
Masked Types for Sound Object Initialization

Xin Qi Andrew C. Myers
Computer Science Department

Cornell University
{qixin,andru}@cs.cornell.edu

Abstract
This paper presents a type-based solution to the long-standing prob-
lem of object initialization. Constructors, the conventional mech-
anism for object initialization, have semantics that are surprising
to programmers and that lead to bugs. They also contribute to the
problem of null-pointer exceptions, which make software less reli-
able. Masked types are a new type-state mechanism that explicitly
tracks the initialization state of objects and prevents reading from
uninitialized fields. In the resulting language, constructors are or-
dinary methods that operate on uninitialized objects, and no spe-
cial default value (null) is needed in the language. Initialization
of cyclic data structures is achieved with the use of conditionally
masked types. Masked types are modular and compatible with data
abstraction. The type system is presented in a simplified object cal-
culus and is proved to soundly prevent reading from uninitialized
fields. Masked types have been implemented as an extension to
Java, in which compilation simply erases extra type information.
Experience using the extended language suggests that masked types
work well on real code.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Class invariants, programming by contract; D.3.2
[Language Classifications]: Object-oriented languages

General Terms Languages, Reliability

Keywords invariants, null pointer exceptions, conditional masks,
cyclic data structures, data abstraction

1. Introduction
Object initialization remains an unsatisfactory aspect of object-
oriented programming. In the usual approach, objects of a given
class are created and initialized only by class constructors. There-
fore, when implementing class methods, the programmer can as-
sume that object fields satisfy an invariant established by the con-
structors. However, in the presence of inheritance, the methods of
partly initialized objects may be invoked before the invariant has
been established. As a result, reasoning about object initialization
can be challenging and non-modular. No fully satisfactory solution
to object initialization currently exists.

This paper presents a new solution to the object initialization
problem, based on a new type mechanism, masked types. As Sec-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’09, January 18–24, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-379-2/09/01. . . $5.00.

tion 2 describes, a masked type keeps track of the parts of an object
that have not been initialized. For example, the type T\ f describes
an object of type T whose field f may not be initialized yet, and
the type T\∗ represents an object none of whose fields are neces-
sarily initialized. As an object is constructed, the type of the object
changes to reflect the fields that are initialized. Thus, the type sys-
tem for masked types is flow-sensitive; it has typestate [31]. The
type of an object conservatively tracks its initialization state, so a
partially initialized object cannot be used where a fully initialized
object is expected.

The problem of object initialization is intertwined with the prob-
lem of null pointer exceptions, which significantly hurt software
reliability [2]. Because object initialization is unsound, most lan-
guages aiming for type safety (e.g., Java, C#, Modula-3) first ini-
tialize fields with null. This semantics implies that null must be a
legal value for all object types, leading to ubiquitous, implicit null
checks that can generate null pointer exceptions. Recently there has
been interest in controlling null pointer exceptions through non-
null annotations and other means [7, 2, 19, 6]. Non-null annotations
by themselves do not solve the problem of object initialization; in
fact, they make it more important because non-null fields must be
initialized before use. But with masked types, there is no need for
a default initialization value. It is then straightforward to eliminate
null values entirely from the language. There are legitimate uses
of null other than as an initialization placeholder, but for these
uses, an “option” or “maybe” type is a better approach, because it
makes null checks explicit and rare.

A language with masked types can be simpler in another way.
There is no need to give constructors a special status in the lan-
guage, because types track initialization state. Rather than a lan-
guage feature, constructors become a design pattern: they are ordi-
nary methods that change the initialization state of the receiver.

Cyclic data structures pose a challenge for object initialization.
However, conditionally masked types make it possible to create
cyclic data structures, such as doubly-linked lists and trees with
parent pointers, without resorting to placeholder null values. Con-
ditional masks record dependencies between initialization of differ-
ent fields, so that initializing one field can “tie the knot”, changing
the initialization state of many fields at once.

Perhaps the most closely related prior work is that of Fähndrich
and Xia [9], who introduce delayed types for static reasoning about
partially initialized objects. Masked types support cyclic data struc-
tures that delayed types do not. Masked types also support richer
initialization abstractions: for example, helper methods for par-
tial initialization and reinitialization of recycled objects. Abstract
masks, described in Section 3, support initialization abstractions
that are compatible with data abstraction and inheritance.

Masked types have been formalized for a simplified object lan-
guage, described in Section 4. The key soundness theorem is for-
malized and has been proved for this language: well-typed pro-
grams never read uninitialized fields.



1 class Point {
2 int x, int y;
3 Point(int x, int y) {
4 this.x = x;
5 this.y = y;
6 display();
7 }
8 void display() {
9 System.out.println(x + " " + y);
10 }
11 }
12
13 class CPoint extends Point {
14 Color c;
15 CPoint(int x, int y, Color c) {
16 super(x, y);
17 this.c = c;
18 }
19 void display() {
20 System.out.println(x + " " + y + " " + c.name());
21 }
22 }

Figure 1. Code with an initialization bug

Section 5 reports on the implementation of masked types as a
mostly backward-compatible extension to the Java language called
J\mask. Section 6 discusses experience using J\mask in the con-
text of the Java Collections Framework, where masked types are
shown to do a good job of capturing desirable initialization idioms.
Related work is discussed in Section 7. Section 8 concludes.

2. Masked types
Figure 1 illustrates a bug that can easily happen in an object-
oriented language like Java. In the class Point, representing a 2D
point, the constructor calls a virtual method display that prints the
coordinates of the point. The two fields x and y are properly initial-
ized before display is called. However, in the subclass CPoint
representing a colored point, the display method has been over-
ridden in a way that causes the added c field to be read before it is
initialized, resulting in a null pointer exception.

This example is simple, but in general, initialization bugs are
difficult to prevent in an automatic way. It would be too restrictive
to rule out virtual method calls on partially constructed objects.
Further, the bug involves the interaction of code from two different
classes (Point and CPoint). An implementer of CPoint might not
have access to the code of Point and would not realize the danger
of overriding the display method in this seemingly reasonable
way.

Our goal is to prevent code like that of class Point from type-
checking, but to allow complex, legitimate initialization patterns.
The key observation is that before the call to display on line 6,
the fields in Point are initialized, but fields of subclasses of Point
are not. However, the type of the method display does not prevent
the partially initialized receiver from being passed to an overridden
version of the method that reads uninitialized fields, as in CPoint.

2.1 Types for initialization state
A masked type T\M, where M is a mask that denotes some object
fields, is the type T but without read access to the denoted fields.
Masked types are a completely static mechanism, so a J\mask
program is compiled by erasing masks. No run-time penalty is paid
for safe object initialization.

The simplest form of a mask is just the name of a field. For
example, an object of type CPoint\c is an instance of the CPoint

class whose field c cannot be read, perhaps because it has not been
initialized. We say that the field c is masked in this type.

A type with no mask means that the object is fully initialized.
In typical programming practice, this would be the ordinary state
of the object, in which its invariant is already established.

On entry to a constructor such as Point(), the newly created
object has all its fields masked. The actual class of the new object
might be a subclass (for example, CPoint), so on exit, subclass
fields remain to be initialized. A subclass mask, written C.sub, is
used to mask all fields introduced in subclasses of C, not including
those of C itself. Therefore, just before line 4 in Figure 1, the
object being constructed has type Point\x\y\Point.sub. (While
this type looks complicated, it can be inferred automatically.)

When a field is initialized by assigning to it, the correspond-
ing mask is removed from the type of the object. For example,
line 4 in Figure 1 assigns to field x, so the type of this becomes
Point\y\Point.sub. After the assignment to y on the next line,
the type of this becomes Point\Point.sub. Thus, the initializa-
tion of various fields is recorded in the changing type of this.
Because variables may have different types at different program
points, J\mask has a flow-sensitive type system.

Subclass masks such as Point.sub can be removed when the
exact run-time class of an object is known, because there are no
subclass fields left to initialize. The type of a new expression is
known exactly, as is the type of a value of any class known not to
have a subclass (in Java, a “final” class).

J\mask has a special mask ∗ as a convenient shorthand for
masking all fields, including those masked by the subclass mask.
On entry to the CPoint constructor, the object can be given type
CPoint\∗, which is equivalent to CPoint\x\y\c\CPoint.sub.

2.2 Mask effects
In J\mask, methods and constructors can have effects [23] that
propagate mask information across calls. For example, the J\mask
signatures for the Point constructor and the display method can
be annotated explicitly with effect clauses:

Point(int x, int y) effect * -> Point.sub
void display() effect {} -> {}

The effect of this Point constructor says that at entry to the
constructor, all fields are uninitialized (precondition mask *) and
therefore unreadable; at the end of the constructor, only fields in-
troduced by subclasses of Point remain uninitialized (postcondi-
tion mask Point.sub). Because the initial and final masks of the
display method are both {}, denoting the absence of any mask,
the method can be called only with a fully initialized object, and it
leaves the object fully initialized.

