
BUILDING DISTRIBUTED SYSTEMS WITH
INFORMATION FLOW CONTROL

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

K. Vikram

April 2015

c© 2015 K. Vikram

ALL RIGHTS RESERVED

BUILDING DISTRIBUTED SYSTEMS WITH

INFORMATION FLOW CONTROL

K. Vikram, Ph.D.

Cornell University 2015

Computing technology has made recording and copying information cheap and

convenient, resulting in numerous security problems: from accidental copying

leading to confidentiality breaches to rapid proliferation of spam, worms and

other malicious code. At the same time, distributed information systems pro-

vide value through efficient information dissemination. This thesis investigates

techniques that address the challenge of building distributed systems while pro-

viding the assurance of security.

This thesis first focuses on web information systems based on the client-

server communication paradigm. Servlet Information Flow (SIF) is a novel soft-

ware framework for building high-assurance web applications. Security con-

cerns are expressed as end-to-end confidentiality and integrity policies within

the application code. Expressive policies allow users and application providers

to protect information from one another. Together, the compiler and the runtime

apply information flow analysis to prevent flow of confidential information to

clients and flow of low-integrity information from clients, thereby moving the

trust out of the application and into the framework. This increased assurance is

obtained with modest enforcement overhead.

Where SIF enables servers to quickly and securely disseminate data to nu-

merous clients, Swift is a new approach for building web applications that al-

lows moving code, in addition to data, to clients. Moving code to the client

makes the applications more responsive for the clients, since not every user re-

quest needs a round trip to the server. While more efficient, this mechanism

introduces security complications since the client can manipulate code running

on it and influence, or gain illegal access to, sensitive server-side data. Swift al-

lows the programmer to write the entire application code as a single sequential

Java-like program with security policy annotations. The compiler automatically

partitions the program between the client and server so as to respect all security

policies while generating efficient client-server communication protocols.

Finally, this thesis identifies a general problem for distributed systems: read

channels, which leak information via the pattern of data fetch requests to an un-

trusted host. We first discuss a type systems approach based on attaching an ac-

cess label to each reference to a remote object. We show how the type system can

prevent read channels by statically discovering their presence in a distributed

program. We also discuss the expressiveness limitations of the type system ap-

proach. To address these limitations, we present a program transformation tech-

nique based on abstract interpretation to automatically eliminate read channels

in any given program. We evaluate the performance of this technique on some

benchmark programs.

BIOGRAPHICAL SKETCH

Very early in his life, Vikram was brought to the steel city of Jamshedpur, In-

dia where he spent much of his childhood amongst the abundant greenery and

the ambitious enthusiasm of fellow denizens. Here’s where he got interested in

engineering, science, science fiction and then computer science as if it were a

natural progression of tastes. He got his first computer at the age of fourteen.

Annoyed and awed at the same time by idea of computer viruses, he decided

he would play with them one day. He went to study computers at IIT Kanpur

where he was fascinated by natural language processing and artificial intelli-

gence at first but soon regarded the bottleneck issues to lie in the lower layers

of the computing system itself. Inspired by subsequent projects in compilers,

security and networks he found himself enrolled for graduate study at Cornell

University right after, where these topics were studied in greater depth.

iii

To my family.

iv

ACKNOWLEDGMENTS

I would like to thank Andrew Myers, my thesis advisor, for his steady support,

inspiration and encouragement through all phases of graduate school. Andrew

encourages his students to do quality research, while still giving them the free-

dom and flexibility to choose their paths, and have fun doing so. From him, I’ve

learned a lot (although I have more to learn) about both the value and the pro-

cess of doing research, especially the focus on practical solutions. Other mem-

bers in Andrew’s Applied Programming Languages group — Stephen Chong,

Michael Clarkson, Nate Nystrom, Lantian Zheng, Xin Qi, Jed Liu, Michael

George, Xin Zheng, Aslan Askarov, Owen Arden and Danfeng Zhang — were

all instrumental in maintaining a collegial atmosphere, by striving to do good

research themselves. Special thanks to the senior members of the group, who

were a great source of guidance and wisdom. In particular, Steve Chong was

my first research mentor, and his help with the Jif compiler as well as doing re-

search in general, was invaluable. Jed Liu and Michael George were co-hackers

on the Fabric project, and I will never forget the long days (and many nights!)

spent in the systems lab together. Thanks also to Saikat Guha, Bernard Wong,

and many other veterans of the systems lab for making it a fun place to work.

I was lucky to have had the chance to intern at IBM Watson as well as Mi-

crosoft Research Redmond. Michael Steiner, Charanjit Jutla, Pankaj Rohatgi,

Suresh Chari and J R Rao at IBM ensured that we had an intellectually engag-

ing atmosphere, and provided me with useful mentorship and guidance. Ben

Livshits, Trishul Chilimbi and Sumit Gulwani at Microsoft were also accom-

plished researchers from whom I have learned a lot.

The professors and students in Upson Hall were always friendly and help-

ful. I rarely felt that I was in a foreign country, this far away from home. Thanks

v

also to the various czars who made Cornell CS a welcoming place. Thanks to

the PLDG and Systems Lunch organizers, including faculty members Robbert,

Fred, Ken, Dexter, Keshav and Radu for helping us be in touch with the lat-

est research. As officemates, Prakash Linga and Biswanath Panda were also a

source of inspiration. Ashwin Machanavajjhala and Vivek Vishnumurthy also

provided valuable mentorship, which serves me to this day.

Thanks to the folks in 32-G908 at MIT as well as Barbara Liskov who hosted

us for a year. It was a uniquely rewarding experience blending in with another

research group that had similar interests to ours.

Various housemates and others have also provided me with an intellectu-

ally rich experience. Ranajay Ghosh and Sanjay Dharmavaram were always

ready for an engaging debate or a night out together, or often both! Yogesh-

wer Sharma, Shriram Shivaraman, Ashutosh Saxena, Ashivni Shekhawat and

Preetha Ravindran and many others at Cornell also provided much needed spir-

ited company. At MIT, Siddarth Kumar, Mayank Kumar, Aparna Singh, Vivek

Srivastava and Jagdeep Kaur made sure that I was never lonely in a completely

new town. Thanks to Tudor Marian, who introduced me to skiing, helping make

Ithaca winters a little more bearable and to Amar Chandra, who introduced me

to squash. Thanks also to Andrew Myers and Kavita Bala for organizing holi-

day dinners at their house, and for treating us like family.

I would also like to thank faculty members Amitabha Mukerjee, Achla

Raina, Deepak Gupta and Dheeraj Sanghi at IIT Kanpur, who introduced me

to the world of research even while I was an undergraduate.

My family has been very supportive of my research plans, even though this

put me far away from them. My parents, especially, have given me the freedom

to pursue my goals in life and have sacrificed a lot in order to see me succeed. I

vi

am very thankful for that.

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgments . v
Table of Contents . viii
List of Tables . xi
List of Figures . xii

1 Introduction 1
1.1 Information Flow Control Overview 2
1.2 Distributed Information Flow Control 7
1.3 Programming Language Design and Analysis for Security and

Convenience . 10
1.4 Contributions and Roadmap . 14

2 Information Flow in Web Applications 17
2.1 Introduction . 17
2.2 Servlets with Information Flow . 21

2.2.1 Threat model and security assurance 22
2.2.2 Non-interference and Decentralized Label Model overview 25
2.2.3 Java Information Flow (Jif) 26
2.2.4 System design . 32
2.2.5 Information flow across requests 38
2.2.6 Deployment . 41

2.3 Language Extensions . 43
2.3.1 Application-specific principals 44
2.3.2 Dynamic labels and principals 47
2.3.3 Caching dynamic tests . 48

2.4 Case Studies . 49
2.4.1 Application descriptions . 49
2.4.2 Implementing security requirements 52
2.4.3 Downgrading . 54
2.4.4 Programming with information flow 57

2.5 Related work . 58
2.6 Conclusions . 62

3 Information Flow Control Across Web Application Tiers 63
3.1 Tracking Information Flow through the Persistence Tier 64

3.1.1 The Fabric System . 64
3.1.2 Integrating SIF and Fabric 67
3.1.3 The Travel Example . 70

3.2 Tracking Information Flow through Client-side Code 74
3.3 Architecture . 77

viii

3.4 Writing Swift applications . 82
3.4.1 Extending Jif 3.0 . 82
3.4.2 A sample application . 83
3.4.3 Swift user interface framework 87

3.5 WebIL . 90
3.5.1 Placement annotations . 92
3.5.2 Translation from Jif to WebIL 94
3.5.3 Goals and constraints . 95
3.5.4 Partitioning algorithm . 97

3.6 The Swift runtime . 101
3.6.1 Execution blocks and closures 103
3.6.2 Closure results . 107
3.6.3 Classes and objects . 108
3.6.4 Integrity of control flow . 109
3.6.5 Other security considerations 110
3.6.6 Concurrency Issues . 111
3.6.7 GWT and Ajax . 112

3.7 Evaluation . 113
3.7.1 Example web applications 114
3.7.2 Code size results . 116
3.7.3 Performance results . 117
3.7.4 Automatic repartitioning 118

3.8 Related work . 119
3.8.1 Information flow in web applications 119
3.8.2 Uniform web application development 120
3.8.3 Security by construction . 122

3.9 Conclusions . 123

4 Read Channels 124
4.1 Problem Definition . 125

4.1.1 Read Channels in Fabric . 126
4.1.2 Related Work . 127

4.2 A Type System for Controlling Read Channels 131
4.2.1 Threat Model . 132
4.2.2 A Simple Type System with Access Labels 132
4.2.3 Interaction with Object-Oriented Features 136
4.2.4 Interaction with Mobile Code 144
4.2.5 Runtime Mechanisms . 145

4.3 Automatic Elimination of Read Channels 146
4.3.1 Source Language . 148
4.3.2 Abstract Interpretation . 158
4.3.3 Interleaved Semantics . 170
4.3.4 Evaluation . 176

ix

5 Conclusion 178

A Downgrading in case studies 181

Bibliography 184

x

LIST OF TABLES

3.1 WebIL placement constraint annotations 92
3.2 Code size of example applications 113
3.3 Network messages required to perform a core UI task 113

4.1 Time usage/overhead of abstract interpretation 177
4.2 Memory usage/overhead of abstract interpretation 177
4.3 Cache space usage/overhead of interleaved interpretation 177

xi

LIST OF FIGURES

2.1 Handling a request in SIF. 32
2.2 Jif signatures for the SIF Servlet class 33
2.3 Jif signatures for the SIF Request and other classes 34
2.4 Signatures for application-specific principals 44
2.5 Screenshot of the Calendar application. 50
2.6 Summary of case studies. 51

3.1 The Swift architecture . 78
3.2 Guess-a-Number web application 84
3.3 UI framework signatures . 88
3.4 Guess-a-Number web application in WebIL 91
3.5 Guess-a-Number after partitioning 97
3.6 Part of the Treasure Hunt application, in WebIL 102
3.7 Guess-a-Number execution blocks 106
3.8 Run-time state at program points 1 and 2 in Figure 3.6 106

4.1 Access Labels and Method Overriding 143

xii

CHAPTER 1

INTRODUCTION

We increasingly rely on computers for managing various aspects of our lives

from personal productivity, office work, gaming and social networking to

healthcare, shopping and finance. In recent years, many of these applications

and systems have been distributed across multiple hosts, crossing geographical

and trust boundaries. Thus, the problem of constructing secure distributed sys-

tems is crucial.

Constructing and maintaining these distributed systems is a complicated

process; reasoning about and enforcing their security is even harder. To make

matters worse, programmers as humans are error-prone. Unfortunately, current

security enforcement techniques and development methods are seriously inad-

equate in addressing these complications. This thesis offers novel methods and

techniques that are an improvement over current methods for building secure

distributed systems.

In the context of computer science, security means both confidentiality and

integrity, although our focus is largely on confidentiality. Currently popular

techniques for reasoning about and enforcing system security — access control,

cryptography, firewalls and antivirus software — suffer from inadequacies that

keep the system vulnerable. For example, access control lists can prevent unau-

thorized processes from reading a file, but cannot prevent a process from using

the data illegitimately once access has been granted to it. Similarly, encryption

can secure the communication channel between two endpoints but cannot pre-

vent misuse of information by the receiver endpoint process once it decrypts the

data. Firewalls and antivirus tools prevent passage of malicious data and exe-

1

cution of malicious code respectively, based on heuristics and patterns of pre-

viously known malicious behavior; they offer limited protection against new

attacks. This work uses the technique of information flow control, which pro-

vides strong, end-to-end enforcement of security, in contrast to the brittle se-

curity protection of the currently popular techniques. Most previous work has

applied information flow control to enforce the security of centralized computer

and operating systems. This thesis extends and adapts this work to enforce the

security of distributed systems. This is elaborated in Sections 1.1 and 1.2.

Current development methods for distributed systems fall short on various

fronts: (a) they are either too low-level or do not offer language integration

of network messages and (b) they allow developers to fix security bugs only

as vulnerabilities are exposed, thus encouraging development without concern

for security. There is an urgent need to fix these issues by developing higher

level languages and mathematical tools to provide security assurance prior to

deployment, as practised in other, more mature, engineering disciplines. The

state of distributed system development is arguably the same as that of program

development for single machines in the 1950s before FORTRAN and COBOL

compilers were built. This dissertation demonstrates how security-typed lan-

guages can form the basis for a sound development methodology for building

distributed systems securely and conveniently, as detailed in Section 1.3.

1.1 Information Flow Control Overview

The idea of information flow security arose from studies of security of early op-

erating systems for military, government and commercial organizations [6, 17].

2

Information flow methods were introduced to address the confinement prob-

lem [33] that arises in these systems. In contrast to the popular tools described

earlier, information flow mechanisms track and control the flow of information

through the entire system in an end-to-end [59] fashion. Information flow mech-

anisms ensure that the adversary is not only disallowed access to secret data, but

also prevented from learning anything about that data through inference. This

results in strong enforcement of security.

Information flow control is of direct practical relevance to systems that exe-

cute some untrusted code on a trusted platform. These could be browsers that

download and run Java applets, smartphones and tablet PCs that download,

install and run applications, regular desktop operating systems that execute un-

trusted programs or, as we shall see in this thesis, web servers that run third-

party web applications and interact with untrusted clients. The trusted platform

is called the trusted computing base (abbreviated to TCB) and includes the hard-

ware, the operating system and any other infrastructure tools such as compilers,

interpreters or web browsers. Programs outside the TCB often need to use sen-

sitive information and other system resources; access to these are moderated by

access control lists in typical operating systems.

Consider the example of tax preparation software that inputs sensitive tax

information of the user and prepares tax charts. In a regular OS, access control

would allow the program to use the sensitive information, but it would not be

able to prevent it from relaying that information to, say, its vendor (short of

disallowing network communication altogether). On the other hand, a system

that uses information flow methods would track the flow of information through

the execution of the program, ensuring that sensitive information does not leak

3

to inappropriate locations, e.g., over the network to the program vendor.

This example also shows how other security tools are inadequate. Firewalls

or antivirus tools cannot detect if such programs leak data maliciously. Cryp-

tographic techniques can ensure authenticity of the program’s source and that

it was not modified in transit; but they cannot make statements about the pro-

gram’s behavior. Not being able to reason about program behavior would be

unsatisfactory if the vendor is not particularly reputed. Even if the vendor were

reputed to sell quality software, information flow methods would still help the

vendor maintain its reputation, by ensuring that unintentional errors by its pro-

grammers do not compromise security.

Security enforcement methods can either be external or internal. External

methods are non-technical methods that include the threat of legal action, the

desire to maintain a clean reputation, interest in building a long term relation-

ship with a client, etc. This thesis focuses on internal methods, which enforce

security of computers and not humans. Thus, the information flow methods in

this work are applied only to computing systems. However we note that the

computing systems are always used within a social context and the social con-

text is still important in determining the security policies. The information flow

methods would provide a way to translate the security requirements of the so-

cial context into something that would be enforceable. The social process itself

is not adequate for security verification [25].

Information flow methods require attaching a security label to each program

value (and also, in some languages such as Jif, each memory location). Labels

on new program values are computed as a function of the labels of values used

to compute the new value. When a program value influences another program

4

value or, conversely, a program value depends on another program value, the

labels on the two values are used to determine whether the dependency is ap-

propriate. An ordering relation is defined on the set of labels, and data with a

certain label can depend only on data with a lower label — dependencies on

data with a higher label would be disallowed. A program with an inappropri-

ate information dependency is rejected as being insecure, and is not allowed to

execute. Thus, the labels in a program are an expression of the security pol-

icy, which is enforced by tracking and disallowing inappropriate information

dependencies. For instance, going back to the tax example, let us assume that

the security policy requires the salary to be kept secret from the vendor. If the

program variable s stores the user’s salary and the program variable x stores an

integer which is sent back to the vendor, an assignment x = s would constitute

an inappropriate dependency. The security labels on x and s would express this

policy. Dually, for integrity, if the program variable y stores an integer supplied

by the vendor, the assignment s = y would also violate an integrity policy that

says that the vendor is not trusted to influence the user’s salary (that would be

the job of the employer, presumably). In general, for an expressive language,

these dependencies could be subtle (e.g., implicit flows, flows through excep-

tions, etc.).

As mentioned earlier, the security policy, expressed as labels in the program,

requires an ordering relation to be defined on the set of labels, to express what

constitutes inappropriate information dependencies. Typically, the relation is a

preorder relation defined on the set of labels. Security policies expressed in this

manner enforce a property called noninterference [25]. Noninterference provides

a framework to express strict information flow security policies that that do not

allow data labeled with a higher label to influence data labeled with a lower

5

label, through all kinds of overt and covert channels.

The space of security labels is described by a label model, which defines the

internal structure of labels and the rules for the preorder relation on the set of la-

bels. This work uses the decentralized label model [45] (abbreviated to DLM). In

this model, each label contains an integrity policy and a confidentiality policy. A

policy is a set of policy components, each component owned by a particular prin-

cipal. A principal is any entity that has security concerns that it wants enforced.

The DLM is appropriate for the purposes of this work, since it was designed

for modeling the security of systems with mutual distrusting principals, who

still want to run some computation cooperatively, without the involvement of a

centralized authority. The DLM is explained in further detail in Section 2.2.3.

Information flow methods are either dynamic, static or a hybrid of the two.

Dynamic methods track information dependencies during program execution.

If an inappropriate dependency is found, the program’s behavior is altered to

mitigate or eliminate the bad information flow. Usually the program is simply

terminated, but in some settings with transactional mechanisms, a rollback is

also possible. Static methods track dependencies prior to program execution,

using program analysis techniques such as type checking, data and control flow

analysis, abstract interpretation and model checking. Static methods have re-

cently become popular due to their various advantages over dynamic methods:

• they reduce the need for run-time checking and maintenance of labels on

all values and locations, thereby improving execution speed.

• they ensure that the system will not get stuck in an insecure state at run-

time from which it cannot recover.

• they can control implicit flows.

6

Static program certification for information flow security was first proposed

by Denning and Denning [19] and was later applied to mainstream program-

ming languages via the notion of information-flow types [74, 72]. This thesis

extends existing static methods for information flow: for e.g., it introduces the

ability to handle dynamically changing policies with static checking, as elabo-

rated in Section 1.3.

1.2 Distributed Information Flow Control

Most previous work on information flow tools and techniques tracks informa-

tion flow within a single host [48, 74], and is concerned about the potential ma-

liciousness of untrusted code running on a trusted execution platform. In a

distributed system, the threat is stronger. An interacting host could be entirely

malicious, including its execution platform. Thus, the standard technique of

tracking information dependencies through program execution is not sufficient.

Interaction with an untrusted host over the network introduces many chal-

lenges for information flow security. These interactions typically involve ex-

changing messages according to a pre-specified network protocol. Enforcing

the security of such an execution would broadly involve checking three things:

• protocol messages to the untrusted host do not leak secret information, as

specified by the security policy (confidentiality requirement).

• protocol messages from the untrusted host do not influence trusted data,

as per the security policy (integrity requirement).

• the untrusted host is following the protocol correctly.

7

Confidentiality and Covert Channels. The confidentiality requirements on

the protocol are that the untrusted host is not expected to run computation that

needs secret data, and that no secret data is leaked to the untrusted host during

protocol execution, directly or through covert channels. The following is an ex-

ample of preventing a leak through a direct channel: before sending a message,

the sending host ensures that the receiving host is allowed to view the message.

Preventing leaks through direct channels is relatively straightforward and can

be done by tracking security labels on each variable assignment and checking

that the label on the message is such that the receiver is allowed to view the

message. Preventing leaks through covert channels [33] is more complicated. A

covert channel1 is an information channel that is not intended for information

transfer but can still leak secret information. For instance, a program can leak

one bit of secret information by choosing to either hold or not hold a lock on a

shared resource. Other processes can learn this bit by requesting a hold on the

lock and checking to see if the request succeeded.

Another example of a covert channel is an implicit flow [19], which leaks

information via the program control context. Implicit flows can occur in a dis-

tributed system too: e.g., the decision to send a network message could depend

on secret data, even though the contents of the message is public. Thus, by

knowing whether the message was received, the receiver can gain secret infor-

mation.

Read Channels and Security by Construction. This work identifies a new

kind of covert channel that arises only in distributed systems: a read channel,

1The literature makes a distinction between covert channels (which are intentionally and
maliciously used to leak secret information) vs. side channels (which unintentionally leak secret
information). The distinction is not important in this work, since it assumes that all programmer
intention w.r.t. information flow is explicit in the program code, and so the two terms are used
interchangeably.

