Scalable Extensibility via Nested Inheritance
(Technical Report)

Nathaniel Nystrom Stephen Chong Andrew C. Myers
Computer Science Department
Cornell University
{nystrom,schong,andru}@cs.cornell.edu

Abstract

Inheritance is a useful mechanism for factoring and reusing
code. However, it has limitations for building extensible sys-
tems. We describaested inheritangea mechanism that ad-

dresses some of the limitations of ordinary inheritance and
other code reuse mechanisms.
an extensible compiler framework, we show how nested in-

heritance can be used to construct highly extensible software . .
gny efurther, type safety should be enforced statically. Nested in-

frameworks. The essential aspects of nested inheritance ar
formalized in a simple object-oriented language with an op-

erational semantics and type system. The type system of this

language is sound, so no run-time type checking is required
to implement it and no run-time type errors can occur. We

describe our implementation of nested inheritance as an unob-
trusive extension of the Java language, called Jx. Our proto-
type implementation translates Jx code to ordinary Java code,

without duplicating inherited code.

Using our experience with

tainer (a namespace such as a class or package) is inherited, all
of its components—even nested containers—are inherited too.
In addition, inheritance and subtyping relationships among
these components are preserved in the derived container. By
deriving one container from another, inheritance relationships
may be concisely constructed among many contained classes.
To avoid surprises when extending a base system, it is im-
portant that inherited code remain type-safe in its new context;

heritance supports sound compile-time type checking. This
soundness is not easily obtained, because for extensibility,
types mentioned in inherited code need to be interpreted dif-
ferently in the new, inheriting context. Two new type con-
structs make sound reinterpretation of types possitdgen-
dent classeandprefix types

We have designed a new language, Jx, which adds nested
inheritance to Java. Jx demonstrates that nested inheritance in-
tegrates smoothly into an existing object-oriented language: it

is a lightweight mechanism that supports scalable extensibil-
ity, yet it is hardly noticeable to the novice programmer.

Conventional language mechanisms do not adequately support ~Many language extensions and design patterns have been
the reuse and extension of existing code. Libraries and mod- Proposed or implemented to address the limitations of in-
ule systems are perhaps the most widely used mechanisms fofheritance, including virtual classes [20, 21, 33], mixins [2],
code reuse; a given library can be used by any code that re- Mixin layers [31], delegation layers [29], higher-order hierar-
spects its interface. Inheritance adds more power: it enableschies [10], and open classes [6]. A relationship between con-
frameworksdags libraries that can be reused with some mod- tainment and inheritance is also introduced by virtual classes
ifications or extensions. But these mechanisms do not ade-and higher-order hierarchies [10], but there are two key dif-
quately support our goal afcalable extensibilitythe ability ferences. First, unlike virtual classes, nested inheritance is

to extend a body of code while writing new code proportional Statically type-safe; no run-time type checking is required to
to the differences in functionality. implement it. Second, nested inheritance associates nested

In our work on the Polyglot extensible compiler frame- classes with their containing classes rather than with objects
work [25], we found that ordinary object-oriented inheritance of those classes._ _ _ _
and method dispatch do not adequately support extensibility. ~ The rest of this paper explores nested inheritance in more
Because inheritance operates on one class at a time, somélepth. Section 2 discusses why existing language mechanisms
kinds of code reuse are difficult or impossible. For example, do not solve the problems that nested inheritance addresses.
inheritance does not support extension of an existing class li- Section 3 presents nested inheritance. Section 4 describes the
brary by adding a given field or method to all subclasses of a design of Jx and discusses adding nested inheritance to Java.
given class. Inheritance is also inadequate for extending a setVe have implemented a prototype Jx compiler, described in
of classes whose objects interact according to some protocol, Section 5. Because Jx is complex, a simpler language that
a pattern that occurs in many domains ranging from compilers captures the essence of nested inheritance is presented in Sec-
to user interface toolkits. It can be difficult to use inheritance tion 6, including its formal semantics and static type safety
to reuse and extend interdependent classes. resul_ts. Section 7 discusses more broadly related work, and
Nested inheritancés a language mechanism designed to Section 8 concludes.
support scalable extensibility. Nested inheritance creates an
interaction between containment and inheritance. Whenacon-2 Scalable extensibility

1 Introduction

This technical report expands on the paper of the same name appearing in OOP-\/arious programming language features support code reuse,

SLA 2004. The only significant difference is the inclusion of the appendix con- PHA ; : ; i
taining proofs of soundness, starting on page 19. including inheritance, parametric polymorphism, and mixins.

But when code is reused, the programmer often finds that ex- have mutual dependencies. It is often difficult to decide which
tension is not scalable: the amount of new code needed to ob-explicit parameters to introduce for purposes of future exten-
tain the desired changes in behavior is disproportionate to the sion, and the overhead of declaring and using parameters can
perceived degree of change. More expressive language mech-be awkward.

anisms are needed to make extension scalable. Inheritance embodies a different approach to extensibility.
By giving names to methods, the programmer creates less ob-
2.1 Procedures vs. types trusive, implicit parameters that can be overridden when the

L . code is reused. Nested inheritance builds on this insight by
One reason why extension is often not scalable is the well- enabling nested classes to be used as hooks too.

known difficulty of extending both types and the procedures
that manipulate them [30, 36]. Object-oriented languages . .
make it easy to add new types but not new procedures (meth—3 Nested inheritance
ods) that operate on them; functional programming style Nested inheritance is a statically safe inheritance mechanism
makes it easy to add new procedures but not new types. designed to be applicable to object-oriented languages that,

Extensions to an existing body of code are ofsgarse like Java [13] or C++ [32], support nested classes or other con-
in the sense that new types that are added can be treated inainment mechanisms such as packages or namespaces. We
a boilerplate way by most procedures, and the new proce- have designed a language, Jx, that extends Java with nested
dures that are added have interesting behavior for only a few inheritance. In this section, we concentrate on describing the
of the types on which they operate. However, standard pro- nested inheritance mechanism, ignoring details of its interac-
gramming methods cannot exploit this sparsity. In an object- tion with Java and its implementation. These issues are dis-
oriented style, it is easy to add new classes, but to add new cussed in Sections 4 and 5.
methods it is necessary to modify existing code, often dupli-
cating the_ boilerplate cc_)de. In typical func_tional style, adding 3.1 Overview
new functions that manipulate data is straightforward (assum-
ing that the data representation is not encapsulated behind alhere are two key ideas behind nested inheritance. The first
module boundary), but modifying existing functions to handle idea is similar to Ernst's higher-order hierarchies [10] and is
new data types again requires modifying existing code. related to virtual classes [20, 21]: a class inherits all members

This conflict is particularly noticeable in the context of an Of its superclass—not only methods, but also nested classes
extensible compiler, where new types are added in the form of and any subclass relationships among them.As with ordinary
new abstract syntax nodes, and new procedures are added innheritance, the meaning of code inherited from the superclass
the form of new compiler passes. With the usual strategy for is as if it were copied down from the superclass. A subclass
compiler implementation, adding new abstract syntax requires may override any of the members it inherits. Like virtual
changes to all passes, even if the new node types are relevan€lasses, when a nested class is overridden, the overriding class
to only a few passes. Similarly, adding a new pass may require does not replace the class it overrides, but insedthnces.
changes to all nodes, even if the pass interacts in an interestingThus, an overriding class is a subclass of the class it overrides,
way with On|y a few node types_ Thus’ the conflict between inheriting all its members. We extend this notion in one impor-
extending procedures and types creates an incentive to struc-ant way: the overriding class is not only a subclass but also a
ture a compiler as a few complex passes rather than as a largessubtype of the class it overrides. This feature allows more op-
number of simple passes, resulting in a less modular compiler portunities for code reuse than with virtual classes or higher-
that is harder to understand, maintain, and reuse. Similar prob- order hierarchies. In addition, nested inheritance provides a
lems arise in other application domains, such as user interfaceform of virtual superclassef21, 8], permitting the subclass
toolkits. relationships among the nested classes to be preserved when

Inheritance is a useful mechanism for extensibility because inherited into a new container clabshis feature allows new
adding new types becomes more scalable: in general, a newclass members to bmixed into a nested class by overriding
type can inherit default behavior from some existing, similar its base class.
type. However, inheritance does not handle extensions that ~ The second key idea in nested inheritance is a rich lan-
need to add new fields or methods to an existing inheritance guage for expressing types so that when code is inherited,
hierarchy in a uniform way. Some existing language mecha- types are reinterpreted in the context of the inheriting class.
nisms do help [6, 31, 29] but they do not solve the extensibility The innovation is an intuitive way to name types that gives
problems that we have encountered in developing Polyglot. the expressive power of virtual classes while also permitting

sound typing.
shils Nested inheritance largely eliminates the need for factory

2.2 Hooks and extensibility methods [12] and other design patterns that address the prob-
Making code extensible requires careful design so that the ex- lem of scalable extensibility [25]. Thus, a container such as a
tension implementer has available the right hooks: interposi- class or package may contain several nested classes or nested
tion points at which new behavior or state can be added. How- packages that depend on each other in complex ways. When
ever, there is often a price to pay: these hooks can often clut- the container is extended and individual components overrid-
ter or obfuscate the base code. One way to provide hooks is den, interactions between the components are preserved in the
through language mechanisms that provide some kind of para- derived container.
metric genericity, such as parameterized types [19], parameter- The strength of nested inheritance as an extension mech-
ized mixins [2], and functors [23]. Explicit parameterization anism is that it requires less advance planning to reuse code.
over types, classes, or modules precisely describes the waystvery class and method provides a hook for further extension,
in which extension is permitted. However, it is often an awk-
ward way to achieve extensibility, especially when a number INote that the similar-sounding term “virtual base class” is used by C++ but
of modules are designed in conjunction with one another and "2 & very different meaning.

class A { class A2 extends A { class Java {

class B { int x; } class B { int y; } class Expr {
class C extends B {...} int m(B b) { Type type;
int m(B b) { return b.x + b.y; void accept(Visitor v) {
return b.x; ¥ v.visitExpr(this);
} } }
CnO { }
return new CQ); class Plus extends Expr {
¥ Expr left, right;
} void accept(Visitor v) {
))) left.accept(v);
Figure 1: Nested inheritance example right.accept (v);

v.visitPlus(this);

so less programmer overhead is needed to identify the possi- 3}
ble ways in which the code can be extended thanin the functor ¢1ags Visitor {
and mixin approaches. void visitExpr(Expr e) { }
In this paper, nested inheritance is presented in the con- void visitPlus(Plus b) { }
text of Java’'s nested classes. However, the same mechanism 3}
applies equally well to packages or other namespace abstrac- jass TypeChecker extends Visitor {

tions. In the Jx language, packages may have a declared in- void visitPlus(Plus p) {

heritance relationship; they act very much like classes whose if (...) { p.type = Int; } else ...
components are all static. Section 3.7 discusses packages in }

more detail.

In Java, nested classes can be either inner classes or statig
nested classes. An instance of an inner class has a reference
to anenclosing instancef its containing class; static nested
classes do not have this pointer. This distinction is discussed
further in Section 4.5. In the following discussion, we con- ;.. Jif extends Java {
sider all nested classes to be static nested classes. This choice ;.44 Expr { Label 1bl; }
allows the mechanism to be applicable to classes nested within
packages, which have no run-time instances.

Figure 2: Base compiler code

class Label extends Expr { ... }
class Visitor {
void visitLabel(Label 1) { }

3.2 Asimple example }

Consider the Java-like code in Figure 1. Because dlass- class TypeChecker extends Visitor {

tains nested class@andc, its subclass\2 inherits nested void visitPlus(Plus p) {

classess andC where the nested class#%.B andA2.C are super.visitPlus(p); o]
subclasses of.B andA.C, respectively. Clasa2 explicitly p.1bl = p.left.1bl.join(p.right.1bl);
declares a nested claBsoverridingA . B; declarations within }

A2.B (such as the instance variabigextendA.B as if A2.B b

were an explicitly declared subclassafB. ClassC is inher-
ited intoA2 as theimplicit classA2. C. The programmer writes
no code forA2.C; it is a subclass of both2.B andA.C. Figure 3: Jif extension
Subclass and subtype relationships are preserved by inher-
itance. For example, in Figure 1, the class C is a subclass
(and a subtype) of2.B becausei.C is a subclass of.B. In for an ordinary Java compiler. Figure 3 uses nested inheritance
addition, the constructor callew C() constructs an object of ~ to create a compiler for a language like Jif [24] that extends
the classi2.C when the method is invoked on an object of Java with information flow labels. This code uses the visitor
classA2. pattern [12], in which compiler passes such as type checking
Types named in inherited code are reinterpreted in the in- are factored out into separate visitor objects, and boilerplate
heriting context. For example, the argument of the method ~ tree traversal is found imccept methods. TheExpr and

in the classA has typeB, meaningA.B in the context ofA. Plus classes implement abstract syntax tree (AST) nodes, and

But when inherited into the clage, the argument type be- TypeChecker implements the type-checking pass, inheriting

comesA2.B because the meaning of the namés reinter- common functionality from its superclagssitor.

preted in the inheriting context. With this change, might Nested inheritance is effective for building this kind of

not seem to conform ta because an argument method type extensible system. By adding a fielthl to the classxpr,

has changed covariantly. However, subtyping betweeand every kind of expression node, includi®gus, acquires this

A is still sound because the type system ensures thethod field. Similarly, adding avisitLabel method toVisitor

can only be called when its argument is known to be from the causes every visitor, such agpeChecker, to acquire this

same implementation af as the method receiver. new method. The metholypeChecker.visitPlus can be
then overridden to perform additional static checking on labels

3.3 Compiler example in addition to the ordinary type checking it performs by dele-

)]] (gating to the superclaskva.TypeChecker. Note that the
Figures 2 and 3 suggest how nested inheritance can be useverriddenvisitPlus method expects dif.Plus, which
to build an extensible compiler. Figure 2 gives simplified code has a1b1 field, rather than dava.Plus, which does not.

class A { thenthis.class.B is really the clas92.B. If, at run time,

class B {...} . this is an instance of clags thenthis.class.BisA.B, but

class C extends This.B {...} notA2.B

int m(this.class.B b) { Declaring the method parameter fomsthis.class.B
return b.x; ensures that in A2.B cannot be called with a superclass of

¥ . A2.B. Callers ofm must demonstrate that the method is in-

this.class.C n() { voked with aB selected from the receiver’s class. In the fol-
return new this.class.CQ); lowing (safe) code, the variable contains a value with run-

) ¥ time classA2.
final A a = new A2();
Figure 4. Desugared version of clasfrom Figure 1 final a.class.B b = new a.class.B();
a.m(b);

To call the methodh with receivera, the caller must pass an
argument of typea. class.B. Even if the receiver has static
type A2, it is illegal to invokem with an A2.B, since the ac-
tual run-time class of the receiver may be a subtypgeahat
overridesA2.m. The argument must have the typeclass.B.
Note thata must be declaretlinal to ensure its run-time class
. does not change.

3.4 Naming types In general, a dependent class is of the fopmrlass,
The examples in Figures 1-3 look very much like Java; a Java Where p is a final access path: either #inal local vari-
programmer could be excused for not noticing the discrepan- able (including formal parameters antlis) or a field access
cies. In fact, Jx is mostly backward compatible with Java: a p.f, wherep' is afinal access path anflis afinal field.
Java program is a valid Jx program as long as nested classes ardhe run-time class of an object specified byimal access
declaredtinal or their containing classes are not subclassed. path does not change.

However, Jx obtains additional expressive power from new The dependent typehis.class is similar to theMyType
syntax for naming types (which is not shown in Figures 1— (self type) construct of LOOM [3] and PolyTOIL [5]. The
3). This syntax can be seen in Figure 4, which shows the class key difference is that witiyType, an instance of a subtype

This example is suggestive of how nested inheritance
could be used to implement the actual Polyglot and Jif compil-
ers. Note thafif . Expr andJava.Expr are different classes
and both classes can coexist within the same compiler, permit-
ting Jif abstract syntax trees to be translated to Java ASTSs.

A from Figure 1 in a desugared form. of MyType may be assigned to a variable of typeType.
ClassA.C is declared to extent@this.B. WhenThis is Although MyType is covariant with respect to the subclass-
used in a declaration, it refers to the most specific class that ing relationship, the typ&lyType may be used as a method
inherits that declaration. In the body bf This resolves tat parameter type because subtyping and subclassing are decou-
andThis . B therefore resolves th. B. Whenc is inherited into pled. The dependent clagsclass is also closely related to
A2, This.B is reinterpreted in the context @b and resolves the path dependent tygetype in thevODbj calculus [27] and
toA2.B. Thus,A.Cis a subclass of.BandA2.Cis asubclass in the Scala [26], howevep.type is asingletontype, mean-
of A2.B. ing the only member of the type is the object referenced by
Returning to Figure 1, observe that the methothkes a p. p.class is not a singleton. In particular, one can cre-
formal parameter of typB. SinceA2.B is a subclass of . B, ate new instances of the class through:the operator (e.g.,
one might try to write unsafe code like the following, which new p.class(...)).
passes ai.B to the method\2.m: While subclasses of the static type of a patire not sub-
types ofa.class, the same is not true of classes selected rel-
A a = new A20); ative toa. class. In particular, using the classes in Figure 1,
A.Bb = new A.BO); a.class.Cis a subtype oh.class.B, and therefore the call
a.m(b); a.m(b) above is permitted.