With these effects, the bug in Figure 1 would be caught stati-
cally. The method display cannot be invoked on line 6, because
there the type of this is Point\Point.sub, which does not sat-
isfy the precondition of display. The J\mask compiler detects this
unsafe call without inspecting any subclass of Point.

This example suggests how mask effects make the J\mask type
system modular. Mask effects explicitly represent the contract on
initialization states that a method is guaranteed to follow. This
explicit contract allows the compiler to type-check programs one
class at a time, and also enables programmers to reason about
initialization locally.

Indeed, masked types and mask effects capture changes to ini-
tialization state with enough precision that constructors in J\mask
are essentially ordinary methods that remove masks from the re-
ceiver. However, for convenience and backward compatibility, the
J\mask language still has constructors.

To reduce the annotation burden, the J\mask language provides
default effects for methods and constructors. Programmers do not



normally have to annotate code with effects or masks. For ordinary
methods, the default is {} -> {}; for constructors, the default
effect is close to that shown above (see Section 2.3).

The effects shown capture changes to the initialization state
of the parameter this, the receiver object. J\mask also supports
effects on other parameters, as shown in Section 2.5.

For simplicity, exceptions, which are rarely thrown during ini-
tialization anyway, have been ignored in this paper. However, ex-
ceptions can be supported by providing a postcondition for each
exceptional exit path in the effect clause.

2.3 Must-masks
All the masks shown in Section 2.1 are simple masks. A simple
mask S, e.g., f , ∗, or C.sub, means that the fields it describe may
be uninitialized. Thus, there is a subtyping relationship T ≤ T\S,
because it is safe to treat an initialized field as one that may be
uninitialized.

However, when an object is created, it is known that all the
fields must be uninitialized. J\mask uses must-masks, written S!, to
describe fields that must definitely be uninitialized. A must-masked
type T\S! is also a subtype of T\S, but T is not a subtype of T\S!.

One use of must-masks is for initialization of “final” fields,
which is only allowed when the field is must-masked, ensuring that
the field is initialized exactly once. Must-masks and the absence of
masks roughly correspond to the notions of definite unassignment
and definite assignment in the Java Language Specification [12].
However, J\mask ensures that a final field cannot be read before it
is initialized, while Java does not. J\mask also lifts the limitation in
Java that final fields can only be initialized in a constructor or an
initializer.

Must-masks are also used to express the default effect of a con-
structor of class C, which is *! -> C.sub!. Objects start with all
fields definitely uninitialized, which is represented with the initial
mask *!. Constructors usually do not initialize fields declared in
subclasses, so the default postcondition mask is C.sub!.

Must-masks impose restrictions on how an object can be
aliased: if there is a reference with a must-masked type, it must
be the only reference through which the object may be accessed;
otherwise, the must-masked field might be initialized through an-
other reference to the object, invalidating the must-mask. This does
not preclude aliasing, but implies rather that other references have
to be through fields that are themselves masked.

J\mask uses typestate to keep track of initialization state. A
problem with most previous typestate mechanisms is that they re-
quire reasoning about potential aliasing, to prevent aliases to the
same object that disagree about the current state. Aliasing makes
it notoriously difficult to check whether clients and implementa-
tions are compliant with protocols specified with typestate [1], and
much previous work on typestates requires complicated aliasing an-
notations or linear types. J\mask is designed to work with no extra
aliasing control mechanism, which provides the added benefit of
soundness in a multi-threading setting, since operations on an ob-
ject through aliases from other threads do not invalidate typestates
in the current thread.

The key to avoiding reasoning about aliasing is that if an assign-
ment creates an unmasked alias, then must-masks on both sides are
conservatively converted to corresponding simple (“may”) masks.
For example, after the following code, the type of both x and y is
the simply masked type C\f:

C\f! x = ...;
C\f! y = x;

Similarly the following code also removes the must annotation
from the type binding of variable x, because z.g becomes an alias
and the field g is not masked in the type D of variable z:

C\f! x = ...;
D z = ...;
z.g = x;

The non-aliasing requirement on must-masks might seem re-
strictive, but it is usually not a problem: must-masks typically ap-
pear near allocation sites, where no alias has been created.

2.4 Reinitialization
Beyond initialization, masked types can help reasoning about reini-
tialization. A mask can represent not only an uninitialized field, but
also a field that must be reassigned before further read accesses. To
enforce reinitialization, a mask can be introduced on the field, via
the subtyping rule T ≤T\ f .

For example, Figure 2 illustrates a custom memory management
system that manages a pool of recycled objects of the class Node.
Actively used objects are not in the pool and store data in their d
fields. Objects in the pool are threaded into a freelist using their
next fields. When a Node object is no longer used, it is put into
a pool by calling the recycle method; when a new instance of
Node is needed, the getNode method returns an object from the
pool, if there is any. Masked types can help ensure that the field
d is reinitialized whenever a Node object is retrieved from the
pool and gets a second life. Of course, like most custom memory
management systems, the code in this example does not guarantee
that no alias exists after an object is recycled. Masked types are not
intended to enforce this kind of general correctness.

1 class Node {
2 Data d;
3 Node\d next;
4 }
5
6 class Pool {
7 Node\d head;
8 ...
9 Node\d\next getNode() {
10 if (head != sentinel) {
11 Node\d\next result = head;
12 head = head.next;
13 return result;
14 } else
15 return new Node();
16 }
17 void recycle(Node\next n) {
18 n.next = head;
19 head = n;
20 }
21 }

Figure 2. Object recycling

The type Node is a subtype of Node\d, and therefore the sec-
ond assignment (line 19) in method recycle type-checks, causing
Node objects in the pool to “forget” about the data stored in field d.

Masked types provide an additional benefit here. Objects in
active use have type Node\next, preventing traversal of the freelist
from outside the Pool class.

2.5 Initializing cyclic data structures
Many data structures that arise in practice contain circular refer-
ences: for example, doubly linked lists and trees whose nodes have
parent pointers. Safe initialization of these cyclic data structures
poses a challenge. In object-oriented languages, storing a reference
to a partially initialized object is normally required, with no guar-
antee that the object is fully initialized before use.

J\mask explicitly tracks fields that point to partially ini-
tialized objects with conditionally masked types, written



T\ f [x1.g1, . . . ,xn.gn]. The conditional mask f [x1.g1, . . . ,xn.gn]
describes a field f referencing a partially initialized object, which
will become fully initialized when all fields xi.gi are initialized. In
other words, the removal of the mask on f is conditioned on the
removal of all masks on xi.gi.

Conditional masks are normally introduced by an assignment to
a must-masked field f , when the right-hand side of the assignment
has more masks than the declared field type. Consider, for example,
a field assignment x.f = y, where x has type T\ f !, y has type
T ′\g, and the field f of class T has type T ′. Note that T ′\g is not
a subtype of T ′. J\mask makes this assignment safe by changing
the type of x to T\ f [y.g] after the assignment, showing that the
field x.f is still masked, but its mask should be removed upon the
removal of the mask on y.g.

1 class Node {
2 Node parent;
3 Node() effect *! -> *! { }
4 }
5
6 final class Leaf extends Node {
7 Leaf() effect *! -> parent! { }
8 }
9
10 final class Binary extends Node {
11 Node left, right;
12 Binary(
13 Node\parent!\Node.sub[l.parent] -> *[this.parent] l,
14 Node\parent!\Node.sub[r.parent] -> *[this.parent] r)
15 effect *! -> parent!, left[this.parent],
16 right[this.parent] {
17 this.left = l;
18 this.right = r;
19 l.parent = this;
20 r.parent = this;
21 }
22 }
23
24 Leaf\parent! l = new Leaf();
25 Leaf\parent! r = new Leaf();
26 Binary\parent!\left[root.parent]\right[root.parent]
27 root = new Binary(l, r);
28 root.parent = root; // Now root has type Binary.

Figure 3. Initialization of a tree with parent pointers

Figure 3 shows how to safely initialize a binary tree with parent
pointers. For convenience, we assume all local variables, including
formal parameters, are final. (Section 5 discusses how to relax
this.)

Figure 3 also demonstrates effects on parameters other than the
receiver this: the parameters l and r of the Binary constructor
both have the type Node\∗[this.parent] upon the exit of the
constructor.

In this example, initialization is bottom-up, as it would be,
for example, in a shift-reduce parser. Child nodes are created,
initialized, and then used to construct their parent node. However,
child nodes cannot be fully initialized before their parent fields are
set, and moreover, they cannot even be considered fully initialized
before the fields of all the objects that are transitively reachable are
set. (Top-down initialization of this data structure creates similar
issues.)

The parent field of a node will eventually point to an object
that is created later and that contains child pointers pointing back
to the current node, creating parent–child cycles. Of course, the
parent field of the root of the tree must point to something special.
For example, it can point to the root itself, as shown on line 28, or
to a sentinel node.

