RISC-V platform-level
interrupt controller specification.

[5] Björn B. Brandenburg, Hennadiy Leontyev, and James H Anderson.
2011. An overview of interrupt accounting techniques for multipro-
cessor real-time systems. Journal of Systems Architecture 57, 6 (2011),
638–654.

[6] Carven Chan, Daniel Schwartz-Narbonne, Divjyot Sethi, and Sharad
Malik. 2012. Specification and synthesis of hardware checkpointing
and rollback mechanisms. In Proc. 49th Annual Design Automation
Conf. 1226–1232.

[7] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman,
Adam Chlipala, and Arvind. 2017. Kami: A platform for high-level
parametric hardware specification and its modular verification. Proc.
ACM on Programming Languages 1, ICFP (2017), 1–30.

[8] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees
Vissers, and Zhiru Zhang. 2011. High-level synthesis for FPGAs: From
prototyping to deployment. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 30, 4 (2011), 473–491.

[9] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT
solver. In Proc. Theory and Practice of Software, 14th Int’l Conf. on
Tools and Algorithms for the Construction and Analysis of Systems
(Budapest, Hungary). Springer-Verlag, Berlin, Heidelberg, 337–340.
https://doi.org/10.1007/978-3-540-78800-3_24

[10] Steven Derrien, Thibaut Marty, Simon Rokicki, and Tomofumi Yuki.
2020. Toward speculative loop pipelining for high-level synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 39, 11 (2020), 4229–4239.

[11] Tom Feist. 2012. Vivado design suite. White Paper 5, 30 (2012), 24.
[12] Siddharth Gupta, Yuanlong Li, Qingxuan Kang, Abhishek Bhattachar-

jee, Babak Falsafi, Yunho Oh, and Mathias Payer. 2023. Imprecise store
exceptions. In Proc. 50th Annual Int’l Symp. on Computer Architecture.
1–15.

[13] Wen-mei W. Hwu and Yale N. Patt. 1987. Checkpoint repair for out-
of-order execution machines. In Proc. 14th annual international sym-
posium on Computer architecture. 18–26.

[14] Cadence Design Systems Inc. 2020. Innovus implementation system.
(2020).

[15] Synopsys Inc. 2020. Design compiler RTL synthesis solution. (2020).
[16] SiFive Inc. 2020. SiFive interrupt cookbook. version 1.2 (2020).

[17] Intel Corporation. 2011. Intel® 64 and IA-32 architectures software
developer’s manual. Volume 3B: system programming guide, part 2, 11
(2011), 0–40.

[18] Minseong Jang, Jungin Rhee, Woojin Lee, Shuangshuang Zhao, and
Jeehoon Kang. 2024. Modular hardware design of pipelined circuits
with hazards. Proc. ACM on Programming Languages 8, PLDI (2024),
28–51.

[19] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, JieWang, CodyHao Yu, Yuan Zhou,
Jason Cong, and Zhiru Zhang. 2019. HeteroCL: A multi-paradigm
programming infrastructure for software-defined reconfigurable com-
puting. In Proc. 2019 ACM/SIGDA Int’l Symp. on Field-Programmable
Gate Arrays. 242–251.

[20] Leslie Lamport. 1979. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE transactions on com-
puters 100, 9 (1979), 690–691.

[21] Leslie Lamport. 2019. Time, clocks, and the ordering of events in
a distributed system. In Concurrency: The Works of Leslie Lamport.
179–196.

[22] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, et al. 2020. Meltdown: Reading kernel memory from user space.
Commun. ACM 63, 6 (2020), 46–56.

[23] Biruk Wendimagegn Mammo. 2017. Reining in the functional verifica-
tion of complex processor designs with automation, prioritization, and
approximation. Ph. D. Dissertation.

[24] Francisco Marques, Manuel Rodríguez, Bruno Sá, and Sandro Pinto.
2024. “Interrupting” the status quo: A first glance at the RISC-V ad-
vanced interrupt architecture (AIA). IEEE Access 12 (2024), 9822–9833.

[25] Prabhat Mishra, Nikil Dutt, and Alex Nicolau. 2001. Specification of
hazards, stalls, interrupts, and exceptions in EXPRESSION. (2001).

[26] Mayan Moudgill and Stamatis Vassiliadis. 1996. Precise interrupts.
IEEE Micro 16, 1 (1996), 58–67.