Because..B does not have g field, the behavior of the mem- .

ory acces$.y in the methodn would be undefined. For this 3.5 Prefix types

reason the above code does not type-check in Jx. Of course,Now consider the code in Figure 2, in which the classes
this potential unsoundness results because the formal argu-Expr and Visitor are mutually recursive because of their
ment type is changed covariantly in the subcle@sThe vir- respectiveaccept andvisitExpr methods. The classif

tual class mechanism in Beta [20] is unsound for precisely this extendsJava, overriding both classes, soif.Expr and
reason, and therefore Beta requires a run-time check at methodjif.visitor are mutually dependent in the same way as
invocation. These checks create run-time overhead, but more Java.Expr andJava.Visitor.

importantly, they can lead to unexpected run-time errors. Our For code reusegxpr andVisitor need to be able refer
approach is instead to introduce a dependent type mechanismto each other without hard-coding the name of their enclosing
that ensures programs are statically safe and thus do not neectlassjava. Our solution is a type system that gives the ability
run-time checks. to name the enclosing class of a given value.

In Figure 1, the method..m is declared with a formal For a non-dependent claBsand arbitrary clas§, thepre-
parameter of types, which is syntactic sugar for the type fix type P[T] is the innermost enclosing class Bfthat is a
this.class.B, as shown in Figure 4. Thdependent class subclass ofP. Prefix types permit an unambiguous way of
this.class denotes the run-time class of the expression naming containers. For example, assuming the variabias

this, butnotany subclass of the run-time classtofis. As the static typer.B, thenA[b.class] is the container of the
with ordinary non-dependent classes, a nested class can be serun-time class of the value iy; if b contains a value of run-
lected fromthis.class. If the run-time class ofhis is A2, time classA2.B, thenA[b.class] is the clas\2.

In Figure 2 the methoBxpr . accept has a parameter with
the (desugared) prefix typgava[this.class].Visitor,
andvisitor.visitExpr has a parameter with the prefix type
Java[this.class] .Expr. Whenaccept is invoked on a
Java.Expr, it expects an argument of typava.Visitor,
but when invoked on dif .Expr, it expectsJif.Visitor.

Thus, the relationship among the component classes is pre-

served. References tBxpr within Visitor in Figure 2
are merely sugar fodaval[this.class].Expr, and con-
versely for references t@isitor within Expr. No in-
stance of the classava need be in scope to use the type
Javal[this.class] .Expr. This syntax thus makes it possi-

Dependent classes, on the other hand, do not need to be
extended to handle packages because packages do not have
run-time instances.

3.8 Genericity

Nested inheritance is intended to be a mechanism for exten-
sibility and not for genericity. Jx is an extension of Java and,
as of version 1.5, Java already has a genericity mechanism,
parameterized types.

Nested inheritance as presented above does not provide an
abstract type construct. To use virtual types for genericity, ab-

ble to refer to other classes in the current package even thoughStract types are used to equate a virtual type with a class. For

packages do not have instances.

3.6 Overriding the superclass

When overriding a class in a containing class, the programmer
can change the superclass. This feature allows new function-
ality to be mixed in to several classes in the new containing
class without code duplication.

The superclass of a nested cldssindsthe type of the

nested class. Overriding the superclass permits this bound to

be tightened, enabling a virtual type-like pattern. In particular,
if D is a nested class that extends some other claibenD is

like a virtual type, bounded bg; whenD’s container is sub-
classed, the superclassiofan be modified to be a subclass of
the original superclass @f This has the effect of making the
virtual typeD more precise in the container’s subclass.

3.7 Package inheritance

example, the following code fragment implements a generic
List class and &ist of Integers, IntList, in a hypothet-
ical extension of Jx with abstract types.

class List {
abstract class T extends Object { }
void add(this.class.T x) { ... }

class IntList extends List {
class T = Integer;

By declaringIntList.T to be an alias folnteger, theadd
method may be called with an argument of typeteger.
Without abstract types, the best that can be done using nested
classes is to declamntList.T as

class T extends Integer { }

But in this case, only instances ohtList.T can be added

The language mechanisms described for nested inheritance aptp anIntList, not instances of thenteger class. However,

ply to packages as well as to classes. Indeed, we expect nested |ist of Integer can be implemented more succinctly as the
inheritance of packages to be the most common use of nestedparameterized typeist<Integer>.

inheritance.

In Jx, packages, like classes, may have a declared inheri-
tance relationship. If package extends package, thenp2
inherits all members of packageincluding nested packagés.
The declaration that2 extendsP is made in a special source
file in the packag®2, which facilitates separate compilation
by allowing the package to be ignorant of its descendants.
The declaration imot made in each separate source file of the
packagepP2, since doing so would duplicate package inher-
itance declarations, introducing possible inconsistencies and
making modification of the inheritance relationship more dif-
ficult.

Prefix types extend to accommodate packagesP i§

a package name anf is an arbitrary class, theR[T] is

the innermost enclosing package Dfthat is derived from
P. Prefix types may also appear import declarations.
For example, consider a packagewith nested packages
Q and R, and a source file irg that imports classes from

3.9 Final binding

As in Java, classes in Jx may be declafadal to prevent
the class from being subclassed. This naturally extends to
nested inheritance be requiring thaf fnal nested class can
be neither subclassed explicitly with artends declaration
nor overridden in a subclass of its enclosing class. Tiha
binding of nested classes is useful for enabling optimizations
and for modeling purposes. In addition, virtual classes in Beta
may be inherited from only if they are final bound. Jx does
not permit inheritance from dependent classes and thus this
restriction is not needed.

Final classes also enable backward compatibility with
Java; if all nested classes af¢nal, a Jx program is a legal
Java program.

4 Interactions with Java

R. To allow code reuse via nested inheritance, these classes

must be imported without hard-coding the names of their en-
closing packages. The source fileqnuses the declaration
import P[Package].R.* to import the appropriate classes.
The keywordPackage refers to the package of the most spe-
cific class that inherits the import declaration, analogous to the
use ofThis in a declaration to denote the most specific class
that inherits that declaration. We use the n@aekage since
neitherThis northis are in scope at import declarations.

2Nested packages are calmsbpackaget Java [13]. We refrain from using
this term to avoid confusion between nested packages and derived packages.

Nested inheritance introduces several new features that are dis-
cussed in Section 3. It is worth discussing how these features
interact with some existing object-oriented programming fea-
tures in Java.

4.1 Conformance

In Jx, a class conforms to its superclass under the same rules
as in Java: a method'’s parameter types and return type must be
identical in both classes. In principle this rule could be relaxed
to permit covariant refinement of method return types, but we
have not explored this relaxation.

class A { class A2 extends A {

class A { class A2 extends A { class B { } class B {

class B { class Bph { class B2 extends B { Object m(O) {...}

int m() { return 0; } int m() { return 0; } int nO {...} }

b } } class B2 extends B {
class B2 extends B { class B eztends Bppn { } void n() {

int m() { return 1; } int m() { return 2; } nQ); // 4.B2.m() or
¥ ¥ /] 42.B.m()?!
¥ class B2ph exztends B { }
class A2 extends A { int m() { return 1; } }

class B { } }

int m() { return 2; } }

} Figure 7: Name conflict example

(a) Original code (bp2 with implicit classes
showninitalics regarded as being more specific than anglass. The same

dispatch order is used in delegation layers [29].
Figure 5: Method dispatch example

4.3 Naming conflicts

To support separate compilation of classes, Jx needs a mech-
|— = = anism for resolving naming conflicts. Naming conflicts arise
AB I AB. ! when there are two (_:Iasse_s that have a common ancestor and

. : no subclassing relationship between them, and both classes
T - declare a field or method with the same name.

A A2

For example, consider the code in Figure 7. The classes
A.B2 s A.B2 andA2.B have a common ancestarB, and both de-
| clare a methoa (), but with incompatible return types. Both
1 of these method declarations are allowed, because in general,
- 4 each class could be compiled independently of the other—
A2.B2 particularly, if the contained were a package instead of a
class. However, in the method body &.B2.n(), it is not
clear which methoeh () is referred to. In addition, ii2.B2
wished to override one or both of the methad9, then the
method declarations need to indicate which method they are
Figure 6: Dispatch order overriding.
Jx resolves naming conflicts for method invocation and

. field access by requiring the client to cast the receiver of the

4.2 Method dispatch method invocation or field access to a class in which there is

In Java, method calls are dispatched to the method body in the N0 such conflict. For example, #2.82.n (), the method call
most specific class of the receiver that implements the method. ((A2.B)this) .m() would be permitted, as the name) is

In the code in Figure 5(a), bott2 . B andA . B2 overrideA . B's not in conflict in the clas&2.B. o

implementation of.. The implicit classi2. B2 inheritsm from Naming conflicts for method overriding are resolved by
bothA.B2 andA2.B. Which of the two implementations is the ~ €nsuring the overriding method declaration supplies the class
most specific? name of an ancestor class on which the overridden method is

inheritance. For example, in C++ this situation is considered Methodn() declared in class.B2, the method declaration in

an error. However, because nested inheritance introduces im-A2.B2 would be writtenint A.B2.m() {...}. ,

plicit classes, this rule would effectively prevent a class from Note that we expect naming conflicts to be exceptional,

overriding any methods of a class it overrides, since its implicit rather than the norm; the additional mechanisms required by

subclasses would inherit both implementations. Jx to resolve naming conflicts should thus not be overly bur-
Instead, we exploit the structure of the inheritance mech- densome.

anism. When is subclassed ta2, if B is not overridden, it

is an implicit class ofi2. We write this classi2. Bjy,. Now 4.4 Constructors

Wher.‘AQ'B is declared, overriding. B, we can co.nS|d.er. Its Im- Nested inheritance requires that constructors, like methods,
mediate superclass to betA.B, but rather the implicit class 56 jnherited by subclasses, so that it is possible to call con-
A2. Binh inherited intoA2. We can think of the code for2 in structors of dependent classes and prefix types. Suppose that
Figure 5(a) as the code in Figure 5(b). Thus, in order ffom 4 ¢jase1.B contains a constructor that takes an integer as an
most to least specific, the classesAinare: A2. B2, A2.B, argument. Then the following code is permitted:

and A2. Binh, or equivalently:A.B2, A2.B, andA.B. This dis- ’

patch order is depicted in Figure 6. final A a = new A2();
This dispatch order is not chosen arbitrarily.:B2 should final a.class.B b = new a.class.B(7);
be dispatched to before2.B because thd2 classes are spe-
cializations of theB classes, and thus ap classes should be The expressiomew a.class.B(7) is allowed because

the statically known type of the variabteis the class\, and

there is a suitable constructor for the clas®. However, at method static
runtime the variablg contains a va!ue of run-time clagg, interface interface
and therefore an object of clas8.B is constructed. In order

to be sound, the clas&2.B must have a constructor with a ? AF
suitable signature. Sinde2.B may in general be an implicit . getClass
class,A2.B must inherit the constructors af. B, and of any instance class
other superclasses, in the same way that it inherits methods. class oW class

The primary use of constructors is for initializing fields; if
a final field does not have an initializer, then every construc-
tor of the class must ensure that the final field is initialized.
Initializing final fields is particularly important for nested in-
heritance, because some final fields may be used to define de- A2.B2
pendent classes. Failure to initialize these fields would lead to
unsoundness. Therefore, if a class declares a final field, that
field must either have an initializer, or else all constructors in-
herited from superclasses must be overridden and that field
must be initialized in each constructor.

Figure 8: Target classes and interfaces

4.5 Inner classes

We have assumed that nested classes are static and are thus
not inner classes. An instance of a static nested class does not
have a reference to an enclosing instance of its container class.
In Java, these enclosing instances are wrigtethis, whereP Figure 9: Representation of an.B2 object
is the name of an enclosing class. Jx can accommodate inner

classes by assigning the typéthis. class] to the enclosing

instancep . this. Jx clas<C is represented at runtime by a collection of instance
Allowing inner classes raises the possibility of extend- class objects, one instance class objectfand each Jx class

ing Jx to allow dependent classes to appear inethgends thatC subclasses. The instance objects that represpnint

clause of nested classes. For example, if the dldszd inner to each other vidispatch fieldsFor example, the clage . B2

classB and a final fieldf, thenB could be declared to extend of Figure 5 is represented by four objects as shown in Fig-
this.f.class. Dependent classes cannot (_:urrenFIy appearin ure 9. The instance class also provides methods for accessing
the extends clause of a nested class, @sis is not in scope fields and for dispatching to methods, including thoseher-

during the declaration of a static nested class. its; these dispatch methods simply forward the field access or
If the use of dependent classeseintends clauses is re- method call to an appropriate instance object of a superclass

stricted tothis. class or prefixes ofthis.class, then the of ¢, using the dispatch fields. Note that Java’'s normal method

current type system of Jx suffices, becauags.class is dispatch mechanism cannot be used, because instance objects

equivalent taThis whenthis is in scope. References to en- of superclasses @fare not superclasses@$ instance object.
closing instances can be implemented as fields of the nestedHence, the translation must make dispatch explicit.

instance, as is done bjavac and by Igarashi and Pierce’s Each instance class has two constructorsnastercon-
formalization of inner classes [16]. However, if arbitrary de- structor and alaveconstructor. If an object of clagsis being
pendent classes are allowed, suchiass . £ . class, then the created, then the master constructo€sfinstance class is in-

type system of Jx would need to be modified, and the imple- voked, creating the other instance objects needed to represent
mentation described later, in Section 5, would need significant a JxC object by invoking the necessary slave constructors. The

redesign. slave constructor of’s instance class is invoked when the in-
stance object is being used to represent a subclass of
5 Implementation The instance class also contains the translations of the Jx

. . constructors of. Jx constructors are translated into methods
We have implemented a prototype translation from Jx to Java jp, the instance class, which are invoked by the class class (see

as a 3700-line extension in the Polyglot compiler frame- pe|qy): the translation of constructors into methods facilitates
work [25]. The prototype supports class inheritance but not ihe inheritance of constructors.

package inheritance as described in Section 3.7. However, & The instance class far implements thenethod interface
design for implementing package inheritance is presented in tor ¢ which declares all methods thatdefines, as well as
Section 5.4. The translation is efficient in that it does not du- getter and setter methods for all non-private fields declared in
plicate code, although each Jx class, including implicit mem- ¢ The method interface extends all the method interfaces of
ber classes, is represented explicitly in the target language. g superclasses.

Theclass clasgrovides means at runtime to both access
5.1 Translating classes type information about and create new objects (that is, col-
As depicted in Figure 8, each source Jx class (including im- '€Ctions of appropriate instance classes). For every Jx class,
plicit member classes) is represented in translation by two Java tN€re is a single class class object instantiated at runtime. Ev-
classes and two Java interfaces: itietance classhemethod ery instance class has a meth?d that returns the appropriate
interface theclass classand thestatic interface cla§s class, analogous to JavgétClass() method on the

Theinstance clasgor a Jx clas€ contains the translation ~ OPject class.

of any methods and constructors declared iAn object of the Information aboufC’s superclasses, enclosing class, and
nested classes is available at runtime in order to create in-

stances of prefix types. For exampleyifs a Jx object, and P inherits from, the package that containspackages nested

a new object of type [v.class] needs to be created via a insideP, and classes contained in the package

constructor calhew P[v.class](...), thenv’s class class Since a package class needs to know about all classes in
must be interrogated to find the class class for the most spe-the package, care must be taken to ensure that the classes in a
cific enclosing class of . class that is a subclass &f. The given package can be compiled separately while guaranteeing
class class object found is then used to create the new object:that the package class contains correct information. Correct-
the class class fof has a methodiewThis(...) for every ness can be achieved by generating the package class every
constructor declared or inherited By These methods create time a class within the package is compiled, under the assump-
a new instance class object forwith the master constructor, tion that all previously compiled classes within the package
and then invoke the appropriate translated constructor on the are available at that time. Removal of a class from a package

instance class object. requires the package class to be regenerated. The reflection

The class class also provides a method to test if a given mechanism of Java may provide a more flexible mechanism
object is an instance of the Jx class, anckat (Object o) to ensure the correctness of information provided by package
method, which throws &lassCastException if the object classes.

o is not an instance of the Jx class, and retuwrratherwise.
These methods are needed to support the translation of castsg Simple |anguage model
andinstanceof expressions in the source language.