The dependencies between masks after line 20 in Figure 3 are
summarized in Figure 4, where the mask at the tail of an arrow
is removed when the mask at its head is removed. The masks on
this.left and this.right after line 20 transitively depend on
the mask on this.parent.

this.parent

this.left

l.parent r.parent

this.right

l.Node.sub r.Node.sub

Figure 4. Mask dependencies

The postcondition in the effect of the Binary construc-
tor summarizes the dependencies in the figure: parameters
l and r both have mask ∗[this.parent], which means that
all their fields are conditionally masked, and this has type
Binary\parent!\left[this.parent]\right[this.parent],
which is compatible with the parameter type of the Binary
constructor. Therefore, the construction can proceed to build
higher trees. Finally, the tree is fully initialized when the parent
field of the root is initialized, because removing its mask enables
removing all the masks in Figure 4.

In general, a field f should be unreadable unless every object
transitively reachable through f has been appropriately initialized.
That is, its masks have been removed at least to the level according
to the type of the field through which the object is referenced.

Therefore, there are three ways to remove a conditional mask
on field f :

• Like other kinds of masks, the conditional mask can be removed
by directly initializing the field f .

• As shown in Figure 3, on line 28, conditional masks on
root.left and root.right are removed by removing the
mask root.parent they (transitively) depend on.

• The last way to remove a conditional mask is by creating cyclic
dependencies. For example, the following code creates cyclic
dependencies between x.f and y.g, which cancel each other.

// x starts with type C\f!, and y starts with D\g!
x.f = y; // now x has type C\f[y.g]
y.g = x; // now y has type D\g[x.f]

// x can be typed C, and y can be typed D

In general, if some dependencies form a strongly connected
component in which no mask depends on a mask outside the
component, they can all be removed together.

Subtyping generalizes to conditionally masked types: T ≤
T\ f [x1.g1, . . . ,xn.gn]≤T\ f . In fact, a type T with unmasked field
f can be viewed as a type that has empty conditions for the mask
on f , that is, T\ f [ ], and a simply masked type T\ f can be seen
as having an unsatisfiable condition on f , because a simple mask
cannot be removed by removing other masks.

Conditional masks and simple masks do not impose any restric-
tion on aliasing, because mask subtyping ensures that they cannot
be invalidated by any future change to the object. This property has
been called heap monotonicity [8].

Conditional masks also provide a way to create temporarily
unreadable aliases for must-masked objects. Because the aliases are
unreadable, the must annotations need not be removed. In Figure 3,
for example, the assignment on line 17 creates an alias this.left
for the left child object stored in variable l, but l remains of
type Node\parent!, since the field this.left is masked with
the conditional mask left[l.parent] after line 17. Not losing the



must information means the initialization state of l is tracked more
precisely.

For simplicity, fields currently must be declared with unmasked
or simply masked types; no conditional masks or must-masks are
allowed. It should be straightforward to add support for condition-
ally masked field types, but this is left for future work.

3. Abstract masks
With the exception of ∗ and C.sub, the masks we have seen so
far are concrete, explicitly naming instance fields. Concrete masks
create difficulties for data abstraction, because the fields might not
be visible where the masks are needed. For example, in Figure 3,
if the two fields left and right of class Binary were private, it
would be impossible to declare the local variable root as shown on
line 26, because its type mentions the names of the fields outside
the class definition.
1 class Node {
2 mask Children;
3 ...
4 }
5
6 final class Binary extends Node {
7 private Node left, right;
8 mask Children += left, right;
9 Binary(...)
10 effect *! -> parent!,
11 Children[this.parent] { ... }
12 ...
13 }
14 ...
15 Binary\parent!\Children[root.parent]
16 root = new Binary(l, r);
17 root.parent = root;

Figure 5. The tree example with abstract masks

Therefore J\mask introduces abstract masks that abstract over
sets of concrete fields, providing a way to write types that mask
fields that are not visible. Figure 5 shows an updated version of the
code from Figure 3, where the two fields left and right are now
private, and an abstract mask Children is introduced to mask them
outside the class Binary. The Children mask is first declared in
class Node (line 2), with an empty set of fields, and is overridden
in Binary (line 8) to include the two children of a binary node.
J\mask currently allows abstract masks to be overridden only to
include more fields; more complex overriding is left to future work.

The ∗ mask, introduced in Section 2.1, is not much different
from any other abstract mask, except that it is built-in, and is
automatically overridden in every class to include all the fields
declared in that class.

3.1 Modular checking of abstract masks
Subclass masks. The Point/CPoint example in Section 2.1
showed that unsafe calls to overridden methods could be
caught in a modular way with the help of the subclass mask
Point.sub. The mask Point.sub can be connected to the
abstract mask ∗ through the equivalence of the two types
Point\∗ and Point\x\y\Point.sub. Any type with an ab-
stract mask can be similarly expanded. For example, given
the code in Figure 5, the masked type Binary\Children
is equivalent to Binary\left\right\Binary.Children.sub,
where Binary.Children.sub represents all the concrete masks
that are added into overriding declarations of Children
in subclasses of Binary, excluding Binary itself. The set
{left,right,Binary.Children.sub} is the interpretation of
Children in the context of Binary.

In general, C.M.sub represents the subclass mask of abstract
mask M with respect to class C, and the interpretation of M in the
context of C is a set consisting of all the concrete masks added into
M in C and its superclasses, together with subclass mask C.M.sub.
Before type checking, the J\mask compiler internally expands all
abstract masks into their interpretations.

Subclass masks are important for modular type checking, be-
cause they make it possible to distinguish the current definition of
an abstract mask and overriding definitions in subclasses, which are
generally unavailable in a modular setting.

1 class C {
2 T f;
3 mask M += f;
4 void initM() effect M -> {} {
5 this.f = ...;
6 }
7 }
8
9 class D extends C {
10 T g;
11 mask M += g;
12 void initM() effect M -> {} {
13 this.g = ...;
14 super.initM();
15 }
16 }

Figure 6. Code that needs mask constraints

Mask constraints. Subclass masks help prevent unsafe calls, but
since they describe fields that are generally not known in the cur-
rent class, safely removing them by initialization requires some
additional mechanism. Figure 6 illustrates an initialization helper
method initM, which is intended to remove the abstract mask M
from its receiver. It is properly overridden in the subclass D to han-
dle the overridden abstract mask M. However, the initM method
would not type-check as written in Figure 6, because right after
line 5, the type of this is actually C\C.M.sub, rather than the un-
masked type C.

J\mask uses mask constraints to solve this problem. Ev-
ery J\mask method can declare a mask constraint of the form
captures M1, . . . ,Mn, where M1, . . . ,Mn are abstract masks. This
constraint means that the body of the method is type-checked as-
suming that the masks Mi are the same as their concrete definition
in the class where the method is defined, with no subclass masks.

For example, the signature of initM on lines 4 and 12 can be
updated with a mask constraint:

void initM() effect M -> {} captures M

The example then type-checks, because at the entries to initM
in classes C and D, the type of this becomes C\f and D\f\g
respectively, rather than C\f\C.M.sub and D\f\g\D.M.sub.

However, when type-checking callers against the public signa-
ture of the method, the abstract mask should still be interpreted to
include the subclass mask.

A method defined in class C with a mask constraint on an
abstract mask M depends on the set of fields that M denotes in
C. It would be unsound to allow that method to be inherited by
a subclass that overrides the abstract mask. Therefore, the type
system requires such methods to be overridden when the masks
they depend on are overridden. Consequently, constructors, final
methods, and static methods cannot have mask constraints, because
they cannot be overridden in subclasses.



programs Pr ::= 〈L,e〉
class declarations L ::= class C extends C′ {F Mt}
field declarations F ::= T f
method declarations Mt ::= T m(T x) effect M1 M2 {e}
simple masks S ::= f | subC
masks M ::= S | S! | S[p.Sp]
paths p ::= ` | x
unmasked types U ::= ◦ | C | C!
types T ::= U | T\M
expressions e ::= (T p) | new C | e1; e2 | e. f

| (T1 p1). f = (T2 p2) | (T0 p0).m((T p))
| let T x = e1 in e2

typing environments Γ ::= /0 | Γ,x :T | Γ, ` :T
heaps H ::= /0 | H, ` 7→ o
objects o ::= C!\M{ f = `}
evaluation contexts E ::= [·] | E. f | E; e | let T x = E in e

Figure 7. Grammar

3.2 Mask algebra
J\mask supports two algebraic operations on masks that make ab-
stract masks more useful: (M1 +M2) and (M1−M2).

An abstract mask can be interpreted as a set of concrete masks
on fields and possibly a subclass mask. The two operators on masks
correspond to the set union (+) and set difference (−) of the
interpretations of the abstract masks. Concrete masks can appear
in algebraic masks, where they are interpreted as singleton sets.