8

which leaks information through the pattern of fetches of public data from an

untrusted host. Techniques for the prevention of both implicit flows and read

channels are presented in this thesis. Other covert channels such as timing and

termination channels are not the focus of this work. Ongoing work [85, 3] or-

thogonal to this work is addressing them. The work presented in this thesis also

ensures that no computation on the untrusted host needs secret data. This is

ensured during construction of the protocol from the high level program. The

approach, called security by construction [88], is explained in further detail in

Section 1.3.

Integrity and Protocol Correctness. Integrity concerns dictate that a pro-

tocol should not allow messages from the untrusted host to influence trusted

data. Checking that the untrusted host is following the protocol is challenging,

but tractable, provided it is precisely known what the untrusted host is expected

to compute. Knowing this, we can deduce the set of possible message responses

to a message sent. Before sending a message to the untrusted host, the sending

host computes the set of valid responses and maintains this state until a re-

sponse arrives. If the response is not in this set, the protocol is terminated. This

thesis shows how a combination of program analysis and runtime mechanisms

are used to compute these sets and check against them. It is possible to know

what the untrusted host is expected to compute since we use the security by

construction [88] approach, in which all computation is generated from a single

high-level program.

Related Work. Previous work on the Jif/Split system [83] has also consid-

ered the problem of constructing secure distributed systems in the presence of

mutual distrust. The main component of Jif/Split is the splitter that receives two

9

inputs: the high level program in a security typed language, with confidential-

ity and integrity policy annotations and the host configuration which specifies

the set of hosts and the trust relationships between them and the principals in

the system. The splitter outputs a separate program for each host that together

simulate the execution of the original high level program; this process is called

program partitioning. Although the work presented in this thesis is similar in

spirit to Jif/Split, there are significant differences. In Jif/Split the space of prin-

cipals, labels and hosts is static. This work addresses the problem of building

practical, large scale distributed systems for environments such as the web. In

such environments, the space of principals and labels is dynamic, with new

principals being added and trust relationships between them changing. The set

of hosts is also dynamic, e.g., new clients connecting to a server. Supporting

dynamism introduces novel technical challenges. For instance, changing secu-

rity requirements can create new covert channels, and this thesis shows how

they are handled. This work also offers a more expressive language for the high

level distributed programs, e.g., label parameters to reason about information

flows through complex, dynamic user interfaces. This work also addresses the

read channel problem. Good performance is crucial for practicality and this

thesis also shows how the protocols that are constructed are made efficient.

1.3 Programming Language Design and Analysis for Security

and Convenience

In this work, language based techniques such as program analysis and program

transformation are central to both security enforcement and distributed system

10

development. Security enforcement is achieved through information flow and

static information flow is known to be more expressive than dynamic informa-

tion flow. Dynamic analysis can enforce only safety properties [60] whereas

static analysis can enforce a larger class of hyperproperties [13]. In this work

static analysis for information flow is done in the form of security type checking

and abstract interpretation.

The usual method of distributed system development involves writing code

separately for each host and typically in multiple different languages. The pro-

tocols for communication between the hosts need to be carefully designed and

then implemented using a suitable networking library. Security relevant code is

usually implicit and harder to reason about. Some systems, e.g., Hibernate[28],

ease the task of communicating with a database by translating object access to

SQL queries. However, they do not offer tight language integration or reason-

ing about security. This work enables a high-level programming model for

distributed system development, which also incorporates reasoning about in-

formation flow security, enabling expression of explicit, end-to-end, declarative

confidentiality and integrity policies.

The developer writes her program in a security-typed language, as if it were to

execute sequentially on a single host. A security label, consisting of a confiden-

tiality and integrity policy is attached to types of locations and values. These

policies are enforced on the corresponding location or value. Typically the la-

bels are arranged in a lattice with the> element representing the most restrictive

policy and the ⊥ element representing the least restrictive policy. Rules corre-

sponding to policy enforcement are added to the type system, effectively pro-

viding a static program certification for programs that successfully type check.

11

On the surface, it might seem like security-typed languages have a higher

annotation burden than conventional languages. Although this may be true, a

closer look reveals that for the same amount of effort, security-typed languages

can provide greater security assurance. Declarative annotations enable conve-

nient reasoning about security at a higher conceptual level than manual inspec-

tion of the program source can offer, leading to fewer security related bugs. In

general, the security assurance gap would widen as the software base becomes

larger.

Translation from the high level program to distributed code is done auto-

matically. Placement of code and data is constrained by security concerns and

physical constraints and fine tuned by performance concerns. Automating as

much of the development process as possible is not only crucial for security as-

surance, but also increases programmer productivity. Code that checks whether

untrusted hosts are following the protocol is also generated during this transla-

tion.

Many of these language techniques are inspired by the Jif/Split system [83].

In addition, this work introduces dynamic labels and principals in the language,

which provide the required expressiveness for programming in web environ-

ments. Dynamism also allow labels on labels, which are useful if the policies

themselves have to be kept secret.

This work also introduces the use of a type system to prevent read channels

and an abstract interpretation to eliminate read channels in distributed systems.

Recall that read channels are covert channels that leak secret information via

the pattern of fetches of public data from untrusted hosts. Enabling a high-level

programming language allows the programmer to ignore details of data place-

12

ment and write code as if it would execute on a single host. However, to enable

reasoning about read channels in the language, some annotations have to be in-

troduced on data to suggest where it might be placed, and whether it could be

placed on an untrusted host. These annotations are called ‘access policies’ and

are associated with object fields, along with their confidentiality and integrity

policies. The access policy restricts the placement of that field to a host that is

trusted to enforce the access policy. The type system is extended with a rule for

checking that field accesses occur only in contexts that are at most as restrictive

as the access policy on that field.

Experience with programming access policies suggests that it is too tedious

to program with them. Often, the programmer response to a type error is to

hoist out the illegitimate field accesses to an outer context where they are legal.

A copy of the value obtained from the field access is maintained until its value

is needed in the secret context. This work observes that the process of hoisting

and maintaining copies of object fields (called prefetching) can be automated,

thereby reducing the tediousness of programming with access policies. The au-

tomation hinges on an abstract interpretation that computes the set of object

fields needed by a program segment. The challenge is to perform an abstract in-

terpretation that is precise yet tractable. Precision is required for optimal cache

usage and tractability ensures that the automation overhead is reasonable. The

abstract interpretation and the original program are run together, either inter-

leaved into a sequential program or as two parallel threads sharing only the

cache.

13

1.4 Contributions and Roadmap

In summary, this thesis makes the following contributions. Chapters 2 and 3

show how information flow techniques can be used to build simple forms of

secure distributed systems: client-server applications on the web. Although

distributed computing in general is fairly mainstream and has been adopted by

various commercial, government, healthcare and military organizations, web

applications in particular have become especially widespread. Consumer appli-

cations that previously would run on stand-alone desktops now routinely run

as web applications: e.g., multiplayer games, word processing, etc. However,

compared to running desktop software, running web applications are visible

to a much wider audience, and there is a greater threat that their vulnerabil-

ities will be exploited. In short, security of web applications deserves special

focus. Since many of the general technical issues of distributed system security

also arise in web applications, limiting ourselves to web applications does not

reduce the scope of the work.

Chapter 2 presents work that allows developers to write web applications in

a Java-like language (specifically Jif 3.0 [48]) with confidentiality and integrity

annotations. The web applications make use of the services of the Servlet Infor-

mation Flow (abbreviated to SIF) framework, which is built on top of the Java

Servlet Framework [16]. The SIF framework provides a higher-level interface to

web applications by handling many of the details of session management, HTTP

request processing and HTML generation in a secure fashion. Information flow

is tracked to and from clients, preventing not only SQL injection and cross-site

scripting attacks but also preventing inappropriate flows of information more

generally: controlling the flow of confidential information to clients and the

14

flow of low-integrity information from clients. In addition, application-defined

mechanisms for access control and authentication, and a dynamically extensible

space of labels is shown to be securely integrated with language-based informa-

tion flow. SIF has been tested with two web applications: email and calendar.

Chapter 2 is based on joint work with Stephen Chong and Andrew Myers [10].

Chapter 3 considers more sophisticated forms of web applications. Section

3.1 shows how information flow analysis can be performed across the persistent

storage tier of a web application. For this purpose, the SIF framework is inte-

grated with Fabric [37], a platform for secure distributed computation and stor-

age that provides language constructs for persistence and atomic transactions.

The integrated system is tested with an airline ticket purchasing application.

The source code for the integrated system and the airline application is avail-

able in the first Fabric release [36]. Next, Section 3.2 presents an architecture

and system called Swift, which allows mobile code (in the form of JavaScript)

to be migrated to the client, while maintaining the security properties of the

application. Swift also provides a higher level programming model and a uni-

fied language to develop web applications. This is starkly different from cur-

rent practice which involves simultaneous development in multiple languages:

HTML, CSS, Javascript, Java, SQL, etc. Section 3.2 on Swift is based on joint

work with Stephen Chong, Jed Liu, Andrew Myers, Xin Qi, Lantian Zheng and

Xin Zheng [8].

Finally, Chapter 4 identifies an important problem in security of distributed

systems. We formalize and offer solutions for protection against read channels.

We first discuss an approach based on type systems and show its limitations.

Then we look at automatic techniques to eliminate read channels, and evaluate

15

the performance overhead of these techniques.

16

CHAPTER 2

INFORMATION FLOW IN WEB APPLICATIONS

2.1 Introduction

Web applications are now used for a wide range of important activities: email,

social networking, on-line shopping and auctions, financial management, and

many more. They provide services to millions of users and store information

about and for them. However, a web application may contain design or im-

plementation vulnerabilities that compromise the confidentiality, integrity, or

availability of information manipulated by the application, with financial, le-

gal, or ethical implications. In 2006 [67], web applications accounted for 69%

of Internet vulnerabilities. Current techniques appear inadequate to prevent

vulnerabilities in web applications.

Web applications are in fact a simple instantiation of distributed systems.

Consider the example of an online two player chess game. The application logic

for displaying the chess board and for inputting player moves and checking that

they are legitimate execute within the web browsers of the two players. The

application logic for determining the outcome of a move and saving the state of

the game is located entirely on a web server being shared by the two players.

In the pre-Internet era, all these components of a chess application would either

execute on the same computer or on computers that are physically close and in

the same trust domain.

Compared to running shrink-wrapped software, running web applications

are visible to a much wider audience. As a result, there is a greater threat that

17

their vulnerabilities will be exploited. More formally, web applications have a

larger attack surface [?] than traditional applications. Web application security is

thus a very important problem.

In general, information security vulnerabilities arise from inappropriate in-

formation dependencies, so tracking information flows within applications of-

fers a comprehensive solution. Confidentiality can be enforced by controlling

information flow from sensitive data to clients; integrity can be enforced by

controlling information flow from clients to trusted information—as a side ef-

fect, protecting against common vulnerabilities like SQL injection and cross-site

scripting. In fact, recent work [30, 38, 75, 31] on static analysis of PHP and Java

web applications has used dependency analyses to find many vulnerabilities

in existing web applications and web application libraries. Dynamic tainting

can detect some improper dependencies and has also proved useful in detect-

ing vulnerabilities [77, 12]. However, static analyses have the advantage that

they can conservatively identify information flows, providing stronger security

assurance [57].

Therefore, we have developed Servlet Information Flow (SIF), a novel frame-

work for building web applications that respect explicit confidentiality and in-

tegrity information security policies. SIF web applications are written in Jif 3.0,

an extended version of the Jif programming language [43, 48] (which itself ex-

tends Java with information-flow control). The enforcement mechanisms of SIF

and Jif 3.0 track the flow of information within a web application, and infor-

mation sent to and returned from the client. SIF reduces the trust that must be

placed in web applications, in exchange for trust in the servlet framework and

the Jif 3.0 compiler—a good bargain because the framework and compiler are

18

shared by all SIF applications.

The security policies used in SIF are both strong and expressive. Informa-

tion flow is tracked through a type system that tracks all information flows,

not merely explicit flows. Security enforcement is end-to-end, because policies

are enforced on information from when it enters the web application, to when it

leaves, even as information flows between different client requests. The security

policies are expressive, allowing complex security requirements of multi-user

systems to be enforced. Unlike prior frameworks for tracking information flow

in web applications, policies can express fine-grained requirements for both con-

fidentiality and integrity. Further, the interactions between confidentiality and

integrity are controlled.

The end-to-end security provided by information-flow control has long been

appealing, but much theoretical work on language-based information flow has

not yet been successfully put into practice. We have identified limitations of

existing security-typed languages for reasoning about security in a dynamic ex-

ternal environment, and we have extended the Jif language with new features

supporting these dynamic environments, resulting in a new version of the lan-

guage, Jif 3.0.

Information-flow control mechanisms work by labeling information. In pre-

vious information flow mechanisms, the space of labels is essentially static. In

earlier versions of Jif, for example, labels are expressed in terms of principals,

but the set of principals is fixed at compile time. This is a serious limitation for

web applications, which often add new users at run time. Jif 3.0 adds the abil-

ity for applications to create their own principals, dynamically extending the

space of information labels. Moreover, Jif 3.0 allows applications to implement

19

their own authentication and authorization mechanisms for these application-

specific principals—a necessity given the diversity of authentication schemes

needed by different applications. Jif 3.0 also improves Jif’s ability to reason

about dynamic security policies, allowing, for example, web application users

to specify their own security requirements at run time and have them enforced

by the information flow mechanisms. These new mechanisms create new infor-

mation channels, but Jif 3.0 tracks these channels and prevents their misuse.

To explore the performance and usability of SIF, we developed two web ap-

plications with non-trivial security requirements: an email application special-

ized for cross-domain communication, and a multiuser shared calendar. Both

applications add new principals and policies at run time, and both allow users

to define their own information security policies, which are enforced by the

same mechanisms used for compile-time policies.

In summary, this work makes three significant contributions:

• It shows how to use language-based information flow to construct a practi-

cal framework for high-assurance web applications, in which information

flow is tracked to and from clients, and users can specify and reason about

information security. To our knowledge, this is the first implemented

web application framework to strongly enforce both confidentiality and

integrity.

• It shows that application-defined mechanisms for access control and au-

thentication, and a dynamically extensible space of labels, can be inte-

grated securely with language-based information flow.

• It describes the experience using these new mechanisms to build realistic

web applications.

20

The remainder of the chapter is structured as follows. Section 2.2 gives an

overview of the Servlet Information Flow framework, including some back-

ground on the DLM and Jif. Section 2.3 introduces the new dynamic features

in Jif 3.0, which enhance Jif’s ability to express and enforce dynamic security re-

quirements. Our experience with building web applications in SIF is described

in Section 2.4. Section 2.5 covers related work, and Section 2.6 concludes.

2.2 Servlets with Information Flow

SIF is built using the Java Servlet framework [16], but presents a higher-level

interface to web applications. Through a combination of static and dynamic

mechanisms, SIF ensures that web applications use data only in accordance with

specified security policies, by tracking the flow of information in the server, and

information sent to and from the client. Web applications in SIF are written

entirely in Jif 3.0, an extended version of the security-typed language [72] Jif, in

which types are annotated with information flow policies. Security policies are

enforced on information as it flows through the system, giving stronger security

assurance than ordinary (discretionary) access control.

In designing SIF, we faced two main challenges. The first was identifying

information flows in web applications, including information that flows over

multiple requests. For example, a request sent to a server by a user may con-

tain information about the user’s previous request and response. The second

challenge was to restrict insecure information flows while providing sufficient

flexibility to implement full-fledged web applications. The resulting framework

is a principled approach to designing realistic, secure web applications.

21

SIF is implemented in about 4040 non-comment, non-blank lines of Java

code. An additional 960 lines of Jif code provide signatures for the Java classes

that web applications interact with. Jif signatures provide security annotations

for Java classes, and expose only a subset of the actual methods and fields to

clients. SIF web applications are compiled against the Jif signatures, but linked

at run time against the Java classes. Some Java Servlet framework functionality

makes reasoning about information security infeasible. Using signatures and

wrapper classes, SIF necessarily limits access to this functionality, but without

preventing implementation of full-fledged web applications.

In this section, we first describe the threat model that SIF addresses, and the

security assurances that SIF provides. We present some background about Jif

and the DLM before describing the design of SIF.

2.2.1 Threat model and security assurance

Threat model. We assume that web application clients are potentially malicious,

and that web application implementations are benign but possibly buggy. Thus,

we aim to ensure that appropriate confidentiality and integrity security policies

are enforced on server-side information regardless of the actions of clients, or

the mistakes of well-meaning application programmers.

Although the Jif programming language prevents the unintentional viola-

tion of information security, it provides mechanisms for explicit intentional

downgrading of security policies (see Section 2.4.3). While a well-meaning pro-

grammer will be unable to accidentally misuse these mechanisms, a malicious

programmer may be able to subvert them, or use certain covert channels that Jif

22

does not track (see Section 2.2.3).

We do not address network threats, such as denial of service attacks, or the

interception and alteration of data sent over the network.

The Jif compiler and SIF are added to the trusted computing base, which al-

ready includes the servlet container, and the software stack required to run the

servlet container. Note that SIF web applications are not part of the trusted com-

puting base, whereas in standard servlet frameworks, web applications must be

trusted.

Security assurance. In a typical web application, security assurance consists of

convincing each party with a stake in the system that the application enforces

their security requirements. Obviously users would like to have assurance that

information they input will be confidential, and information they view is not

corrupted. The application provider (i.e., deployer) may also have confidential-

ity and integrity requirements for its information. Like other recent work on

improving security of web applications (e.g., [30, 35, 75, 31]), we focus on pro-

viding assurance to deployers. The difference here is that SIF enforces rich poli-

cies for information integrity and confidentiality, including policies provided by

the user.

Although we focus on providing assurance to deployers, it is worth consid-

ering security assurance from a web application user’s perspective. Users must

be convinced that they are communicating with an application that enforces

their security requirements. The security validation offered by SIF effectively

partitions the security assurance problem into two parts: first, ensuring that

the application respects users’ security requirements, and second, ensuring the

23

server users communicate with is correctly running the application.

SIF addresses the first part of the assurance problem: verifying the security

properties of web application code. SIF does not address the second part: con-

vincing a remote client they are communicating with verified code. This step

is important if the web application provider might be malicious. However, re-

mote attestation methods [70, 24, 62] seem likely to be effective in solving this

second problem. Attestation methods could be used to sign application code,

or alternatively, to sign a verification certificate from a trusted SIF compiler that

has checked the code. We leave integration of attestation mechanisms till future

work.

In any case, concern about malicious application providers should not be

exaggerated; users’ willingness to spend money via web applications suggests

they already place a modicum of trust in them. This work aims to ensure this

trust is justified. At a minimum, this means application deployers can be more

confident in making possibly legally binding representations to their users.

The SIF framework provides the following security assurances to deployers

of web applications.

• SIF applications enforce explicit information security policies. In particu-

lar, SIF ensures that information sent to the client is permitted to be read by

the client, thus ensuring that confidential information held on the server

is not inadvertently released to the client. Further, information received

from the client is marked as tainted by the client, helping prevent inap-

propriate use of low-integrity information. Thus, useful confidentiality

and integrity restrictions are enforced in SIF applications.

24

• The information security policies of back-end systems (e.g., a database, file

system, or legacy application) are also enforced, provided these systems

have appropriate interfaces annotated with Jif 3.0 security policies. Thus,

adding a web front-end to an existing system does not weaken the security

assurance of that system, modulo the assumptions of our threat model.

• Jif ensures that security policies on information are not unintentionally

weakened, or downgraded. However, many web applications that handle

sensitive information intentionally downgrade information as part of their

functionality. As discussed further in Section 2.4.3, SIF web applications

must satisfy rules that enforce selective downgrading [46, 53] and robustness

against all attackers [9], security conditions that provide strong information

flow guarantees in the presence of downgrading.

• SIF web applications can produce only well-formed HTML. While cascad-

ing style sheets and JavaScript may be used, they cannot be dynamically

generated, and must be explicitly specified in the deployment descriptor,

where they can be more easily reviewed by the application deployer. The

deployer thereby gains assurance that a web application does not contain

malicious client-side code.

2.2.2 Non-interference and Decentralized Label Model overview

The specification of allowed information flows in a system is given by nonin-

terference policies [25]. One group of users (usually abstracted as high), using

a certain set of commands is noninterfering with another group of users (ab-

stracted as low) if what the first group does with the commands has no effect

on what the second group of users can see. As it happens, noninterference is

25

an idealized security requirement that is satisfied by almost no real system. In

most practical systems high data needs to influence low data for correct oper-

ation. For instance, in a password checking program the password influences

whether the login attempt was successful, which is visible to the attacker.

Although real systems do not fully satisfy noninterference, noninterference

is useful as a starting point for characterizing the security of any system. In

most systems, high data is allowed to influence low data in a principled fash-

ion. Systems using cryptographic protocols need to downgrade information

once it is encrypted [1]. Admissibility [?] is another weakening of noninter-

ference, where the security policy states exactly which dependencies between

data are allowed, including those caused by downgrading. Other weakenings

of noninterference include probabilistic noninterference [73], approximate non-

interference [21], quantitative bounds on information flow [18, 63, 40, ?] and

information flow with computationally bounded adversaries [34].

In this work we use the decentralized information flow control model [45].