The class class implements tsiatic interface which de- To explore the soundness of type checking with nested inher-
clares all constructors thatdeclares or inherits. The static ~ itance, we developed a simple Java-like language that demon-
interface extends all static interfacesas superclasses. strates the core features of nested inheritance with dependent

All methods on class class objects are invoked via an ap- classes. For simplicity, many features of the full Jx language
propriate static interface. This permits the translation of con- are absent. In particular, the language presented here includes
structor calls on dependent classes. For example, supposeiested classes but not packages. A package can be modeled as
A2 is a subclass ofi. ThenA2’s class class implementss a class in which all classes in the package are nested.
static interface. Now, if the variable has static typa, the The language is based on Featherweight Java (FJ) [15], but
Jx expressiomew a.class() will be translated to a call to includes a number of additional features found in the full Java
newThis() on A’s static interface. Supposing that the run- language—notably, a heap asgper calls—needed to model
time class of is A2, then that method call will actually invoke ~ important features of nested inheritance. We include a heap in
newThis() onA2's class class, and thus create a new instance order to model recursive data structures, which interact with
of A2. dependent classes in non-trivial ways. The language includes

static nested classes, dependent classes and prefix types.

5.2 Translating methods

A method declaration in a Jx clagss translated into a method 6.1 Syntax) o)
declaration irc’s instance class; any method titdhheritshas ~ The syntax of the language is shown in Figure 10. We w&ite

a dispatch method createddis instance class. to mean the lisky, ..., x, andxto mean the seftxy, ..., X} for
Since a Jx object is represented at runtime by a collection somen > 0. A term with list subterms (e.gf, = &) should be
of instance objects, the source language expression must interpreted as a list of those terms (i.&.=e1,..., fn = en).

be translated into something other than the target language ex-We write #X) for the length ofk. The empty list is writter}].
pressionthis, in order to allow method invocations and field The singleton list containingis denotedx]. We writex, X for
accesses on the Jx object. To achieve this, the translation addshe list with head and tailX, andX; , X, for the concatenation
an additional parameteelf to every source language method of X; andX,.

and constructor. Theelf parameter is the translation of the A programPr is a pair(L,e) of a set of top-level class
special variablehis and always refers to the master instance declarationsL and an expressior, which models the pro-
object, the instance object that created the other instance ob-gram’smain method. To simplify presentation, we assume

jects that collectively represent a Jx object. a single globaltop-level class table TCTwhich maps top-
level class name§ to their corresponding class declarations
5.3 Translating fields class C extends S{L F M}.

A class declaratioh may include a set of nested class dec-

A field declaration in a Jx class is translated into a field larationsL, a list of fieldsE, and a set of methodd. Fields

declaration inC's instance class. Getter and setter methods are in a list since the order of the fields is important for field

are also produced for any non-private fields, which allows the initialization. There are two forms of class declaratlanin

method dispatch mechanism to be used to access the fields.th TCT acl declaration: as ol t ti
Field accesses in Jx code are translated into calls to the getter' '€ ' © !, @ Class declaralion&xtends clause cannot mention
and setter methods a dependent class, but it may refer to thipe schemahis,

which is used to name the enclosing class into which the class
declaration is inherited. During class lookdpiis is replaced

5.4 Translating packages with the name of the enclosing class, producing a class decla-
This section describes a design for translating package inheri- ration with anextends clause of the fornextends T.
tance in Jx. This design is not yet implemented. TypesT are either top-level class€s qualified typesT.C,

Packages, like classes, require a means to access type independent classgsclass, or prefix typesP [T : PC], where
formation about the package at runtime. For a given package P denotes a non-dependent class name. A type may depend
P, the package clas$or P provides type information abot on an access path expressigrthe dependent clagsclass
to resolve prefix types, analogous to a class class. The pack-is the run-time class of the object referred to by access path
age class is able to provide information about what package p. To be a well-formed typep must be afinal access path;

if p were mutable, the class of the object it refers to could

Syntax: Class lookup:
classefl, To,P) = Ls

programs Pr :=(Le T _ S
class declarations L :=classCextends S{L F M} TCT(C) =C exiP EL F M}_ — (CT-OUTER)
| class Cextends T {[E M} CT(I,Tp,C) =Cext P {LSD L{To/Thls} F M}
type schemas S :C | SC | This | P[S:PC] Cext T {L F M} € classe§, T, T)
types T :=C | T.C| pclass lassed Tr To) — Lo
| PLT:PC] classed, To. Ts) = Ls _—— (CT-NEST)
simple nested classesP,Q ::=C | PC CT(I',Tp,T.C) =C ext Ts {LseL{To/This} F M}
field declarations F [flnal} Tf=e tclasqT) — P
method declaraions M =T m(T X) {e} ?Xac ¢ aSTE{ F)’ - r
access paths p u=Vv|p classed To.P) =L (CT-RUNTIME)
base values b =tp | null CT(M,To,T)=_ext P{Le0}
values v i=b | X _
expressions e u=p P[T:PC] ¢ dom(exactclasg cIasse(sDTo,P) =L (CT-PRE)
| final T x=1¢€1; & CT(,To,PIT:PCl) = _ext P{Le 0}
=gy ;
I g m(vgfmal] oL & p.class ¢ dom(exactclasg
| v.superp.m(V) | rep f}rna; P*E
| new T asx {f=a classed, To,P) =L _ (CT-DEP)
CT(I',Tp,p.class) = _ext P {Le 0}
objects o =P{f=1¢p}
typing environments [=0 | [,x:T Member class inheritance:
: _ U LiC)eL2(C)
Evaluation contexts: Cedom(L1ULz)
evaluation contexts E :i=]) oL
| final TEx=¢1; & L(C) = Li if Li =Ciext Ti {Li K Mj}
| flnal Tx=E; e absent otherwise
| E oL oL
| Ef:el e Cext Ty {L1 F1 M1} eCext To {Lo Fo M2} =
| b.f=E & CeXth{Elotzlszz}
E.m L —
I new(TI)E as X {F‘: & Cext Ty {L1 F1 M1} eabsent=C ext Ty {L1 ¢ 0}
type evalcontexts TE :=TE.C L L
| PITE:PC] absen®Cext T {Lo F, M} =Cext To {Lo o M2}
| E.class
nulleval contexts N :=null.f
| final TEnull] X=ey; &
| null.f =b; e Final access paths:
| null.m(b) EPwf
| null.superp.m(b) +fp final P (F-Loc)
| new TE[null] as x {f =&} CET wf
Type interpretation: I onull final T (F-NULL)
exactclasg/p.class) =P x:Terl (F-VAR)
exactclasgP[T :PC]) = prefix P, exactclasgT), M-xfinal T
exactclas{T),PC) FFpfinal T ftypgl,T,) =final T; (F-oEn)
runtimeclas§C) =C I+ p.fi final Ti{p/this}
runtimeclasgT.C) = runtimeclasgT
. {1.0) = {me M- pfinal T exactclas§T) =P exactclasgT’) =P
runtimeclasg/p.class) =P - 7
. . . Fpfinal T
runtimeclasgP[T :PC]) = prefix P, runtime-clasgT),

(F-RUNTIME)
runtimeclasgT),P.C)

prefix PPy, P’.C,PC) = P/
prefix(P, Py, T, P.C) = prefix P, Py, (0,P, T),PC)
(T # P.Cfor anyP’)

Figure 10: Syntax and class lookup functions

Superclasses:
CT(T,T,T) =Cext Ts {LF M}
supe(l,T)=Ts

Nested classes:
classe§l, To,0bject) =0
CT(F,To,T)=Cext T’ {LF M}
classefl,To,T) =L

Fields:
fieldqI", To,Object) = []

CT(T,To,T) =Cext Ts {LF M}
(T To,T) =T
fieldg, To, T') = F’

fieldgl,To, T) =F/, F

fieldgl,T,T) = [final] T f =&

ftype(l, T, fi) = [final] Ti

fieldgI,T,T) = [final] T
finit(l', T, fi) = &

I
ol

fieldgI,T,T) = [final] T f =&
fname¢l, T)=f

Methods:
CT(F,To,T) =Cext Ts {LF M}
TmTx) {eeM

methodl, To, T,m) = T, m(T X) {e}

CT(T,To,T) =Cext Ts {L F M}
T m(TX) {e¢M
(M To,T) =T
methodl™, To, T/,m) = M
methodl", To, T,m) =M

method®, To, T,m) = T, m(T) {e}
mbodyTp, T,m) = (X,€)

methodl, To, T,m) = T, m(T X) {e}
mtypel, To, T,m) = (X:T) - T

Operational semantics:
runtimeclasgT) =P

(H.final T x=Db; & — (H,e{b/x}) (R-LET)
H(tp) =P {T=b}
(H.lp.f,) — (H.by) (R-cE
H(tp) =P {T=b}
H =H[tp:=P {fy=by,....fi=bl,... fn=bn}]]
(H.lp.fi ~[final] bl/’ e — <H/7e> (R-sE7
mbodyP,P,m) = (X,e) (R-CALL)
(H,¢p.m(b)) — (H,e{¢p/this,b/X})
(OPQ=0Q mbodyPQm=(xe) o oo
(H,lp.superq.m(b)) — (H,e{lp/this,b/x})
runtimeclasgT) =P
fnames0, P) = f/
fcf
tp & dom(H)
H' =H[fp =P {f’ =null}]
d=g{tp/x}if ficf
¢ =finit(0,P, fi){¢p/this} if fi e 7'~
€ =lp.f' =¢ina1 €; lp (R-NEW)
(H,new T as x {f =&}) — (H’,€)
(H.e) — (H".€)
(H.Ele) — (H/E[]) (Recond
(H,E[N]) — (H,null) (R-NULL)

Dispatch ordering:

ord(r, T)=T
(rvT/Tl) = Ti+l

ord(I',0bject) = [Object]
ord(l",T.C) = ord(I", T).C, ord(I", supefI", T.C))
ord(l',T) = T,ord(I",supefl,T))
whereT # Object and
T #T/ .CforanyT’

ord(I", T).C is the list of T’.C such thafT’ € ord(I", T)
andrl’ - T'.C wf

Figure 11: Member lookup functions and operational semantics

10

change at run time, leading to an unsoundness. A prefix type

P[T:PC] is the innermost enclosing clag$ of T such that
T’ is a subtype o andT is a subtype ofl’.C (and thus of
P.C). For the prefix type to be well-formeBlC must exist

In addition to returning a class declaration for a type,
CT also interprets thextends clause of the class declara-
tion, replacing any occurrences ©his with the actual en-
closing class. This type is passed as the second argument to

andT must be a dependent class or another prefix type. This CT. Thus,CT(I', To, T) returns the interpreted class declara-

definition of prefix type differs from the description given in

tion for T in an environmenf where Ty is substituted into

Section 3; the change simplifies the semantics. Although the the extends clause of member classes of the class declara-

prefix type syntax can name only the immediately enclosing
class ofT, further enclosing classes can be named by prefixing
the prefix type (e.gA[A.B[x.class:A.B.C] :A.B]).

Fields F may declaredfinal or nonfinal. All field
declarations include an initializer expression. The syntax for
methoddaM is similar to that of Java.

Expression® are similar to Java expressions of the same
form. Access pathg are either field accessgsf or values
v, which include base valuésand variablex. Base value®
are either memory location® of type P or null. Locations

are not valid surface syntax, although they appear during eval-

uation. All variablesx, including formal parameters and the
special variablechis, arefinal and are initialized at their
declaration. The declaratiohinal T X= e1; & initializesx

to e1, then evaluates,.

Fields and methods are accessed only through final access

pathsp. Field assignments may optionally be annotated with
the keywordfinal, permitting assignment téinal fields
when initializing an object. Thesginal assignments are not

tion. To save space, we wri@ext T {L F M} to represent
class C extends T {L F M}.

Classes inherit member classes of the base class into the
body of the derived class. The dSeteL;, defined in Fig-
ure 10, merges the class bodies of identically named classes
in Ly andL,, creating class declarations for implicit classes
when needed. Classeslip—classes inherited from the base
class—are overridden by classed in—nested classes of the
derived class. Fields and methods of classes defined in a base
class arenot copied when the nested class is inherited into the
subclass; they can be found by the member lookup functions
defined in Figure 11.

The functionclasseél”, To, T) defined in Figure 11 returns
the set of member classesDfwith Ty substituted fohis in
theextends clause of the member classes.
The rules CTouTER and CTNEST define theCT func-
tion for top-level classe€ and nested classésC, respec-
tively, using the top-level class tableCT. The three rules
CT-RUNTIME, CT-PRE, and CTbEPreturn class declarations

allowed in the surface syntax. Methods dispatch to the method for dependent classes and prefix types. In these rule€ The

body in the most specific superclass of the receiver, as de-

function returns for typél an anonymous class declaration

scribed in Section 4.2. A method |mplemented by a superclass whose superclass is a simple class tg®undingT.3 Mem-

of P may be invoked with the expressiersuperp.m(V). In

the surface syntax,must bethis, butv can take on arbitrary
values during evaluation as substitutions occur. To simplify
dispatch, asuper call is marked with the name of the class
lexically P containing the call.

Allocation is performed with theew operator. The cal-
culus does not include constructors. Instead nheoperator
has arinline constructor bodyhat may initialize zero or more
fields of the new object. The field initializers may refer to the
new object through the variable Fields not assigned in the
inline constructor body are initialized with their default ini-
tializers. Field initialization order is left undefined; fields are
initialized tonull by default. Access to an uninitialized field
is treated as aull dereference. A heap maps locations
{p to objectso, which are simple records annotated with their
class type.

For any termt, valuev, and variablex we write t{v/x}
for the capture-free substitution effor x in t. As is standard
practice a-equivalent terms are identified. We wrk¥/ (t) for
the set of free variables in

6.2 Class lookup

Classes are defined in a fixed top-level class tawdd that
maps all top-level class ham€sto class declarationls. We
extend the top-level class tabl€€T to a functionCT, shown

in Figure 10. CT returns class declarations not only for top-
level class names, but for arbitrary types. Member lookup and
subtyping are defined usir@T.

In addition to the type to lookupCT has two more pa-
rameters. Because the language has dependent classes, the
function takes an environmehtthat maps variables to types.
I is a finiteorderedlist of x: T pairs in the order in which they
came into scope. To be well-formed, an environniemay
contain at most one pax: T for a givenx.

11

ber classes are copied down into the anonymous class declara-
tion as with top-level and nested classes.

In each rule, the typdp is substituted forThis in the
extends clauses of nested classes. Eet C ext S{L F M},
we defineL{To/This} asC ext S{To/This} {L F M}, and
we defineS{Tp/This} as:

C{Tp/This}=C
SC{To/This} = S{Tp/This}.C
This{Tp/This} =T
P[S:PC]{To/This} = prefixP,P’,P’,PC)
whereS{Tp/This} = P
P[S:PCI{To/This} =P[T:PC]
whereS{Tp/This} =T # P
for anyP’

The functionprefixis defined in Figure 10 and is used to ensure
the type produced by the substitution is well-formed.

The rule CTRUNTIME defines class lookup for types
whose exact run-time class can be determined statically. The
partial functionexactclass defined in Figure 10, returns a
simple class typ® for these typesexactclassis only defined
only for dependent classes and prefix types containing access
paths of the fornYp.class. Since these types are not valid
surface syntax CRUNTIME is not used when type-checking
the program, but is needed to prove the type system sound.

The rule CTPRE defines class lookup for prefix types
PLT :PC] whose run-time class isot statically known. An
anonymous class declaration whose supercldssiseturned.

Similarly, the rule CToEeP defines class lookup for de-
pendent classgs class whose run-time class isot statically

3Anonymous class declarations should not be confused with Java anonymous
classes.

supe(l, T) =T’

T (<-EXTENDS)

rET<T

- = <-
FFTC<T'C (s-NEST)

exactclas§T) =P exactclasgT') =P
rET<T

(<-RUNTIME)

Figure 12: Subtyping

known by returning an anonymous class declaration whose su-

perclass is the declared type mf

The judgment + p final T, defined in Figure 10, is used
to check that an access path has typend is immutable. The
rules forl - p final T and forCT(I", Tp, T) are mutually re-
cursive (via the definitioritype defined in Figure 11). For a
dependent clasg.class to be well-formed, the static type of
p must be a simple typ; this restriction is sufficient to ensure
the definition of CT for dependent classes is well-founded.
As in [27], we wish to ensure that no type information is lost
when typing a final access path so that we can tightly bound
p.class. Consequently, there is no subsumption rule that can
be used to prové + p final T. Rules Ftoc and FVAR
bound the types of locations and local variables, respectively.
F-Loc requires that the type of the locatiép be well-formed
according to the rules in Figure 13. RuleNeA L states that
thenull value may have any type. Rule&ET uses thdtype
function to retrieve the type of the field. The target of a field
access in a final access path musttheal. Finally, the rule
F-RUNTIME permits two types with the same run-time class
(if statically known) to be considered to have the same type.