Algebraic masks enable the programmer to express initializa-
tion state abstractly, without knowing all the fields masked by an
abstract mask. For example, suppose there is a local variable x,
starting with the type T\M where M is an abstract mask, and field
x. f is initialized:

T\M x = ...;
x.f = ...; // The type of x is now T\(M - f)

Here, one needs not know which concrete masks are included in M,
nor even whether M includes f .

Mask algebra also helps programmers compose masks to keep
the typestates in J\mask compact. For example, if a class has n
fields, each of which might independently be initialized or unini-
tialized, it would require 2n different typestates to represent all pos-
sible initialization states, were there no mask algebra. With mask
algebra, one can simply use the “sum” of the masks corresponding
to all the uninitialized fields.

J\mask currently only supports these two algebraic operations
on masks, but they seem to suffice. Richer operators on masks are
left to future work.

4. The J\mask calculus
We now formalize masked types as part of a simple object calculus.
Unfortunately, previous object calculi are not suitable for modeling
masked types.

4.1 Grammar
Figure 7 shows the grammar of the core J\mask calculus. We use
the notation a for both the list a1, . . . ,an and the set {a1, . . . ,an}, for
n ≥ 0. We abbreviate terms with list subterms in the obvious way,
e.g., T x stands for T1 x1, . . . ,Tn xn, T\M stands for T\M1\. . .\Mn,
and p.S stands for p.S1, . . . , p.Sn.

A program Pr is a pair 〈L,e〉 of a set of class declarations L and
an expression e (the main method). Each class C is declared with
a superclass C′, a set of field declarations F and a set of method
declarations Mt. To simplify presentation, all the class declarations
are assumed to be global information.

J\mask only supports single inheritance. The root of the class
hierarchy is denoted by ◦. We write C≺C′ to mean that class C
is a direct subclass of C′, and the relation ≺∗ is the reflexive and
transitive closure of ≺.

Notably, there is no null value in the language, because none
is needed for object initialization.

There are three kinds of masks: simple masks S, must-masks
S!, and conditional masks S[p.Sp]. The auxiliary function simple
elides the must annotation and conditions of a mask.

simple(S) = S

simple(S!) = S

simple(S[p.Sp]) = S

There are two kinds of simple masks: concrete field masks f ,
and subclass masks subC, that is, C.sub in the J\mask language.
The calculus does not explicitly model the abstract mask *, because
it can be expanded into a collection of field masks and a subclass
mask. For the simplicity of the semantics, other abstract masks and
mask constraints are omitted.

We require that in a well-formed type, no two masks mention
the same field, and every variable appearing in a condition is in the
domain of the typing environment. The order of masks in a type
does not matter, so T\ f1\ f2 = T\ f2\ f1.

An unmasked type U is either a normal class type C or an exact
class type C!. An object of C! must be an instance of class C, and
not of any proper subclass of C. (This overloads the “!” symbol,
which is also used for must-masks.) The source of exactly typed
values is object creation, because the expression new C has type
C!. Exact types are useful because they make removal of subclass
masks possible, as discussed in Section 2.1.

An object is created with expression new C, which adds a fresh
memory location to the heap, with all fields uninitialized. Uninitial-
ized fields are not represented in the heap, so there is no need for
null. Initialization is done by calling appropriate methods.

To simplify presentation of the semantics and the proof of
soundness, we allow only paths p (local variables x at compile time,
or heap locations ` at run time) to appear in field assignments and
method calls. This does not restrict expressiveness, because of let
expressions.

Every read through a path p is represented as an expression
(T p), where the annotation T is a statically known type. The
annotation is primarily to make the proof of soundness easier; in
the actual J\mask implementation, T is inferred by the compiler.

Typing environments Γ contain type bindings for both variables
x and heap locations `. Bindings for locations are extracted from
the heap and are used to type-check expressions during evaluation.

The J\mask calculus models the heap as a function from mem-
ory locations l to objects o. The formalization attaches a type to ev-
ery object on the heap, in addition to value bindings for the fields.
The object type is always based on some exact class type, which
is known at run time. The type might also have masks, and since
the base class is always exact, no subclass mask may appear on the
heap. Masks in the operational semantics are included only for the
soundness proof and can be erased in the implementation.

4.2 Class member lookup
Figure 8 shows auxiliary functions for looking up class mem-
bers. For a class C, ownFields(C) and ownMethods(C) are the
set of fields and methods declared in C itself, and fields(C) and
methods(C) also collect those declared in all the superclasses of
C. fnames(F) is the set of all the field names in field declarations
F . For simplicity, we assume no two fields have the same name.



Γ ` T ≤T ′

Γ ` T ≤T (S-REFL)
Γ ` T1 ≤T2 Γ ` T2 ≤T3

Γ ` T1 ≤T3
(S-TRANS)

`C≺C′

Γ `C≤C′ (S-SUP) Γ `C!≤C (S-EXACT)

Γ ` T1 ≤T2

Γ ` T1\M≤T2\M
(S-MASK) Γ ` T\S[]≈ T (S-EMPTY-COND) Γ ` T\S[p.Sp]≤T\S[p.Sp, p′.S′] (S-COND-SUB)

S = simple(M)
Γ ` T\M≤T\S

(S-SIMPLE)
subC = simple(M)

Γ `C!\M ≈C!
(S-EXACT-MASK)

p′ :C!\M ∈ Γ

Γ ` T\S[p.Sp, p′.subC]≈ T\S[p.Sp]
(S-EXACT-COND)

`C≺C′ fnames(ownFields(C)) = f subC′ = simple(M)
Γ ` T\M ≈ T\expand(M,{ f ,subC})

(S-SUBMASK)
`C≺C′ fnames(ownFields(C)) = f

Γ ` T\M[p.subC′ , p′.S]≈ T\M[p. f , p.subC, p′.S]
(S-SUBMASK-COND)

Γ ` p :T

p :T ∈ Γ

Γ ` p :T
(TP-PATH)

Γ ` ` :T1 Γ ` T1 ≤T2

Γ ` ` :T2
(TP-SUB)

Γ ` p :T\ f [p. f , p′.S]
Γ ` p :T\ f [p′.S]

(TP-COND-CYCLE)

Γ ` p :T\S[p′. f , p′′.S′] Γ ` p′ :T ′ f 6∈masked(T ′)
Γ ` p :T\S[p′′.S′′]

(TP-COND-ELIM)
Γ ` p :T\S[p′.S′, p′′.S′′] Γ ` p′ :T ′\S′[p′′′.S′′′]

Γ ` p :T\S[p′′.S′′, p′′′.S′′′]
(TP-COND-TRANS)

Γ `R e :T,Γ′

Γ ` x :T x :Tx ∈ Γ

Γ′ = Γ{{x :noMust(Tx)}}
Γ′ ` noMust(T )≤T ′

Γ `R (T x) :T ′,Γ′
(TR-VAR)

Γ ` ` :T Γ ` T ≤T ′

` :T` ∈ Γ

Γ′ = Γ{{` :noMust(T`)}}
Γ `R (T `) :T ′,Γ′

(TR-LOC)

Γ ` e1 :T1,Γ1
Γ1 `R e2 :T2,Γ2

Γ `R e1; e2 :T2,Γ2
(TR-SEQ)

Γ ` e :T,Γ′

e 6= (T x)∧ e 6= e1; e2

Γ `R e :T,Γ′
(TR-OTHER)

Γ ` e :T,Γ′

Γ ` e :T1,Γ
′

Γ ` T1 ≤T2

Γ ` e :T2,Γ
′ (T-SUB)

Γ ` p :T
Γ ` (T p) :T,Γ

(T-PATH)

Γ ` e1 :T1,Γ1
Γ1 ` e2 :T2,Γ2

Γ ` e1; e2 :T2,Γ2
(T-SEQ)

f = fnames(fields(C))
Γ ` new C :C!\ f !,Γ

(T-NEW)

Γ `R e1 :T,Γ1 x 6∈ dom(Γ1)
Γ1,x :T ` e2 :T2,Γ2

Γ2 = Γ′2,x :T ′ Γ′′2 = remove(Γ′2,x)
Γ ` let T x = e1 in e2 :T2,Γ

′′
2

(T-LET)

Γ ` e :T,Γ′

Tf = ftype(T, f )
Γ ` e. f :Tf ,Γ

′ (T-GET)

Γ ` (T1 p1) :T1,Γ T1 6= T ′
1\ f !