This model allows downgrading of the security level of information from high

to low, provided certain delegation relationships hold between principals. This

style of relaxing strict noninterference has been called selective declassifica-

tion [53].

2.2.3 Java Information Flow (Jif)

The decentralized information flow control [45] model provides security to

users and groups instead of a monolithic organization. Such a model is more

suitable for our use of information flow mechanisms for distributed systems

26

with mutual distrust. This model is amenable to practical static analysis and has

been integrated with the Java language [65] as a new language called Jif (Java In-

formation Flow [43, 44]). Jif allows programmers to annotate data with security

policies, as extensions of the type annotation on that data. The Jif compiler is re-

sponsible for ensuring that the program enforces the policies. We now provide

a quick primer on the Jif language. The reader who is familiar with Jif may skip

to the next section (Section 2.2.4). Detailed documentation and downloadable

software can be found online [48].

Security policy annotations in Jif are called labels and are based on the de-

centralized label model [46]. A label describes the confidentiality and integrity

constraints on the data it annotates. These constraints are expressed by users

and groups, each abstractly represented by a principal. A principal is an entity

with security concerns, and the power to observe and change certain aspects of

the system. A principal p can delegate to another principal q, in which case q

is said to act for p. The principal > acts for all principals and all principals act

for ⊥. The acts-for relation is a relation between principals and is similar to the

speaks-for relation [32]. This language of principals and acts-for relationships can

encode groups and roles. The application developer may choose which entities

in the system are modeled as principals, much like a database designer mod-

eling his data with entities and relationships between them or a programmer

modeling his system with objects.

Jif labels consist of two components: a reader policy (for confidentiality) and

a writer policy (for integrity). A reader policy o→ r1, ..., rn means that principal

o owns the policy and o permits any principal that can act for any ri (or o itself)

to read the data. A writer policy o← w1, ...,wn is owned by principal o and o has

27

permitted any principal that can act for any of w1, ...,wn, or o to have influenced

the data.

The set of confidentiality policies is formed by closing reader policies under

conjunction and disjunction, denoted t and u respectively. The conjunction of

two confidentiality policies, c1 t c2, enforces the restrictions of both c1 and c2.

Thus, the readers permitted by c1 t c2 is the intersection of readers permitted

by c1 and c2. Similarly, the readers permitted by the disjunction c1 u c2 is the

union of readers permitted by c1 and c2. Integrity policies are formed by clos-

ing writer policies under conjunction and disjunction. Dually to confidentiality,

conjunction and disjunction are respectively denoted u and t. The sets of con-

fidentiality and integrity policies are lattices. The top and bottom elements of

the confidentiality lattice are > → > (secret) and ⊥ → ⊥ (public) respectively.

The top and bottom elements of the integrity lattice are ⊥ ← ⊥ (untrusted) and

> ← > (trusted) respectively. The reason the integrity lattice might appear re-

versed is that this is an information flow lattice where policies higher in the lattice

are more restrictive. Since untrusted data is more restrictive i.e. can be used in

fewer places, it is higher in the lattice.

A Jif label is written as {c; d} where c and d are confidentiality and integrity

policies respectively, separated by a semicolon. Secure information flow re-

quires that the label on a piece of information can only become more restrictive

as the information flows through the system. Given labels L and L′, we write

L v L′ if the label L′ restricts the use of information at least as much as L does.

To handle computations that combine information from different sources, the

label L1 t L2 imposes the restrictions of both L1 and L2. Thus the set of labels

also forms a lattice which is the product lattice of confidentiality and integrity

28

lattices.

Jif labels are attached to types of variables and expressions, making Jif a

security-typed language [74, 72]. For example, a value with type int{o →

r;⊥←⊥} is an integer with label {o→ r ; ⊥←⊥}: it can be read only by princi-

pals that can act for r or o, and has the lowest possible integrity (untrusted). A Jif

programmer may annotate the type declarations of fields, variables, and meth-

ods with labels; use of fields, variables, and methods must comply with the label

annotations. For types left unannotated, the Jif compiler either chooses default

labels, or automatically infers labels, thus reducing the annotation burden on

the programmer. Since labels express security requirements explicitly in terms

of principals, and keep track of whose security is being enforced, they are useful

for systems where principals need to co-operate despite mutual distrust.

The Jif compiler uses labels to statically check that information flows within

Jif code are secure. For example, consider the following code fragment:

1 int {alice�bob,alice; bob�alice} y;

2 int {bob�bob} x;

3 int {alice�bob; bob�alice} z;

4 if (x == 0)

5 z = y;

The policy annotation on the type of y on line 1 means that the information in y

is considered sensitive by alice, who considers that it can be released securely

only to bob and alice; and further that it is considered trustworthy by bob,

who believes that only alice should be allowed to affect it. The semicolon op-

erator is overloaded to act as a separation marker between the confidentiality

and integrity policies, as well as to syntactically represent the join (t) opera-

29

tor. For instance, the policy on the type of z on line 3 is actually alice�bob t

bob�alice.

The code above causes an explicit information flow from y to z. For the code

to be secure, the label on z must restrict the use of data in z as least as much as

the label on y restricts the use of y. This is true if (1) for every confidentiality

policy on y, there is one at least as restrictive on z (which is the case because

alice�bob is at least as restrictive as alice�bob,alice) and (2) for every

integrity policy on z, there is one at least as restrictive on y (which is the case

because z has no integrity policy; the integrity of y (bob�alice) is extra.

More subtly, the code also causes an implicit information flow from x to z,

because inspecting z after the code runs may impart information about x, even

if the assignment from y never happens. Implicit flows are important. A failure

to control this implicit flow would mean that an attacker could violate confiden-

tiality by improperly learning about the value of z, or could violate integrity by

changing z and improperly affecting the control flow of the program. Com-

pared to purely dynamic taint tracking mechanisms, a static analysis of infor-

mation flow can detect implicit flows with greater precision [19]. This precision

is necessary for the applications described later in this chapter.

Applying the above rule, the implicit flow from x to z is secure if

alice�bob is at least as restrictive as bob�bob. In general, this condition

does not hold, because the second policy is owned by bob, who would not trust

any enforcement of the second policy on behalf of its owner (alice). How-

ever, the implicit flow would be secure if alice acts for bob, meaning that bob

trusts alice completely, and as a result, alice�bob is at least as restrictive

as bob�bob. Acts-for relationships increase the expressive power of labels and

30

allow static information flow checking to work even though trust relationships

change over time.

As discussed earlier, real systems do not satisfy strict information flow secu-

rity. Occasionally, confidential data needs to be leaked to public variables and

untrusted data needs to influence trusted variables. Jif provides declassify

and endorse statements for this purpose; also known as downgrade state-

ments. For example the result of checking the password in a login program is

declassified so that it can be displayed on the login screen. Similarly, the trans-

fer amount entered by the user in a banking application needs to be endorsed

so that it can influence the balance amounts in both accounts. A Jif program-

mer cannot indiscriminately downgrade information. A downgrade statement

requires the authority of all principals whose reader or writer policies are weak-

ened or removed as a result of the downgrading. Because labels express security

requirements explicitly in terms of principals, and keep track of whose security is

being enforced, they are useful for systems where principals need to cooperate

despite mutual distrust. Web applications are examples of such systems.

Although a Jif programmer may annotate a program with arbitrary labels, he

does not have complete control over security. Labels must be internally consis-

tent for the program to type-check, and moreover, the labels must be consistent

with security policies from the external environment.

Jif was developed assuming a single-threaded model. Jif does not support

any form of distribution or concurrency. As stated in Chapter 1, this is the cur-

rent state of the art in the area of information flow control. Also, the Jif type sys-

tem does not track information flow via timing or termination channels. There

is ongoing work that addresses these issues [85].

31

Servlet Container

SIF Framework
 Servlet

doGet()

 HTMLWriter
write(Node)

Request

HTTP Request

HTML

 Servlet

doGet()

= web application objects

= SIF framework objects

(implemented in Jif)

(implemented in Java)

 Action
invoke(Request)

Page[Out, In]

 Action
invoke(Request)

 Action
invoke(Request)

 Action
invoke(Request)

 Action
invoke(Request)

1

2

345

Figure 2.1: Handling a request in SIF.

2.2.4 System design

Like the Java Servlet framework, SIF allows application code to define how

client requests are handled. However, there are some structural differences

that facilitate the accurate tracking of information flow. Figure 2.1 presents an

overview of how SIF handles a request from a web client:

1. An HTTP request is made from a web client to a servlet;

2. The HTTP request is wrapped in a Request object;

3. An appropriate Action object of the servlet is found to handle the request,

and its invoke method called with the Request object;

4. The action’s invoke method generates a Page object to return for the

request;

5. The Page object is converted into HTML, which is returned to the client.

Step 1: HTTP request from web client to servlet. Web applications must ex-

tend the class Servlet, which is similar to the HttpServlet class of the Java

32

abstract class Servlet {

// allows servlets to specify

// a default action

protected Action{req} defaultAction(Request req);

// allows servlets to create a

// servlet-specific SessionState object

protected SessionState createSessionState();

public void setReturnPage{*:req.session}(

Request{*:req.session} req,

label out, label in,

Node[out,in]{*in} page)

where {*out;*in} <= {*:req.session};

}

abstract class Action {

public abstract void

invoke{*lbl}(label{*lbl} lbl,

Request{*lbl} req)

where caller(req.session);

}

// base class of HTML elements

abstract class Node[label Out, label In] { }

Figure 2.2: Jif signatures for the SIF Servlet class

Servlet framework. Figures 2.2 and 2.3 show a simplified Jif signature for the

Servlet class, as well as other key classes of SIF. The important aspects of

these signatures are explained as they arise, but because of space limitations,

the syntax of Jif methods and fields are not fully explained.

Web clients establish sessions with the servlet; sessions are tracked by the

servlet container, as in the Java Servlet specification. The SIF framework creates

a session principal for each session, which can be thought of as corresponding

to the session key shared between the client and server [32], if such a key ex-

ists. The application would typically define its own user principals, which can

delegate to the session principal.

Step 2: HTTP request wrapped in a Request object. The class Request is a

SIF wrapper class for an HTTP request, providing restricted access to informa-

33

final class Request {

// principal representing the session

// between client and server

public final principal session;

// reference to the Servlet

public final Servlet servlet;

// acquire a parameter value from the Request

public String{*inp.L t inp t (⊥→⊥;>←session)}

getParam(Input inp);

// obtain a reference to

// the SessionState object

public SessionState getSessionState();

}

final class Input {

private final Nonce n;

public final label L;

}

abstract class InputNode[label Out, label In]

extends Node[Out,In] {

// framework statically enforces Out t In v inp.L

private final Input{L} inp;

}

Figure 2.3: Jif signatures for the SIF Request and other classes

tion in the request, via the getParam method. The restricted interface ensures

that web applications are unable to circumvent the security policies on data con-

tained in the request, as described below.

Step 3: An Action is found and invoked. Web applications implement their

functionality in actions, which are application-defined subclasses of the SIF class

Action. A SIF servlet may have many action objects associated with it; each

action object belongs to a single servlet.

Actions can be used as the targets of forms and hyperlinks. For example, the

target of a form is an action object responsible for receiving and processing the

data the user submits via the form. This mechanism differs from the standard

Java servlet interface, which requires the application implementor to write ex-

34

plicit request dispatching code (the doGet method). However, explicit dispatch

code in the application makes precise tracking of information flow difficult, as

the dispatch code is executed for all requests, even though different requests

may reveal different information. By avoiding dispatch code, the action mech-

anism permits more precise reasoning about the information revealed by client

requests to the server, as discussed further in Section 2.2.5.

Action objects may be session-specific actions, which can only ever be used by

a single session, or they may be external actions not specific to any given session.

All action objects within a given servlet have a unique identifier. For session-

specific actions, the identifier is a secure nonce, automatically generated by the

framework on construction of the action. For external actions, the identifier is a

(human-readable) string specified by the web application. Since external actions

have fixed identifiers, they may be the target of external hyperlinks, such as a

hyperlink in static HTML on a different web site.

When an HTTP request is received by a servlet, the framework finds a suit-

able action to handle it. Typically, the HTTP request contains a parameter value

specifying the unique identifier of the appropriate action; for example, forms

generated by the servlet identify the action to which the form is to be submit-

ted. If the HTTP request does not contain an action’s unique identifier, then a

default action specified by the Servlet.defaultAction method is used to

handle the request. This default is useful for handling the first request of a new

session. If the HTTP request contains an invalid action identifier (e.g., the iden-

tifier of a session-specific action of an expired or invalidated session), an error

page is returned, which then redirects the user to the default action.

Actions allow web applications to maintain control over application control

35

flow. Because session-specific actions are named with a nonce, other sessions

cannot invoke them. In addition, SIF tracks the active set of actions for each

session. An error page is returned if a request tries to invoke an action that is

not active. The active set contains all external actions, and all session-specific

actions that were targets of hyperlinks and forms of the last response. Thus, a

client by default cannot resubmit a form by replaying its (inactive) action iden-

tifier.

Once the appropriate action object has been found, the invoke method

is called on it with a Request object as an argument. The invoke method

executes with the authority of the session principal, as shown by the where

caller(req.session) annotation in Figure 2.2.

Web applications implement their functionality in the action’s invoke

method, as Jif 3.0 code. If required, the invokemethod can access back-end ser-

vices (e.g., a database) provided that suitable Jif interfaces exist for the services.

For example, web applications can access the file system since the Jif run-time

library provides a Jif interface for it, which translates file system permissions

into Jif security policies.

SIF web applications can provide secure web interfaces to legacy systems, by

accessing the legacy systems as back-end services. The information security of

these systems is not compromised by allowing SIF applications to access them,

since all accesses from Jif code must conform to the system’s Jif interface.

Step 4: The invoke method generates a Page object. An object of the class

Page is a representation of an HTML page. SIF uses the class Node to rep-

resent HTML elements; the class Page, and other HTML elements, such as

36

Paragraph and Hyperlink, are subclasses of Node. Nodes may be composed

to form trees, which represent well-formed HTML code. The class Node is pa-

rameterized by two labels, Out and In. The Out label is an upper bound on

the labels of information contained in the node object and its children. For ex-

ample, an HTML body may contain several paragraphs, each of which contains

text and hyperlinks; the Out parameter of each Paragraph node is at least as

restrictive as the Out parameters of its child Nodes. The In parameter is used to

bound information that may be gained by from subsequent requests originating

from this page, and is discussed further in Section 2.2.5.

The Action.invoke method must generate a Page object, and call

Servlet.setReturnPage with that Page object as an argument. The sig-

nature for Servlet.setReturnPage ensures that the Out parameter of the

Page is at most as restrictive as the label {> → req.session;⊥ ← ⊥}, where

req.session is the session principal. This label is an upper bound on all labels

that permit the principal req.session to read information, and thus the Page

object returned for the request can contain only information that the session

principal is permitted to view. This restriction is enforced statically through the

type-system, and requires no runtime examination of labels by the SIF frame-

work. Thus, assurance is gained prior to deployment that confidential informa-

tion on the server is not inadvertently released.

In addition, by requiring the application to produce Page objects instead of

arbitrary byte sequences, SIF can ensure that each input field on a page has an

appropriate security policy associated with it (see Section 2.2.5), and that the

web application serves only well-formed HTML that does not contain possibly

malicious JavaScript.

37

Step 5: The Page is converted into HTML. SIF converts the Page object into

HTML, which is sent to the client. The Page object may contain hyperlinks and

forms whose targets are actions of the servlet; SIF ensures that the HTML output

for these hyperlinks and forms contain parameter values specifying the appro-

priate actions’ unique identifiers; if the user follows a hyperlink or submits a

form, the appropriate action is invoked.

2.2.5 Information flow across requests

The Jif compiler ensures that security policies are enforced end-to-end within a

servlet, that is, from when a request is submitted until a response is returned.

However, information may flow over multiple requests within the same ses-

sion, for example, by being stored in session state, or by being sent to a (well-

behaved) client that returns it in the next request. SIF tracks information flow

over multiple requests, to ensure that appropriate security labels are enforced

on data at all times.

Information flow through parameter values. SIF requires each input field on

a page to have an associated security label to be enforced on the input when

submitted. This label is statically required to be at least as restrictive as the label

of any default value for the input field, to prevent a default value from being

sent back to the server with a less restrictive policy enforced on it.

SIF ensures that the submitted value of an input field has the correct label

enforced on it by preventing applications from arbitrarily accessing the HTTP

request’s map from parameter keys to parameter values. Instead, when an in-

put field is created in the outgoing Page object, an Input object is associated

38

with it. An Input object is a pair (n, L), where n is a freshly generated nonce,

and L is the label enforced on the input value. An application can retrieve a

data value from an HTTP request only by presenting the Input object to the

Request.getParam(Input inp) method, which checks the nonce, and re-

turns the submitted value with label inp.L enforced on it. This “closes the

loop,” ensuring that data sent to the client has the correct security enforced on

it when the client subsequently sends it back.

SIF does not try to protect against the user copying sensitive information

from the web page, and pasting into a non-sensitive input field. That is impos-

sible in general, and the application should define labels that prevent the user

from seeing information that they are not trusted to see. By keeping track of

input labels, SIF prevents web applications from laundering away security poli-

cies by sending information through the client. As discussed in Section 2.2.6,

the user can also inspect the labels on inputs to see how the application will

treat the information.

The getParam method signature also ensures that the label {⊥ → ⊥ ; > ←

session} is enforced on values submitted by the user. This label indicates

that the value has been influenced by the session principal. Thus, SIF en-

sures that the integrity policy of any value obtained from the client correctly

reflects that the client has influenced it; the Jif 3.0 compiler then ensures that

this “tainted,” or low-integrity, information cannot be incorrectly used as if it

were “untainted,” or high-integrity. This helps avoid vulnerabilities such as

SQL injection, where low-integrity information is used in a high-integrity con-

text.

Information flow through session state. Java servlets typically store session

39

state in the session map of the class javax.servlet.http.HttpSession.

However, direct access to the session map would allow SIF applications to by-

pass the security policies that should be enforced on values stored in the map.

Instead, SIF web applications may store state in fields of session-specific actions,

or in an application-defined subclass of SessionState. Since fields must have

labels, the Jif compiler ensures that web applications honor labels associated

with values stored in the state. Web applications may override the method

Servlet.createSessionState to create an appropriate SessionState

object; SIF ensures at run time that this method is called exactly once per session.

Information flow through action invocation. A subtlety of the framework is

that the very act of invoking an action, by following a hyperlink or submitting

a form, may reveal information to the web application. For example, if a hy-

perlink to some action a is generated if and only if some secret bit is 1, then

knowing that a is invoked reveals the value of the secret bit.

To account for this information flow, the Action.invokemethod takes two

arguments: a label lbl, and a reference to the Request object. The label lbl

is an upper bound on the information that may be gained by knowing which

action has been invoked. This means that lbl must be at least as restrictive as

the output information for the hyperlink or form used to invoke the action. In

our example, the value of lbl when invoking a would be at least as restrictive

as the label of the secret bit. In general, the value for lbl is the value of the In

parameter of the Node that contains the link to the action; the constructors for

the Node subclasses ensure that the parameter In correctly bounds the informa-

tion that may be gained by knowing the node was present in the Page returned

for the request.

40

The method signature for Action.invoke ensures that the security label

lbl is enforced on the reference to the Request object (“...Request{*lbl}

req...”) and that lbl is a lower-bound for observable side-effects of the method

(“invoke{*lbl}(...)”), meaning that any effects of the method (such as as-

signments to fields) must be observable only at security levels bounded below

by lbl. These restrictions ensure that SIF correctly tracks the information that

may be gained by knowing which actions were available for the user to invoke.

2.2.6 Deployment

SIF web applications may be deployed on standard Java Servlet containers, such

as Apache Tomcat, and thus may be used in a multi-tier architecture wherever

Java servlets are used. The SIF and Jif run-time libraries must be available on the

class path, but deployment of SIF web applications is otherwise similar to de-

ployment of ordinary Java servlets. The deployer of a SIF web application is free

to specify configuration information in the application’s deployment descriptor

(the web.xml file). For example, the deployer may require all connections to

use SSL, thus protecting the confidentiality and integrity of information in tran-

sit between client and server. Additionally, there are several SIF-specific options

that a deployer may specify in the deployment descriptor.

Cascading style sheets. SIF applications must use the Node subclasses to gen-

erate responses to requests, which allows them to generate only well-formed

HTML. To allow flexibility in presentation details such as colors and font at-

tributes, SIF permits the deployment descriptor to specify a cascading style

sheet (CSS) to use in the presentation of all HTML pages generated by the ap-

41

plication; SIF adds this URL in the head of all generated HTML pages. Node

objects can specify a class attribute, allowing style sheets to provide almost

arbitrary formatting. While this allows great flexibility, care must be taken that

the CSS does not contain misleading formatting. For example, inappropriate

formatting might lead a user to enter sensitive information into a non-sensitive

input field, such as a social security number into an address field. The deployer

should review the CSS before deploying the application.

JavaScript. Dynamically generated JavaScript can provide rich user interfaces,

but introduces new possibilities for security violations and covert channels. SIF

does not allow web applications to send dynamic JavaScript to the client. How-

ever, as with CSSs, SIF allows deployment descriptors to specify a URL con-

taining (static) JavaScript code to be included on all generated HTML pages.

Explicit inclusion of JavaScript permits easy review by the deployer. Ideally, SIF

should automatically check included JavaScript code (or perhaps an extension

of JavaScript with information-flow control); we leave this to future work.