6.3 Method and field lookup

Method and field lookup functions are defined in Figure 11.
The functions are defined using the linearization of super-
classes described informally in Section 3. The ordering,
ord(l',T), is defined so that classes thHatoverrides occur
before T’s declared superclassupe(’,T). The function

to locate the most specific implementationmaf Recall that
super calls are annotated with the name of lexically enclosing
class containing the call. RuPERuUses the function, defined
in Figure 11 to start the search for the method body at the next-
most specific method after the lexically enclosing class

For anew T as X expression, R¢EWw allocates an object
of the run-time clas® of typeT. The rule initializes all fields
of the new object tmull and then steps to a sequence of field
assignments to initialize the expression, and finally evaluates
to the location of the newly allocated object. The field assign-
ments are annotated with the keywdrihal to indicate that it
is permitted to assign tbinal fields. Since final assignments
are not permitted in the surface syntéxnal fields may only
be assigned once. The field initializ&sppearing explicitly
in thenew expression are evaluated with the new location sub-
stituted forx. The other fields of the object are initialized using

the default initializer® with the new location substituted for
this.

The run-time class of is computed using the function
runtimeclass defined in Figure 10. For prefix typds[T’:
P.C1, runtimeclassuses theprefix function to compute the
run-time class of the prefix type by iterating through the super-
classes of’ until a class overridin®.C is found; the container
of this class is the run-time class of the prefix type.

Order of evaluation is captured by an evaluation context
E (an expression with a holg]) and the congruence rule
R-CcONG. The rule RNULL propagates a dereference of a
null pointer out through the evaluation contexts, simulating
a JavalullPointerException.

6.5 Static semantics

The static semantics of the language are defined by rules for
subtyping, type well-formedness, typing, and conformance.

Subtyping

The subtyping relation is the smallest reflexive, transitive rela-
tion consistent with the rules in Figure 12. RufeEXTENDS

says that a class is a subtype of its declared superclass. The
subtyping relationships for dependent classes and prefix types

is used to iterate through the superclasses to locate the most-are covered by<-EXTENDS. Rule<-NEST says that a nested

specific method definition.

In Figure 11, the functiofieldsT", Tp, T) returns all fields
declared in clas3p or superclasses dfy, iterating through
superclasses ofp beginning withT. Auxiliary functions
ftype finit, andfnamesare defined fronfields The function
methodr, To, T, m) returns the most-specific method declara-
tion for methodm, iterating through the superclasseggfbe-
ginning withT. Functionambodyandmtypereturn the method
body and method type, respectively, for a method.

6.4 Operational semantics

The operational semantics of the language are given in Fig-
ure 11. The semantics are defined using a reduction rela-
tion — that maps a configuration of a hebpand expres-
sion e to a new configuration. A head is a function from
memory locationgp to objectsP {f = /p'}. The notation
(H,e) — (H’,€) means that expressierand heaH step to
expressiore’ and heagH’. The initial configuration for pro-
gram (TCT,e) is (0,e). Final configurations are of the form
(H,¢p) or (H,null).

The reduction rules are mostly straightforward. CREL
and RsupPERuUse thembodyfunction defined in Figure 10

12

classCin T is a subclass of the cla€sin T’ that it overrides.
Finally, rule<-RUNTIME states that two types are subtypes of
each other if their run-time classes are equal.

Type well-formedness

Since types may depend on variables, we define type well-
formedness in Figure 13 with respect to an environnient
written ' = T wf. A non-dependent type is well-formed if a
class declaration for it can be located through T&T. A
dependent clags.class is well-formed if pis final and has

a simple non-dependent class typeA prefix typeP [T : PC]

is well-formed if its subterms are well-formed andTifis an
exact typeand is also a subtype &fC. The last requirement
ensures the run-time class of the type can be determined.

A type isexactif it is a dependent class or a prefix type.
The subtyping rules ensure that no type can be proved a sub-
type of an exact type. This restriction ensures that a variable
of type p.class can be assigned only values with the same
run-time class as the object referred to fay The restriction
does not limit expressiveness since non-exact prefix types can
be desugared to either exact prefix types or to non-prefix types.

runtimeclasgT)=P FTwf +Pwf

T (T-Loc)

FET w (o)
Fnull: T

x:Tel

FrxT (T-vAR)

Fr-e:T Mx:THE:T TETwf TET' wf x¢dom()
M-final T x=¢€, €: T/

(T-LET)
M-pfinal T ftypdl, T, fj) = [final] T
M+ p.fi: Ti{p/this} (T-GE)
F-pfinal T
Ite:Ti{p/this}
ftype(l’, T, fi) = [final] T;
r-e:T
(T-seT)

M p.fi =jfinayy & € T’

Fpfinal T
mtypdl, T,T,m) = (X:T) - T’
I+v:T{p/this,V/X}

- p.m(V): T'{p/this,V/X} (T-cALL)
I Pwf
M-vg:P
mtypel, P,supe(P),m) = (X: T) —» T’
IV:T{v/this,V/X}
I - vp.superp.m(V) : T'{vp/this,V/X} (T-suPER
ftypegr, T.F) =T
rx:TFe:T{x/this} —
M-newT asX{f:é};T
- pfinal P
T p:pclass (T-DEP)
MkFe:T THET<T
(T-<)

MFe: T/

Figure 14: Static semantics

C € dom(TCT)
I Cwf

MET wf
classeél,T,T) =Lg
Cext Ts{LF M} eLs
M=T.Cwf

M- pfinal P
It p.class wf

METwf is-exactT)
I=PIT:PC] wf

(WF-OUTER)

(WF-NEST)

(WF-DEP)

I PCwf r-T<PC

(WF-PRE)

false f T=CvT=T'C
true otherwise

is-exact{T) = {

Figure 13: Type well-formedness

Typing

The typing rules are shown in Figure 14. The typing context
consists of an environmeft The typing judgmenf -e: T
is used to type-check expressions.

Rules TnuLL and TvAR are standard. The rule dec
allows a location of typ® to be used as a member of any type
T whereruntimeclasgT) = P. This rule helps to ensure types
are preserved across the evaluation aéa expression.

The rule TLET type-checks a local variable initialization
expression. The declared typemust be well-formed in the
environment. The expressio® following the declaration
is type-checked with the new variable in scope. The type of
€ must be well-formed in theriginal environment to ensure

Rules TGET and TSET use theftypefunction to retrieve
the type of the field. The target of a field access or assignment
must be &inal path, permitting substitution to be performed
on the field type: occurrences ohis in the field type are
replaced with the actual targpt Rule T-SET permits assign-
ment tofinal fields, but only for assignments annotated with
final. This enablesinal fields to be initialized, but not
assigned to arbitrarily.

Rules TcALL and T-suPERare used to check calls. The
function mtypereturns the method’s type. The method type
may depend orhis or on its parameters, which are con-
sidered part of the method type. The receiver must tie1
to permit substitution for argument and return types dependent
onthis. The arguments are also substituted into the type.

Rule TNEW is used to check aew expression. The fields
used in the inline constructor body must be declared in the
class being allocated and the initializers must have the appro-
priate types. Since the initializers usé¢o refer to the newly
allocated objectx is substituted fothis in the field types.

Rule TDEP allows any final access path with a simple
nested class type to take on a dependent type. Finally, rule
T-<is the usual subsumption rule for subtyping.

Declarations

To initiate type-checking, declarations are checked as
shown in Figure 15. The program is checked with rule
Ok -PROGRAM, which checks every class in tR€T and type-
checks the “main” expressiain an empty environment.

Rule O<-cLAss type-checks a class declaration of the
form C ext S{L = M}, nested within a clasB, whereP is
possiblye (i.e.,C is top-level). Type-checking recurses on all
member declarations including nested classes. The rule also
checks member classes and methods for conformance with the
corresponding declarations in their superclass. To ensure no
other type can be proved a subtype of a dependent class or
of a prefix type, it is required that a class cannot be declared

that its type does not depend on the new variable, which is not to extend the type schenTais or any prefix ofThis. This

in scope outside of .

13

requirement is enforced by substitutingis.class for the

FLokine FeT (OK-PROGRAM) 6.6 Soundness

- (L.e) ok Our soundness proof is structurally similar to the proof of
soundness for Featherweight Java (FJ) [15]. The proof uses the

FLokinPC . . \ :
L E okin PC standard technique of proving subject reduction and progress
AR lemmas [35]. The key lemmas are stated here. The complete
FMokinPC _ proof is in the appendix.
classefd, S{P/This}, S{P/This}) = Lg
C e dom(L) AC € dom(Ls) .)
(=t L(C) in PC overrides class cﬁ{P/This}) Subject reduction
M in PC overrides method d&{P/This} Because expressions in our language are evaluated in a heap,
this:PF S{this.class/This} wf to state the subject reduction lemma, we first define a well-
—is-exac{S{this.class/This}) typedness condition for heaps and for configuratighse).
FCext S{LF M} okinP o Definition 6.1 (Well-typed heaps) A heaH is well-typedif
(OK-CLAsS) for any memory locatioip € dom(H),
supef{this : Ps},this.class.C) =Ts o
classes, S{P/This},S{P/This}) = Ls e H(tp) =P {f=1(p},
C e dom(L) AC € dom(Ls) =
(= L(C) in PC overrides class cﬁS{P/This}) o Fiype@ P =T,
F M in PC overrides method d®s.C e -0p:T{lp/this}, and
this:PF S{this.class/This} <Ts o
Cext S{LF M} in P overrides class d?s e {p CdomH)
(Ov-cLAsYS) L)) ! .
Definition 6.2 (Well-formed configurations) A configuration
this:PHTwf this:Pke:T (OK-FIELD) (H,e) is well-formedif H is well-typed and for any location
- [final] T f=eokinP tp free ine, {p € dom(H).
this:Pxp:Ty, ..., X1 T F T wf The subject reduction lemma states that a step taken in the
this:PX:T F To wf evaluation of a well-formed configuration results in a well-
this:PX:The: Ty formed configuration.
= - (OK-METHOD)
=To m(T %) {e} okinP Lemma 6.3 (Subject reduction) Supposee:T, (H,e) is

well-formed, andH,e) — (H’,€). Then-¢€:T and(H’,€)

mtypd0,P,Ps,m) = (X:T') — T is well-formed.

=T/ =T{X /R AT = To{X /%
- { /}_ 0 = Tolx'/%) (OV-METHOD)
P+ To m(T X) {e} overrides method dPs Progress

Figure 15: Checking declarations The progress lemma states that for any well-formed configu-
ration(H,e), eithereis a base valuép ornull, or (H,e€) can
make a step according to the operational semantics.

schemarhis in the superclass; and checking that this type
is well-formed and not an exact type.

Rule Ov-cLAss checks that a class declaration conforms
to any class declarations it overrides. When overriding a
class with superclask;, it is required that the new superclass
S{this.class/This} be a subtype ofs in the typing envi- Soundness
ronmentthis: P. This restriction differentiates nested class
overriding from arbitrary multiple inheritance.

Rule Ok-FIELD states that in the body of clags a field
declaration of the formitinal] T f = etype-checksif the type
T is well-formed and the initializee type-checks in an envi-
ronment wherehis has typeP. For simplicity, we assume a
field namedf is declared at most once in the program, and we

assume all methods and nested classes are uniquely named Upgfinition 6.6 A programPr = (TCT,) is well-formedif -

to overriding. . TCTok and0+ e: T for someT such thaD - T wf.
Rule Ox-METHOD checks that each parameter types

well-formed in an environment that includes orlyis and ;

Theorem 6.7 (Soundness) Given a well-formed program
the parameters to the left . The method body must have p — (TCT,e), if the configuration(0,e) is well-formed and
the same type as the declared return type. As in Java, method}_ e:T, and if (H',€) is a normal form such thad,e) —*
types are invariant; @METHOD enforces this requirement. (H’..e/)' thené is either a locatiorp € dom(H') ornull and

e T

Lemma 6.4 (Progress) If-e:T, =T wf, (H,e) is well-
formed, then eithee = b or there is a configuratiofH’, €)
such thatH,e) — (H', €).

Finally, we define the normal form of a configuration, define
well-formedness for programs, and state the soundness theo-
rem.

Definition 6.5 (Normal forms) A configurationH,e) is in
normal formif there is no(H’, &) such thatH,e) — (H',).

14

7 Related work With nested inheritance, several mixins can be applied at once
to a collection of nested classes by overriding the base class (or
base package) of their container. In contrast, Scala requires the
programmer to explicitly name the superclass of each individ-
ual mixin when it is applied.

Over the past decade a number of mechanisms have been pro
posed to provide object-oriented languages with additional ex-
tensibility. Nested inheritance uses ideas from many of these
other mechanisms to create a flexible and largely transparent
mechanism for code reuse.

Family polymorphism

Virtual classes Ernst [9] introduces the terfiamily polymorphismo describe
polymorphism that allows reuse of groups of mutually depen-
dent classes, that isfamily of classes. The basic idea is to
use an object as a repository for a family of classes. Virtual
classes of the same object are considered part of the same
virtual types as a means of providing genericity in Java [33]. famlly. The Ianguage gbetq [8], as well as chla [26], de-

Nested classes in Jx are similar, but not identical, to vir- Scfibed above, provides family polymorphism using a depen-

' ; dent type system that prevents the confusion of classes from

tual classes. Unlike virtual classes, nested classes in Jx ared.ff famili Nested inherit is a limited f it
attributes of their enclosing class, not attributesnstances ierent families. INested inheritance IS a limited form o tam-

of their enclosing class. Suppose clashas a nested class ily polymorphism. In the original formulation, eadbjectde-

B and thatat anda2 are references to instances of possibly flnets g.d'ﬁ‘t'”.ft family conswt;ng Olf its nested clasgets. q W'tt::
distinct subclasses df. The virtual classeal.B anda2.B nested inheritance, since nested classes are associated with an

are distinct classes. In contrast, the Jx typesclass.B and enclosing class rather than with an instance of the enclosing

a2.class.B may be considered equivalent if it can be proved, ﬁlasts, eacmlasideflr:es 6]}. d_|tst|nct fsmllyf. fTh.llj.S' n(i'isted In-
either statically or at run-time, that anda2 refer to instances eritance permits only & ninite number of families. Rowever,
of the same class. consider the case of a classwith nested class and refer-

Virtual types are not statically safe because they permit gncehsal anc:atz_ of”ty;:e?{ If alﬂ"dass ar:da2.tcblasslcanngt
method parameter types to change covariantly with subtyping, °€ Snown statically to have the same type, taénclass .

rather than contravariantly. Beta and other languages with vir- a::g’ﬂ : ;htss ‘B t’?‘ay ?ﬁ conS|debr ed #oﬂ?e of d'St'fnCt]‘lamgles,l
tual types insert run-time checks when a method invocation although at run-ime they may be ol the same tamily. Jx al-

cannot be statically proved sound. Dependent classes in Jxlows objects to be passed between the two families by casting

provide the expressive power of covariant method parameter 21 - c1ass t0 a2.class or vice versa. This added flexibility
types without introducing unsoundness. Recent work on type- €nables greater reuse. Moreover, using prefix types, a family
safe variants of virtual types has limited method parameter neeq not be |dent|f_|ed solely be a single object. In gbeta, an
types to be invariant [34] and useelf typed4] as discussed explicit representative of_ the family must be passed around. It
below. lacks an analogy to prefix types, which enable a member of a
Nested inheritance supports a form of virtual superclasses; [mily to unambiguously identify that family. .
nested classes may extend other nested classes referred to bz D_elegatlpn layers [29] use V'”U?' classes and delegation to
This, providing mixin-like functionality. The language Beta Provide family polymorphism, solving many of the problems
does not support virtual superclasses, but gbeta [8] does. of mixin layers. With normal inheritance and virtual classes,
As discussed in Section 3, nested inheritance does not sup-When @ method is not implemented by a class, the call is dis-
port generic types. A nested class may only be declared a Patched to the superclass. With delegation, the superclass view
subtype of another type (via the classistends clause), not ~ °f @n object may be implemented by anotbbject Methods
equalto another type. Generic types may be used to provide are dispatched through a chain of delegate objects rather than

genericity, which is already supported in Java through parame- through the class hierarchy._DeIe_gation Iayers provide much of
terized types. To ensure inheritance relationships can be deter-N€ S8me power as nested inheritance. Since delegates are as-
mined statically, a virtual type in Beta may be inherited from somate(_i with ObJeCtS. at run-time rather than at comp_lle-tlme,
only if it is final bound Since nested classes in Jx atatic, delegation allows objects to be composed more flexibly than
Jx does not permit inheritance from dependent classes, ensur-WIth mixins or with nes_ted |nher|tance: However, no formal
semantics has been given for delegation layers, and because

ing a static inheritance hierarchy. . ; .
Igarashi and Pierce [14] model the semantics of virtual ?yiggﬁélfzn layers rely on virtual classes, they are not statically

types and several variants in a typed lambda-calculus with sub-
typing and dependent types.