Γ `R (T2 p2) : ftype(grant(T1, f ), f ),Γ′
p1 :T ∈ Γ′ Γ′′ = Γ′{{p1 :grant(T, f )}}

Γ ` (T1 p1). f = (T2 p2) :◦\sub◦,Γ
′′ (T-SET)

Γ ` (T1\ f ! p1) :T1\ f !,Γ
Γ ` (T2 p2) :T2,Γ T2 = U2\M

ftype(T1, f ) = U f \S f Γ `U2 ≤U f
S = {S|S ∈ simple(M)∧ (S! ∈ M∨S 6∈ S f )}

p1 :T\ f ! ∈ Γ Γ′ = Γ{{p1 :T\ f [p2.S]}}
Γ ` (T1\ f ! p1). f = (T2 p2) :◦\sub◦,Γ

′ (T-SET-COND)

Γ ` (T0 p0) :T0,Γ T0 = U\M p0 :U0\M′ ∈ Γ

mbody(T0,m) = T ′
n+1 m(T ′ x) effect M1 M2 {e}

Γ ` T0 ≤U\M1{p0/this}{p/x}
∀i ∈ 1..n+1. T ′′

i = T ′
i {p0/this}{p/x}

∀i ∈ 1..n. Γ ` (Ti pi) :T ′′
i ,Γ

∀i ∈ 0..n. Ti = T ′′′\S! ⇒ (T ′′
i = T ′′′′\S!∧∀ j 6= i. pi 6= p j)

Γ′ = Γ{{p0 :update(p0,M′,U0\M2{p0/this}{p/x})}}
Γ ` (T0 p0).m((T p)) :T ′

n+1,Γ
′ (T-CALL)

Figure 9. Static semantics

class C extends C′ {F Mt}
ownFields(C) = F

ownMethods(C) = Mt

fields(C) =
[

C′ : C≺∗C′
ownFields(C′)

methods(C) =
[

C′ : C≺∗C′
ownMethods(C′)

F = U f
fnames(F) = f

Figure 8. Class member lookup

4.3 Subtyping
Subtyping rules are defined in Figure 9. The judgment Γ ` T1 ≤T2
states that type T1 is a subtype of T2 in context Γ. The judgment

Γ ` T1 ≈ T2 is sugar for the pair of judgments Γ ` T1 ≤ T2 and
Γ ` T2≤T1.

Most subtyping rules are intuitive. S-COND-SUB states that
adding conditions makes a conditional mask more conservative.
S-SIMPLE states that a type with a must-mask or a conditional mask
is a subtype of the corresponding simply masked type.

The subtyping rule S-SUBMASK uses an auxiliary function
expand, which expands a mask S into a set of masks S′, while pre-
serving any annotation on S:

expand(S,S′) = S′

expand(S!,S′) = S′!

expand(S[p.Sp],S′) = S′[p.Sp]

As shown in Figure 9, there are often a number of dif-
ferent ways of writing equivalent types. The five type equiva-
lence rules (S-EMPTY-COND, S-EXACT-MASK, S-EXACT-COND,
S-SUBMASK, and S-SUBMASK-COND) can be read as normaliza-



masked(U) = /0

masked(T\S!) = masked(T\S)

masked(T\S[p.Sp]) = masked(T\S)

masked(T\ f ) = { f}∪masked(T )

masked(T\subC) = masked(T )

class(C) = C

class(C!) = C

class(T\M) = class(T )

C = class(T )
f 6∈masked(T )
fields(C) = F

Fi = Tf f
ftype(T, f ) = Tf

C = class(T ) C≺C′

Mt = . . . m(. . .) . . .(
Mt ∈ ownMethods(C)∨
Mt 6∈ ownMethods(C)∧mbody(C′,m) = Mt

)
mbody(T,m) = Mt

noMust(U) = U

noMust(T\M) =

{
noMust(T )\S if M = S!
noMust(T )\M otherwise

grant(T, f ) =


T ′ if T = T ′\ f
T ′ if T = T ′\ f [p.S]
T ′ if T = T ′\ f !
T otherwise

remove( /0,x) = /0

remove((Γ, p :T ),x) = remove(Γ,x), p : remove(T,x)

remove(U,x) = U

remove(T\S[x.Sx, . . .],x) = remove(T,x)\S

update(x,M,T ) = T

update(`,M,U) = U

update(`,M,T\M′) =


update(`,M,T )\M′ if Mi = simple(M′)!
update(`,M,T )\Mi if simple(Mi) = simple(M′)
update(`,M,T ) otherwise

Figure 10. Auxiliary definitions

tion rules, where the types on the left-hand side of ≈ are reduced
to those on the right-hand side. Note that in each of the five rules,
the type on the right-hand side is either syntactically simpler than
that on the left-hand side, or converts an occurrence of a class on
the left-hand side to its subclass. This ensures type normalization
terminates. Normalized types have the following characteristics:

• A type C\M has at most one subclass mask, which must be
subC. A type C!\M has no subclass mask.

• The condition p.subC does not show up if the path p has an
exact type.

• Conditional masks have non-empty conditions.

For convenience of presentation, from now on, types are as-
sumed to be in normal form, unless otherwise noted.

4.4 Expression typing
In the J\mask language, the evaluation of an expression might up-
date some type bindings. For example, initializing a field removes
the mask on that field, if there is one. Therefore, typing judgments,
shown in Figure 9, are of the form Γ ` e : T,Γ′, where Γ′ is the
typing environment after evaluating e. We write Γ{{p :T}} for envi-
ronment Γ with the type binding of p updated to T .

There are two other kinds of judgments in Figure 9. The judg-
ment Γ ` p :T types a path p without updating the typing environ-
ment. The subsumption rule TP-SUB is limited to locations l, not
any variables x, to ensure that the expression (T x) has the most pre-
cise type annotation T (see T-PATH and TR-VAR). The judgment
Γ `R e :T,Γ′ is used in T-LET and T-SET for typing the right-hand
side of assignment, and in M-OK for typing the return expression
(see Section 4.5). It avoids creating aliases for variables with type
bindings that have must-masks. However, aliases are allowed if
they are created with conditional masks, as shown in T-SET-COND,
where no TR- rule is used.

Figure 10 defines auxiliary functions used in the typing rules.
Most of them are self-explanatory. The function update, used in
T-CALL, updates the type binding of the receiver according to the
effect, and ensures monotonicity if the receiver is a location.

J\mask has several expression well-formedness rules, written
` e wf, shown in Figure 11. The important rule is LET-WF, which
imposes two requirements on let expressions:

• A let expression cannot end with a variable bound outside the
scope of the let. For example, one cannot write let T x =
e1 in (e2; y) where y is free in the let expression, but rather the
equivalent expression (let T x = e1 in e2); y. This helps sim-
plify type-checking of right-hand sides of assignments (Γ `R e :
T,Γ′), so that a separate TR-LET is not necessary.

• If the variable x is bound to a location already in the scope of the
let expression, the declared type of x cannot have any must-
mask. This prevents x from being an alias with must-masks.

The expression well-formedness rules help simplify the proof of
the substitution lemma (Lemma 4.5), without limiting the expres-
siveness of the calculus.

` e1 wf ` e2 wf
∀x′ ∈ FV(let T x = e1 in e2). e2 6= x′ ∧ e2 6= e′; x′

((e1 = (T` `)∨ e1 = e′′; (T` `))∧ ` ∈ locs(e2))⇒ T 6= T ′\S!
` let T x = e1 in e2 wf

(LET-WF)

` e1 wf ` e2 wf

` e1; e2 wf
(SEQ-WF)

` e wf
` e. f wf

(GET-WF)

e 6= let T x = e1 in e2 e 6= e1; e2 e 6= e′. f
` e wf

(OTHER-WF)

Figure 11. Well-formed expressions

4.5 Program typing
Figure 12 shows the rules for checking the well-formedness of field
and method declarations in a class C.

For a field declaration, the declared type may not use must-
masks or conditional masks.

For a method declaration, the special variable this is assumed
to have the precondition masks M1 at the entry point of the method,
and it must be typable with the postcondition masks M2 when the
method exits. Method parameters other than the receiver should
remain typable with the same types at the entry. J\mask permits
effects on other parameters, but for simplicity, the calculus does
not support this feature. M-OK also specifies some constraints on
the method effect: it cannot introduce must-masks, which is only
allowed with the new expression; a mask in the precondition that is
not a must-mask can only be replaced with a corresponding mask
that is more conservative.



T = U\S
C ` T f ok

(F-OK)

` e wf Γ = this :C\M1,x :T Γ `R e :Tr,Γr
Γr ` this :C\M2 Γr ` x :T

S! ∈ M2 ⇒ S! ∈ M1(
M ∈ M1 ∧M′ ∈ M2 ∧M 6= S!
∧simple(M) = simple(M′)

)
⇒ `C\M≤C\M′

C ` Tr m(T x) effect M1 M2 {e} ok
(M-OK)

Figure 12. Program typing

4.6 Decidability of type checking
The type system of J\mask is decidable:

• For T-SUB and TP-SUB, we disallow the use of reflexivity of
subtyping, and require all the rules about type equivalence (≈)
to be used in the direction of normalization (see Section 4.3).

• The three rules TP-COND-CYCLE, TP-COND-ELIM, and
TP-COND-TRANS actually characterize a graph-theoretic
reachability problem on the dependency graph (such as in Fig-
ure 4), which can be solved with depth-first search.