[27] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. 2007.
A SLOC counting standard. In Cocomo ii forum, Vol. 2007. Citeseer,
1–16.

[28] Rishiyur Nikhil. 2004. Bluespec System Verilog: Efficient, correct
RTL from high level specifications. In Proceedings. Second ACM and
IEEE Int’l Conf. on Formal Methods and Models for Co-Design, 2004.
MEMOCODE’04. IEEE, 69–70.

[29] Martin Odersky, Lex Spoon, and Bill Venners. 2008. Programming in
Scala. Artima Inc.

[30] Preeti Ranjan Panda. 2001. SystemC: A modeling platform support-
ing multiple design abstractions. In Proc. 14th Int’l Symp. on Systems
Synthesis. 75–80.

[31] Blake Pelton, Adam Sapek, Ken Eguro, Daniel Lo, Alessandro Forin,
Matt Humphrey, Jinwen Xi, David Cox, Rajas Karandikar, Johannes
de Fine Licht, et al. 2024. Wavefront threading enables effective high-
level synthesis. Proc. ACM on Programming Languages 8, PLDI (2024),
1066–1090.

[32] Brent Przybus. 2010. Xilinx redefines power, performance, and design
productivity with three new 28 nm FPGA families: Virtex-7, Kintex-7,
and Artix-7 devices. Xilinx White Paper (2010).

[33] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and
David Brooks. 2014. Machsuite: Benchmarks for accelerator design
and customized architectures. In 2014 IEEE Int’l Symp. on Workload
Characterization (IISWC). IEEE, 110–119.

[34] David Seal. 2001. ARM architecture reference manual. Pearson Educa-
tion.

[35] Dezso Sima. 2000. The design space of register renaming techniques.
IEEE Micro 20, 5 (2000), 70–83.

[36] Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell,
Ohad Kammar, Jean Pichon-Pharabod, et al. 2024. Relaxed exception se-
mantics for Arm-A (extended version). arXiv preprint arXiv:2412.15140
(2024).

13

https://doi.org/10.1007/978-3-540-78800-3_24

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Yulun Yao, Drew Zagieboylo, Andrew C. Myers, G. Edward Suh

[37] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery,
Josep Torrellas, and Christopher W. Fletcher. 2019. Microscope: En-
abling microarchitectural replay attacks. In Proc. 46th Int’l Symp. on
Computer Architecture. 318–331.

[38] James E. Smith and Andrew R. Pleszkun. 1985. Implementation of
precise interrupts in pipelined processors. ACM SIGARCH Computer
Architecture News 13, 3 (1985), 36–44.

[39] James E. Stine, Ivan Castellanos, MichaelWood, Jeff Henson, Fred Love,
W. Rhett Davis, Paul D. Franzon, Michael Bucher, Sunil Basavarajaiah,
Julie Oh, et al. 2007. FreePDK: An open-source variation-aware design
kit. In 2007 IEEE international conference on Microelectronic Systems
Education (MSE’07). IEEE, 173–174.

[40] Paul Teng and Christophe Dubach. 2025. Hardware synthesizable
exceptions using continuations. In Proc. 30th Asia and South Pacific
Design Automation Conf. 1104–1111.

[41] Donald Thomas and Philip Moorby. 2008. The Verilog® hardware
description language. Springer Science & Business Media.

[42] Robert M. Tomasulo. 1967. An efficient algorithm for exploiting multi-
ple arithmetic units. IBM Journal of research and Development 11, 1
(1967), 25–33.

[43] Zynq UltraScale. 2020. Device technical reference manual. (2020).
[44] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste

Asanovic. 2014. The RISC-V instruction set manual, volume I: User-
level ISA, version 2.0. EECS Department, University of California, Berke-
ley, Tech. Rep. UCB/EECS-2014-54 (2014), 4.

[45] Stephen Williams and Michael Baxter. 2002. Icarus Verilog: Open-
source Verilog more than a year later. Linux Journal 99 (2002), 3.

[46] Jean Yang and Chris Hawblitzel. 2010. Safe to the last instruction: Au-
tomated verification of a type-safe operating system. In Proc. 31st ACM
SIGPLAN Conf. on Programming Language Design and Implementation.
99–110.

[47] Drew Zagieboylo, Charles Sherk, G. Edward Suh, and Andrew C. My-
ers. 2022. PDL: a high-level hardware design language for pipelined
processors. In Proc. 43rd ACM SIGPLAN Int’l Conf. on Programming
Language Design and Implementation. 719–732.