The work most closely related to nested inheritance is Higher-order hierarchies
Odersky et al.’s language Scala [26, 37], which supports scal-
able extensibility through a statically safe virtual type mech-
anism and path-dependent types similar to Jx’s dependent
classes. However, Scala’s path dependent fypgpe is a
singleton type containing only the value named by access path
p; our p.class is not a singletonnew x. class(...), for in-

Nested inheritance is related to virtual types and virtual
classes. Virtual types were originally developed for the lan-
guage Beta [20, 21], primarily as a mechanism for generic pro-
gramming rather than for extensibility. Later work proposed

Nested inheritance is similar to Ernst’s higher-order hierar-
chies [10]. Like nested inheritance, higher-order hierarchies
support family polymorphism. Additionally, when a subclass
A2 overrides a nested clagsof A2's base clas4, the over-
riding classA2.B inherits fromA.B. However, unlike nested

: e inheritance, there is no subtyping relationship betwgeh
stance, creates a new object of typelass distinct from the andA2.B. By ensuringi2. B is a subtype o . B, nested inher-

object referred to by. This difference gives Jx more flexibil- itance permits more code reuse. Like nested inheritance, the

g)r/é}/ivxhlt;/epzrseservmg type soundness. Scala has no analogue tOinheritance hierarchy can be modified by overriding the super-

Scala permits extensions to be composed through mixins. class of a nested class.
Jx supports mixin-like functionality via virtual superclasses.

15

Other nested types

Nested classes originated with Simula [7].
Igarashi and Pierce [16] present a formalization of Java’s

inner classes, using Featherweight Java [15]. An instance of
a Java inner class holds a reference to its enclosing instance

If inner classes are permitted in Jx, a translation similar to
Igarashi and Pierce’s can be applied, where if inner ddsss
an immediately enclosing instance of cl@sshen the transla-

refer to it using dependent types. Nested inheritance provides
additional extensibility that open classes do not, such as the
“virtual” behavior of constructors. An important difference is
that open classanodifyexisting class hierarchies. The origi-
nal hierarchy and the modified hierarchy cannot coexist within

the same program. Nested inheritance creates a new class hi-

erarchy by extending the container of the classes in the hier-
archy, permitting use of the original hierarchy in conjunction
with the new one.

tion of C has a final field of typ@ [this.class].
Odersky and Zenger [28] propose nested types, which . .
combine the abstraction properties of ML-style modules with ASpect-oriented programming

support, through encoding, for object-oriented constructs like Aspect-oriented programming (AOP) [18, 17] is concerned
virtual types, self types, and covariant families of classes. with the management afspects functionality that crosscuts
standard modular boundaries. Nested inheritance provides
aspect-like extensibility, in that an extension to a container
may implement functionality that cuts across the class bound-
aries of the nested classes. Like open classes, aspects modify
existing class hierarchies, preventing the new hierarchy from
being used alongside the old.

Self types and matching

Bruce et al. [5, 3] introducenatchingas an alternative to sub-
typing in an object oriented language. With matching,g6k
type or MyType, can be used in a method signature to rep-
resent the run-time class of the method’s receiver. To per-
mit MyType to be used for method parameters, type systems
with MyType decouple subtyping and subclassing. In Poly-
TOIL and LOOM, a subclassiatchests base class but is not

a subtype. Although there is no explicit notion of matching
in our type system, the rules for subtyping and type equiva-
lence given here have a similar effect. Tihelass construct
provides similar functionality telyType, but is more flexible
since it permitsthis.class to escape the body of its class
by assigningchis. class into another variable or returning a
value of that type from a method.

8 Conclusions

Nested inheritance is an expressive yet unobtrusive mecha-
nism for writing highly extensible frameworks. It provides the
ability to inherit a collection of related classes while preserv-
ing the relationships among those classes, and it does so with-
out sacrificing type safety or imposing new run-time checks.
The use of dependent classes and prefix types enables reusable
code to unambiguously yet flexibly refer to components on
which it depends. Nested inheritance is fundamentally an in-
heritance mechanism rather than a parameterization mecha-
nism, which means that every hame introduced by a compo-
o . nent becomes a possible implicit hook for future extension.
A mixin[2, 11], also known as aabstract subclasss a class ~ Therefore extensible code does not need to be burdened by ex-
parameterized on its superclass. Mixins are able to provide pjicit parameters that attempt to capture all the ways in which
uniform extensions, such as adding new fields or methods, j; might be extended later.

to a large number classes. Recent work has extended Java \ve formalized the essential aspects of nested inheritance
with mixin functionality [22, 1]. Because nested inheritance i, an object calculus with an operational semantics and type
as d_escribed here has_no type parametricity, it cannot provide asystem, and were able to show that this type system is sound.
mixin that can be applied to many different, unrelated classes, Thys extensibility is obtained without sacrificing compile-time
Nested inheritance does, however, provides mixin-like func- type safety.

tionality by allowing the superclass of an existing base class Our experience with implementing extensible frameworks
to be changed or fields and methods to be added by overrid- giyes us confidence that nested inheritance will prove useful.
ing the class’s superclass through extension of the superclass’sye defined a language Jx that incorporates the nested inheri-
container. Additionally, nested inheritance allows the implicit {3nce mechanism and implemented a prototype compiler for
subclasses of the new base class to be instantiated withoutihe core mechanisms of this language. The translation im-
writing any additional code. Mixins have no analogous mech- plemented by this compiler does not duplicate inherited code.
anism. The next step is clearly to complete the Jx implementation; we

Mixin layers [31] are a generalization of mixins to multi- |50k forward to using it to build the next version of Polyglot.
ple classes. A mixin layer is a design pattern for implement-

ing a group of interrelated mixin classes and extending them
while preserving their dependencies. Mixin layers do not pro- ACknOWIedgmentS

vide family polymorphism. Delegation layers [29], described Michael Clarkson and Jed Liu participated in early design dis-

above, were designed to overcome this limitation through a cussions. Matthew Fluet, Michael Clarkson, Jens Palsberg,
new language mechanism. and the anonymous reviewers provided thorough and insight-
ful comments.

This research was supported in part by ONR Grant
N00014-01-1-0968, NSF Grants 0208642 and 0133302, and
An open clasg6] is a class to which new methods can be an Alfred P. Sloan Research Fellowship. Nathaniel Nystrom
added without needing to edit the class directly, or recompile was supported by an Intel Foundation Ph.D. Fellowship. The
code that depends on the class. Nested inheritance is also able).S. Government is authorized to reproduce and distribute
to add new methods to a class without the need for recompila- reprints for Government purposes, notwithstanding any copy-

tion of clients of the class, provided that the class is nested in right annotation thereon. The views and conclusions here are
a container that can be extended, and that clients of the class

Mixins

Open classes

16

those of the authors and do not necessarily reflect those of[12] Erich Gamma, Richard Helm, Ralph Johnson, and John
ONR, the Navy, or the NSF.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

Davide Ancona, Giovanni Lagorio, and Elena Zucca.
Jam: A smooth extension of Java with mixins. In
Proc. ECOOP '0QLNCS 1850, pages 154-178, Cannes,
France, 2000.

Gilad Bracha and William Cook. Mixin-based inheri-
tance. In Norman Meyrowitz, editdProc. OOPSLA '90
pages 303-311, Ottawa, Canada, 1990. ACM Press.

Kim B. Bruce, Adrian Fiech, and Leaf Petersen. Sub-
typing is not a good “match” for object-oriented lan-
guages. InProceedings of 11th European Conference
on Object-Oriented Programming (ECOOP’9Aumber
1241 in Lecture Notes in Computer Science, pages 104—
127, Jywaskyh, Finland, June 1997. Springer-Verlag.

Kim B. Bruce, Martin Odersky, and Philip Wadler.
A statically safe alternative to virtual types. Eu-
ropean Conference on Object-Oriented Programming
(ECOOP) number 1445 in Lecture Notes in Computer
Science, pages 523-549, Brussels, Belgium, July 1998.
Springer-Verlag.

Kim B. Bruce, Angela Schuett, and Robert van Gent.
PolyTOIL: A type-safe polymorphic object-oriented lan-
guage. IrEuropean Conference on Object-Oriented Pro-
gramming (ECOOR)number 952 in Lecture Notes in
Computer Science, pages 27-51. Springer-Verlag, 1995.

Curtis Clifton, Gary T. Leavens, Craig Chambers, and
Todd Millstein. MultiJava: Modular open classes and
symmetric multiple dispatch for Java. @OPSLA 2000
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Minneapolis, Minnesota
volume 35(10), pages 130-145, 2000.

0.-J. Dahl et al. The Simula 67 common base lan-
guage. Publication No. S-22, Norwegian Computing
Center, Oslo, 1970.

Erik Ernst. gbeta — a Language with Virtual Attributes,
Block Structure, and Propagating, Dynamic Inheritance
PhD thesis, Department of Computer Science, Univer-
sity of AarhusArhus, Denmark, 1999.

Erik Ernst. Family polymorphism. IfProceedings of
the 15th European Conference on Object-Oriented Pro-
gramming (ECOOPR)LNCS 2072, pages 303-326, Hei-
delberg, Germany, 2001. Springer-Verlag.

Erik Ernst. Higher-order hierarchies. RProceedings

of the 17th European Conference on Object-Oriented
Programming (ECOOR)volume 2743 otecture Notes

in Computer Sciencepages 303-329, Heidelberg, Ger-
many, July 2003. Springer-Verlag.

Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. Classes and mixins.Rmoc. 25th ACM Symp.
on Principles of Programming Languages (POPL)
pages 171-183, San Diego, California, 1998.

17

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software Addison Wesley, Reading,
MA, 1994.

James Gosling, Bill Joy, and Guy SteeleéThe Java
Language SpecificatiorAddison-Wesley, August 1996.
ISBN 0-201-63451-1.

Atsushi lgarashi, Benjamin Pierce, and Philip Wadler.
Foundations for virtual types. Rroceedings of the Thir-
teenth European Conference on Object-Oriented Pro-
gramming (ECOOP’99)number 1628 in Lecture Notes
in Computer Science, pages 161-185. Springer-Verlag,
June 1999.

Atsushi lgarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: A minimal core calculus for Java
and GJ.ACM Transactions on Programming Languages
and System23(3):396-450, 2001.

Atsushi Igarashi and Benjamin C. Pierce. On inner
classes. Information and Computatign177(1):56—89,
August 2002.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersen, Jeffrey Palm, and William G. Griswold. An
overview of Aspectd. IfProceedings of European Con-
ference on Object-Oriented Programming (ECOOP;01)
volume 2072 ofLecture Notes in Computer Science
pages 327-353, Berlin, Heidelberg, and New York,
2001. Springer-Verlag.

Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-oriented programming.
In Proceedings of 11th European Conference on Object-
Oriented Programming (ECOOP’97number 1241 in
Lecture Notes in Computer Science, pages 220-242,
Jyvaskyh, Finland, June 1997. Springer-Verlag.

B. Liskov et al. CLU reference manual. In Goos and
Hartmanis, editord,.ecture Notes in Computer Science
volume 114. Springer-Verlag, Berlin, 1981.

O. Lehrmann Madsen, B. Mgller-Pedersen, and K. Ny-
gaard. Object Oriented Programming in the BETA Pro-
gramming LanguageAddison-Wesley, June 1993.

Ole Lehrmann Madsen and Birger Mgller-Pedersen. Vir-
tual classes: A poweful mechanism for object-oriented
programming. InProc. OOPSLA '89 pages 397—-406,
October 1989.

Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh.
Jiazzi: New-age components for old-fashioned Java. In
Proc. OOPSLA '010ctober 2001.

Robin Milner, Mads Tofte, and Robert Harpdihe Def-
inition of Standard ML MIT Press, Cambridge, MA,
1990.

Andrew C. Myers, Lantian Zheng, Steve Zdancewic,
Stephen Chong, and Nathaniel Nystrom. Jif: Java
information flow. Software release. Located at
http://wuw.cs.cornell.edu/jif, July 2001-2003.

[25]

[26]

[27]

(28]

[29]

[30]

Nathaniel Nystrom, Michael Clarkson, and Andrew C.
Myers. Polyglot: An extensible compiler framework for
Java. In @rel Hedin, editor,Compiler Construction,
12th International Conference, CC 2008umber 2622

in Lecture Notes in Computer Science, pages 138-152,

Warsaw, Poland, April 2003. Springer-Verlag.

Martin Odersky, Philippe Altherr, Vincent Cremet,
Burak Emir, Sebastian Maneth, &hane Micheloud,
Nikolay Mihaylov, Michel Schinz, Erik Stenman, and
Matthias Zenger. An overview of the Scala program-
ming language, June 2004ttp://scala.epfl.ch/-
docu/files/Scalalverview.pdf.

Martin Odersky, Vincent Cremet, Christined&kl, and
Matthias Zenger. A nominal theory of objects with de-
pendent types. IRroceedings of 17th European Confer-
ence on Object-Oriented Programming (ECOOP 2003)
number 2743 in Lecture Notes in Computer Science,
pages 201-224. Springer-Verlag, July 2003.

Martin Odersky and Christoph Zenger. Nested types. In
8th Workshop on Foundations of Object-Oriented Lan-
guages (FOOL,)2001.

Klaus Ostermann. Dynamically composable collabora-
tions with delegation layers. IRroceedings of the 16th
European Conference on Object-Oriented Programming
(ECOOP) volume 2374 ofLecture Notes in Computer
Sciencepages 89-110, Malaga, Spain, 2002. Springer-
Verlag.

John C. Reynolds. User-defined types and procedural

(31]

(32]

(33]

(34]

(35]

(36]

(37]

data structures as complementary approaches to data ab-

straction. In Stephen A. Schuman, editbiew Direc-

18

tions in Algorithmic Languagespages 157-168. Insti-
tut de Recherche d’'Informatique et d’Automatique, Le
Chesnay, France, 1975. Reprinted?h pages 13-23.

Yannis Smaragdakis and Don Batory. Implementing
layered design with mixin layers. In Eric Jul, editor,
Proceedings ECOOP'9®ages 550-570, Brussels, Bel-
gium, 1998.

B. Stroustrup.The C++ Programming LanguageAddi-
son-Wesley, 1987.

Kresten Krab Thorup. Genericity in Java with virtual
types. InProceedings of the European Conference on
Object-Oriented Programming (ECOOR)umber 1241

in Lecture Notes in Computer Science, pages 444-471.
Springer-Verlag, 1997.

Mads Torgerson. Virtual types are statically safe. In
5th Workshop on Foundations of Object-Oriented Lan-
guages (FOOL)January 1998.

Andrew K. Wright and Matthias Felleisen. A syntactic
approach to type soundnegeformation and Computa-
tion, 115(1):38-94, 1994.

Matthias Zenger and Martin Odersky. Extensible alge-
braic datatypes with defaults. Iroc. 6th ACM SIG-
PLAN International Conference on Functional Program-
ming (ICFP) Firenze, Italy, September 2001.

Matthias Zenger and Martin Odersky. Independently ex-
tensible solutions to the expression problem. Techni-
cal Report IC/2004/3F.cole Polytechniqueé¢krale de
Lausanne, March 2004.

A Soundness proof

Our soundness proof is structurally similar to the proof of soundness for Featherweight Java (FJ) [15]. The proof uses the standard
technique of proving subject reduction and progress lemmas [35]. The key lemmas are stated here. The complete proof is in the
appendix.

A.1 Canonical derivations

Several of the inference rules admit infinite derivations. For instance, it is possible to have an infinite sequence of instances of
the subsumption rule %, using the reflexivity of subtyping. To ensure that induction on derivations is well-founded, we define
canonical derivation$or each of the typing judgments by restricting derivations in following ways:

o Reflexivity of < is not used in the derivation.

e No use of T< can have as a premise a derivation ending id.T-

e No use of FRUNTIME with conclusion” - p final T can have the same judgment as its premise.
e No use of FRUNTIME can have as a premise a derivation ending iRUNTIME.

Induction on canonical derivations is well-founded. For the remainder of the proof, we assume derivations are canonical.
By restricting the type-checking algorithm to canonical derivations, the type-checking is decidable.

A.2 Conformance

To prove the subject reduction lemma, we need to ensure that the signature information retrieved from the claé3svialsle
type-checked. We first define the natural extensioR@T to all non-dependent typés

Definition ??
TCT*(C) = TCT(C)

TCT(P) = G ext § (T F; M}
Cext S{LFM} el

— = —

TCT*(PC) =Cext S{LF M}

Lemma A.1 (Nested classes checkedPl= Q.C with Q possiblye andP € dom(TCT*), then TCT*(P) ok in Q.