Policy visualization. User awareness of security policies is an important aspect

of secure systems. Since SIF tracks the policies of information sent to the user,

SIF can augment the user interface to inform the user of the security policies

of data they view and supply. Provided the user trusts the interface (see Sec-

tion 2.2.1), this helps prevent, for instance, a user from inappropriately copying

sensitive information from the browser into an email, or from following an un-

trusted hyperlink.

Web applications may opt to allow SIF to automatically color-code informa-

tion sent to the client, based on policy annotations. When the user presses a

hotkey combination, JavaScript code recolors the page elements to reflect their

42

confidentiality, varying from red (highly confidential) to green (low confiden-

tiality). Both displayed information and inputs are colored appropriately. An

additional hotkey colors the page based on the integrity policies of information.

A third hotkey shows a legend of colors and corresponding labels so the user

can identify the precise security policy for each page element.

2.3 Language Extensions

Web applications have diverse, complicated, and dynamic security require-

ments. For example, web applications display a plethora of authentication

schemes, including various password schemes, password recovery schemes,

biometrics, and CAPTCHAs to identify human users. Web applications often

enforce dynamic security policies, such as allowing users to specify who may

view and update their information. Moreover, the security environment of a

web application is dynamic: new users are being created, users are starting and

ending sessions, and authenticating themselves.

In order both to accommodate diverse, complicated, and dynamic security

requirements, and to provide assurance that these requirements are met, we

have produced a new version of Jif. Section 2.2.3 describes the previous version

of Jif; this section presents new features that support dynamic security require-

ments: integration of information flow with application-defined authentication

and authorization, and improved ability to reason about and compute with dy-

namic security labels and principals.

Care was needed in the design and implementation of these language ex-

tensions, since there is always a tension in language-based security between

43

interface Principal {

String name();

// does this principal delegate authority to q?

boolean delegatesTo(principal q);

// is this principal prepared to authorize the

// closure c, given proof object authPrf?

boolean isAuthorized(Object authPrf,

Closure[this] c);

// methods to guide search for acts-for proofs

ActsForProof findProofUpTo(Principal p);

ActsForProof findProofDownTo(Principal q);

}

interface Closure[principal P] authority(P) {

// authority of P is required to

// invoke a Closure

Object invoke() where caller(P);

}

Figure 2.4: Signatures for application-specific principals

expressiveness and security. In particular, the new dynamic security mecha-

nisms in Jif 3.0 create new information channels, complicating static analysis

of information flow. Importantly, Jif 3.0 tracks these channels to prevent their

misuse.

2.3.1 Application-specific principals

Principals are entities with security concerns. Applications may choose which

entities to model as principals. Principals in Jif are represented at run time,

and thus can be used as values by programs during execution. Jif gives run-

time principals the primitive type principal. Jif 3.0 introduces an open-ended

mechanism that allows applications great flexibility in defining and implement-

ing their own principals.

Applications may implement the Jif 3.0 interface jif.lang.Principal,

44

shown in simplified form in Figure 2.4. Any object that implements the

Principal interface is a principal; it can be cast to the primitive type

principal, and used just as any other principal. The Principal interface

provides methods for principals to delegate their authority and to define au-

thentication.

Delegation is crucial. For example, user principals must be able to delegate

their authority to session principals, so that requests from users can be exe-

cuted with their authority. The method call p.delegatesTo(q) returns true

if and only if principal p delegates its authority to principal q. The implemen-

tation of a principal’s delegatesTo method is the sole determiner of whether

its authority is delegated. An acts-for proof is a sequence of principals p1, . . . , pn,

such that each pi delegates its authority to pi+1, and is thus a proof that pn can

act for p1. Acts-for proofs are found using the methods findProofUpTo and

findProofDownTo on the Principal interface, allowing an application to ef-

ficiently guide a proof search. Once an acts-for proof is found, it is verified using

delegatesTo, cleanly separating proof search from proof verification.

The authority of principals is required for certain operations. For example,

the authority of the principal Alice is required to downgrade information la-

beled {Alice → Bob ; > ← >} to the label {Alice → Bob,Chuck ; > ← >} since a

policy owned by Alice is weakened. The authority of principals whose iden-

tity is known at compile time may be obtained by these principals approving

the code that exercises their authority. However, for dynamic principals, whose

identity is not known at compile time, a different mechanism is required.

We have extended Jif with a mechanism for dynamically authorizing clo-

sures.

45

An authorization closure is an implementation of the interface jif.lang.Closure,

shown in Figure 2.4. The Closure interface has a single method invoke, and

is parameterized on a principal P. The invoke method can only be called by

code that possesses the authority of principal P, as indicated by the annotation

where caller(P). Code that does not have the authority of principal P can

request the Jif run-time system to execute a closure for P; the run-time system

will do so only if P authorizes the closure.

The Principal interface provides a method for authorizing closures,

isAuthorized. It takes two arguments: a Closure object instantiated with

the principal represented by the this object, and an application-specific proof

of authentication and/or authorization. For example, the proof might be a pass-

word, a checkable proof that the closure satisfies certain safety requirements, or

a collection of certificates or capabilities. The application-specific implementa-

tion of the isAuthorized method examines the closure and the proof object,

and returns true if the principal grants its authority to the closure.

The Principal interface and authorization closures provide a flexible

mechanism for web applications to implement their own authentication and au-

thorization mechanisms. For example, in the case studies of Section 2.4, closures

are used to obtain the authority of application users after they have authen-

ticated themselves with a password. Other implementations of principals are

free to choose other authentication and authorization mechanisms, such as del-

egating the authorization decision to a XACML service. Dynamic authorization

tests introduce new information flows that are tracked using Jif’s security-type

system. To prevent the usurpation of a principal’s authority, the Jif run-time

library cannot execute a closure unless appropriately authorized.

46

Legacy systems may have their own abstractions for users, authentication,

and authorization. Application-specific principals allow legacy-system security

abstractions to be integrated with web applications. For example, when inte-

grating with a database with access controls, database users can be represented

by suitable implementations of the Principal interface; web applications can

then execute queries under the authority of specific database users, rather than

executing all queries using a distinguished web server user.

2.3.2 Dynamic labels and principals

Jif can represent labels at run time, using the primitive type label for run-time

label values. Following work by Zheng and Myers [87], Jif 3.0’s type system has

been extended with more precise reasoning about run-time labels and princi-

pals. It is now possible for the label of a value (or a principal named in a label)

to be located via a final access path expression. A final access path expression

is an expression of the form r.f1.. . ..fn, where r is either a final local variable

(including final method arguments), or the expression this, and each fi is an

access to a final field. For example, in Figure 2.3, the signature for the method

Request.getParam(Input inp) indicates that the return value has the la-

bel inp.L enforced on it. Therefore, the Jif 3.0 compiler can determine that the

label of the result of the getParam method is found in the object inp. The

additional precision of Jif 3.0 is needed to capture this relationship.

This additional precision allows SIF web applications to express and enforce

dynamic security requirements, such as user-specified security policies. SIF web

applications can also statically control information received from the currently

47

authenticated user, whose identity is unknown at compile time.

The use of dynamic labels and principals introduces new information flows,

because which label is enforced on information may itself reveal information. Jif

3.0’s type system tracks such flows, and prevents dynamic labels and principals

from introducing covert channels.

2.3.3 Caching dynamic tests

To allow efficient dynamic tests of label and principal relations, the Jif 3.0 run-

time system caches the results of label and principal tests. Separate caches are

maintained for positive and negative results of acts-for and label tests. Care

must be taken that the use of caches does not introduce unsoundness. When a

principal delegation is added, the negative acts-for and label caches are cleared,

as the new delegation may now enable new relationships. When a principal del-

egation is removed, entries in the positive acts-for and label caches that depend

upon that delegation are removed, as the relationship may no longer hold.

When principals add or remove delegations, they should notify the Jif 3.0

runtime system, which updates the caches appropriately. Although an incor-

rectly or maliciously implemented principal p may fail to notify the runtime

system, lack of notification can hurt only the principal p, since p (and only p)

determines to whom its authority is delegated.

48

2.4 Case Studies

Using SIF, we have designed and implemented two web applications. The first

is a cross-domain information sharing system that permits multiple users to

exchange messages. The second is a multi-user calendar application that lets

users create, edit, and view events.

This section describes the key functionality of these applications, their in-

formation security requirements, and how we reflected these requirements in

the implementations. Real applications must release information, reducing its

confidentiality. In SIF, this is implemented by downgrading to a lower security

label. We discuss and categorize downgrades that occur in the applications.

Based on our experience, we make some observations about programming with

information-flow control.

2.4.1 Application descriptions

Cross-domain information sharing (CDIS). CDIS applications involve ex-

change of information between different entities with varying levels of trust be-

tween them. For example, organizational policy may require the approval of a

manager to share information between members of certain departments. Many

CDIS systems provide an automatic process; for example, they determine what

approval is needed, and delay information delivery until approval is obtained.

We have designed and implemented a prototype CDIS system. The interface

is similar to a web-based email application. The application allows users to log

in and compose messages to each other. A message may require review and ap-

49

Figure 2.5: Screenshot of the Calendar application.

proval by other users before it is available to its recipients. The review process is

driven by a set of system-wide mandatory rules: each rule specifies for a unique

sender-recipient pair which users need to review and approve messages. Once

all appropriate reviewers have approved a message, it appears in the recipient’s

inbox. Each user also has a “review inbox,” for messages requiring their ap-

proval or rejection. In this prototype, all messages are held centrally on the web

server; a full implementation would be integrated with an SMTP server.

50

Annotated Downgrade Functional downgrades
Lines Lines Annotations Access control Imprecision Application Total

CDIS 1325 277 76 11 0 3 14
Calendar 1779 443 73 12 0 5 17

User 925 283 31 3 1 4 8

Figure 2.6: Summary of case studies.

Calendar. We have also implemented a multi-user calendar system. Authenti-

cated users may create, edit, and view events. Events have a time, title, list of

attendees, and description. Events are controlled by expressive security poli-

cies, customizable by application users. A user can edit an event only if the user

acts for the creator of the event (recall that the acts-for relation is reflexive). A

user may view the details of an event (title, attendees, and description) if the

user acts for either the creator or an attendee. An event may specify a list of

additional users who are permitted to view the time of the event—to view an

event, a user must act for the creator, for an attendee, or for a user on this list.

A user’s calendar is defined to be the set of all events for which the user is

either the creator or an attendee. When a user u views another user v’s calendar,

u will see only the subset of events on v’s calendar for which u is permitted to

see the details or time. If the user is permitted to view the time, but not the

details of an event, the event is shown as “Busy.”

Measurements. Measurements of the applications’ code are given in Figure 2.6,

including non-blank non-comment lines of code, lines with label annotations,

and the number of declassify and endorse annotations, which indicate in-

tentional downgrading of information (see Section 2.4.3).

Performance tests indicate that the overhead due to the SIF framework is

modest. We compared the calendar case study application to a Java servlet we

51

implemented with similar functionality, using the same back-end database; the

Java servlet does not offer the security assurances of the SIF servlet. Tests were

performed using Apache Tomcat 5.5 in Redhat Linux, kernel version 2.6.17, run-

ning on a dual-core 2.2GHz Opteron processor with 3GB of memory. As the

number of concurrent sessions varies between 1 and 245, the SIF servlet ex-

hibits at most a 29% reduction in requests processed per second, showing that

SIF does not dramatically affect scalability. At peak throughput, the Java servlet

processes 2010 requests per second, compared with 1503 for the SIF servlet. Of

the server processing time for a request to the SIF servlet, about 17% is spent

rendering the Page object into HTML, and about 9% is spent performing dy-

namic label and principal tests.

2.4.2 Implementing security requirements

Many of the security requirements of both applications can be expressed us-

ing Jif’s security mechanisms, including dynamic principals and security labels,

and thus automatically enforced by Jif and SIF’s static and run-time mecha-

nisms. Other security requirements are enforced programmatically.

Principals. Users of the applications are application-specific principals (see Sec-

tion 2.3.1). We factored out much functionality from both applications relating

to user management, such as selecting users and logging on and off. The sharing

of code across both case studies shows that SIF permits the design and imple-

mentation of reusable components. Figure 2.6 also shows measurements of the

reusable user library.

The login process works as follows: a user and password are specified on the

52

login screen, and if the password is correct, the authority of the user is dynami-

cally obtained via a closure; the closure is used to delegate the user’s authority

to the session principal, who can then act on behalf of the now logged-in user.

In addition to user principals, the two applications define principals

CDISApp and CalApp, representing the applications themselves. These model

the security of sensitive information that is not owned by any one user, such as

the set of application users. This information is labeled {p→> ; p←>}, where p

is one of CDISApp or CalApp, and relevant portions are downgraded for use as

needed. In particular, information in the database has this label. Since all infor-

mation sent to and from the database (including data used in SQL queries) must

have this label, the authority of the application principal (CDISApp or CalApp)

is required to endorse information sent to the database and to declassify infor-

mation received from it. This provides a form of access control, ensuring that

only code authorized by the application principal is able to access the database.

The need to explicitly endorse data used in SQL queries also helps to prevent

SQL injection attacks, by making the programmer aware of exactly what infor-

mation may be used in SQL queries.

Dynamic security labels. The security labels of Jif 3.0 are expressive enough

to capture the case studies’ information-sharing requirements. In particular, we

are able to model the confidentiality and review requirements for CDIS mes-

sages by enforcing appropriate labels on the messages. For instance, suppose

sender s is sending a message to recipient t. The confidentiality policy s → t

would allow both s and t to read the message. However, before t is permitted to

read the message, it may need to be reviewed. Suppose reviewers r1, r2, ..., rn

must review all messages sent from s to t. When s composes the message,

53

it initially has the following confidentiality policy: (s → t, r1, . . . , rn) t (r1 →

r1, . . . , rn) t . . . t (rn → r1, . . . , rn). In this policy, s permits t and all reviewers

to read the message, and each reviewer permits all other reviewers to read the

message. This label allows the message to be read by each reviewer, but pre-

vents t from reading it. As each reviewer reviews and approves the message,

their authority is used to remove their reader policy from the confidentiality

policy using declassify annotations. Eventually the message is declassified

to the policy s→ t, r1, . . . , rn, which permits t to read it.

The calendar application also enforces user-defined security requirements

by labeling information with appropriate dynamic labels. Event details have

the confidentiality policy c→a1, . . . , an enforced on them, where c is the creator

of the event and a1, . . . , an are the event attendees. The time of an event has

confidentiality policy c→ a1, . . . , an u c→ t1, . . . , tm, where t1, . . . , tm are the users

explicitly given permission by c to view the event time. Event labels ensure that

times and details flow only to users permitted to see them; run-time label tests

are used to determine which events a user can see.

2.4.3 Downgrading

Jif prevents the unintentional downgrading of information. However, most ap-

plications that handle sensitive information, including the case study applica-

tions, need to downgrade information as part of their functionality. Jif provides

a mechanism for deliberate downgrading of information: selective declassifica-

tion [46, 53] is a form of access control, requiring the authorization of the own-

ers of all policies weakened or removed by a downgrade. Authorization can be

54

acquired statically if the owner of a policy is known at compile time; or autho-

rization can be acquired at run time through a closure (see Section 2.3).

Jif 3.0 programs must also satisfy typing rules to enforce robust declassifica-

tion [81, 47, 9]. In the context of Jif, robustness ensures that no principal p (in-

cluding attackers) is able to influence either what information is released to p

(a laundering attack), or whether to release information to p. For a web applica-

tion, robustness implies that users are unable to cause the incorrect release of

information. Selective declassification and robust declassification are orthogo-

nal, providing different guarantees regarding the downgrading of information.

In Jif programs, downgrading is marked by explicit program annotations. A

declassify annotation allows confidentiality to be downgraded, whereas an

endorse annotation downgrades integrity.

Downgrading annotations are typically clustered together in code, with sev-

eral annotations needed to accomplish a single “functional downgrade.” For

example, declassifying a data structure requires declassification of each field of

the structure [4]. The two applications had a combined total of 39 functional

downgrades, with an average of 4.6 annotations per functional downgrade.

Figure 2.6 shows a more detailed breakdown of the use of downgrading in

each case study. We found that downgrading could be divided into three broad

categories: access control, imprecision, and application requirements.

The first category is downgrades associated with discretionary access con-

trol. Discretionary access control is used as a mechanism to mediate informa-

tion release between different application components; any information release

requires explicit downgrading. For example, in the calendar application, the set

55

of all events has the label {CalApp→> ; CalApp←>}; thus, downgrading is re-

quired both to extract events to display to the user, and to update events edited

by the user; the authority of CalApp is required for these downgrades, and thus

the downgrades serve as a form of discretionary access control to the event set.

The choice of the label {CalApp→> ; CalApp←>} for the event set necessi-

tates these downgrades; using other labels may result in fewer downgrades, but

without the benefits of this discretionary access control.

Imprecision is another reason for downgrading: sometimes the programmer

can reason more precisely than the compiler about security labels and informa-

tion flows. For example, suppose a method is always called with a non-null ar-

gument: Jif 3.0 has no ability to express this precondition, and conservatively as-

sumes that accessing the argument may result in a NullPointerException.

Since the exception may reveal information, a spurious information flow is in-

troduced, which may require explicit downgrading later. Few downgrades fall

into this category, giving confidence that Jif 3.0 is sufficiently expressive. Some

imprecision could be removed entirely by extending the compiler to accept and

reason about additional annotations, as in JML [?].

Security requirements of the application provide the third category of down-

grade reasons. These downgrades are inherent in the application, and cannot

and should not be avoided. For example, in the calendar application, when

users are added to the list of event attendees, more users are able to see the

details of the event, an information release that requires explicit downgrading.

56

2.4.4 Programming with information flow

During the case studies’ development, we obtained several insights into the

design and implementation of applications with information flow control.

Abstractions and information flow. Information flow analysis tends to reveal

details of computations occurring behind encapsulation boundaries, making it

important to design abstractions carefully. Unless sufficient care is taken dur-

ing design, abstractions will need to be modified during implementation. For

example, we sometimes needed to change a method’s signature several times,

both while implementing the method body (and discovering flows we hadn’t

considered during design), and while calling the method in various contexts

(as method invocation may reveal information to the callee, which we hadn’t

considered when designing the signature).

Coding idioms. We found that certain coding idioms simplified reasoning

about information flow, by putting code in a form that either allowed the pro-

grammer to better understand it, or allowed Jif’s type system to reason more

precisely about it. As a simple example, consider the following (almost) equiv-

alent code-snippets for assigning the result of method call o.m() to x, followed

by an assignment to y:

1. x = o.m(); y = 42;

2. if (o != null) { x = o.m(); } y = 42;

The first snippet throws a NullPointerException if o is null, and thus

information about the value of o flows to x, and also to y (since the assignment

to y is executed only in the absence of an exception). The information flow to y

is subtle, and a common trap for new Jif programmers. In the second snippet,

57

no exception can be thrown (the compiler detects this with a data-flow analysis),

and so information about o does not flow to y. This snippet avoids the subtle

implicit flow to y. More generally, making implicit information flow explicit

simplifies reasoning about information flow.

Declarative security policies. Many of the case studies’ security requirements

were expressed using Jif labels. SIF and the Jif compiler ensure that these la-

bels (and thus the security requirements) are enforced end-to-end. In general,

Jif’s declarative security policies can relieve the programmer of enforcing secu-

rity requirements programmatically, and give greater assurance that the require-

ments are met. This argues for even greater expressiveness in security policies,

to allow more application security requirements to be captured, and to verify

that programs enforce these requirements.

2.5 Related work

The most closely related work is Li and Zdancewic’s [35], which proposes a

security-typed PHP-like scripting language to address information-flow con-

trol in web applications. Their system has not been implemented. It assumes a

strongly-typed database interface, and, like SIF, ensures that applications re-

spect the confidentiality and integrity policies on data sent to and from the

database. Their security policies can express what information may be down-

graded; in contrast, the decentralized label model used in Jif specifies who needs

to authorize downgrading. In a multi-user web application with mutually dis-

trusting users, the concept of who a session or process is executing on behalf

of is crucial to security. We believe that practical information-flow control will

58

ultimately need to specify multiple aspects of downgrading [58]; extending the

decentralized label model to reason about other downgrading aspects is ongo-

ing work.

Huang et al. [30], Xie and Aiken [75], and Jovanovic et al. [31] all present

frameworks for statically analyzing information flow in PHP web applications.

Xie and Aiken, and Jovanovic et al. track information integrity using a dataflow

analysis, while Huang et al. extend PHP’s type system with type state. Livshits

and Lam [38] use a precise static analysis to detect vulnerabilities in Java web

applications. Each of these frameworks has found previously unknown bugs in

web applications. Xu et al. [76], Halfond and Orso [27] and Nguyen-Tuong et

al. [49] use dynamic information-flow control to prevent attacks in web appli-

cations. All of these approaches use a simple notion of integrity: information

is either tainted or untainted. While this suffices to detect and prevent certain

web application vulnerabilities, such as SQL injection, it is insufficient for mod-

eling more complex, application-level integrity requirements that arise in appli-

cations with multiple mutually distrusting principals. Also, they do not address

confidentiality information flows, and thus do not control the release of sensi-

tive server-side information to web clients.

Xu et al. [77] propose a framework for analyzing and dynamically enforc-

ing client privacy requirements in web services. They focus on web service

composition, assuming that individual services correctly enforce policies. Their

policies do not appear suitable for reasoning about the security of mutually dis-

trusting users. Otherwise, this work is complementary, as we provide assurance

that web applications enforce security policies.