[48] Drew Zagieboylo, Charles Sherk, and Kevin Zhang. 2022. PDL:
a hardware pipeline description language. Github repository at
https://github.com/apl-cornell/PDL.

A Artifact Appendix
A.1 Abstract
The source code for this work is part of the PDL compiler,
available at https://github.com/apl-cornell/pdl. The exten-
sion featuring XPDL is located on the exn branch. Please use
/README file for detailed usage.

Since running the experiment results of our paper relies
on licensed software provided by another research group,
this artifact focuses on the compilation pipeline and genera-
tion of Verilog. Readers are encouraged to inspect the code,
run the simulation, and explore the compiler functionality.
Reproducing full experimental results requires access to pro-
prietary toolchains (Synopsys Design Compiler and Cadence
Innovus).

A.2 Artifact check-list (meta-information)
• Program: A Docker file that contains the compiler is
available at the PDL Github repository.
• Hardware: (Recommended) A recent Intel CPU.
• Output: Verilog files of XPDL generated pipelines
• Howmuch disk space required (approximately)?: 5 GB

• How much time is needed to prepare workflow (ap-
proximately)?: 1 hour
• How much time is needed to complete experiments
(approximately)?: 1 hour
• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT

A.3 Description
A.3.1 How to access. Both the source code and Dockerfile
are available at https://github.com/apl-cornell/PDL/.

A.3.2 Hardware dependencies.
• To match configurations in the paper: compilation was
performed with Apple M3 Max.
• Optional: synthesis and place-and-route were done
using an Intel processor.

A.3.3 Software dependencies.
• Docker
• A recent Linux distribution
• Java, Scala and sbt (OpenJDK 8)
• Bluespec Compiler (and Haskell)
• Icarus Verilog
• (Optional) Synopsys Design Compiler
• (Optional) Cadence Innovus

A.4 Installation
We recommend installing and running the artifact using
Docker: https://www.docker.com/. The Dockerfile is avail-
able at: /Dockerfile on the exn branch aforementioned. Please
download the file from /Dockerfile and place it in a folder
with at least 5 GB of available space.

To build and launch the container, execute the following
commands in a terminal:
Build the Docker image:
docker build -t pdl-env .

After the build completes:
docker run -it --rm pdl-env

A.5 Evaluation and Expected Results
After executing the docker run command, youwill be placed
in the pdl directory. Navigate to the xpdl-asplos folder,
which contains:
• tests/: Demonstrates core language features. A pro-
vided shell script (tests/runall.sh) compiles and
simulates all test cases automatically. All generated
Bluespec(BSV)/Verilog files are placed under their re-
spective output/ subdirectories. The output contains
the simulation results of these tests. The expected be-
haviors are specified at the top of each corresponding
*.pdl file.
• risc-pipes/: Contains RISC-V pipelines extended with
hardware exceptions. These examples are mainly for

14

https://github.com/apl-cornell/pdl
/README
https://github.com/apl-cornell/PDL/
https://www.docker.com/
/Dockerfile
/Dockerfile

Sequential Specifications for Precise Hardware Exceptions ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

inspection but they can be modified and played with
if readers are interested.

A.6 Experiment Customization
To compile a (X)PDL program with custom arguments, use
the following command:
pdl gen <input-file.pdl> -o <output-directory> \

--memInit <memory-name>=<file>

Memory input files like ti (for instructions) and td (for data)
can be manually edited to test different runtime scenarios.

Please refer to the /README file for more information.

A.7 Notes
• Running RISC-V pipelines will need manual tweaks to
the generated BSV files, as Bluespec compiler cannot
identify the exclusivity of rule execution condition and
caused false error.

15

/README

	Abstract
	1 Introduction
	2 Background
	2.1 PDL Language Overview
	2.2 Hardware Exceptions
	2.3 Precise Hardware Exceptions
	2.4 Motivation

	3 Approach
	3.1 Overview
	3.2 Language
	3.3 Synthesis
	3.4 Locks
	3.5 Static Checking
	3.6 Interrupts
	3.7 Propagating Exceptions

	4 Evaluation
	4.1 RQ1: Expressiveness
	4.2 RQ2: Area and Performance Overhead
	4.3 RQ3: Ease of Programming

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and Expected Results
	A.6 Experiment Customization
	A.7 Notes