Proof. The proof is simple, by induction on the structurdrof]

The next two lemmas state that a method body or field initializer has the proper type. These lemmas follow almost immediately
from Lemma A.1.

Lemma A.2 (Method conformance) Iintypg®,P,Q,m) = (X: T) — T', andmbodyP,Q, m) = (%, €), then there is # not before
Qin ord(0,P) where- P <P’ such thathis: P/, %:T - e:T'.

Proof. The proof is by induction on the derivation mfbodyP,Q,m). In the base case, assu@@(0,Q,Q) = C ext Ts {L F M}
andT' m(T %) {e} € M. SinceM is not empty,Q € dom(TCT*). Thus by Lemma A.1, iQ = Q'.C (Q' possiblye), then
F TCT*(Q) ok in Q. It follows immediately that T’ m(T X) {e} ok inQ, and thusthis:Q,%X: T I e:T’. To complete the base
case, observe thatP < Q sinceQ < ord(0, P).

For the induction case, assun@T(0,Q,Q) =C ext Ts {L F M} and T’ m(T X) {e} ¢ M. and (0,P,Q) = Q. and
mbodyP,@’,m) = (X,e). By the induction hypothesis, there isRi not beforeQ in ord(0,P) wheret P <P’ such that
this:P,X:T - e:T'. SinceP’ follows Q in ord(0,P), the case holds]

The field conformance lemma and its proof are similar to the method conformance lemma.

Lemma A.3 (Field conformance) Iftype(0,P, f) =T, andfinit(0, P, f) = e, then there is & € ord(0, P) where- P<P’ such that
this:P' e T.

Proof. Similar to the proof of Lemma A.Z]

19

A.3 Type equivalence and subtyping

Dependent classes and prefix types permit two types to contain exactly the same sets of values. For instancé theltgres
andA [/}, ;.class:A.B] may each contain only values of run-time cla&sWe consider these types to be equivalent as follows.

Definition A.4 Two typesT andT’ areequivalentwrittenT ~ T’, if they are related by the smallest reflexive, symmetric, transitive
closure of the following rules:
T~T
TC~T'C

exactclas§T) =P exactclasgT') =P
T~T

T~T
P[T:PC] ~P[T':PC]

We extend the definition of equivalent types to class declarations and sets of class declarations.

Definition A.5 We writeL ~ L' if L =C ext Ts {L F M} andL’ = C ext T, {L' F M} andTs ~ T{ andL ~ L/, whereL ~ L’ if
L € Lifand only if there is ar.’ € L’ such that. ~ L.

Next, we prove several preliminary facts about equivalent types, equivalent classes and subtyping, which are needed for the
subject reduction proof.

LemmaA.6 If Ly ~ L}, then[ye L, ~ L] eL).
Proof. By induction of the member class inheritance rules in Figure_10.
LemmaA.7 If Ty~ T] andT, ~ T, then

(i) classe§l, T, Tp) ~ classesl, T),Ty).

(ii) supe(l,Ti)~ supell,T/).
(i) fieldg, Ty, T1) = fieldgT,T{,T;).
Proof. The proof is by induction on the derivation 6fT(I", T, T1).
CaseCT-OUTER

ThenT; =CandT; =C.

By CT-OUTER, if CT(I',T;,C) = C ext P {LseL{T,/This} F M}, then TCT(C) = C ext P {L F M} and
classeél,T,,P) = Ls.

By the induction hypothesisjasse$, T;,P) = Lg, wherelL; ~ Ls.
Thus, we can deriv€T(I, T;,C) = C ext P {L; o L{T}/This} F M}.
By Lemma A.6LseL{T,/This} ~ L;eL{T;/This}.

(), (i), and (iii) easily follow.

CaseCT-NEST.
ThenT; = To.C andT; = T§.C, whereTy ~ T{.

By CT-NESTCT(I', T, To.C) = C ext Ts {Lse L{T,/This} F M}, whereC ext Ts {L F M} € classe§", To, To), and
classefl,Tp, Ts) = Ls.

By the induction hypothesiglasse$l", To, To) ~ classeél’, Tj, Tj). Thus, there is a declarati@ext T{ v F M} e
classef”, TJ, T}) such thafls ~ T{ andL ~ L. Also by the induction hypothesislasse§”, T,, Ts) ~ classe$l’, T}, T¢).
Thus, by CTNEST, we can deriveCT(I', Tj, T;.C) = C ext T, {L;e L’{T;/This} F M},

By LemmaA.6LseL{T,/This} ~ L eL{T;/This}.

(i), (i), and (iii) easily follow.

20

CaseCT-RUNTIME:

Then there is & such thatexactclasgT;) = P = exactclasgT;). By CT-RUNTIME, CT(I, T2, T1) = _ext P {Le
0} where classe$l,T,,P) = L. By the induction hypothesisclasseé,T;,P) = L’ ~ L. Thus, we can derive
CT(I,T,T{) = —ext P {L" « 0}.

By Lemma A.6Le0~ L' e0.
(), (ii), and (iii) easily follow.
CaseCT-DEP:

ThenT; = p.class andT] = p'.class.

Sincel - p final P, [- p/ final P, By CT-DEP, CT(I", T2, T1) = _ ext P {L e 0} whereclasseél, T,,P) = L. By
the induction hypothesisjasseé™, T;,P) = L’ ~ L. Thus, we can deriv€T(I", T}, T/) = _ ext P {L’ ¢ 0}.

By Lemma A.6Le0~ L' o0.
(i), (i), and (iii) easily follow.
CaseCT-PRE
ThenT; = P[Tix:PC] andT] = P[T{,:PC] whereTi =~ T/,.

By CT-PRE CT(I,T2,T1) = — ext P {L e 0} where classe§,T;,P) = L. By the induction hypothesis,
classeél, T;,P) = L’ ~ L. Thus, we can deriv€T(I',T;,T{) = _ext P {L’ ¢ 0}.

By Lemma A.6Le0~ L' o0.
(i), (ii), and (iii) easily follow.
]
Lemma A.8 If Ty ~ T{ andT, € ord(I", Ty), then there is &, such thafl, ~ T; andT, € ord(I", T}).
Proof. The proof is by induction on the definition ofd(I", Ty).
Case T=0bject:
ThenT, = 0bject andT; € ord(I", T)) trivially.
Case T = Tix.C:
ThenT{ =T/, .C.

If T, € ord(I", Tax).C, thenT, = To.C for someTyy andl™ - Toy.C wf and Tox € ord(I", Tyx). ThereforeT) =T, .C and,
by the induction hypothesi3y, € ord(I", T/,). Thus,T; € ord(I", T}).

Otherwise,T, € ord(I",supefl’,T)). By Lemma A.7,supefl",T1) ~ supel",T;), and by the induction hypothesis
T, € ord(", supe(T", T})).

Otherwise

If Ty =T, then takeT] =Tj.

Otherwise,T, € ord(I",supefl’,T)). By Lemma A.7,supefl",T1) ~ supel",T;), and by the induction hypothesis
T, € ord(l", supe(r, Ty)).
a

LemmaA.9 If [+T] <Ty, then there is &, ~ T1 such thafl, € ord(I", T). Moreover, ifT] = P; andTy = P;, thenT, =Ty = Py.

21

Proof. The proof is by induction on the derivation bf- T/ <T;. The reflexive case holds trivially. The transitive case holds by
the induction hypothesis.

Case<-EXTENDS:

Thensupe(l",T{) = Ty andTy € ord(I", T}) trivially. If T = P{ andT; = Py, thenT, = Ty = Py trivially.

Case<-NEST:

ThenT; =T.CandT] =T’'.Cwherel - T'<T.

By the induction hypothesis there isT4 € ord(I,T’) such thafl” ~ T. Thus,T, = T"”.C andT, € ord(I", T").C. and
henceT, € ord(T", T}).

If T = P".CandT; = PC, then by the induction hypothesiE) = T = P and thusT, = PC =Tj.

Case<-RUNTIME:

ThenT] ~ T1, and the first part of the lemma holds by Lemma A.8. In this c@s&nd T, cannot be simple non-
dependent class types so the second part holds vacuously.

O

LemmaA.10 If T - T/ <T; andT, € ord(I", Ty), then there is &, such thafl, ~ T; andT; € ord(T", T;).

Proof. The proof is by induction on the derivation bf- T{ <T;. The reflexive case holds trivially. The transitive case holds by
the induction hypothesis.

Case<-EXTENDS:

ThenCT(I,T{,T{) =Cext Ty {L F M}.

If T, € ord(I", Ty), thenT, € ord(I", T)) sinceT, # Object andord(l", T{) containsord(I", supelT, T;)).

Case<-NEST.

ThenT; = T.CandT] = T'.C wherel - T' <T.
Supposd; € ord(I", Ty). EitherT, € ord(I", T).C or T> € ord(I", supe(I", T.C)).

If T, € ord(T",T).C, thenT, = T3.C for someTs € ord(I",T). By the inductive hypothesis, there isT§ such that
T; €ord(",T’), and soly = T;.C € ord(I", T').C and soT; € ord(I", T;).

Otherwise T, € ord(I", supe(T", T1)). By Lemma A.9, there is @ ~ Ty such thaffz € ord(I", T{). Therefore, there is a
typeT = supe(l,T3) ~ supe(l, T;) such thafl € ord(l",T{). By Lemma A.8, there is @) ~ T, in ord(", T). But by
the definition oford, every element 0brd(I", T) is in ord(", T{), soT; € ord(I", T}).

Case<-RUNTIME:

Then there is & such thaexactclas{T;) = P andexactclasgT/) = P. The case holds by Lemma A.8.

O

LemmaA.11l If T =T/ <T, andftypgl, T, fj) = [final] T;, thenftypgl, T’, f;) = [final] T;.

Proof. Assumel F T/ <T, andftypg’,T, fi) = [final] T;. Then it must be the case that for some tylgec ord(I", T), the
judgmentCT(I, T, Ty) = Cy ext Tsq {Lq Fy Mg} occurs in the derivation dfypgT", T, f;) = final T;, andfinal T; fi = g is in
Fy.
By Lemma A.10, there is &} such thafly ~ Ty andTj € ord(I, T’). By Lemma A.7 ftypg(l", T}, fi) = [final] T;, and since
T4 €ord(T, T'), we haveftype(l, T/, fi) = [final] Tj, as required]
We also define a weaker notion of set inclusion for sets of class declarations, which is needed for certain substitution results.
Informally, we writeL; € L if for every clas<C that is declared i1, there is a class by the same name declaréd.in

Definition A.12 We writeL; € Ly if for eachLy = C ext Ty {L; F1 My} in Ly there is arLy = C ext T, {L, F» M2} in L7 such
thatL; € L.

22

The next two lemmas state that tlaerelation is closed under member class inheritance, and that the set of member classes is

covariant with respect to subtyping.
LemmaA.13 If L; € L] andL; € L), thenLy e L; € L] o L.
Proof. By induction of the member class inheritance rules in Figure-10.
The following lemma states that if a type has a nested @a#sen its subtypes also have a nested dlass
LemmaA.14 If [- T/ <T, andclasse$l", Tp, T) = L, andclasseé, T, T’) = L/, thenL € L.

Proof. By induction on the derivation df - T/ <T. The reflexive case holds trivially. The transitive case holds by the induction
hypothesis.

Assumeclasse§l”, To, T) = L andclasse§, To, T/) =L andl - T/ < T

Case<-EXTENDS:
supe(l',T') =T, that isCT(I, 7", T") =Cext T {L F M}. Lemma A.13 and inspection of all of the class table rules
shows that € L.

Case<-NEST:
T=Ti.CandT'=T/.Candl - T/ <T;.

Let classeé, Ty, T1) = L1 andclassed, T}, T;) = LT By CT-NEST, if CT(I,To,T) = C ext Ts {Lc Fc Mc}, then
Cext Ts {Lc Fc Mc} € L;. Note thafl = Lse Lc{Tp/This}, whereclasse§l", To, Ts) = Ls.

By the inductive hypothesig&; € L}, and so there is some claSsext T{ {Li, FL M_} € L such thalc € Lf.. Note
thatL’ = L{e L {To/This}, whereclasse§l’, To, TS) = LL.

Now, Lse Lc{To/This} € LieL;{To/This} andLc € L, and sd_ e L.

Case<-RUNTIME:

exactclasgT) = exactclasgT’), and so by CTRUNTIME, supefl",T) = supefl',T’). It is thus easy to see that
classeél, Ty, T) € classefl, Tp, T') (and alscclasseél, To, T') € classefl, To, T)).

|

A.4 Type schemas

During class lookup, any occurrence of the type sch&hia appearing in arxtends clause of a nested class will be substituted

with a subtype of the enclosing class. The resulting type should be well-formed. The following two lemmas are needed to prove

this.
LemmaA.15 If '+ To <P, and lo¢Tp) = 0, andthis:P €, thenl - S{this.class/This} <Qimpliesl - ${Tp/This} <Q.

Proof. By structural induction ois. Assume’ - S{this.class/This} <Q.
Case S=D:

Trivial.

Case S=S.D:

Follows from induction hypothesis ant-NEST.

Case S=This:

ThenS{this.class/This} = this.class andS{To/This} = To. If [this.class <Q, thenl - P< Q. Thus,
I F To <P implies by transitivityl - To < Q.

Case S=P'[S:P .CI:

23

If S is This-free, therS{this.class/This} = S{Tp/This} and the case holds trivially.

Sincerl |- S{this.class/This} <Q, we havel P’ <Q.

If is-exactTp), then if[- S{Tp/This} <P’ by <-EXTENDSand CTPRE By transitivity, - S{To/This} <Q.
Sincerl - S{this.class/This} wf, we havel - S{this.class/This} <P'.C.

By the induction hypothesis; - S{To/This} <P'.C. Thus, there is a type of the forR".C in ord(I,S{Tp/This})
wherel - P” <P'. Thus,3{To/This} = prefixP’,S{To/This}, S{Tp/This},P'.C) = P’ exists. By transitivity, since
F-P'<P.THP'<Q.
O
Lemma A.16 Assumel + Tp <P and this:P € I, and classe§l’,S{this.class/This},S{this.class/This}) = L and

classeél,S{To/This},S{To/This}) = L’. ThenL € L’. That s, if there is a class declaration forin L, there is also a class
declaration foC in L.

Proof. Follows from Lemma A.15, and Lemma A.141
Now, we can show that a type produced by substituting for a type schema is well-formed.

LemmaA.17 If this:P eI andl - S{this.class/This} wf, then for anyTy such that for any™ - To wf and " - To <P,
I S{To/This} wf.

Proof. By structural induction o1s.
Case S=C:

Trivial sinceS{this.class/This} = S{To/This}.

Case S=S.C:
ThenS{Tp/This} = S{Tp/This}.C. By the induction hypothesi§, - S{Tp/This} wf.
I+ S{this.class/This} wf, there is a class declaration f8in classe§”, S {this.class/This},S{this.class/This}).
By Lemma A.16, there is a class declaration@in classe§,S{Ty/This}, S{To/This}).

Thus, by WFNEST, I - S{To/This} wf.

Case S=This:

Trivial sinceS{Tp/This} = To.

Case S=Q[S:Q.C]:
ThenS{To/This} = Q[S{Tp/This}: Q.C] By the induction hypothesis, - S{Tp/This} wf.

LetT' = S{To/This}. There are two cases.

o If T'=Q for someQ, thenS{Typ/This} = prefiXQ,Q,Q,Q.C). We need to show that this type exists and is
well-formed.

Since ' + S{this.class/This} wf, by WF-PRE I F S{this.class/This} < Q.C; and therefore by
LemmaA.15 - Q' <Q.C.

By Lemma A.10Q.C € ord(I", Q'); thereforeprefix Q, @', @', Q.C) exists and is well-formed.
e Otherwise, sincd’ # Q for any@’, we haveS{Ty/This} = Q[T’:Q.C].

Since ' - S{this.class/This} wf, by WF-PRE I F S{this.class/This} < Q.C; and therefore by
LemmaA.15] T/ <Q.C.

It then follows from WFpPREthatl” F S{To/This} wf.

O

We can then show that theuperfunction returns a well-formed type; and from this lemma we can conclude that if a type is
well-formed, all of its supertypes are well-formed also.

24

Lemma A.18 If I T wf andsupefl',T) = Ts, thenl” - T wf.

Proof. By Lemma A.1, each class declarationTi@T*, including those of nested classes, is checked with@Ass. This rule

requires that ilC ext S{L F M} is a class declaration in the body Bf thenthis: P I S{this.class/This} wf. It follows
immediately from Lemma A.17 that any class declaration returnedblias a well-formed immediate superclass.