While there has been much recent work on language-based information flow

59

(see [57, 58] for recent surveys), comparatively little has focused on creating real

systems with information flow security, or on languages and techniques to en-

able this. No prior work has built real applications that enforce both confiden-

tiality and integrity policies while dealing securely with their interactions.

The most realistic prior application experience is that of Hicks et al. [29],

who use an earlier version of Jif to implement a secure CDIS email client, JP-

mail. Although there are similarities between JPmail and the CDIS mail applica-

tion described here, SIF is a more convincing demonstration of information flow

control in three ways. First, SIF is a reusable application framework, not just a

single application. Second, SIF applications enforce integrity, not just confiden-

tiality, and they ensure that declassification is robust [9]. Third, SIF applications

can dynamically extend the space of principals and labels and define their own

authentication mechanisms; JPmail relies on mechanisms for principal manage-

ment and authentication that lie outside the scope of the application.

Askarov and Sabelfeld [4] use Jif to implement cryptographic protocols for

mental poker. They identify several useful idioms for (and difficulties with)

writing Jif code; recent extensions to Jif should assuage many of the difficulties.

Praxis High Integrity System’s language SPARK [5] is based on a subset of

Ada, and adds information-flow analysis. SPARK checks simple dependen-

cies within procedures. FlowCaml [54] extends the functional language OCaml

with information-flow security types. Like SPARK, it does not support features

needed for real applications: downgrading, dynamic labels, and dynamic and

application-defined principals.

Asbestos [22], Histar [84], and SELinux [39] are operating systems that track

60

information flow for confidentiality and integrity. To varying degrees, they pro-

vide flexible security labels and application-defined principals. However, these

systems are coarse-grained, tracking information flow only between processes.

Information flow is controlled only dynamically, which is imprecise, and cre-

ates additional information flows from run-time label checking. By contrast, Jif

checks information flow mostly statically, at the granularity of program vari-

ables, providing increased precision and greater assurance that a program is

secure prior to deployment. Asbestos has a web server that allows web appli-

cations to isolate users’ data from one another, using one process per user. All

downgrades are performed by trusted processes. Unlike Jif, this granularity of

information flow tracking does not permit different security policies for differ-

ent data owned by a single user.

Tse and Zdancewic [71] present a monadic type system for reasoning about

dynamic principals, and certificates for authority delegation and downgrading.

Jif 3.0’s dependent type system for dynamic labels and principals allows simi-

lar reasoning. Tse and Zdancewic assume that certificates are contained in the

external environment, and do not provide a mechanism to dynamically create

them. Closures in Jif 3.0 can be dynamically authorized, and may perform ar-

bitrary computation, whereas Tse and Zdancewic’s certificates permit only au-

thority delegation and downgrading.

Swamy et al. [66] consider dynamic policy updates, and introduce a trans-

actional mechanism to prevent unintentional transitive flows that may arise from

policy updates. In Jif, policies are updated dynamically by adding and remov-

ing principal delegations, and unintentional transitive flows may occur. Their

techniques are complementary to our work, and should be applicable to Jif to

61

stop these flows.

2.6 Conclusions

We have designed and implemented Servlet Information Flow (SIF), a novel

framework for building high-assurance web applications. Extending the Java

Servlet framework, SIF addresses trust issues in web applications, moving trust

out of web applications and into SIF and the Jif compiler.

SIF web applications are written entirely in the Jif 3.0 programming lan-

guage. At compile time, applications are checked to see if they respect the con-

fidentiality and integrity of information held on the server: confidential infor-

mation is not released inappropriately to clients, and low-integrity information

from clients is not used in high-integrity contexts. SIF tracks information flow

both within the handling of a single request, and over multiple requests—it

closes the loop of information flow between client and server.

Jif 3.0 extends Jif in several ways to make web applications possible. It adds

sophisticated dynamic mechanisms for access control, authentication, delega-

tion, and principal management, and shows how to integrate these features se-

curely with language-based, largely static, information-flow control.

We have used SIF to implement two applications with interesting informa-

tion security requirements. These web applications are among the first to stati-

cally enforce strong and expressive confidentiality and integrity policies. Many

of the applications’ security requirements were expressible as security labels,

and are thus enforced by the Jif 3.0 compiler.

62

CHAPTER 3

INFORMATION FLOW CONTROL ACROSS WEB APPLICATION TIERS

The SIF framework described in Chapter 2 uses a third party SQL database

as its persistent back-end store. The calendar application, for example, stores

the details of events in the database, through a Java module that performs the

format conversion between objects and relational tables. Although SIF provides

the necessary components of a three-tier web application architecture, it does

not provide true end-to-end information flow control. Code running in the

database, in the form of SQL queries, does not track security labels. This poses

a significant threat to web applications, especially those with substantial appli-

cation logic encoded in SQL queries.

SIF also does not track information flow through arbitrary code running on

the client. Information flow is tracked only through simple UI widgets such

as form fields and submit buttons. SIF allows deployers to include JavaScript

code to run on the client, but expects the code to be already checked for security

properties. This can be problematic if, for instance, the client side JavaScript

copies text from a form field with a certain security label to another form field

with a lower security label.

This chapter demonstrates how both the problems can be solved. Section 3.1

presents a system that integrates SIF with a distributed persistent storage sys-

tem called Fabric [37]. A web application server in this system runs as a Fabric

worker, storing persistent objects in a Fabric store. SQL queries are replaced

with remote method calls to the store. This enables an end-to-end information

flow analysis of the entire web application. Section 3.2 onwards till the end

of the chapter presents the Swift system which tracks information flow to and

63

from the client, as well as information flow within client side JavaScript code.

Swift also provides a higher-level programming abstraction where the devel-

oper writes a single sequential program, which is automatically distributed be-

tween the client and the server by the compilers. The distribution is constrained

by security policies and fine-tuned by performance concerns.

3.1 Tracking Information Flow through the Persistence Tier

This section discusses how information flow can be tracked between the server

and the persistent storage tier. Section 3.1.1 provides a summary of the Fabric

system and language. Section 3.1.2 describes the integration of SIF with Fabric.

The use of Fabric instead of an SQL database enables true end-to-end informa-

tion flow tracking. Section 3.1.3 presents an evaluation of the integrated system

using an Travel application that was built using the integrated system.

3.1.1 The Fabric System

Fabric is a system for building distributed applications with secure sharing

of information, computation and storage between heterogeneously trusted

hosts [37]. There are two kinds of hosts in the system: workers and stores. Work-

ers engage in distributed transactions with other workers and perform the bulk

of the computation in the system. Stores are responsible for persistent storage

of objects. Stores can also have a co-located worker that runs computations

that use a large number of objects from the associated store. This enables func-

tion shipping which is useful when moving the computation to the data is better

for performance (and sometimes security) than moving the data to the host per-

64

forming the computation. There is also a third kind of host called a dissemination

node that keeps object replicas to enhance the availability of objects; however,

this work will not be concerned about them. Hosts can join and leave the sys-

tem freely without the need for permission from a centralized authority. Thus,

Fabric is a decentralized system, similar to the World Wide Web.

The Fabric language is an extension of Jif [48], with the same kind of label an-

notations on variables, method arguments, object fields, method begin and end

contexts, return values, exceptions, etc. In addition, each worker and store has

an associated principal that can be used within labels. The following constructs

for distribution, transactions and persistence are added in Fabric:

• Remote method calls for performing distributed computations and func-

tion shipping.

• Atomic blocks for marking statements that need to run as an atomic trans-

action, to preserve data consistency. Transactions can be nested.

• Store annotations on constructor calls for specifying persistence of objects,

and for checking if the store is trusted to enforce the security of the object.

• Transparent access to objects everywhere, regardless of whether the ob-

ject is local or remote, persistent or transient. The system automatically

performs the required data shipping.

To enable the new language constructs, the Fabric language integrates in-

formation flow with persistence, transactions and distributed computation. In-

tegration with persistence requires the definition of the trust ordering between

labels, and the addition of associated label checks in the source. Section 2.2.3 ex-

plains how the set of labels in Jif, based on the DLM [45], forms a lattice with the

65

partial order between labels describing which labels are more restrictive than

which other labels. This ordering between labels is called the information flow

ordering, denoted by v. Fabric extends this model, and thus the DLM, by defin-

ing a second ordering on labels called the trust ordering, denoted by 4. The trust

ordering is useful for reasoning about the enforcement of policies by a partially

trusted platform. For instance, an object can be constructed on a store only if

the store’s label is higher in the trust ordering than the object’s label.

Integration with atomic transactions requires changes to the compiler that

stem from the observation that a transaction abort can be a potential implicit

flow. To track this, we require the pc label at the abort to be bounded above

by the pc label at the start of the atomic block, i.e. Labort
pc v Latomic

pc . Integration

with distributed computation requires label checks at each remote method call

that ensure that the callee is allowed to view the method arguments and that the

return value has at most the integrity of the callee. During a distributed transac-

tion between mutually distrusting hosts, the Fabric runtime automatically ships

objects and object updates to hosts where they are needed. This is done using a

novel data structure called a writer map that encrypts object contents to ensure

that only hosts that are allowed to read an object receive updates for that object.

Fabric can be used to build complex distributed information systems such

as those used by banks, hospitals, enterprises and government agencies. The

mechanisms offered by Fabric help integrating information from different do-

mains securely, enabling new kinds of services and capabilities. Next, we see

how the SIF system can benefit from using Fabric as a back end persistent store,

instead of a database.

66

3.1.2 Integrating SIF and Fabric

We call the system that integrates SIF and Fabric as SIF-Fabric. In SIF-Fabric,

the web application server runs as a Fabric worker. Similar to the SIF system

described in Chapter 2, the framework classes are Java classes and the appli-

cation logic is encoded partly in Jif classes and partly in Fabric classes. Both

Java and Jif classes are non-persistent; application data that is required to be

persistent and the computation over the persistent data is encoded in persistent

Fabric objects. For instance, going back to the Calendar example from Section

2.4, the event and user information would be stored as Fabric objects on a store,

instead of relational tables in a database. The Action classes would be non-

persistent Jif objects and the Servlet and Request framework classes would

be non-persistent Java objects.

The Fabric language allows persistent objects to interoperate with Jif and

Java objects. Jif and Java objects are both non-persistent; the difference between

them is that Jif objects are statically checked against an information flow policy,

whereas Java objects are not. Both Java and Jif classes have associated Fabric

signatures that provide an interface to interact with instances of the class as if

they were Fabric objects. The interoperability enables running the SIF frame-

work classes, the web application logic and code from persistent Fabric objects

all on the same Fabric worker. In addition, a Servlet container such as Tomcat

also executes within the same Java VM of the Fabric worker, hosting the web

application and serving web pages to a browser on any client over the network.

The integration of SIF with Fabric required modifications to various levels

of the web application stack. The SIF framework classes were modified to en-

sure conformance to Fabric transaction protocols. Database queries in the appli-

67

cation code were replaced with remote method calls to the appropriate Fabric

store. Object persistence required modifications to the sublanguage of security

annotations. Each of these modifications is discussed in further detail.

A client request from a browser is handled in almost the same way as in SIF.

Referring to Figure 2.1 and Section 2.2.4, steps 1 and 2 are identical. In step 3,

the appropriate Action object is invoked within a top level atomic transaction.

This is to ensure that construction of and comparisons between dynamic label

objects happen within a transaction, required because labels in Fabric are always

persistent objects. This top level transaction also nests inner transactions created

by the application for manipulating persistent objects. If the Action fails for

some reason (e.g. failed label check, failure of the persistent store, etc.) the

transaction is aborted and an empty HTML page is sent back to the client. The

transaction abort also rolls back any changes to persistent objects, including

label objects, incurred within the transaction. No network messages are sent

during the Action and so their rollback is not an issue. Fabric does not roll

back side-effects by Java and Jif objects. However, in this case, it is not an issue

since Java and Jif objects do not write to any persistent storage, nor do they

send messages over the network. However, Java code in the servlet container

does send HTTP response messages to the client, but only after the completion

of an Action. Thus, the state of all Java and Jif objects can safely be ignored

on a transaction abort. The ability to roll back a failed Action is a new feature

in SIF-Fabric, that ensures that persistent data will not enable a storage covert

channel.

Using Fabric in place of a relational database enables the programmer to en-

code database queries as Java-like code using iteration constructs within Fabric

68

objects. An SQL query is replaced with a remote method call to a method in a

Fabric object that encodes the logic of the query and a store that has the bulk of

the objects that are queried over. The programmer also has to ensure that the

remote call satisfies all the necessary compiler and runtime checks for security.

At the call site, this involves statically checking that the method arguments are

readable by the callee host and that the return value is not more trusted than

the label of the callee. The callee of the remote call has no way of statically

knowing who the caller is. Thus, each potential remote call is surrounded by

runtime label checking code that ensures that the caller is trusted to enforce the

labels of method arguments as well as the label of the return value. This extra

wrapper code is statically label checked to ensure that it does not leak informa-

tion itself. The extra label checking for remote method calls is in addition to

the regular method call label checking done by Jif. Replacing SQL queries with

Fabric code not only removes the “impedance mismatch” between the general

purpose language and the query sublanguage resulting in cleaner and easy to

maintain code, but also enables end-to-end information flow enforcement.

Fabric adds two built-in principals: store$ and worker$. The principal

store$ refers to the store that has the authoritative copy of the current object

and worker$ refers to the current worker performing the computation. Both

the built-in principals can be used in labels as regular principals. They are espe-

cially useful in carrying out dynamic label and principal tests to ensure that all

security constraints are being met.

In Fabric, each object has an object label that determines the encryption key

used to encrypt it. The object label is computed as the join of the labels on all

its fields. Labels and Principals in Fabric are themselves first class persistent

69

objects and have an object label of their own. Since the object label has to be

maintained at runtime to determine encryption/decryption keys, the labels on

fields need to have a runtime representation. This creates a problem for any use

of the {this} label on final fields, since the {this} label is not runtime rep-

resentable. Fabric resolves this problem by performing static checking exactly

as in the Jif language, but translates all occurrences of {this} to {⊥ →;> ←}

i.e. public and trusted. The reasoning that this is secure is that the programmer

intended the field to be protected at the same level as the reference to the object,

and thus intended the object reference to be a capability for access to the field.

Since Fabric uses cryptographically unguessable object ids at runtime, they can

be used as capabilities in such a manner.

3.1.3 The Travel Example

This section discusses the evaluation of SIF-Fabric by implementing an airline

ticket purchasing web application using the system. The application allows a

customer to purchase an airline ticket if he has enough account balance. Both

the customer and the airline maintain their accounts with the same bank. Once

the customer submits a purchase request, an amount of money equal to the

price of the ticket is deducted from the customer’s account and credited to the

airline’s account. Since the customer, airline and bank do not completely trust

each other, a broker is required to interact with each of them and carry out the

transaction.

The application comprises three web interfaces one each for the customer,

airline and bank, with each web interface running on a worker for the cor-

70

responding party. For instance, the web interface for bank runs on the bank

worker, requires the bank principal to log in before it displays a list of all ac-

counts at the bank, and their balances. Similarly, the web interface for airline

runs on the airline worker, requires the airline principal to log in before it dis-

plays the number of tickets sold to the customer. The web interface for the

customer runs on the customer worker and does not require the customer to

log in, since he is the sole user of the interface. The customer web application

provides an interface to enter a payment amount and issues a ticket to the cus-

tomer. The code for the application can be found in the Fabric 0.1 release [36]

in the examples/travel directory. The directory also contains a README that

explains how to run the application.

A typical run of the application proceeds as follows. First, as part of

the initial setup, the following three stores are created: bank, airline and

broker and the following three workers are created: customer, bankweb

and airlineweb. A static principal BankPrincipal representing the bank

principal is created. The store bank and the worker bankweb run on the

same host, and the principals (corresponding to) bank and bankweb act for

the BankPrincipal. Similarly, the principals airline and airlineweb

act for AirlinePrincipal and customer acts for CustomerPrincipal.

The Broker class implements the principal for the broker, which acts for

AirlinePrincipal and BankPrincipal. All principal objects are stored on

the broker store. The bank store is initialized with the account information of

the airline and the customer. The airline store is initialized with a record of

the number of tickets sold. After the stores are initialized, the web applications

for the customer, bank and the airline are started on the customer, bankweb

and airlineweb workers respectively.

71

After the initial setup, the customer can walk up to his worker customer at

any time and connect to the local web server using a standard web browser. A

login is not required, since the customer is assumed to be the only user of the

customer worker. The web interface asks the customer to enter the payment

amount and click on the Buy Ticket button. Clicking the button initiates the

StartTransaction action, which first fetches the instance of Broker from

the store broker. The Broker instance maintains a reference to the customer

and airline accounts on the bank store and a reference to the tickets object on

the airline store. After fetching the Broker object, the action performs san-

ity checks to ensure that the delegation relationships between principals is as

expected and invokes the coordinatePurchase method on the Broker in-

stance remotely, to have it run on the worker colocated with the store broker.

The amount entered by the customer is passed as a method argument. The re-

mote call is needed since only the broker has the authority to perform all the

coordination tasks.

Inside the coordinatePurchase method, the broker performs the same

sanity checks since for delegation relationships between principals, since it does

not trust the customer to have done it correctly. If the checks are successful,

it first invokes a remote method call to the debit method in the customer

account on the worker colocated with bank. This debits the amount from

the customer’s account. Next, a remote call is made to the credit method

in the airline account object on the worker colocated with bank. This cred-

its the amount to the airline’s account. Next, the incTickets method in

tickets object is invoked on the worker colocated with airline. This incre-

ments the number of tickets sold. The return value of each of these meth-

ods is a boolean that indicates whether the task was completed successfully.

72

All the three tasks happen within an atomic transaction, ensuring an all-or-

none semantics. The coordinatePurchase method returns true if all the

three tasks were successful. This returns control to the customer worker

within the StartTransaction action. Depending on the return value of

coordinatePurchase, a web page is created to report the result to the cus-

tomer and sent to the customer’s browser.

Simultaneously, at any time, a person authorized by the bank can con-

nect to the webserver running on the bankweb worker using a standard

web browser. All Action objects in the bank web application inherit

the AuthenticatedAction class, which requires authentication by the

BankPrincipal before any action is performed. The person can authenticate

himself by supplying the username and password for BankPrincipal, exactly

like in SIF (see Section 2.4.2). On a successful login, all account objects from the

bank store are fetched and a web page is returned to the browser containing

the details of the accounts found. No interaction with any other stores or the

broker is required. Similarly, a person authorized by the airline can connect to

the airlineweb worker and login to view the total number of tickets and the

number of tickets unsold.

The example demonstrates that real web applications can be developed se-

curely, using persistent objects and atomic transactions and that the language

of SIF-Fabricis expressive for this purpose. Moreover, in comparison to a

similar implementation using a relational database for persistence, the SIF-

Fabricimplementation is more concise and enforces true end-to-end information

flow security.

73

3.2 Tracking Information Flow through Client-side Code

Web applications are client–server applications in which a web browser pro-

vides the user interface. They are a critical part of our infrastructure, used for

banking and financial management, email, online shopping and auctions, so-

cial networking, and much more. The security of information manipulated by

these systems is crucial, and yet these systems are not being implemented with

adequate security assurance. In fact, web applications are recently reported

to comprise 69% of all Internet vulnerabilities [68]. The problem is that with

current implementation methods, it is difficult to know whether an application

adequately enforces the confidentiality or integrity of the information it manip-

ulates.

Recent trends in web application design have exacerbated the security prob-

lem. To provide a rich, responsive user interface, application functionality

is pushed into client-side JavaScript [23] code that executes within the web

browser. JavaScript code is able to manipulate user interface components and

can store information persistently on the client side by encoding it as cook-

ies. These web applications are distributed applications, in which client- and

server-side code exchange protocol messages represented as HTTP requests

and responses. In addition, most browsers allow JavaScript code to issue its

own HTTP requests, a functionality used in the Ajax development approach

(Asynchronous JavaScript and XML).

With application code and data split across differently trusted tiers, the de-

veloper faces a difficult question: when is it secure to place code and data on the

client? All things being equal, the developer would usually prefer to run code

74

and store data on the client, avoiding server load and client–server communi-

cation latency. But moving information or computation to the client can easily

create security vulnerabilities.

For example, suppose we want to implement a simple web application in

which the user has three chances to guess a number between one and ten, and

wins if a guess is correct. Even this simple application has subtleties. There is

a confidentiality requirement: the user should not learn the true number until

after the guesses are complete. There are integrity requirements, too: the match

between the guess and the true number should be computed in a trustworthy

way, and the guesses taken must also be counted correctly.

The guessing application could be implemented almost entirely as client-

side JavaScript code, which would make the user interface very responsive and

would offload the most work from the server. But it would be insecure: a client

with a modified browser could peek at the true number, take extra guesses,

or simply lie about whether a guess was correct. On the other hand, suppose

guesses that are not valid numbers between one and ten do not count against

the user. Then it is secure and indeed preferable to perform the bounds check

on the client side. Currently, web application developers lack principled ways

to make decisions about where code and data can be securely placed.

We introduce the Swift system, a way to write web applications that are se-

cure by construction. Applications are written in a higher-level programming

language in which information security requirements are explicitly exposed as

declarative annotations. The compiler uses these security annotations to decide

where code and data in the system can be placed securely. Code and data are

partitioned at fine granularity, at the level of individual expressions and object

75

fields. Developing programs in this way ensures that the resulting distributed

application protects the confidentiality and integrity of information. The gen-

eral enforcement of information integrity also guards against common vulnera-

bilities such as SQL injection and cross-site scripting.