All other rules are syntax-directed. Therefore, type checking is
decidable for J\mask.

4.7 Operational semantics
Figure 13 shows the judgments for the small-step operational se-
mantics of J\mask, where e,H −→ e′,H ′ means that expression e
and heap H step to expression e′ and heap H ′.

Most of the rules in Figure 13 are standard, and the notable ones
are those for field assignments (R-SET and R-SET-COND), which
are similar to the corresponding expression typing rules (T-SET and
T-SET-COND).

In the operational semantics and in the soundness proof, typing
environments are extracted from the heap, represented as bHc:

b /0c= /0

bH, ` 7→ T { f = `}c= bHc, ` :T

The notation H{{` := o}} means that the value binding of ` in the
heap H is updated to another object o.

Figure 14 shows the heap typing rules. A heap H is well-formed,
written ` H, if every field that is not masked in its container’s
type is bound to a location, and that location can be given a type
compatible with the declared type of the field.

In H-LOC, H(`, f ) refers to the value binding of the field f of
the object stored in H(`).

4.8 Type safety
The soundness theorem of the J\mask calculus states that if an
expression e is well-typed, and it can reduce to a value (T` `),
then (T` `) has the same type as e. A corollary of this theorem
is that object initialization is sound in the sense used elsewhere
in the paper: if a program tried to read an uninitialized field, the
evaluation would get stuck according to R-GET.

THEOREM 4.1. (Soundness) If ` e wf, and ` e : T , and e, /0 →∗

(T` `),H, then bHc ` (T` `) :T .

The proof uses the standard technique of proving subject reduc-
tion and progress [35].

LEMMA 4.2. (Subject reduction) If ` e wf, and ` H, and bHc `
e :T,Γ, and e,H −→ e′,H ′, then ` e′ wf, and ` H ′, and bH ′c ` e′ :
T,Γ′, and Γ′ is an extension of Γ.

e,H −→ e′,H ′

e,H −→ e′,H ′

E[e],H −→ E[e′],H ′ (R-CONG)

let T x = (T` `) in e,H −→ e{`/x},H (R-LET)

H(`) = T { f = `} Ti = ftype(T, fi)
(T` `). fi,H −→ (Ti `i),H

(R-GET)

H(`) = T { f = `} T` 6= T ′\ f !
H ′ = H{{` := grant(T, f ) {. . . , f = `′}}}
(T` `). f = (T ′

` `′),H −→ (◦\sub◦ `′),H ′ (R-SET)

H(`) = T\ f ! { f = `} ftype(T, f ) = U f \S f
S = {S|S ∈ simple(M)∧ (S! ∈ M∨S 6∈ S f )}

H ′ = H{{` := T\ f [`′.S] {. . . , f = `′}}}
(T`\ f ! `). f = (U\M `′),H −→ (◦\sub◦ `′),H ′ (R-SET-COND)

mbody(T0,m) = Tr m(Tx x) . . . {e}
(T0 `0).m((T `)),H −→ e{`0/this}{`/x},H

(R-CALL)

` 6∈ dom(H) fnames(fields(C)) = f
H ′ = H, ` 7→C!\ f !{}

new C,H −→ (C!\ f ! `),H ′ (R-ALLOC)

(T `); e,H −→ e,H (R-SEQ)

Figure 13. Small-step operational semantics

` :C!\M ∈ bHc f = fnames(fields(C)) bHc ` ` :T

∀ f ∈ f .
(

f 6∈masked(T )⇒
H(`, f ) = `′ ∧bHc ` `′ : ftype(T, f )

)
H ` `

(H-LOC)

∀` ∈ dom(H). H ` `

` H
(HEAP-WF)

Figure 14. Well-formed heaps

LEMMA 4.3. (Progress) If ` H, and bHc ` e : T then either e =
(T` `) or there is an expression e′ and a heap H ′ such that e,H −→
e′,H ′.

Progress is proved by structural induction on e. To prove subject
reduction, we need some preliminary lemmas.

Lemma 4.4 characterizes extensions of typing environments. A
typing environment Γ′ is an extension of Γ if:

• For every type binding x :T ∈ Γ, there is x :T ∈ Γ′;
• For every type binding ` : T ∈ Γ, there is ` : T ′ ∈ Γ′ and Γ′ `

T ′≤T .

LEMMA 4.4. If Γ2 is an extension of Γ1, and Γ1 ` e : T,Γ′1, then
Γ2 ` e :T,Γ′2, and Γ′2 is an extension of Γ′1.

PROOF: By induction on the derivation of Γ1 ` e :T,Γ′1. �

Lemma 4.5 shows that substituting a location for a variable
preserves typing. It is used in the proof of Lemma 4.2 for method
calls and let expressions. Before stating the substitution lemma,
we first define substitution for typing environments:

An environment Γ′ is the result of substituting a location `
of type T for a variable x in Γ, written Γ′ = Γ{{`/x; ` : T}}, if
Γ = Γ′′, ` : T`,x : Tx, and Γ′ = Γ′′{`/x}, ` : T , and Γ′ ` ` : T`{`/x},
and Γ′ ` ` :Tx{`/x}.



LEMMA 4.5. If Γ = Γ′, `:T`,x:Tx, and Γ ` e:T,Γr, and T` 6= T ′\S!,
and Tx 6= T ′\S! when ` ∈ locs(e), then Γ{{`/x; ` : T ′

`}} ` e{`/x} :
T{`/x},Γr{{`/x; ` :T ′′

` }} for some T ′′
` .

PROOF: By induction on the derivation of Γ ` e :T,Γr. �

With these lemmas, we prove subject reduction by an induction
on the derivation of bHc ` e : T,Γ. Then soundness (Theorem 4.1)
follows directly. The proofs appear in the companion technical
report [27].

5. Implementation
We have implemented a prototype compiler of J\mask as an exten-
sion in the Polyglot framework [26]. The extension code has about
3,700 lines of code, excluding blank lines and comments.

J\mask is implemented as a translation to Java. The translation
is mostly by erasure, that is, by erasing all the masks, effects, and
mask constraints from the code.

The compiler also applies several transformations to the J\mask
source code, before erasing masks. Default effects are inserted
for constructors and methods that do not have them already. To
simplify type checking, initialization code, including initializers,
constructors, and new expressions, is also transformed.

J\mask requires that in a conditionally masked type T\ f [x.g],
every xi, including this, is a final local variable. However, the
compiler uses a simple analysis to automatically insert the final
modifier for local variables that are assigned only once, and for
formal parameters that are never reassigned.

5.1 Inserting default effects
For a constructor of class C, the default effect is *! -> C.sub!,
which describes the behavior of most constructors. The construc-
tor starts with all the fields uninitialized, and it initializes all
the fields inherited from superclasses of C—by calling the super
constructor—and the fields declared by C, leaving the fields in sub-
classes of C uninitialized.

The default effect for a virtual method is {} -> {} because
virtual methods normally work on fully initialized objects.

In our experience with using J\mask (see Section 6), these
default effects work well. Programmers only have to annotate code
that uses interesting initialization patterns.

5.2 Transforming initialization code
Java field declarations can include initialization expressions that
are implicitly called from constructors in the same order that they
appear in the class body. The J\mask compiler collects all these
initializers and inserts them directly in constructors, right after
super constructor calls. This initializer code is type-checked in the
same way as any other constructor code.

A constructor in J\mask is just an initialization method that is
called after an object is allocated on the heap. The J\mask compiler
converts every constructor in the source code to a final method with
the same name as the class. The transformed constructor can then
be type-checked just as any other method. The compiler also inserts
an empty default constructor in the generated Java code.

Every new expression new C(...) is split into a call to the
empty default constructor to allocate the memory on the heap,
and then a call to the initialization method generated from the
corresponding constructor, as shown in the following piece of code:

final C!\(* - C.sub)! temp = new C();
temp.C(...);

Then the fresh local variable temp replaces the original expression.

5.3 Type checking
Flow sensitivity in the J\mask type system shows up only on masks,
and not on any of the classes appearing in masked types. Therefore,
each method is type-checked in two phases. The first phase is just
normal Java type checking of the erased method code; the second
phase, built upon the dataflow analysis framework provided in
Polyglot, is flow-sensitive, and uses the result of the first phase as
its starting point.

Once type checking is complete, masks are erased to generate
Java code. This works because resolution of method overloading
does not depend on parameter masks.

5.4 Inner classes
A (nonstatic) inner class is a class that is nested in the body of an-
other class and contains an implicit reference to an instance (the
outer instance) of the enclosing class. Every constructor of an in-
ner class has an implicit formal parameter for the outer instance.
J\mask assumes that the type of the outer instance has no masks,
that is, the outer instance has been fully initialized before an in-
stance of the inner class is created. If an inner class with a partially
initialized outer instance is really needed, a transformation as de-
scribed in [15] can be applied to make the outer instance explicit.
J\mask currently does not directly support local classes and anony-
mous classes, which are inner classes nested in method bodies, al-
though these could be converted to normal inner classes.