LemmaA.19 If TFTwfandifl - T <T/, thenl - T’ wf.

Proof. By induction on the derivation df - T <T’, using Lemma A.18 for thel-EXTENDS case.[]

A.5 Typing environments

To prove subject reduction, we first need to prove several substitution lemmas. Since we have dependent types, variables that
appear in types, as well as those in expressions, may be substituted. We define substitution on well-formed typing endironments
as follows.

Definition A.20

O{b/x} =0
(Fx:T){b/x} =T
(My:T){b/x} =T{b/x},y: T{b/x}

We also introduce a few lemmas that will be useful for proving subject reduction.
Lemma A.21 (Weakening) Ifx ¢ dom(I"), then for anyT’, if T - e: T, thenl,x: T’ +e:T.

Proof. Simple proof by induction on the derivation bf-e: T. O

Lemma A.22 (Path weakening) Ix ¢ dom(I"), then for anyT’, if I - p £final T, thenl,x: T’ pfinal T.

Proof. Simple proof by induction on the derivation bf- p final T.

Lemma A.23 (Subtyping weakening) i ¢ dom(I"), then for anyT’, if [=Ty <Tp, thenl ,x: T - T <T>.

Proof. Simple proof by induction on the derivation bf- T, <T,. O

A.6 Substitution

Next, we prove several substitution lemmas. Because the language includes dependent classes and prefix types, the proof requires
more complex substitution lemmas than the proof of soundness for FJ in [15]. There is a substitution lemma for most of the
judgments in the semantics.

The next few lemmas are preliminaries to the substitution lemmas. They state some useful properties about types in empty type
environments.

Lemma A.24 For a base valub, if - b: T then T wf.

Proof. Consider the derivation ¢f b: T. The last rule used in such a derivation is one afde, T-NULL or T-<. The first two of
these rules require thetT wf. For the last rule, T<, well-formedness follows from Lemma A.181

Lemma A.25 If - T wf andexactclasgT) = P, thensupe(0,T) = P.

Proof. Trivial by examination of<-EXTENDSand CTRUNTIME. [J

Lemma A.26 If - PwfandF Qwf, andQ € ord(0, P), then- P<Q.

Proof. AssumeQ € ord(0,P). The proof is by induction on the definition @f € ord(0, P).
Case P=0bject:

Trivial sinceord(0,0bject) = [Object].

Case P=P'C:

25

Thenord(0,P) = ord(0,P’).C, ord(0, supef0,P)).
There are two cases:

If Q€ ord(0,P).C, thenQ = Q'.C andQ € ord(0,P’). By the induction hypothesis; P’ <@/, and by<-NEST,
FP.C<Q.C,orequivalently- P<Q.

If Q € ord(0,supe®,P)), then by the induction hypothesis,supef0,P) <Q, and thus- P <Q by <-EXTENDS and
transitivity.

Otherwise
Thenord(0,P) = P,ord(0, super0,P)).
If Qis inord(0,P), then eithelQ = P and the case holds by reflexivity; @, € ord(0,supek®,P)). By the induction
hypothesist- super,P) <Q, and thus- P< Q by <-EXTENDSand transitivity.

(]

LemmaA.27 If T = Q[T':Q.C], - T wf, andexactclas{T) = P, then- P<Q.

Proof. AssumeT =Q[T’":Q.C]. Since T wf, - T’ <Q.C. ThenexactclasgT) = prefix Q, exactclasgT’),exactclasgT’),Q.C)
whereexactclasgT’) = P'.

SinceT is well-formed, by WFPRE T’ is well-formed and- T’ <Q.C. By Lemma A.25supef®, T') = P'. Sinceis-exac{T’),
<-NESTcannot apply, so for T’ <Q.C, it must be that- P’ < Q.C. Moreover, by Lemma A.9Q.C is in ord(0, P’).

By the definition ofprefix P.C is the first type of the forn@.C in ord(®,P’). Thus, sinc&.C € ord(0,P’), eitherP = Q, or PC
occurs befor®.C in ord(0,P'). If the former, theri- P < Q by reflexivity. If the latter, than there is a tyd@é such thaP.C occurs
beforeQ.C in ord(0, T”).C. ThereforeP occurs befor®) in ord(0, T”). SinceP.C is the first type of the forn@.C in ord(0,P’), it
must be thaP is the first element obrd(0, T”). ThusT” = P, and thereforé- P< Q. O

The following two lemmas show that class table rules and subtyping judgments for simple classes do not depend on the variable
context.

Lemma A.28 If CT(I',Pg,P) = C ext Ts {L F M} thenCT(0,Py,P) = C ext Ts {L F M}.

Proof. By induction onCT(I",Py,P) = C ext Ts {L F M}. The inductive hypothesis is that for &@T(I", P, P") occurring in the

derivation ofCT(I", Py, P), we haveCT(0,P},P’), and moreover, that &' ext T{ {L’ F' M’} € classed, Py, P), thenT{ is a simple
class.

CaseCT-OUTER, CT-NEST.
CT(0,R,P) follows from inductive hypothesis; for all’ ext T {L’ F/ M’} € Lse L{Py/This}, we must havd{ a
simple class, because of the inductive hypothesis, and the fact that a simpleydlasabstituted folhis.
CaseCT-RUNTIME, CT-DEP, CT-PRE
Impossible.

|

LemmaA.29 If T -P<P thend-P<P
Proof. Proof is by induction off FP<P’.
Case<-EXTENDS:

supell,P) = P'. Result follows from Lemma A.28.

Case<-NEST.

Follows from inductive hypothesis.

Case<-RUNTIME:
No simple class is in dofexactclasg, and so this case is impossible.
O

The next lemma states that thel function is closed under substitution.

26

LemmaA.30 If x: Ty e I and-b: Ty, andTp € ord(I",T1) andl {b/x} F supe(T {b/x}, T1{b/x}) < (supe(T',T1)){b/x}, then
there is ar such thafl = To{b/x} andT € ord(I'{b/x}, T1{b/x}).

Proof. Assumex:Ty € I' andt b: Ty, andl {b/x} + supefT {b/x}, T1{b/x}) < (supe(I',T1)){b/x}. Proof is by induction of
the definition oford(I",T1). Inductive hypothesis is that for &l € ord(I",T1), there is aT such thatT ~ To{b/x} andT €
ord(T{b/x}, Ta{b/x}).

Case T =0bject:
If To € ord(l,T1), then it must be the case thdph = Object, and soTp{b/X} = Object € [Object] =
ord(T" {b/x}, T1{b/x}).

CaseT=T/.C:
ord(l",Ty) = ord(l", T{).C, ord(I", supeXT, T,.C)), so eitheiTo = T.C andT{ € ord(I", T{), or To € ord(I", supexT, Ty)).
If To =T4.C and T§ € ord(I",T;), then by the inductive hypothesis there isTa such thatT’ ~ Tj{b/x} and

T' € ord(I{b/x},T{{b/x}). Now, T".C =~ To{b/x} andT’.C € ord(I'{b/x},T;{b/x}).C = ord(T {b/x}, T1{b/x}), as
required.

If To € ord(F,supefl,T;)), then by the inductive hypothesis, there is T such that T’ ~ To{b/x}
and T’ € ord(T{b/x},supefl",T1){b/x}). By Lemma A.10, there is al such thatT’' ~ T and T €
ord(I {b/x},supe(T {b/x}, T1{b/x})). By transitivity, T ~ To{b/x}, as required.

Case T#T.CandT; # Object:
ord(I",T1) = Ty, ord(I", supelT, T1)), so eitheffp = Ty, or To € ord(I", supeT, Ty)).

If To = Tq, thenTo{b/x} = T1{b/x} and soTo{b/x} € ord(I'{b/x}, Ti{b/x}) = T1{b/x},ord(I", supeKT, T1{b/x})), as
required.

If To € ord(I',supefl,T;)), then by the inductive hypothesis, there is Td such that T' =~ Tp{b/x},
and T’ € ord(T{b/x},supefl",T1){b/x}). By Lemma A.10, there is al such thatT' ~ T and T €
ord(I {b/x},supe({b/x}, T1{b/x})). By transitivity, T ~ To{b/x}, as required.

O
Theexactclassfunction is also closed under substitution.

LemmaA.31 Assumex: Ty e I andb: Tx. If To ~ Ty, then To{b/x} =~ Ti{b/x}, and if exactclasgTy) = P then
exactclasgTo{b/x}) = P.

Proof. By inspection of theexactclas<T) rules in Figure 1000

We define substitution for class declarations to perform the substitution only @xtlkeds clause of nested classes; substi-
tution of a base valub for variablex does not affect the fields and methods of a class; substitution within fields and methods is
performed in the static semantics (see Figure 14).

Definition A.32
(Cext T {L = M}){b/x} =C ext T{b/x} {L{b/x} F M}

The rules forCT(I",Tp,T) andl” - p £inal T are mutually recursive. We prove a single substitution lemma to cover both
judgments. Because there is no subsumption rule for the judgment £inal T, it is not closed under substitution, but we can
state a weaker property.

Lemma A.33 (Path andCT substitution) Ifx: Ty € ' andt b: Ty, then

(i) if M+ pfinal T thenl {b/x} + p{b/x} final Ty, wherel {b/x} - To <T{b/x}. Moreover, ifT is a simple class, thef is
a simple class; and

(i) if CT(F,To,Ta) =C ext Ts {L F M} thenCT(F{b/x}, To{b/x}, T1{b/x}) = C' ext T, {L' F M} for someL’, T andC’
whereL{b/x} € L', andr {b/x} - T{ < Ts{b/x}

Proof. Assumex: Ty € I' andt- b: Ty. The proof is by induction on derivations of the foffr- p final T andCT([, T, Ty) =
Cext Ts {LF M}.

CaseF-Loc, F-NULL:

Either p=¢p or p=null, and sop{b/x} = p. Both (i) and (ii) hold trivially.

27

CaseF-VAR:
If p=ywherey # x, thenp{b/x} = p=y. By F-vAR, we havey: T €T, and thereforey: T{b/x} € I'{b/x}. Thus,
I{b/x} Fyfinal T{b/x}, proving (i), and (ii) holds trivially.

If p=x, thenT =Ty andp{b/x} = b. Sincer- b: Ty, then- b final Ty for someTy wheret To < Tx. This is because if
b=null, then clearly- b final Ty, and ifb = ¢/p for someP, then- P <Ty andr b final P. Note that in either case,
if Ty is a simple class, thenb final P’ for some simple clas®'.

Thus, by Lemma A.22 {b/x} - b final Ty and, by Lemma A.237 {b/x} I To < Tx. Sincel- b: Ty, by Lemma A.24
we have- Ty wf, and so it must be the case thadloes not occur iffV(Ty), whereFV(Ty) are the free variables dk.
ThusTx = Tx{b/x}. Therefore[{b/x} - To < Tx{b/x}, and so (i) holds; (ii) holds trivially.

CaseF-GET:
p = q.f for some pathg and field f, and sol’ - g final Tq for someTq and T = T¢{q/this} for someT¢ where
ftype(l’, Tq,) = final Ts.
By the induction hypothesi§,{b/x} - q{b/x} final Ty, for someT; such thal {b/x} F T1 < Tq{b/x}.
Also, sinceftypgl’,Tq, f) = final Ty, it must be the case that for some typg € ord(I",Ty), the judgment
CT(T',Tq, Ta) = Cq ext Tsq {La Fa Mg} occurs in the derivation dype(l", Ty, f) = final Tf, andfinal T¢ f = e is
in Fy. So, by the induction hypothesis, it must be the case@&E {b/x}, Tq{b/x}, Ta{b/x}) = Cq ext T, {Lj Fj M}
andfinal Ty f =efisin FZ.
Now since CT(I,Tq,Tq) appears in the derivation dtypgl", Ty, f), the inductive hypothesis applies, and thus
I + supefl {b/x},Tq{b/x}) < (supefl,Tq)){b/x}. Lemma A.30 applies, and so there is soffjg such that

Ty =~ Ta{b/x} and T} € ord(T {b/x}, Tq{b/x}), and by Lemma A.7 fieldg,T},T}) = fieldy,Ty,Tq), and so
ftype(l {b/x}, Tq{b/x}, f) = £inal Ts. Lemma A.11 ensures thtiypg {b/x}, Ty, f) = final Ts.

We can use FGET to derive I'{b/x} + q{b/x}.f final T;{g{b/x}/this}, or equivalently, I{b/x} -
g.f{b/x} f£inal T{b/x}. Note that ifT is a simple class then soT§b/x}. Thus, (i) holds; (ii) holds trivially.
CaseF-RUNTIME:

We have - pfinal T’ for someT’ such thafl ~ T’. By the induction hypothesis, we haléb/x} - p{b/x} final Tp,
wherel {b/x} - To <T’{b/x}, and sd”{b/x} - To < T{b/x}, by <-RUNTIME and Lemma A.31.

Note that ifT cannot be a simple class, as simple classes are not in the doneéaat€lass Thus, (i) holds; (ii) holds
trivially.

CaseCT-OUTER

T = Ti{b/x} =C. Also, TCT(C) = C ext P {[; F M} andclassefl", T, P) = L, for someP, Ly, andL,. This means
thatL =LpeL{{T,/This}, andTs = P.

By the induction hypothesis, we hautasseél {b/x}, To{b/x},P) = L" for someL" such thal p{b/x} € L".
Using CT-OUTER, we can conclude th&T(I{b/x}, T2{b/x},C) = C ext P {L" o [{{T,/This} F M}, and moreover,
[{b/x} = (CpeLc{Tz/This}){b/x} = (Cp{b/x} ¢ [{To/This}) € (L" e L{T/This}), by Lemma A.13. Thus (i) is

true; (i) holds trivially.

CaseCT-NEST:

Ty = T.C, for someT. ThereforeTy{b/x} = T{b/x}.C, CT(I',T,T) =C ext T {L; i M}, classeé, Tp,Ts) = Ls,
Cext Ts {Ln F M} is a member ofy, andL = Lse Ln{T,/This}.

By the induction hypothesis, we ha@ (T {b/x}, T{b/x}, T{b/x}) =C{ ext T/ {L{ F/ M{} wherel{b/x} € L]. Thus
C ext Ts{b/x} {La{b/x} F M} is a member of/.

Also by the induction hypothesislasse§l {b/x}, T2{b/x}, Ts{b/x}) = L, whereL¢{b/x} € LL.

28

Using CTwNEST, we can show that CT(I'{b/x}, To{b/x},T{b/x}.C) = C ext T{b/x} {L; e
Ln{b/x}{T2{b/x}/This} F M}.

Moreover, L{b/x} = (Lse Ln{T2/This}){b/x} € L% e Ln{b/x}{T2{b/x}/This} = L. e [{To/This}{b/x}, by
Lemma A.13. Thus, (ii) holds; (i) holds trivially.
CaseCT-RUNTIME:

We haveclasgT) = P, classefl’, To,P) = L andCT(I, T, T1) = _ ext P {Le 0}.

By the induction hypothesis, we haetassesl {b/x}, T.{b/x},P) = LT, for someLi’p such that p{b/x} € LT). Also, by
Lemma A.31 we havelasgT;{b/x}) = P (and also thal{b/x} € dom(exactclass).

We can use CRUNTIME to derive thaCT (I {b/x}, To{b/x}, T1{b/x}) = —ext P {LTJo 0}, and so (i) holds; (i) is true
trivially.
CaseCT-DEP:

T1 = p.class, [- pfinal P, Ts= P, andclasse$l, T»,P) = L, for Lp such thal =L ¢ 0.
By the induction hypothesis, we haglasse§l {b/x}, T2{b/x},P) = LT,for someLi’p such that p{b/x} € LT,.

Also by the induction hypothesis, we hali¢b/x} + p{b/x} final Ty for someTp such that™ {b/x} - To <P. Let
classe§ {b/x}, To{b/x}, To) = Lo. By Lemma A.14L}, € Lo, and thud p{b/x} € Lo.

If p{b/x}.class ¢ dom(exactclasg then using CTeEP, we can derive thaCT(I {b/x}, To{b/x}, p{b/x}.class) =
_ext P{Lge0}. By Lemma A.13(Lpe0){b/x} =Lp{b/x} 0 € Lge0, and so (ii) holds; (i) is true trivially.

If p{b/x}.class € dom(exactclasg thenp = x, b= ¢p,, for somePR, such thafl” - B, <P, and thus by A.29 and A.23,

r{b/x} - Py <P. Letclasse§ {b/x}, To{b/x},P,) = Lp. By Lemma A.14 we have/, € Lp,. Using CTRUNTIME, we

can deduce tha&T(I {b/x}, To{b/x},¢p,.class) = _ ext R, {Lp® 0}. Thus, (i) holds; (i) is true trivially.
CaseCT-PRE

T1 =PIT:PC], andTs = P, for someP, T, andC. Moreoverclasse§", To,P) = L, for someLp such thal. =Lp e 0.
By the induction hypothesis, we haukasseél {b/x}, T2{b/x},P) = L}, for someL, such thal ,{b/x} € L},

If T{b/x} ¢ dom(exactclasg then using CTPRE we can derive thaCT(I'{b/x}, To{b/x},P[T{b/x} : PC]) =
_ext P {Le0}. Note that(Lpe0){b/x} = Lp{b/x} e0 € Lj 0, by Lemma A.13, and so (i) holds; (i) is true
trivially.