Swift applications are not only more secure, they are also easier to write:

control and data do not need to be explicitly transferred between client and

server through the awkward extralinguistic mechanism of HTTP requests. Au-

tomatic placement has another benefit. In current practice, the programmer has

no help designing the protocol or interfaces by which client and server code

communicate. With Swift, the compiler automatically synthesizes secure, effi-

cient interfaces for communication.

Of course, others have noticed that web applications are hard to make se-

cure and awkward to write. Prior research has addressed security and expres-

siveness separately. One line of work has tried to make web applications more

secure, through analysis [30, 75, 31] or monitoring [27, 49, 76] of server-side

application code. However, this work does not help application developers de-

cide when code and data can be placed on the client. Conversely, the awk-

wardness of programming web applications has motivated a second line of

work toward a single, uniform language for writing distributed web applica-

tions [26, 14, 61, 79, 78]. However, this work largely ignores security; while the

programmer controls code placement, nothing ensures the placement is secure.

Swift thus differs from prior work by addressing both problems at once.

Swift automatically partitions web application code while also providing assur-

ance that the resulting placement enforces security requirements. Addressing

both problems at the same time makes it possible to do a better job at each of

76

them.

Prior work on program partitioning in the Jif/split language [83, 86] has ex-

plored using security policies to drive code and data partitioning onto a general

distributed system. Applying this approach to the particularly important do-

main of web applications offers both new challenges and new opportunities. In

the Swift trust model, the client is less trusted than the server. Code is placed

onto the client in order to optimize interactive performance, which has not been

previously explored. Swift has a more sophisticated partitioning algorithm that

exploits new replication strategies. And because Swift supports a richer pro-

gramming language with better support for dynamic security enforcement, it

can control information flow even as a rich, dynamic graphical user interface is

used to interact with security-critical information.

The remainder of the chapter is structured as follows. Section 3.3 gives

an overview of the Swift architecture. Section 3.4 describes the programming

model, based on an extension of the Jif programming language [48] with sup-

port for browser-based user interfaces. Sections 3.5 and 3.6 explain how high-

level Swift code is compiled into an intermediate language, WebIL, and then

partitioned into Java and JavaScript code. Section 3.7 presents results and ex-

perience using Swift, Section 3.8 discusses related work, and Section 3.9 con-

cludes.

3.3 Architecture

Figure 3.1 depicts the architecture of Swift. The system starts with annotated

Java source code at the top of the diagram. Proceeding from top to bottom,

77

Jif
source
code

confidentiality/
integrity labels

WebIL code server/client
constraints

label projection

Located WebIL code
server/
client

placement

partitioning

Java
server
code

Java
client
code

JavaScript
client
code

CPS conversion

GWT

Swift
client

runtime

GWT
runtime
library

Swift
server

runtime

Java
servlet

framework HTTP

Web server Web browser

Figure 3.1: The Swift architecture

a series of program transformations converts the code into a partitioned form

shown at the bottom, with Java code running on the web server and JavaScript

code running on the client web browser.

Jif source code. The source language of the program is an extended version

of the Jif 3.0 programming language [43, 48]. Jif extends the Java programming

language with language-based mechanisms for information flow control and

78

access control. Information security policies can be expressed directly within Jif

programs, as labels on program variables. By statically checking a program, the

Jif compiler ensures that these labels are consistent with flows of information in

the program.

The original model of Jif security is that if a program passes compile-time

static checking, and the program runs on a trustworthy platform, then the pro-

gram will enforce the information security policies expressed as labels. For

Swift, we assume that the web server can be trusted, but the client machine

and browser may be buggy or malicious. Therefore, Swift must transform pro-

gram code so that the application runs securely, even though it runs partly on

the untrusted client.

WebIL intermediate code. The first phase of program transformation converts

Jif programs into code in an intermediate language we call WebIL. As in Jif,

WebIL types can include annotations; however, the space of allowed annota-

tions is much simpler, describing constraints on the possible locations of appli-

cation code and data. For example, the annotation S means that the annotated

code or data must be placed on the web server. The annotation C?S means that

it must be placed on the server, and may optionally be replicated on the client

as well. WebIL is useful for web application programming in its own right,

although it does not provide security assurance.

WebIL optimization. The initial WebIL annotations are merely constraints on

code and data placement. The second phase of compilation decides the exact

placement and replication of code and data between the client and server, in

accordance with these constraints. The system attempts to minimize the cost of

79

the placement, in particular by avoiding unnecessary network messages. The

minimization of the partitioning cost is expressed as an integer programming

(IP) problem, and maximum flow methods are then used to find a good parti-

tioning.

Splitting code. Once code and data placements have been determined, the

compiler transforms the original Java code into two Java programs, one repre-

senting server-side computation and the other, client-side computation. This

is a fine-grained transformation. Different statements within the same method

may run variously on the server and the client, and similarly with different

fields of the same object. What appeared as sequential statements in the pro-

gram source code may become separate code fragments on the client and server

that invoke each other via network messages. Because control transfers become

explicit messages, the transformation to two separate Java programs is similar

to a conversion to continuation-passing style [55, 64].

JavaScript output. Although our compiler generates Java code to run on the

client, this Java code actually represents JavaScript code. The Google Web

Toolkit (GWT) [26] is used to compile the Java code down to JavaScript. On the

client, this code then uses the GWT run-time library and our own run-time sup-

port. On the server, the Java application code links against Swift’s server-side

run-time library, which in turn sits on top of the standard Java servlet frame-

work.

The final application code generated by the compiler uses an Ajax approach

to securely carry out the application described in the original source code. The

application runs as JavaScript on the client browser, and issues its own HTTP

80

requests to the web server, which responds with XML data.

From the browser’s perspective, the application runs as a single web page,

with most user actions (e.g., clicking on buttons) handled by JavaScript code.

This approach seems to be the current trend in web application design, replac-

ing the older model in which a web application is associated with many differ-

ent URLs. One result of the change is that the browser “back” and “forward”

buttons no longer have the originally intended effect on the web application,

though this can be largely hidden, as is done in the GWT.

Partitioning and replication. Compiling a Swift application puts some code

and data onto the client. Code and data that implement the user interface clearly

must reside on the client. Other code and data are placed on the client to avoid

the latency of communicating with the server. With this approach, the web

application can have a rich, highly responsive user interface that waits for server

replies only when security demands that the server be involved.

In order to enforce the security requirements in the Jif source code, infor-

mation flows between the client and the server must be strictly controlled. In

particular, confidential information must not be sent to the client, and informa-

tion received from the client cannot be trusted. The Swift compilation process

generates code that satisfies these constraints.

One novel feature of Swift is its ability to selectively replicate computation

onto both the client and server, improving both responsiveness and security. For

example, validation of form inputs should happen on the client so the user does

not have to wait for the server to respond when invalid inputs are provided.

However, client-side validation should not be trusted, so input validation must

81

also be done on the server. In current practice, developers write separate vali-

dation code for the client and server, using different languages. This duplicates

effort and makes it less likely that validation is done correctly and consistently.

With Swift, the compiler can automatically replicate the same validation code

onto both the server and the client. This replication is not a special-purpose

mechanism; it is simply a result of applying a general-purpose algorithm for

optimizing code placement.

In the next few sections, we more closely examine the various compilation

phases illustrated in Figure 3.1.

3.4 Writing Swift applications

3.4.1 Extending Jif 3.0

Programming with Swift starts with a program written in the Jif programming

language [43, 48], with a few extensions. Section 2.2.3 gives a background on

the basic language constructs in Jif.

In addition, two principals are already built into Swift programs. The prin-

cipal * (also server) represents the maximally trusted principal in the system.

The principal client represents the other end of the current session—in or-

dinary, non-malicious use, a web browser under the control of a user. When

reasoning about security, we can only assume that the client is the other end

of a network connection, possibly controlled by a malicious attacker. Because

the server is trusted, the principal * acts for client. The client may see infor-

82

mation whose confidentiality is no greater than *→client, and can produce

information with integrity no greater than *�client.

A Swift program may use and even create additional principals, for example

to represent different users of a web application. The language constructs to

express the creation of application-specific principals and dynamic principals

are also part of the Jif language, as explained in Sections 2.3.1 and 2.3.2. For a

user to log in as principal bob, server-side application code trusted by bobmust

establish that the principal named by client acts for bob. Applications can

define their own authentication methods for this purpose. Once the relationship

exists, the client can act for bob; for example, information labeled alice�bob

could be released to that client.

There are actually multiple principals denoted by client, whose identity

is determined by which client initiated the current request. To prevent different

session principals named as client in the code from being confused with each

other, the Swift compiler requires that the types of static variables not reference

the principal client, even indirectly. This works because different Swift ses-

sions can only interact or access shared persistent state through static variables.

3.4.2 A sample application

The key features of the Swift programming model can be seen by studying a

simple web application written using Swift. Figure 3.2 shows key fragments of

the Jif source code of the number-guessing web application described in Sec-

tion 3.2. Java programmers will recognize this code as similar to that of an

ordinary single-machine Java application that uses a UI library. For example,

83

1 public class GuessANumber {

2 final label{*�*} cl = new label{*�client};
3 int{*�*; *�*} secret;

4 int{*�client; *�*} tries;

5 ...

6 private void setupUI{*�client}() {

7 guessbox = new NumberTextBox("");

8 message = new Text("");

9 button = new Button("Guess");

10 ...

11 rootpanel.addChild(cl, cl, guessbox);

12 rootpanel.addChild(cl, cl, button);

13 rootpanel.addChild(cl, cl, message);

14 }

15 void makeGuess{*�client}(Integer{*�client} num)

16 where authority(*), endorse({*�*})
17 throws NullPointerException

18 {

19 int i = 0;

20 if (num != null) i = num.intValue();

21 endorse (i, {*�client} to {*�*})
22 if (i >= 1 && i <= 10) {

23 if (tries > 0 && i == secret) {

24 declassify ({*�*} to {*�client}) {

25 tries = 0;

26 finishApp("You win!");

27 }

28 } else {

29 declassify ({*�*} to {*�client}) {

30 tries--;

31 if (tries > 0) message.setText("Try again");

32 else finishApp("Game over");

33 }

34 }

35 } else {

36 message.setText("Out of range:" + i);

37 }

38 }

39 }

40 class GuessListener

41 implements ClickListener[{*�client}, {*�client}] {

42 ...

43 public void onClick{*�client} (

44 Widget[{*�client}, {*�client}]{*�client} w)

45 : {*�client}
46 {

47 if (guessApp != null) {

48 NumberTextBox guessbox = guessApp.guessbox;

49 if (guessbox != null)

50 guessApp.makeGuess(guessbox.getNumber());

51 }

52 }

53 }

Figure 3.2: Guess-a-Number web application

84

it has a user interface dynamically constructed out of widgets such as buttons,

text inputs, and text labels. Swift widgets are similar to those in the Google Web

Toolkit [26], communicating via events and listeners. The crucial difference is

that Swift controls how information flows through them.

The core application logic is found in the makeGuess method (lines 15–

39). Aside from various security label annotations, this method is essentially

straight-line Java code. To implement the same functionality with technologies

such as JSP [7] or GWT requires more code, in a less natural programming style

with explicit control transfers between the client and server.

The code contains various labels expressing security requirements. Because

this example is very simple, just the principals client and * are used in these

labels. For example, on line 3, the variable secret is declared to be completely

secret (*�*) and completely trusted (*�*); the variable tries on the next line

is not secret (*�client) but is just as trusted. Because Jif checks transitively

how information flows within the application, the act of writing just these two

label annotations constrains many of the other label annotations in the program.

The compiler ensures that all label annotations are consistent with the informa-

tion flows in the program.

The user submits a guess by clicking the button. A listener attached to the

button passes the guess (line 50) to makeGuess. The listener reads the guess

from a NumberTextBox widget that only allows numbers to be entered.

The makeGuess method receives a guess num from the client. The vari-

able num is untrusted and not secret, as indicated by its label {*�client} on

line 15. The label after the name of the method, also {*�client}, is the be-

85

gin label of the method. It bounds what might be learned from the fact that the

method was invoked, by preventing callers from causing any greater implicit

flow. Jif also keeps track of implicit flows out of methods using end labels; in

the case of makeGuess, no additional annotations are required for this purpose

because the end label is the same as the begin label. Jif aims to protect the confi-

dentiality and integrity of program data rather than of program code. However,

end labels and begin labels can be used to respectively protect the confidential-

ity and integrity of code.

The code of makeGuess checks whether the guess is correct, and either

informs the user that he has won, or else decrements the remaining allowed

guesses and repeats. Because the guess is untrusted, Jif will prevent it from af-

fecting trusted variables such as tries, unless it is explicitly endorsed by trusted

code. Therefore, lines 21–37 have a checked endorsement that succeeds only if num

contains an integer between one and ten. If the check succeeds, the number i

is treated as a high-integrity value within the “then” clause. If the check fails,

the value of i is not endorsed, and the “else” clause is executed. Checked en-

dorsements are a Swift-specific Jif extension that makes the common pattern of

validating untrusted inputs both explicit and convenient.

By forcing the programmer to use endorse, the potential security vulnera-

bility is made explicit. In this case, the endorsement of i is reasonable because

it is intrinsically part of the game that the client is allowed to pick any value it

wants (as long as it is between one and ten).

Similarly, some information about the secret value secret is released when

the client is notified whether the guess i is equal to secret. Therefore, the

bodies of both the consequent and the alternative of the if test on line 23

86

must use an explicit declassify to indicate that information transmitted by

the control flow of the program may be released to the client. Without the

declassify, client-visible events—showing messages, or updating the vari-

able tries—would be rejected by the compiler.

The declassify and endorse operations are inherently dangerous. Jif

controls the use of declassify and endorse by requiring that they oc-

cur in a code marked as trusted by the affected principals; hence the clauses

authority(*) and endorse({*�*}) on line 16. The latter, auto-endorse an-

notation means that an invocation of makeGuess is treated as trusted even if

it comes from the client. Jif also enforces a security property of robust declas-

sification [9], in which declassification cannot be performed without sufficient

integrity. Untrusted information is not allowed to affect security-critical opera-

tions such as declassification, even indirectly.

3.4.3 Swift user interface framework

Swift programs interact with the user via a user interface framework. This

framework abstracts away the details of the underlying HTML and JavaScript,

allowing programming in a event-driven style familiar to users of UI frame-

works such as Swing. The control of information flow in a rich, interactive,

dynamically changing graphical user interface is a novel feature of Swift.

Figure 3.3 presents part of the signatures of several Swift UI framework

classes. The class Widget is the ancestor of all user interface widgets, such

as TextBox (which allows a user to enter text), Button (which represents a

clickable button), and Panel (which contains other widgets).

87

1 class Widget[label Out, label In] { ... }
2 class Panel[label Out, label In]
3 extends Widget[Out,In] {
4 void addChild{Out}(label wOut,
5 label wIn,
6 Widget[wOut,wIn]{Out} w)
7 where {*wOut} <= Out, {In;w} <= {*wIn};
8 }
9 class ClickableWidget[label Out, label In]
10 extends Widget[Out,In] {
11 void addListener{In}
12 (ClickListener[Out,In]{In} li);
13 }
14 class Button[label Out, label In]
15 extends ClickableWidget[Out,In] {
16 String{Out} getText();
17 void setText{Out}(String{Out} text);
18 }
19 interface ClickListener[label Out, label In] {
20 void onClick{In}(Widget[Out, In]{In} b);
21 }

Figure 3.3: UI framework signatures

All classes in the framework are annotated with security policies that track

information flow that may occur within the framework. The framework en-

sures that the client is permitted to view all information that the user interface

displays. Conversely, all information received from the user interface is anno-

tated as having been tainted by the client.

The user interface classes demonstrate an important feature of Jif. Classes

may be parameterized with respect to principals or labels, as indicated by the

parameters in brackets following the name of each class. The Jif parameteriza-

tion mechanism is superficially similar to the parameterized type mechanism

in recent versions of Java, but differs in that parameter values are usable at run

time.

88

All widget classes are parameterized on two security labels, Out and In.

The parameter Out is an upper bound on the security labels of information that

is contained in the widget, or its children. Thus, given labels ` and `′, the text

displayed on a Button[`,`′] object must have a security label no more restric-

tive than `. This restriction is evidenced by the annotations on the getText

and setText methods, on lines 16–17. Similarly, given a Panel[`,`′] object to

which we are adding a child Widget[`w,`′w] w, the label of the child’s contents,

`w, must be no more restrictive than the upper bound of the panel’s content, `.

This requirement is expressed in the annotation “where {*wOut} <= Out”

on the addChild method (line 7). This annotation means that the method can

be called only if it is known at the call site that the label contained in the vari-

able wOut is no more restrictive than the label Out. (Because wOut is a program

variable, unlike Out, the label in wOut is written {*wOut} to distinguish it from

the label of wOut, written {wOut}.)

The parameter In of a widget is an upper bound on information that

may be gained by knowing an event occurred on the widget. Thus, if a

ButtonListener[`,`′] is added as a listener to a Button[`,`′] object, `′

is an upper bound on information that the listener may learn by having the

onClick method invoked. This is shown by the occurrences of the label {In}

in the addListener and onClick method signatures on lines 12 and 20. For

example, the first {In} in the onClick signature means that the method can be

called only if the implicit information flow into the method is bounded above

by In.

What information do we learn by knowing an event occurs on a widget?

We can at least infer that the widget is displayed to the user, and thus that the

89

widget is reachable from the root panel. For example, suppose an application

creates button bt if the value of a secret boolean v is true, and button bf if the

value is false; a listener to bt can then infer the value of v upon invocation of

the onClick method. Thus, the In parameter for bt must be at least as restric-

tive as the security label for the boolean v. More generally, if a Widget[`w,`′w]

w is added to a Panel[`,`′] p, the security label `′w must be at least as restric-

tive as the security label of widget w. In addition, since an event on w can only

occur if the panel p is itself added to the UI, we also require that `′w is at least

as restrictive as `′. Both of these restrictions are expressed in the annotation

“where {In;w} <= {*wIn}”, on line 7.

3.5 WebIL

After the Swift compiler has checked information flows in the Jif program, the

program is translated to an intermediate language, WebIL. WebIL extends Java

with placement annotations for both code and data. Placement annotations de-

fine constraints on where code and data may be replicated. These constraints

may be due to security restrictions derived from the Jif code, or to architectural

restrictions (for example, calls to a database must occur on the server, and calls

to the UI must occur on the client).

Whereas Jif allows expression and enforcement of rich security policies from

the decentralized label model (DLM) [46], the WebIL language is concerned only

with the placement of code and data onto two host machines, the server and

the client. Thus, when translating to WebIL, the compiler projects annotations

from the rich space of DLM security policies down to the much smaller space of

90

1 auto void makeGuess(Integer num) {
2 C?S?: int i = 0;
3 C?S?: if (num != null)
4 C?S?: i = num.intValue();
5 C?Sh: boolean b1 = (i >= 1);
6 boolean b2;
7 C?Sh: if (b1) b2 = (i <= 10); else b2 = false;
8 C?Sh: if (b2) {
9 Sh: boolean c1 = (tries > 0);
10 boolean c2;
11 Sh: if (c1) c2 = (i == secret);
12 Sh: else c2 = false;
13 Sh: if (c2) {
14 C?Sh: tries = 0;
15 C?S?: finishApp("You win!");
16 } else {
17 C?Sh: tries--;
18 C?S?: if (tries > 0) {
19 C : message.setText("Try again");
20 } else {
21 C?S?: finishApp("Game over");
22 }
23 }
24 } else {
25 C : message.setText("Out of range:"+i);
26 }
27 }

Figure 3.4: Guess-a-Number web application in WebIL

placement constraints.

Using the placement constraint annotations, the compiler chooses a parti-

tioning of the WebIL code. A partitioning is an assignment of every statement

and field to a host machine or machines on which the statement will execute, or

the field be replicated. To optimize performance, partitioning uses an efficient

algorithm based on a reduction to the maximum flow problem. A novel feature

of WebIL is that code or data may be replicated in order to improve the perfor-

mance of the application. The partitioned code is then translated into two Java

programs, one to run on the server, and the other to run on the client.

91

Possible High
Annotation placements integrity
C {client} N
S {server} N
Sh {server} Y
CS {both} N
CSh {both} Y
CS? {client, both} N
C?S {server, both} N
C?Sh {server, both} Y
C?S? {client, server, both} N

Table 3.1: WebIL placement constraint annotations

WebIL can be used as a source language in its own right, allowing program-

mers to develop web applications in a Java-like programming language with

GUI support, while mostly ignoring issues of code and data placement, and

client-server coordination. This approach has many benefits over traditional

web application programming, but lacks the full security benefits of Swift.

3.5.1 Placement annotations

Each statement and field declaration in WebIL is preceded immediately by one

of nine possible placement annotations, shown in Table 3.1: C, S, Sh, C?Sh,

C?S?, CS, CS?, C?S, and CSh. Placement annotations define the possible place-

ments for each field or statement, as shown in the table. There are three possi-

ble placements: client, server, and both. The intuition is that C and S mean the

statement or field must be placed on the client and server respectively, whereas

C? and S? mean it is optional. An h signifies high integrity. Figure 3.4 shows

the result of translating Guess-a-Number into WebIL, including placement con-

92

straints.