6. Experience
The language was evaluated by porting several classes in the Java
Collection Framework (Java SDK version 1.4.2) to J\mask. The
ported classes are ArrayList, HashMap, LinkedList, TreeMap,
and Vector, together with all the classes and interfaces that they
depend on. There are in total 29 source files, comprising 18,000
lines of J\mask code (exclusive of empty lines and comments).

Porting these classes to J\mask was not difficult. It was com-
pleted by one of the authors within a couple of days, including time
to debug the compiler. Only 11 constructors and methods required
annotation with effects or mask constraints, thanks to the default
effects provided by the compiler (Section 5.1). Besides effects and
mask constraints, only 11 other masked types were needed, a very
small number compared to the size of the code.

The port of this code eliminated all nulls used as placeholders
for initialization. However, some nulls were not removed:

• Java allows storing the null value into collections and maps.
• Some method parameters and local variables can be intention-

ally set to null, indicating that they are not available.

Among the classes we ported, the following three exhibited
nontrivial initialization patterns:

6.1 LinkedList
The LinkedList class implements a doubly-linked cyclic list.
When an instance of LinkedList is constructed, a sentinel node,
which is an instance of the nested class Entry, needs to be created
with its previous and next fields both pointing to itself.

The Java code first constructs an instance of Entry with its
previous and next fields set to null, and then initializes the two
fields with the header node itself. The following code is extracted
from the constructor of LinkedList, where header is the field
pointing to the sentinel node:

header = new Entry(null, null, null);
header.previous = header.next = header;



With masked types, the two fields cannot be read before they
are initialized. In the constructor of the ported LinkedList class,
the field header is initialized as follows:

header = createHeader();

The method createHeader is shown below:

private static Entry createHeader() {
Entry\(* - Entry.sub)! h = new Entry();
h.element = dummyElement;
h.next = h;
h.previous = h;
return h;

}

The static field dummyElement points to an object of
java.lang.Object because the header node does not store
any real data element. Therefore, there is no need to use null.

6.2 HashMap
The HashMap class has an empty method init, which, according
to comments in the source code, is an “initialization hook for
subclasses”. When a subclass of HashMap is created, it should
override the init method to initialize any new subclass fields, but
Java has no way to enforce this. With effects and mask constraints,
the J\mask version of HashMap can explicitly express the contract
in the signature of the method init:

void init() effect HashMap.sub -> {} captures *

6.3 TreeMap
TreeMap implements a map as a red-black tree where elements are
sorted according to their keys. Each node in the tree contains fields
for the left and right children, and a field pointing to its parent.
A method buildFromSorted is used to build the tree from the
bottom up, similarly to the example shown in Figure 3. Masked
types support sound initialization of TreeMap nodes without using
null.

6.4 Summary
Our experience is that J\mask is expressive, since it was easy
to port classes with the various initialization patterns found in
the Java Collection Framework. The explicit annotations in the
ported code are infrequent and seem easy to understand, suggesting
masked types are a natural way for programmers to enforce proper
initialization of objects.

7. Related work
Non-null types. The importance of distinguishing non-null ref-
erences from possibly-null references at the type level has long
been recognized. Many languages, including CLU [21], Theta [22],
Moby [11], Eiffel [16], ML [24], and Haskell [17], support some
form of non-null and possibly-null types in their type system. In
the context of Java, several proposals [2, 19, 6] have been made to
support non-null types.

With non-null types, sound object initialization is usually ac-
complished by severely restricting expressiveness. Most existing
languages with non-null types restrict how objects can be initial-
ized; for example, some require all (non-null) fields to be initial-
ized at once [11, 22]. This means fields and methods of an object
under construction cannot be used. Further, cyclic data structures
are impossible to initialize without using a placeholder value such
as null.

Masked types are different from non-null types: when a field is
masked, it is potentially uninitialized and unreadable, and therefore
reading that field is statically disallowed; with non-null types, a
field is always accessible regardless of how it is declared.

Fähndrich and Leino [7] make use of raw types to represent ob-
jects that are in the middle of being constructed, that is, objects with
some non-null fields containing nulls. Methods can be declared to
expect raw objects, and therefore can be called from within the con-
structors. Delayed types [9], extended from [7], provide a solution
to the problem of safely initializing cyclic data structures, by intro-
ducing labels on object types, which represent the time by which an
object is fully initialized. Delay times are associated with scopes,
and form a stack at run time. Objects created with a delay time
remain raw until execution exits the corresponding scope. Initial-
ization of cyclic structures is supported by giving objects the same
delay, and they become initialized together at once.

Compared to raw types, masked types provide a finer-grained
representation of objects under construction. Conditional masks
and delayed types are both means to track dependencies between
objects under construction. However, delay times are an indirect
way to represent dependencies, whereas conditional masks capture
dependencies directly and explicitly. Moreover, the fact that de-
lay times must form a stack restricts the expressiveness of delayed
types in initializing cyclic structures. For example, trees where
nodes have parent pointers cannot be built from the bottom up with
delayed types, because one cannot coordinate the delay times of
child nodes. Masked types, on the other hand, easily support this
pattern, as shown in Figure 3. Masked types also have richer sub-
typing relationships, which can be used to enforce reinitialization.

Typestates. In most object-oriented programming languages, an
object has the same type for its entire lifetime. However, objects
often evolve over time, that is, having different states at different
times. Typestates [31] abstractly describe object states, and when
an object is updated, its typestate may also change.

Typestates have been used to express and verify various proto-
cols [31, 4, 5, 1, 10]. Typestates have been interpreted as abstract
states in finite state machines and as predicates over objects.

Masked types are not intended for checking general protocols,
but rather just focus on safe object initialization. However, masks
cannot be easily encoded in terms of previous typestate mecha-
nisms. Algebraic masks, for instance, provide compact representa-
tions of partial initialization states without requiring abstract states
potentially exponential in the number of fields. Conditional masks
represent dependencies generated at use sites, rather than being
fixed at declaration sites of predicates. Mask subtyping enriches
the state space, and previous work on typestates does not appear to
have anything like it.

J\mask uses subclass masks and mask constraints to ensure
modular type checking. These techniques are related to rest types-
tates and sliding methods in Fugue [5]. However, Fugue requires
that sliding methods are overridden in every subclass, whereas
mask constraints in J\mask force methods to be overridden only
when their watched abstract masks are overridden.

Aliasing has always been a hard problem for any typestate
mechanism: first, it is not easy to maintain correct typestate in-
formation in the presence of aliasing; second, although there are
typing mechanisms like linear types that help keep track of aliases,
they are inconvenient for ordinary programmers. Previous work on
typestates has proposed various treatments to the aliasing problem:
Nil [31] completely rules out aliasing; Vault [4] and Fugue disal-
low further state changes once an object becomes aliased unless
the changes are temporary; Bierhoff and Aldrich [1] refine the two
aliasing annotations “not aliased” and “maybe aliased” in Fugue to
a richer set of permissions; Fähndrich and Leino [8] also identify a
kind of typestates that are heap-monotonic and work without alias-
ing information; Fink et al. [10] conduct whole-program verifica-
tion and rely on a global alias analysis. The treatment of the alias-
ing problem in J\mask is inspired by [8]: simple masks and con-
ditional masks are heap-monotonic, and must-masks, though not



heap-monotonic, are associated with newly created objects whose
aliasing information is easy to track. We believe J\mask achieves a
good trade-off between expressiveness and simplicity for the alias-
ing problem in the context of object initialization.

Masked types are reminiscent of type-based access control
mechanisms that statically restrict access to individual fields or
methods, e.g., [18, 28]. However, masked types are very different;
they are designed for reasoning about initialization, and access is
“granted” by the act of assignment to the resource, which makes
little sense as an access control feature.

Static analysis. J\mask, similar to other typestate mechanisms,
has a flow-sensitive type system, which can be viewed as a dataflow
analysis. An alternative to masked types is an interprocedural def-
use analysis, but this would lose many of the advantages of masked
types. Java already has an intraprocedural analysis [32] to ensure
that every local variable is definitely assigned before it is used.
However, Java cannot safely prevent reading from uninitialized
fields. There has been work on interprocedural def-use analysis
in the context of object-oriented languages [30, 29], with varying
cost and precision. This prior work detects initialization bugs on
fields, but requires non-modular whole-program def-use analyses
and is subject to the typically limited accuracy of whole-program
alias/points-to analyses. By contrast, type checking in J\mask is
modular and therefore scalable. Masked types bring another benefit
because they specify the initialization contracts of methods, help-
ing programmers reason about the code. Explicitly capturing this
aspect of programmer intent seems valuable.