If T{b/x} € dom(exactclasg thenP[T{b/x}:P.C] € dom(exactclasg. Letexactclas{P[T{b/x}:P.C]) =P, By
Lemma A.27, - Ry <P and thus by A.29 and A.23 {b/x} - B, <P. Let classe§ {b/x}, T2{b/x},P,) = Lp.
By Lemma A.14 we havd?’p € Lp. Using CTRUNTIME, we can deduce tha&T(I{b/x}, T2{b/x},¢p,.class) =
_ext By {L, e 0}. Thus, (i) holds; (i) is true trivially.

Lemma A.33 has some useful corollaries.

Lemma A.34 (Field substitution) Ifx:Tx € I andt b: Ty, andftypgl, T, fi) = [final] T, thenftypg {b/x}, T{b/x}, fi) =
[final] T.

Proof. Follows immediately from the definition dfype(l’, T, fi) = [final] T; and Lemma A.330

Lemma A.35 (Method type substitution) Ifx:Tx € I and - b : Ty, and mtypdl,T1,To,m) = (X : 'T') — T, then
mtyp€l {b/x}, Ta{b/x}, To{b/x},m) = (X: T) — Tr.

Proof. Follows immediately from the definition ahtypél, Ty, To,m) = (X: T) — T; and Lemma A.330]

From Lemma A.33, we can show that subtyping is closed under substitution.

29

Lemma A.36 (Substitution in<) If x:Tx € I and-b: Ty, andl" - Ty < Ty, thenl {b/x} F T1{b/x} < To{b/x}.

Proof. Assumex:Tyx € ' and- b: Ty andl" - Ty <T,. The proof is by induction on the derivation bf- T; <T,. Reflexivity is
immediate and transitivity follow from the induction hypothesis.

Case<-EXTENDS:
ThenT, = supefT,T;) and by the definition oSupet we haveCT(I, T, Ty) = C ext T, {L F M}. By Lemma A.33,
CT(T{b/x}, Ta{b/x}, Ti{b/x}) = C ext T; {L’ F M}, wherel {b/x} - T; < To{b/x}.
By <-ExTENDSwe havel {b/x} - T1{b/x} <TJ, and sd™{b/x} - T1{b/x} <T>{b/x} by transitivity.

Case<-NEST.

The case holds by the induction hypothesis.

Case<-RUNTIME:
ThenTy ~ T,. By Lemma A.31T1{b/x} ~ To{b/x} and we can deriv€{b/x} - T1 {b/x} <To{b/x}.
]
The following lemma states that type well-formedness is closed under substitution of base values into types.
Lemma A.37 (Well-formedness substitution) ¥: Ty € I andr b : Ty, andl’ = T wf, thenl {b/x} - T{b/x} wf.
Proof. The proof is by induction on derivation &6f- T wf.
CaseWF-OUTER:

Trivial.

CaseWF-NEST.
T =T'C,andT{b/x} = T'{b/x}.C. We also hav€ ext Ts {L F M} € classe§, T’,T').
By the inductive hypothesis,{b/x} F T'{b/x} wf. By Lemma A.33, classefl, T/, T'){b/x} €
classeél {b/x},T'{b/x},T'{b/x}), and so there is a declaration f@ in classe§ {b/x},T'{b/x}, T’ {b/x}).
Thus,I{b/x} = T'{b/x}.C wf.

CaseWF-DEP:
T = p.class, andl’ - p final P for somep andP. By Lemma A.33[{b/x} I p{b/x} final P’ for someP’. Thus,
r{b/x} F T{b/x} wf.

CaseWF-PRE

T =P[T’:PC] for someP andl’. Moreover, - PC wf, I = T’ wf, is-exac{T’), andl" - T’ <PC.
By the inductive hypothesis, we havdb/x} - PC wf and I'{b/x} - T’{b/x} wf. Inspection of the definition of

is-exact) shows thats-exac{T’) if and only if is-exactT’{b/x}). By Lemma A.36[{b/x} - T'{b/x} <P.C. Thus,
we can use WFREto deduce thaft {b/x} - P[T’:P.C]{b/x} wf.

Finally, we can state a substitution lemma for typing judgments.
Lemma A.38 (Substitution) Ifx: Ty € " and-b: Ty, andl' -e: T, thenl'{b/x} - e{b/x} : T{b/x}.

Proof. Assumex: Ty € ' andr b: Ty. The proof is by induction on the derivationlof-e: T.
Casee=/p, e=null, e=Yy, e=final T1 X=¢€y; &:

Trivial, ase{b/x} =e.

Case e=x:
T =Ty andx{b/x} = b, and b: Tx by assumption.

Casee=final 1 y=ey; €:

30

Follows from induction hypothesis and Lemma A.37.

Case e= p.fi:

Follows from induction hypothesis, Lemma A.33, and Lemma A.34.

Case e= p.fi =[tiqa1] €1; €2
Follows from induction hypothesis, Lemma A.33, and Lemma A.34.
Case e= p.m(V):

Follows from induction hypothesis, Lemma A.33, and Lemma A.35.

Case e= V.superp.m(V):

Follows from induction hypothesis, Lemma A.33, Lemma A.37, and Lemma A.35.

Casee=new T as x {f =&}:

Follows from induction hypothesis, and Lemma A.34.

CaseT-DEP:

Follows from Lemma A.33.

CaseT-<:
Follows from the induction hypothesis, Lemma A.36, and Lemma A.19.

d

A.7 Subject reduction

Because expressions in our language are evaluated in a heap, to state the subject reduction lemma, we first define a well-typedness
condition for heaps and for configuratio(is, e).

Definition 6.1 (Well-typed heaps) A heal is well-typedif for any memory locatiorfp € dom(H),
o H(tp) =P {T=Tp},
o ftypg0,P) =T,
e F0lp:T{lp/this}, and
e /p Cdom(H)

Definition 6.2 (Well-formed configurations) A configuratiofi, e) is well-formedif H is well-typed and for any locatiofp free
ine, ¢p € domH).

We state one more lemma before proving subject reduction.
Lemma A.39 (Evaluation contexts) Assunie-e:T' andl € :T'. If T - E[¢g]: T, thenl - E[€]:T.

Proof. By structural induction oft. [J

The subject reduction lemma states that a step taken in the evaluation of a well-formed configuration results in a well-formed
configuration.

Lemma 6.3 (Subject reduction) Supposee: T, (H,e) is well-formed, andH,e) — (H’,€). Thent € :T and (H’,€) is
well-formed.

Proof. The proof is by induction on the derivation (fi,e) — (H' €).

CaseR-LET:

31

Thene= final T' x=Db; eand€ = e{b/x}.

If - £final T x="b; e:T, then by TLET, we have- b: T/ andx: T’ - e: T. By Lemma A.38}- e{b/x} : T{b/x}. Since
F T wf, we haveFV(T) = 0, and hencd {b/x} =T. Thus,t e{b/x}:T.

CaseR-GET:
Thene= ¢p.fi and€ = b; andT = Ti{¢p/this}.

Sincel- ¢p.fi : Ti{¢p/this}, by T-GET, - ¢p: T’ for someT’ whereftypg®, T’, fi) = [final] T.
SinceH is well-typed,H (¢p) = {f = b}, and in particular- b : Ti{¢p/this}, or equivalently- b : T.

CaseR-SET.
Thene=/(p.fi =Db; €.

Sincer- ¢p.fi = b; € :T, then by TseT, we havet ¢p: T’ for someT’ whereftypg0, T/, fj) = [final] T;, and-€': T,
andF b:Ti{¢p/this}.

Now, sinceH is well-typed and sincél (/p) = P {f = b}, we have: b:T{¢p/this} andbj = null or bj € dom(H).
Now, H'(¢p) =P {T =D’} Whereb'j =bjforj=1,...,i—1,i+1,....,nandb =b. If b#null, bis free in€, and
thereforep € dom(H) and thus is in dorifH’). ThusH’ is well-typed andH’,€) is well-formed.

CaseR-CALL:
Thene = /p.m(b) ande’ = &'{(p/this,b/X} wherembodyP,P,m) = (%,€’). And T = T"{(p/this,b/X}.

Sincer- ¢p.m(b): T”{¢p/this,b/%}, we have by ReALL, mtypdd,P,P,m) = (X:T) — T".

Now, sincembodyP,P,m) = (X,&’) andmtypg0,P,P,m) = (X: T) — T”, by Lemma A.2, there is B’ where- P <P’
such thathis: P/, X:T +e’:T".

By Lemma A.38, we have €’ {/p/this,b/X}:T"{¢p/this,b/X}, or equivalently- € :T.

CaseR-SUPER
Thene = (p.superq.m(b) ande = &' {¢p/this,b/x}, wherembodyP,Q,m) = (%,€’). And T = T"{¢p/this,b/X}.

The proof is similar to previous case, but uses the observation tf@aAQ) = Q’, thenq' follows Q in ord(0, P).

CaseR-NEW:

Thene=new T as X {F: &} and€ = /p. fr =¢ina1 €; Op, whereruntimeclasgT) = P. ande| is defined as follows:
If f/ €T, thene =e{tp/x};if f/ € /' —T, thend = finit(0,P, f;){¢p/this} wheref’ = fnames0, P).

Sincer new T as x { f = & : T by T-NEw, we haveftype(0, P, T) = [final] T andx:T I-e: T{x/this} for someT.
SinceruntimeclasgT) = P, by T-Loc, we have- (p:T.

Thus, to prove that the sequence of field assignments endifgisnwell-typed and has typ€, we need only show for
each assignmetip. f/ = €, if ftypg(0,P, f/) = [final] T/, thent € : T/{¢p/this}.

There are two cases.

1. If f/ € f, thenel = e {¢p/x}. Sinceftypeg(0, P, f/) = [final] T/, we have by TNEW [, x: P+ & : T/{x/this}. By
Lemma A.38, we can derive g {¢p/x} : T/ {x/this}{¢p/x} and hence € : T{¢p/this}.

2. If f/ € f7— T, thene = &'{¢p/this}, wherefinit(0,P, f/) = €’. Sinceftype(0,P, f/) = [final] T/, by LemmaA.3,
there is &' such that P<P’ andthis:P'+ &' :T/. Thus, by applying Lemma A.38, we haves : T {¢p/this}.

Thus, we can derive by Tew, EP.F’ =final 6’; lp:P.
Next, we have to show thgH, €) is well-formed. First, observe thép is free in€ and is also in dorfH’). Second,

H’(¢p) = P {f/ = nul1}. Sincet null:T for any well-formedT, andfnames$P) = f/, H’ is well-typed. Since is
also well-typed{H’, €) is well-formed.

32

CaseR-CONG:

Thene = E[e] and€ = E[€], where(H,e;) — (H,€}).
Sincet E[eq]: T, there is al; such that-e;: Ty.
Thus, by the induction hypothesis €, : T; andH’ is well-formed.

Finally, by Lemma A.39 E[¢]]: T.

CaseR-NULL:
Thene=E|N] and€¢ =null. If [+e: T, thenl Fnull: T by T-NULL.
|

A.8 Progress
To prove the progress lemma, we need the following additional lemma.

Lemma A.40 If - T wf then either
(i) T =TE[p], for some access pafh# ¢p; or
(i) there is aP such thatuntimeclasgT) = P.
Proof. By structural induction off.
Case T=C:
Case (ii) holds.

Case T=T'C:

By the inductive hypothesis, either {ij = TE[p]|, for some access pafi+ £p, in which casel = TE[p], using the type
evaluation context E.C; or (i) there is aP’ such thatuntimeclasgT’) = P/, and sauntimeclasgT) = P'.C.

Case T= p.class:

If p# ¢p thenT = TE[p], and so (i) holds. Otherwis@,= ¢p, andruntimeclassT= P, and so (i) holds.

Case T=P[T’:PC]:

By the inductive hypothesis, either (TY = TE[p|, for some access path+# ¢p, in which casel = TE|[p], using the
type evaluation conteX® [TE: P.C]; or (ii) there is aP’ such thatuntimeclasgT’) = P/, and soruntimeclasgT) =
prefix P,runtime-clas{T’), runtimeclasgT’),PC).

]

The progress lemma states that for any well-formed configurdtior), eithereis a base valuép ornull, or (H,€) can make
a step according to the operational semantics.

Lemma 6.4 (Progress) If-e:T, T wf, (H,e) is well-formed, then eithee = b or there is a configuratiofH’, €) such that
(H,e) — (H',¢).

Proof. The proof is by structural induction @
Case e=/¢p ore=null:

Thene=nh.

Case e=x:

Impossible since& is not well-typed in the empty environment.

Casee=final T x=¢q; e:

33

Sinceeis well-typed, by TLET, - T wf. There are three cases for
If T = TE[null], then(H,€) can make a step by RuLL.
If T = TE[p] for some access pafh+ b, then(H,e) can make a step by RoNG.

If T = TE[¢p], then by Lemma A.40, there isRasuch thatuntimeclasgT) = P. In this case, if; # b, thene= E[ey]
and(H,e) can make a step by RoNG. Otherwiseg can make a step by REeT.

Case e=p.fi:

Sincepis well-typed in the empty environment, there are three casgs for
If p=null, thene=N and(H,e€) can make a step by RuLL.
If p=p'.f’ for somep/, thene= E[p/] and(H,€e) can make a step by RONG.

If p=¢p, then by TGET, we have- /p : P. SinceH is well-typed,H (¢p) = P {f = b} andf; € f. Thus,e can make a
step by ReET.

Case e= p.fi =|¢ina1) €1; &
Sincep is well-typed in the empty environment, there are three cases for
If p=null, thene= N and(H,e€) can make a step by RuLL.

If p= p'.f’ for somep’, thene = E[p/] and(H, e) can make a step by RoONG.

If p=¢p, then by TSET, - ¢p : P. If & = b, then sinceH is well-typed,H (¢p) = P {T = b} and f; € . In this casee
can make a step by RET. If e; # b, thene= EJe;] and(H, €) can make a step by RONG.

Case e= p.m(V):

Sincep is well-typed in the empty environment, there are three casgs for
If p=null, thene=N and(H,e€) can make a step by RuLL.

If p=p'.f’ for somep/, thene= E[p/] and(H,e) can make a step by RONG.

If p=¢p, then by TEALL, I ¢p : P andmtypd®,P,P,m) = (X: T) — T’ for somex, T, andT’ such that #X) = #(V).
Since V: T{fp/this}, V=Db. Itis easy to see thanbodyP,P,m) = (X,ep). Thus,(H,e) can take a step by RALL.

Case e= V.superg.m(V):
Sincev andv are well-typed in the empty environmenit= b andv = b.

If v=mnull, thene= N and(H,e) can make a step by RuLL.

Otherwise,v = ¢p. By T-SUPER we havemtyp€&®,Q,super0,Q),m) = (X:T) — T’ for someX, T, andT’. Since
super0,Q) follows Q in ord(0,Q), (0,P, Q) must implement with the same signature and thustyp&0,P,Q,m) =

(X:T) — T, where #%) = #(b). Itis easy to see that {{0,P.Q) = @, mbodyQ,Q,m) = (X,&p). In this caseZ can
make a step by RRUPER

Casee=new T as x {f =&}:

Sincet T wf, there are three cases.
If T = TE[p| for some access paththat is not a base valug then(H,e) can make a step by RONG.

If T = TE[null], then(H,e) can make a step by RuLL.

If T = TE[(p], then by Lemma A.40, there isRasuch thatuntimeclasgT) = P. By T-NEw, we haveftypg0,P, f) =
[final] T, and it is easy to see thatC fnames0d, P). In this case{H,e) can make a step by REW.

34

A.9 Soundness

Finally, we define the normal form of a configuration, define well-formedness for programs, and state the soundness theorem.
Definition 6.5 (Normal forms) A configuratiofH, €) is in normal formif there is no(H’, €) such thatH,e) — (H',¢€).

Definition 6.6 A programPr = (TCT, €) is well-formedif - TCT ok and®+ e: T for someT such tha® - T wf.

Theorem 6.7 (Soundness) Given a well-formed progr®m= (TCT, e), if the configuration0, e) is well-formed and- e: T, and
if (H’,€) is a normal form such thg®,e) —* (H’,€), then€ is either a locatiofp € dom(H’) ornull and-¢ : T.

Proof. Immediate from Lemma 6.3 and Lemma 6.4.

35