The placement of a field declaration indicates which host or hosts the field

data stored is replicated onto. For example, if a field has the placement server,

that field is stored only on the server; if it has the placement both, it is replicated

on both client and server.

The placement of a statement indicates onto which host or hosts the com-

putation of the statement is replicated. For compound statements such as con-

ditionals and loops, the placement indicates the hosts for evaluating the test

expression. On line 11 of Figure 3.4, the comparison of the guess to the se-

cret number is given the annotation Sh, meaning that it must occur only on the

server. Intuitively, this is the expected placement: the secret number cannot be

sent to the client, so the comparison must occur on the server. On line 3, the

annotation C?S? indicates that there is no constraint on where to test that num

is non-null; that test may occur on the client, on the server, or on both.

For a statement that must execute on the server, the annotation may indi-

cate that it is high-integrity. The annotations Sh, C?Sh and CSh denote high-

integrity code. When translating to WebIL code, the Swift compiler will mark a

statement as high-integrity if its execution may affect data that the client should

not be able to influence. Thus, the client’s ability to initiate execution of high-

integrity statements must be restricted. As discussed in Section 3.6, run-time

mechanisms prevent this.

Lines 5–14 of Figure 3.4 are annotated as high-integrity because the execu-

tion of these statements may alter or influence the values of the high-integrity

variables tries, b1, b2, c1, and c2. Note that the start of the high-integrity

93

statements, line 5, corresponds to the start of the endorse statement of the

original Jif program of Figure 3.2; it is due to this endorsement that the tempo-

rary local variables b1, b2, c1, and c2 are regarded as high-integrity, and they

therefore need to be protected from malicious clients. Note that the ability of

the client to cause execution of these high-integrity statements comes from the

endorse annotation at line 16 in the source, reflected in the WebIL code by the

auto annotation on makeGuess.

3.5.2 Translation from Jif to WebIL

When the compiler translates from Jif to WebIL code, it replaces DLM security

policies with corresponding placement constraint annotations, and translates

Jif-specific language constructs into Java code. Based on the security policies

of the Jif code, the compiler chooses annotations that ensure code and data are

placed on the client only if the security of the program will not be violated by a

malicious client.

In particular, the translation ensures that data may be placed on a client

only if the security policies indicate that the data may be read by the principal

client; data may originate from the client only if the security policies indicate

that the data is permitted to be written by the principal client. Similar restric-

tions apply to code: code may execute on the client only if the execution of the

code reveals only information that the principal client may learn; the result of

a computation on the client can be used on the server only if the security policies

indicate that the computation result is permitted to be written by the principal

client.

94

The translation to WebIL also translates Jif-specific language features.

Uses of the primitive Jif type label are translated to uses of a class

jif.lang.Label. Declassifications and endorsements are removed, as they

have no effect on the run-time behavior of the program. However, they do

affect the labels of code and expressions, and therefore affect their placement

annotations.

WebIL code is annotated at statement granularity. To allow fine-grained con-

trol over the placement of code, compound expressions are translated into a se-

quence of simple expressions whose results are stored in temporary local vari-

ables. Thus, subexpressions of the same source code expression may be com-

puted on different hosts.

3.5.3 Goals and constraints

The compiler decides the partitioning by choosing a placement for every field

and statement of the WebIL program. Placements are chosen to satisfy both the

placement constraints and also certain consistency requirements. Once place-

ments are chosen, the WebIL program is split into two communicating pro-

grams, one running on the client, and the other running on the server. The goal

of choosing placements is to optimize overall performance without harming se-

curity. Since network latency is typically the most significant component of web

application run time, fields and statements are placed in order to minimize la-

tency arising from messages sent between the client and server. For example, it

is desirable to give consecutive statements the same placement.

Replicating computation can also reduce the number of messages. Consider

95

lines 5–8 of the Guess-a-Number application in Figure 3.4, which check that the

user’s input i is between 1 and 10 inclusive. To securely check that the client

provides valid input, these statements must execute on the server. If the value

entered by the user is not in the valid range, the server sends a message to the

client to execute line 25, informing the user of the error. However, if lines 5–8

execute on both the client and server, no server–client message is needed, and

the user interface is more responsive.

The placements of a field and of a statement that accesses the field must be

consistent. In particular, if a statement writes to a field, then the statement and

the field must have the same placement; if a statement reads a field, then the

statement must be replicated on a subset of the hosts that the field is replicated

on. These consistency requirements simplify the treatment of field accesses in

the run-time system, ensuring that every replicated copy of a field is updated

correctly, and that every read from a field occurs on a host on which the field is

present. These requirements do not reduce the expressiveness of WebIL. Fields

can be partitioned from their uses because a simple program transformation

rewrites every field access as an assignment to or from a temporary local vari-

able.

Figure 3.5 shows the GuessANumber.makeGuess method after partition-

ing. A placement has been chosen for each statement. The field tries has been

replicated on both client and server, requiring all assignments to it to occur on

both hosts (lines 14 and 17). Also, the compiler has replicated on both client

and server the validation code to check that the user’s guess is between 1 and

10 (lines 2–8). The validation code must be on the server for security, but plac-

ing it on the client allows the user to be informed of errors (on line 25) without

96

1 auto void makeGuess(Integer num) {
2 CS : int i = 0;
3 CS : if (num != null)
4 CS : i = num.intValue();
5 CSh: boolean b1 = (i >= 1);
6 boolean b2;
7 CSh: if (b1) b2 = (i <= 10); else b2 = false;
8 CSh: if (b2) {
9 Sh: boolean c1 = (tries > 0);
10 boolean c2;
11 Sh: if (c1) c2 = (i == secret);
12 Sh: else c2 = false;
13 Sh: if (c2) {
14 CSh: tries = 0;
15 S : finishApp("You win!");
16 } else {
17 CSh: tries--;
18 CS : if (tries > 0) {
19 C : message.setText("Try again");
20 } else {
21 S : finishApp("Game over");
22 }
23 }
24 } else {
25 C : message.setText("Out of range: "+i);
26 }
27 }

Figure 3.5: Guess-a-Number after partitioning

waiting for a server response.

3.5.4 Partitioning algorithm

The compiler chooses placements for statements and fields in two stages. First,

it constructs a weighted directed graph that approximates the control flow of

the whole program. Each node in the graph is a statement, and weights on the

graph edges are static approximations of the frequency of execution following

97

that edge. Second, the weighted directed graph and the annotations of the state-

ments and field declarations are used to construct an instance of an integer pro-

gramming problem, which is then reduced to an instance of the maximum flow

problem. The solution for the integer programming problem directly yields the

placements for fields and statements.

Control-flow graph. For each method in the program, a control-flow graph

(CFG) is constructed, and, assuming that the method is invoked n times, non-

negative, real weights are assigned to edges in the method’s CFG. Edge weights

are multipliers of n, representing how often that edge is taken. To estimate n,

each branch of an if statement is assumed to be taken the same number of

times, and each loop is assumed to execute ten times before it exits. Exceptions,

break and continue statements, and method calls are ignored.

An interprocedural analysis is then performed to construct a call graph of

the whole program. For dynamically dispatched methods, the analysis conser-

vatively finds all possible method bodies that may be invoked. Recursive meth-

ods are ignored, so the resulting call graph is acyclic. The application’s main

method and each UI event handler is assumed to be called exactly once, and the

weights are propagated through the call graph using each method’s CFG with

edge weights. At method calls, every possible target is assumed to be invoked

the same number of times. The result of the construction is a control flow graph

of the entire program, with edge weights that approximate how often the edge

is followed.

Integer programming problem. Using the weighted directed graph and

placement constraint annotations on field declarations and statements, the

98

placement problem is expressed as an instance of an integer programming (IP)

problem. A solution to the problem assigns all variables in the problem a value

in {0, 1}. Each statement u is associated with two variables, su and cu. The vari-

able su is 1 if the statement u is replicated on the server, and cu is 1 if u is repli-

cated on the client. For each u, the constraint su + cu ≥ 1 ensures that every

statement has to be replicated somewhere. Also, linear constraints are used to

ensure consistency in the annotations between statements that access the same

field.

For each edge e = (u, v) in the weighted directed graph, two variables xe

and ye are used. The variable xe is 1 if a message is sent from the client to

the server when program execution transitions from statement u to statement

v. This occurs when v executes on the server, but u does not, and therefore there

is a constraint xe ≥ sv − su. Similarly, ye is 1 if a message is sent from the server

to the client when program execution transitions on edge e; therefore, there is a

constraint ye ≥ cv − cu.

Let we be the weight of edge e. The goal is to find an assignment to all vari-

ables that satisfies all constraints, and minimizes the cost of the messages sent.

This cost is
∑

e we(xe + ye).

Although integer programming problems are in general NP-complete, this

particular problem has the nice property that its linear relaxation (obtained by

replacing the constraint sv, cv, xe, ye ∈ {0, 1} with sv, cv, xe, ye ≥ 0) always has an

integral optimal solution. Therefore, placement is polynomial-time solvable,

because an integral optimal solution to the linear relaxation is an optimal solu-

tion to the IP problem, and linear programming problems are polynomial-time

solvable.

99

An efficient algorithm for the placement problem is designed by reducing

the integer programming problem to an instance of the maximum flow prob-

lem. The key to the algorithm is the construction of the flow graph H on which

maximum flow is computed. It is constructed from the weighted directed graph

G that approximates the control flow. Using the preflow-push method [15], the

algorithm runs in O(V3), where V is the number of statements. The algorithm

also implements the gap heuristic [20], and achieves a satisfactory performance

for compiling the test cases in the chapter.

The graph H is constructed from the graph G as follows. First, create G′,

which is a copy of G, with all edges reversed, i.e., for each edge e = (u, v) ∈ G,

there is an edge (v′, u′) with weight we in G′. All nodes and edges of G and G′

are in H. For each node u in G with corresponding node u′ in G′, add an edge

(u, u′) to H with infinite weight. Add two distinguished nodes to H, ts and tc,

representing the server side and the client side respectively. Finally, add edges

with infinite weights for every statement u that has a known placement: if u is

only on the server, add an edge (ts, u); if it is only on the client, add an edge

(u′, tc); if it is on both sides, add two edges (ts, u′) and (u, tc).

According to the max-flow min-cut theorem [15], there is a maximum flow

from ts to tc on H, and a minimum cut (S ,C), where S and C are two disjoint

sets that cover all nodes in H, and ts ∈ S , tc ∈ C; the cost of the maximum flow

equals that of the minimum cut, and it gives the optimal solution s∗u, c
∗
u, x

∗
e, y
∗
e to

the integer programming problem:

s∗u =

1 u′ ∈ S

0 otherwise
c∗u =

1 u ∈ C

0 otherwise

x∗(u,v) = max{0, s∗v − s∗u}

100

y∗(u,v) = max{0, c∗v − c∗u}

The above solution is legal, because it disallows s∗u = c∗u = 0: if that were the

case, it would imply that u ∈ S and u′ ∈ C, which is impossible as (u, u′) has an

infinite weight.

Of course, the accuracy of this approach is limited by how closely the

weighted directed graph approximates actual run-time behavior. More sophis-

ticated static analysis techniques or profiling data could yield more precise

weighted directed graphs. However, in practice the current placements appear

to be good.

3.6 The Swift runtime

From a partitioning of a WebIL program, the Swift compiler produces two Java

programs. One executes on the server, and the other on the client (after transla-

tion to JavaScript). Each statement and field declaration of the WebIL program

is represented in one or both of these programs, according to its placement.

Concurrent execution of these two programs simulates execution of the original

Jif program while enforcing its security requirements.

Both programs rely on Swift’s run-time support, which manages communi-

cation and synchronization. The client and the server have separate run-time

systems, which are similar but not identical, since the trust model is asymmet-

ric. The client’s run-time system trusts all messages from the server, but the

server does not trust any messages from the client.

This section describes the Swift run-time support and shows how WebIL

101

i1
i2i3 i4
i5

i6

i7

i8
i9

i10

1 public class TreasureHunt {
2 :S: Grid grid;
3 :Sh: int totalPoints;
4 :C: TextBox message;
5 :C: Table gridDisplay;
6 ...
7 auto void hit(GridEvent evt) {
8 :C: int i = evt.X;
9 :C: int j = evt.Y;
10 :C: try {

program point 1��������)

11 :S: int points = grid.getTreasure(i, j);
12 :C: gridDisplay.setWidget(i, j, new Text(points));
13 } catch (BadCell e) {
14 :C: message.displayError("Invalid Cell");
15 }
16 :C: return;
17 }
18 ...
19 }
20 class Grid {
21 :S: int grid[][];
22 :S: int XBOUND, YBOUND;
23 ...
24 int getTreasure(int x, int y)
25 throws BadCell {

program point 2��������)

26 :S: boolean bound = x < 0 || y < 0 ||
27 x > XBOUND || y > YBOUND;
28 :S: boolean open = isOpened(x,y);
29 :S: boolean condition = bound || open;
30 :S: if(condition) {
31 :S: throw new BadCell();
32 }
33 :S: int contents = grid[i][j];
34 :Sh: totalPoints += contents;
35 :Sh: open(x,y);
36 :S: return contents;
37 }
38 ...
39 }

Figure 3.6: Part of the Treasure Hunt application, in WebIL

102

code is translated into Java. It also explains how GWT is used to compile client-

side code into JavaScript.

3.6.1 Execution blocks and closures

Methods in WebIL are divided into units called execution blocks, which are

contiguous segments of code with the same placement annotation. Execution

blocks have a single entry point and one or more exit points. Each execution

block has a unique identifier. For example, Figure 3.7 shows the execution

blocks of the Guess-a-number makeGuess method, in which blocks block2

and block3 have two exit points and the other blocks have just one. In gen-

eral, an execution block contains more than one basic block; a simple dataflow

analysis finds execution blocks of maximal size.

Execution blocks are executed sequentially, following branches from each

block to the next. Suppose a branch is taken from execution block s to execution

block t. If t is to run on a host that did not run s, the other host invokes it by

sending a message containing the identifier of t. We call this a control transfer

messages, although the original host may also continue executing t. If s is placed

on both hosts, no message need be sent.

An execution block runs in the context of an activation record, which stores

the state of local variables and method arguments. For a given activation record,

the client and server have distinct views, where each view stores only the vari-

ables used on that host. The two views share the same unique activation record

identifier.

103

For example, Figure 3.6 shows two methods of another web application

called “Treasure Hunt”. This game has a secret grid in which some cells con-

tain bombs and others contain treasure. The user explores the grid by digging

up cells, exposing their contents. Figure 3.8 shows the state of the run-time sys-

tem on the client and server during execution. The activation record for the

method Dig.hit has variables i, j, and points in the client view but only the

variable points in the server view.

When one host invokes an execution block on the other, it supplies both the

identifier of the next execution block and the the identifier for the appropriate

activation record. The pair of execution block and activation record identifiers

is a closure, a self-contained executable unit.

The client and server run-time systems each maintain a stack of closures.

Two kinds of closures are kept on the stack: exception handler closures and return

closures. A return closure is pushed onto the stack when a method is called, and

popped when it returns. Exception handler closures are pushed at the entry

to a try...catch block, and popped off at the exit. They are invoked if an

exception is thrown within the block.

Figure 3.8 shows the state of the client stack at program points 1 and 2 in

Figure 3.6.

At program point 1, execution of the try statement at line 30 has just pushed

the handler for the BadCell exception onto the stack. The handler has three

fields: the type of exception it handles (in this case, BadCell), the execu-

tion block identifier, and the activation record identifier of the current call to

Dig.hit. If a BadCell exception is thrown within the call to getTreasure,

104

the run-time system walks up the stack, finds this exception handler closure,

and executes it.

At program point 2, the Grid.getTreasure method has just begun exe-

cuting. The return closure for the caller (hit) is on the top of the stack. It points

to the execution block (3) right after the method call returns, and the activation

record for the latest invocation of hit.

On the server side, the stack of closures serves a second, crucial function: it

enforces the integrity of control flow. As discussed in Section 3.6.4, closures may

also be pushed onto the stack to ensure that control flow passes through them.

The closure stacks on the client and server are synchronized by piggybacking

stack updates onto control transfer messages. A stack update contains a set of

new closures and an update depth. A stack update is applied by popping off

existing closures to the specified depth, and then pushing on the new closures.

Returning to the example in Figure 3.8, when control goes from the client to

the server at program point 1, the stack update consists of the BadCell handler

and any closures above it that were created on the client since the last control

transfer from the server. After the update is applied on the server, the handler

appears on the server stack, as shown in gray in Figure 3.8.

Stack updates also include updates to the activation records that new clo-

sures refer to. Only variables that that other host should receive are sent, which

is important for security. The client does not receive updates to confidential

variables, and the server does not accept updates to high-integrity variables.

105

1 // auto void makeGuess(Integer num)
2 block1: (CS)
3 int i = 0;
4 if (num != null) i = num.intValue();
5 goto block2;
6 block2: (CSh)
7 boolean b1 = (i >= 1);
8 boolean b2;
9 if (b1) b2 = (i <= 10); else b2 = false;
10 if (b2) goto block3; else goto block10;
11 block3: (Sh)
12 boolean c1 = (tries > 0);
13 boolean c2;
14 if (c1) c2 = (i == secret); else c2 = false;
15 if (c2) goto block4; else goto block6;
16 ...
17 block10: (C)
18 call message.setText("Out of range: "+i);

Figure 3.7: Guess-a-Number execution blocks

Server stackClient stack

BadCell handler

Execution block=5

BadCell handler

Execution block=5

TreasureHunt.hit activation record

Grid.getTreasure activation record

Client Server

Client Server

i

evt

j

points

x

y

contents

Exception
handler
closure

Execution block=3

current

activation record

Return
closure

Exception
handler
closure

current

activation record

. . .

Program point 1

Program point 2

Figure 3.8: Run-time state at program points 1 and 2 in Figure 3.6

106

3.6.2 Closure results

When a closure s runs, it produces a result that includes the closure t to run next.

A closure may have one of four kinds of results: a simple result, an exception

result, a method call result, or a method return result. A simple result identifies a

closure t within the same method as the closure s that returned it, in which case

s and t share the same activation record. The run-time system simply invokes t,

sending a message to the other host if needed.

To invoke a method, a closure returns a method call result, which contains

a reference to the receiver object, the method identifier, and a return closure.

The runtime system pushes the return closure onto the closure stack, creates a

new activation record with the argument values, and using the run-time class

of the receiver object, and dynamically dispatches to the execution block that

implements the method.

Figure 3.8 shows this sequence of steps. Figure elements in dark black

show the state at program point 1 on the client, before the invocation of

Grid.getTreasure. Executing until program point 2, just before the first exe-

cution blockin getTreasure begins, adds the elements in gray, in the following

sequence of steps:

1. A stack update containing the BadCell handler closure is sent by the

client and applied at the server, piggybacked onto a control transfer mes-

sage that invokes execution block 2.

2. The return closure for Dig.hit is pushed onto the stack.

3. The run-time type of the receiver object is used to determine the execution

block (7) to run.

107

4. A new activation record for the getTreasure method is created with

some identifier id, and filled in with values for x and y.

5. The current activation record pointer is updated to point to id

6. The closure 〈t, id〉 is executed by the runtime.

When a method return result or an exception result is produced by a closure,

the run-time system walks up the stack to find the first return closure or the

first matching handler closure respectively to execute. In either case, the result

contains a value (the value returned or thrown) which is passed to the closure

found.

3.6.3 Classes and objects

A Jif class C is translated into two classes: Cs for use by the server Java program,

and Cc for the client Java program. For each field f of class C, the placement of f

determines whether the field declaration should be placed in Cs or Cc (or both).

Each object has a unique object identifier. An object o of class C is represented

by a pair of objects os and oc, where os of class Cs is on the server, oc of class Cc

is on the client, and os and oc share the same object identifier.

When an object reference is sent from one machine to the other (for example,

when forwarding the value of a local variable), it suffices to send the object iden-

tifier. If the receiving machine is not aware of the object identifier, a heap update

is also sent, informing the receiving machine of the runtime class of the object;

the receiving machine’s runtime system will create an object of the appropriate

class with the specified object identifier.

108

Label checking on the original Jif source program ensures that heap updates

do not violate confidentiality of information: if the server needs to send a heap

update to the client for a particular object, then the client is permitted to know

about the existence of that object. Conversely, before applying a heap update

received from the client, the server checks it for consistency; for example, it

checks uniqueness of the object identifier. Fields of an object will never be read

before they are initialized.

3.6.4 Integrity of control flow

A high integrity closure has an execution block which has high-integrity side ef-

fects, and is therefore annotated Sh. A misbehaving client might try to send

a control transfer message specifying a high-integrity execution block, and

thereby compromise the integrity of variables affected by that execution block.

A simple-minded approach would be to prevent the client from invoking high-

integrity closures. However, in some situations, the client should be allowed

to invoke a high integrity closure on the server. Consider the following WebIL

code, after partitioning:

1 Sh: this.f = 7;

2 C : this.g = 8;

3 Sh: m(this.f);

Lines 1 and 3 are both high-integrity execution blocks, but line 2 must execute

on the client. Thus, correct control flow of the program requires the client to

invoke the high-integrity closure for line 3.

109

To control how the client invokes high-integrity closures, high-integrity clo-

sures are pushed onto the closure stack. A client may invoke a high-integrity

closure only if it is at the top of the closure stack. For example, the execution of

line 1 pushes a closure for line 3 onto the closure stack, which allows the client

execution block at line 2 to invoke line 3, but no other high-integrity closure.