FindBugs [13] contains an analysis [14] that is designed specif-
ically to detect null-pointer bugs. The analysis is neither sound nor
complete, but focuses on improving accuracy. The basic analysis is
interprocedural, but extensions are proposed in which non-null an-
notations are inserted into method signatures to represent contracts.

Shape analyses are aimed at extracting heap invariants that de-
scribe the “shape” of recursive data structures [34]. Conditional
masks capture some part of the shape information of the data struc-
ture under construction. However, conditional masks are not con-
cerned with initialized fields, and also are more about dependencies
than the shape of references, and therefore have transitivity and
cycle cancellation. Shape analyses are normally built upon alias
analyses, and contain explicit representation of heap locations, nei-
ther of which is present in the J\mask language. J\mask only tracks
mask changes on local variables, which gives it a flavor of local
reasoning somewhat similar to the analysis in [3].

Because they summarize a set of concrete fields, abstract masks
have some similarity to data groups [20], a mechanism used for
modular program verification. Data groups do not have the equiva-
lent of mask algebra. Moreover, masked types are about more than
just abstracting fields; must-masks and conditional masks are new
mechanisms that enable sound initialization of complicated data
structures.

Other kinds of languages. The initialization problem is not
unique to object-oriented languages. In a purely functional pro-
gramming style, values are constructed all at once, avoiding the cre-
ation of partially initialized values. However, functional languages
typically do not easily support the construction of cyclic data struc-
tures well, though it can be achieved in some cases with value re-
cursion [33]. The typed assembly language in [25] supports initial-
ization flags that are similar to the simple masks in J\mask.

8. Conclusions and future work
This paper introduces masked types, implemented in the language
J\mask, as a solution to the problem of object initialization. Masked
types provide a strong safety guarantee for initialization: unini-
tialized fields are never read. Further, masked types are expres-

sive enough to support many useful initialization idioms, includ-
ing objects with cyclic references. Methods and constructors in the
J\mask languages explicitly express their initialization contracts
through effects, which enable modular type checking, rather than
requiring an expensive whole-program analysis. Because default
annotations are very effective, and J\mask requires little reason-
ing about aliasing, J\mask has a low annotation burden. This could
make the language more accessible to average programmers. Fi-
nally, by placing object initialization on a sound footing, we believe
masked types can also enable other language mechanisms.

Acknowledgments
We would like to thank Sigmund Cherem, Steve Chong, Michael
Clarkson, Jed Liu, and Ruijie Wang for helpful feedback on early
drafts of this paper, and Doug Lea, Wojciech Moczydlowski, and
Nate Nystrom for discussions. Thanks also to Jonathan Aldrich and
the POPL reviewers for useful comments and suggestions.

This work was supported by National Science Foundation
grants 0430161, 0627649, and CCF-0424422 (TRUST), and by
the Air Force Research Laboratory, under contract #FA8750-08-2-
0079. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either express or implied, of
these organizations or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

References
[1] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of

aliased objects. In Proc. 22nd ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA),
pages 301–320, October 2007.

[2] Patrice Chalin and Perry James. Non-null references by default in
Java: Alleviating the nullity annotation burden. In Proceedings of the
21st European Conference on Object-Oriented Programming, 2007.

[3] Sigmund Cherem and Radu Rugina. Maintaining doubly-linked list
invariants in shape analysis with local reasoning. In Verification,
Model Checking, and Abstract Interpretation, 8th International
Conference (VMCAI 2007), Nice, France, January 2007.

[4] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols
in low-level software. In Proc. SIGPLAN 2001 Conference on
Programming Language Design and Implementation, pages 59–69,
June 2001.

[5] Robert DeLine and Manuel Fähndrich. Typestates for objects.
In Proceedings of 18th European Conference on Object-Oriented
Programming (ECOOP’04), 2004.

[6] Torbjörn Ekman and Görel Hedin. Pluggable checking and
inferencing of non-null types for java. Journal of Object Technology,
6(9):455–475, October 2007.

[7] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking
non-null types in an object-oriented language. In Proc. 2003 ACM
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOSPLA), pages 302–312, October 2003.

[8] Manuel Fähndrich and K. Rustan M. Leino. Heap monotonic
typestate. In Proceedings of the first International Workshop on
Alias Confinement and Ownership (IWACO), July 2003.

[9] Manuel Fähndrich and Songtao Xia. Establishing object invariants
with delayed types. In Proc. 22nd ACM Conference on Object-
Oriented Programming Systems, Languages and Applications
(OOPSLA), October 2007.

[10] Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel
Geay. Effective typestate verification in the presence of aliasing. In
ISSTA ’06: Proceedings of the 2006 international symposium on
Software testing and analysis, pages 133–144, 2006.

[11] Kathleen Fischer and John Reppy. The design of a class mechanism
for Moby. In Proc. SIGPLAN 1999 Conference on Programming
Language Design and Implementation, pages 37–49, 1999.



[12] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification. Addison Wesley, 3rd edition, 2005. ISBN
0321246780.

[13] David Hovemeyer and William Pugh. Finding bugs is easy. In
OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages,
and applications, pages 132–136, 2004.

[14] David Hovemeyer, Jaime Spacco, and William Pugh. Evaluating
and tuning a static analysis to find null pointer bugs. In PASTE
’05: Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, pages 13–19,
2005.

[15] Atsushi Igarashi and Benjamin C. Pierce. On inner classes. In
Informal Proceedings of the Seventh International Workshop on
Foundations of Object-Oriented Languages (FOOL 7), Boston, MA,
January 2000.

[16] ECMA International. Eiffel analysis, design and programming
language. ECMA Standard 367, June 2005.

[17] Haskell 98: A non-strict, purely functional language, February 1999.
Available at http://www.haskell.org/onlinereport/.

[18] Anita K. Jones and Barbara Liskov. A language extension for
expressing constraints on data access. Comm. of the ACM, 21(5):358–
367, May 1978.

[19] JSR 308: Annotations on Java Types. Available at
http://groups.csail.mit.edu/pag/jsr308/.

[20] K. Rustan M. Leino. Data groups: specifying the modification of
extended state. In Proc. 13th ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA),
pages 144–153, 1998.

[21] B. Liskov and J. Guttag. Data abstraction. In Abstraction and
Specification in Program Development, chapter 4, pages 56–98. MIT
Press and McGraw Hill, 1986.

[22] Barbara Liskov, Dorothy Curtis, Mark Day, Sanjay Ghemawat, Robert
Gruber, Paul Johnson, and Andrew C. Myers. Theta Reference Man-
ual. Programming Methodology Group Memo 88, MIT Laboratory
for Computer Science, Cambridge, MA, February 1994. Available at
http://www.pmg.lcs.mit.edu/papers/thetaref/.

[23] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In
Proc. 15th ACM Symp. on Principles of Programming Languages

(POPL), pages 47–57, 1988.
[24] Robin Milner, Mads Tofte, and Robert Harper. The Definition of

Standard ML. MIT Press, Cambridge, MA, 1990.
[25] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From

System F to typed assembly language. ACM Transactions on
Programming Languages and Systems, 21(3):528–569, May 1999.

[26] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers.
Polyglot: An extensible compiler framework for Java. In Proc. 12th
International Compiler Construction Conference (CC’03), pages
138–152, April 2003. LNCS 2622.

[27] Xin Qi and Andrew C. Myers. Masked types. Technical report,
Computer and Information Science, Cornell University, October
2008. http://hdl.handle.net/1813/11563.

[28] Joel Richardson, Peter Schwarz, and Luis-Felipe Cabrera. CACL:
Efficient fine-grained protection for objects. In Proc. 1992 ACM
Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 154–165, Vancouver, BC, Canada, October
1992.

[29] Amie L. Souter and Lori L. Pollock. The construction of contextual
def-use associations for object-oriented systems. IEEE Trans. Softw.
Eng., 29(11):1005–1018, 2003.

[30] Amie L. Souter, Lori L. Pollock, and Dixie Hisley. Inter-class def-use
analysis with partial class representations. In PASTE ’99: Proceedings
of the 1999 ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pages 47–56, 1999.

[31] Robert E. Strom and Shaula Yemini. Typestate: A programming lan-
guage concept for enhancing software reliability. IEEE Transactions
on Software Engineering (TSE), 12(1):157–171, January 1986.

[32] Sun Microsystems. Java Language Specification, version 1.0 beta edi-
tion, October 1995. Available at ftp://ftp.javasoft.com/docs/
javaspec.ps.zip.

[33] Don Syme. Initializing mutually referential abstract objects: The
value recursion challenge. Electronic Notes in Theoretical Computer
Science, 148(2):3–25, 2006.

[34] Reinhard Wilhelm, Shmuel Sagiv, and Thomas W. Reps. Shape anal-
ysis. In Proc. 9th International Compiler Construction Conference
(CC’00), pages 1–17, 2000.

[35] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness. Information and Computation, 115(1):38–94, 1994.