Further, a client cannot pop a high-integrity closure without executing it. The

server checks that closure invocations and closure stack updates from the client

obey these rules. As a result, the client has no way to control the execution of

high-integrity closures.

A dataflow analysis is used to statically determine when high integrity clo-

sures should be pushed onto the closure stack. When control flow may pass

from a low-integrity execution block u to a high-integrity execution block t, the

analysis finds the high-integrity execution blocks s that immediately precedes

the low-integrity execution leading to u. The execution of s then pushes the clo-

sure for t onto the closure stack. Because the WebIL code was generated from

a Jif program with secure information flows, a suitable execution block s exists

for each such u and t.

3.6.5 Other security considerations

The fact that WebIL programs are generated from Jif programs with secure in-

formation flows is important to ensuring translated code is secure. For example,

the client does not learn any secret information by knowing which closures the

server requests the client to execute. Static checking of the Jif program prevents

these implicit flows [19] (covert storage channels arising from program control

110

structure). Similarly, stack updates, activation record updates and heap updates

do not leak information covertly.

Care must also be taken in the runtime system to ensure that no new in-

formation channels are introduced in translated code. In particular, the unique

identifiers used for activation records and objects form a potential information

channel. If the identifiers of objects and activation records follow a predictable

sequence, and confidential information may affect the number of objects or ac-

tivation records created on the server, then the client may be able to infer confi-

dential information based on the object and activation record identifiers it sees.

To ensure that object and activation record identifiers do not reveal confi-

dential information, a cryptographic hash function is used to generate unpre-

dictable identifiers for computation in server-only closures. Thus, sending the

identifier of an object or activation record to the client does not reveal any con-

fidential details of the server’s execution history.

3.6.6 Concurrency Issues

A sequential Swift program can still translate to concurrent WebIL code, since

some code can be replicated on the client and the server, meant to execute in

parallel. In some situations, the client could get ahead of the server and end up

sending a second request to the server, before the response from the first request

arrives. To avoid such race conditions, the Swift client run-time ensures that

there is only one outstanding request to the server at any point in time, by using

a queue of requests. A mis-behaving client can still cause race conditions in this

manner — however, data confidentiality and integrity is never affected. The

111

analogous situation does not arise on the server, since the server only responds

to client requests — it never initiates a request to the client.

Much of the discussion of Swift has implicitly assumed a single client and

a single server. Swift, however, does support multiple clients communicating

with the same server, by simply leveraging the relevant machinery from the

Java Servlet framework. To support multiple clients, the language is restricted

to disallow specifying a security label containing the client keyword, on a

static field, since it would be ambiguous which client is being referred to.

3.6.7 GWT and Ajax

We use the Google Web Toolkit [26] (GWT) compiler and framework to trans-

late the client Java programs (and the Swift client runtime system) to JavaScript.

GWT provides browser-independent support for Ajax and JavaScript user in-

terfaces. This implementation choice facilitates the development of the Swift

runtime system and compiler, but is not fundamental to the design of Swift.

Ajax permits an elegant implementation of our runtime protocol. Commu-

nication between client and server occurs mostly invisibly to the user. The Swift

server runtime system implements a service interface that accepts requests for

closure invocations. GWT automatically generates asynchronous proxies that

the client can access, and provides marshaling of data sent over the network.

The Ajax model has an inherent asymmetry: only the client is able to initiate

a dialogue with the server. Any message sent from the server to the client (such

as a request to invoke a closure) must be a response to a previous client request.

112

Java target code JavaScript
Example Jif Server Client All Framework App

Null program 6 lines 0.7k tokens 0.6k tokens 73 kB 70 kB 3 kB
Guess-a-Number 142 lines 12k tokens 25k tokens 267 kB 104 kB 162 kB

Shop 1094 lines 139k tokens 187k tokens 1.21 MB 323 kB 889 kB
Poll 113 lines 8k tokens 17k tokens 242 kB 104 kB 137 kB

Secret Keeper 324 lines 38k tokens 38k tokens 639 kB 332 kB 307 kB
Treasure Hunt 92 lines 11k tokens 11k tokens 211 kB 99 kB 112 kB

Auction 502 lines 46k tokens 77k tokens 503 kB 116 kB 387 kB

Table 3.2: Code size of example applications

Actual Optimal
Example Task S→C C→S S→C C→S

Guess-a-Number guessing a number 1 2 1 1
Shop adding an item 0 0 0 0
Poll casting a vote 1 1 0 1

Secret Keeper viewing the secret 1 1 1 1
Treasure Hunt exploring a cell 1 2 1 1

Auction bidding 1 1 1 1
Key: S→C=Server to Client message, C→S=Client to Server message

Table 3.3: Network messages required to perform a core UI task

With minor modifications to our runtime system, we can ensure that whenever

the server needs to send a message to the client, the client has an outstanding

request.

3.7 Evaluation

The Swift compiler extends the Jif compiler with about 20,000 lines of non-

comment non-blank lines of Java code. Both the Swift and Jif compilers are

written using the Polyglot compiler framework [50]. The Swift server and client

run-time systems together comprise about 2,600 lines of Java code. The UI

113

framework is implemented in 1,400 lines of WebIL code and an additional 560

lines of Java code that adapt the GWT UI library. We also ported the Jif run-time

system from Java to WebIL, resulting in about 3,900 lines of WebIL code. The

Jif run-time system provides support for run-time representations of labels and

principals.

Although Swift shares some ideas and techniques with previous work on

Jif/split [86], no compiler or run-time code was reused from Jif/split, because of

significant differences between the systems. These differences include a richer

source language, use of the intermediate language WebIL, simplified protocols

for field access and control transfer, and the optimization of partitioning.

To evaluate our system, we implemented six web applications with varying

characteristics. None of these applications is large, but because they test the

functionality of Swift in different ways, they suggest that Swift will work for

a wide variety of web applications. Because the applications are written in a

higher-level language than is usual for web applications, they provide much

functionality (and contain many security issues) per line of code. Overall, the

performance of these web applications is comparable to what can be obtained

by writing applications by hand.

3.7.1 Example web applications

Guess-a-Number. This running example demonstrates how Swift uses repli-

cation to avoid round-trip communication between client and server. Figure

3.5, lines 5–8, show that the compiler automatically replicates the range check

onto the client and server, thus saving a network message from the server to the

114

client at line 25. Potential insecurities are also avoided by automatically plac-

ing the tries field on the server so a malicious client cannot corrupt it, and by

placing secret on the server where it cannot be leaked or corrupted.

Shop. This program models an important class of real-world web applica-

tions, and is the largest Swift program written to date. It is an online shopping

application with a back-end PostgreSQL database. Items may be added to and

removed from a shopping cart (automatically updating the total cost), orders

can be placed, and users can update their billing information. Users must log

in before shopping; new users can register themselves. The database contains

both confidential authentication and billing information for each user, and high-

integrity inventory information.

Poll. This application is an online poll that allows users to vote for one of

three options and view the current winner. Server-side static fields are used

to provide persistence and sharing across multi-user Swift applications. The

current count for each choice is kept as a secret on the server, and an explicit

declassification makes the result available to users who request to see it.

Secret Keeper. This simple application allows users to store a secret on the

server and retrieve the secret later by logging in. In the source program, the

secret of a user has a strong confidentiality policy that only allows that user

principal to read it. Once the user logs in, the acts-for relationship established

between the client and the user principal permits the secret to be released se-

curely without declassification. This example shows that Swift can handle com-

plex policies with application-defined principals, and that it can automatically

115

generate protocols for password-based authentication and authorization from

high-level information security policies.

Treasure Hunt. This game is described in Section 3.6.1. It has a relatively rich

user interface that is dynamically and incrementally updated as the user dis-

covers what lies beneath cells in the secret grid. Because the grid is secret, it is

placed on the server and accessed via Ajax calls as it is explored.

Auction. This online auction application allows users to list items for sale and

bid on items from other users. Once a seller starts an auction, it is visible to

other users, and the current bid as well as the bidder’s username is shown.

The application automatically polls the server to retrieve auction status updates

and updates the display. Buyers can enter higher bids until the seller ends the

auction. Information about each auction is considered public to users but is

maintained with high integrity on the server.

3.7.2 Code size results

Table 3.2 shows the code size of the example applications and the generated

target code. Generated code size is reported in non-comment tokens rather than

in lines, as line counts are not meaningful. However, as a point of comparison,

the Jif source programs use 9–11 tokens per line. The “Java target code” columns

report the size of the Java output for the server and client. Note that this does

not include the Swift run-time systems, nor the UI framework and Jif runtime.

(Recall that the UI framework and Jif runtime are both implemented in WebIL.)

116

The “JavaScript All” column reports the size of the code generated by GWT

compiling the client Java target code, including the parts of the UI framework

and Jif runtime that are partitioned onto the client, and the Swift client runtime;

the “JavaScript Framework” column gives the size of code produced by using

GWT to compile just the Swift client runtime and the parts of the UI framework

and Jif runtime placed on the client. The difference, in the “JavaScript App”

column, indicates how much JavaScript code is specific to the application.

The size of the application JavaScript code is approximately linear in the

size of the Jif source. For these applications, about 800 bytes of JavaScript is

generated per line of application Jif code. Much of the expansion occurs when

Java code is compiled to JavaScript by GWT, so translating WebIL directly to

JavaScript might reduce code size.

3.7.3 Performance results

We studied the performance of the example applications from the user’s per-

spective. We expect network latency to be the primary factor affecting appli-

cation responsiveness, so we measured the number of network round trips re-

quired to carry out the core user interface task in each application. For exam-

ple, the core user interface task in Guess-a-Number is submitting a guess. We

also compared the number of actual round trips to the optimum that could be

achieved by writing a secure web application by hand.

Table 3.3 gives the number of round trips required for each of the applica-

tions. To count the number of round trips, we measure the number of messages

sent from the server to the client. These messages are the important measure of

117

responsiveness because it is these messages that the client waits for. The table

also reports the number of messages sent from the client to the server. Because

the client does not block when these messages are sent, the number of messages

from client to server is not important for responsiveness.

The total number of round trips in the example applications is always op-

timal or nearly so. For example, in the Shop application, it is possible to up-

date the shopping cart without any client–server communication. The optimum

number of round trips is not achieved for Poll because the structure of Swift ap-

plications currently requires that the client hear a response to its vote request.

For Guess-a-Number and Treasure Hunt, there are extra client–server messages

triggering server-side computations that the client does not wait for, but server–

client messages remain optimal.

3.7.4 Automatic repartitioning

One advantage of Swift is that the compiler can repartition the application when

security policies change. We tested this feature with the Guess-a-Number ex-

ample: if the number to guess is no longer required to be secret, the field that

stores the number and the code that manipulates it can be replicated to the client

for better responsiveness. Lines 9–13 of Figure 3.5 all become replicated on

both server and client, and the message for the transition from line 13 to 14

is no longer needed. The only source-code change is to replace the label {*�*;

�} with {*�client; *�*} on line 3 of Figure 3.2. Everything else follows

automatically.

118

3.8 Related work

In recent years there have been a number of attempts to improve web appli-

cation security. At the same time, there has been increasing interest in unified

frameworks for web application development. The goals of these two lines of

work are in tension, since moving code to the client affects security. Because it

provides a unified programming framework that enforces end-to-end informa-

tion security policies, Swift is at the confluence of these two lines of work.

3.8.1 Information flow in web applications

Several previous systems have used information flow control to enforce web ap-

plication security. This prior work is mostly concerned with tracking informa-

tion integrity, rather than confidentiality, with the goal of preventing the client

from subverting the application by providing bad information (e.g., that might

be used in an SQL query). Some of these systems use static program analysis

(of information flow and other program properties) [30, 75, 31], and some use

dynamic taint tracking [27, 49, 76], which usually has the weakness that the un-

trusted client can influence control flow. Concurrent work uses a combination

of static and dynamic information flow tracking and enforces both confidential-

ity and integrity policies [10]. Unlike Swift, none of this prior work addresses

client-side computation or helps decide which information and computation

can be securely placed on the client. Most of the prior work (except [10]) only

controls information flows arising from a single client request, and not informa-

tion flow arising across multiple client actions or across sessions.

119

Instrumenting JavaScript with dynamic security checks [80] has been pro-

posed to protect sensitive client information from cross-site scripting attacks

and similar vulnerabilities. In these attacks, a malicious website attempts to re-

trieve information from another browser window or session to which it should

not have access. The usual avenue of attack is via JavaScript’s ability to inter-

pret and execute user-provided input as unchecked code, using the eval oper-

ation. Because Swift does not expose these “higher-order scripting” capabilities

of JavaScript, it is not vulnerable to these attacks.

3.8.2 Uniform web application development

Several recently proposed languages provide a unified programming model for

implementing applications that span the multiple tiers found in web applica-

tions. However, none of these languages helps the user automatically satisfy

security requirements, nor do they support replication for improved interactive

performance.

Links [14] and Hop [61] are functional languages for writing web applica-

tions. Both allow code to be marked as client-side code, causing it to be trans-

lated to JavaScript. Links does this at the coarse granularity of individual func-

tions, whereas Hop allows individual expressions to be partitioned. Links sup-

ports partitioning program code into SQL database queries, whereas Hop and

Swift do not. Swift does not have language support for database manipulation,

though a back-end database can be made accessible by wrapping it with a Jif

signature. To keep server resource consumption low, Links stores all state on

the client, which may create security vulnerabilities. Neither Links nor Hop

120

helps the programmer decide how to partition code securely.

Hilda [79, 78] is a high-level declarative language for developing data-driven

web applications. The most recent version [78] also supports automatic parti-

tioning with performance optimization based on linear programming. Hilda

does not support or enforce security policies, or replicate code or data. Hilda’s

programming model is based on SQL and is only suitable for data-driven ap-

plications, as opposed to Swift’s more general Java-based programming model.

Swift partitions programs on a much finer granularity than on Hilda’s “Applica-

tion Units”, which are roughly comparable to classes; fine-grained partitioning

is critical to resolve the tension between security and performance. The per-

formance optimization problem in Hilda is NP-complete, and is solved with a

bicriteria approximation algorithm, while Swift has a problem that is solvable

in polynomial time, and an efficient algorithm is presented.

A number of popular web application development environments make

web application development easier by allowing a higher-level language to

be embedded into HTML code. For example, JSP [7] embeds Java code, and

PHP [52] and Ruby on Rails [69] embed their respective languages. None of

these systems help to manage code placement, or help to decide when client-

server communication is secure, or provide fully interactive user interfaces (un-

less JavaScript code is used directly). Programming is still awkward, and rea-

soning about security is challenging.

The Google Web Toolkit [26] makes construction of client-side code easier by

compiling Java to JavaScript, and provides a clean interface for Ajax requests.

However, GWT neither unifies programming across the client–server boundary,

nor addresses security.

121

3.8.3 Security by construction

An important aspect of Swift is that it provides security by construction: the pro-

grammer specifies security requirements, and the system transforms the pro-

gram to ensure that these requirements are met. Prior work has explored this

idea in other contexts.

The Jif/split system [83, 86] also uses Jif as a source language and transforms

programs by placing code and data onto sets of hosts in accordance with the la-

bels in the source code. Jif/split addresses the general problem of distributed

computation in a system incorporating mutual distrust and arbitrary host trust

relationships. Swift differs in exploring the challenges and opportunities of web

applications. Web applications have a specialized trust model, and therefore

specialized construction techniques are used to exploit this trust relationship.

In particular, replication is used by Jif/split to boost integrity, whereas Swift

uses replication to improve performance and responsiveness. In addition, Swift

uses a more sophisticated algorithm to determine the placement and replication

of code and data to the available hosts. Swift applications support dynamic user

interfaces (represented as complex, compositional data structures) and control

the information flows that result. No Jif/split applications contain data struc-

tures or control flow of comparable complexity. Jif’s label parameterization is

needed to reason about information flow in complex data structures, as in Fig-

ure 3.3, but Jif/split lacks the necessary support for label parameters.

Program transformation has also been applied to implementing secure func-

tion evaluation in a distributed system, in Fairplay [41]. Its compiler translates

a two-party secure function specified in a high-level language into a Boolean

circuit. Fairplay provides strong, precise security guarantees for simple compu-

122

tations, but does not scale to general programs. However, its techniques might

be applicable within a larger framework such as Swift.

3.9 Conclusions

We have shown that it is possible to build web applications that enforce security

by construction, resulting in greater security assurance. Further, Swift automat-

ically takes care of some awkward tasks: partitioning application functionality

across the client–server boundary, and designing protocols for exchanging in-

formation.

Writing Swift code does require writing security label annotations. These

annotations are mostly found on method declarations, where they augment the

information specified in existing type annotations. In our experience, the anno-

tation burden is clearly less than the current burden of managing client–server

communication explicitly, even ignoring the effort that should be expended on

manually reasoning about security. More sophisticated type inference algo-

rithms might further lessen the annotation burden, but we leave this to future

work.

Swift satisfies three important goals: enforcement of information security; a

dynamic, responsive user interface; and a uniform, general-purpose program-

ming model. No prior system delivers these capabilities. Because web applica-

tions are being used for so many important purposes by so many users, better

methods are needed for building them securely. Swift appears to be a promising

solution to this important problem.

123

CHAPTER 4

READ CHANNELS

We have argued about the advantages of raising the level of abstraction at

which the programmer develops a system. However, reasoning about the sys-

tem at a more abstract level can lose sight of covert channels [33], which could

carry information in a way that violates security policies.

In this chapter, we focus on a particular kind of covert channel: the dis-

tributed read channel [42] also simply called the read channel [82]. A read chan-

nel is a covert communication channel that often occurs in distributed systems

and involves a trusted host fetching public data from an untrusted host during a

sensitive computation. Secret information can be leaked via the pattern of data

fetches.

For example, imagine a credit score mashup application – A credit score is

computed for a user and the browser displays whether or not it is a good score,

using images from a third party server. If the score is less than 750, it displays a

“thumbs down”, otherwise it displays a “thumbs up”. A simple fetch of public

image data might seem benign. However, based on which image is fetched, the

untrusted server can learn whether the user has a good credit score, thereby

violating site security policy.

As individuals and organizations are moving their activities online, their

data and code is increasingly interacting with untrusted hosts. As a result, ap-

plications on the web are increasingly becoming vulnerable to read channels.

Developing techniques for addressing read channels is important. This chapter

first describes the problem through its manifestation in the Fabric system, and

124

then places the problem in the context of related work. Section 4.2 presents an

extension of the Fabric type system that rejects programs with read channels.

Section 4.3 discusses the limitations of the type systems approach and presents

a program transformation algorithm based on abstract interpretation that auto-

matically eliminates read channels in a given program. Section 4.3.4 evaluates

the performance overhead incurred by using the program transformation tech-

nique.

4.1 Problem Definition

The problem we address is that of constructing distributed systems in a way

that provides assurance that it is not vulnerable to leakage of sensitive informa-

tion through read channels. We develop a solution based on existing work on

language based security [48]. In this setting, a read channel is defined as a fetch

of public data from a low host, done within a high-pc context. The read chan-

nel is thus an implicit flow of high information to a low host. The extensions

of Jif [48] we considered in Chapter 3 were not vulnerable to the read channel

problem. Swift statically and conservatively places data objects in a way that

read channels never occur. In SIF-Fabric, there were no messages exchanged

between mutually distrusting domains, and so the threat of read channels does

not arise. However, in the general Fabric [37] system read channels are an issue

since data objects are placed dynamically. As a result, we need extra mecha-

nisms to ensure that objects are placed only on hosts that are allowed to view

all the fetches of those objects.

125

4.1.1 Read Channels in Fabric

Consider the following code fragment from an application written using Fabric

(see Section 3.1.1 for a description of the Fabric system).

1 if (h) {

2 y = o.f;

...

6 } else {

7 y = r.f;

...

13 }

Let us assume that this code is executing on a worker W and that the objects

referred to by o and r are instances of the same class and are kept on the same

store S , such that W and S do not necessarily trust each other. Furthermore,

let us assume that the security label on the boolean variable h is Lh, such that

Lh @ {> → S }. In other words, S is not allowed to learn information about

h. Also, since h is being used in code running on W, we have Lh v {> → W},

indicating that W is allowed to learn the value of h.

The dereference of o on line 2 and of r on line 7 requires fetching the corre-

sponding objects from S . Since the pc label at these points is Lh, each object fetch

(acting as a side effect) leaks information at Lh to S . As per the constraints on Lh

in the last paragraph, such a leak is not allowed. Intuitively, S learns the value

of h depending on whether o or r was requested. This particular kind of covert

information channel is called a read channel.

126

4.1.2 Related Work

Previous work has addressed problems very similar to the read channel prob-

lem just described. Private Information Retrieval (PIR) [11] addresses the prob-

lem of protecting the privacy of users while they are querying a publicly ac-

cessible database. For the purpose of this discussion, assume that the database

is simply a bit string of length n and a user’s query is an integer i such that

1 ≤ i ≤ n. In other words, the user seeks to find the value of the ith bit in

the database. The threat model is that a curious database operator can track a

user’s queries and get a sense of the user’s intent, which is meant to be kept se-

cret. The goal of PIR is to execute a given query in a way that the user learns the

value of the ith bit without the database knowing the value of i. In the case that

information theoretic secrecy is desired and only a single copy of the database

exists, the entire database needs to be downloaded by the user before executing

the query. The communication complexity in this case is O(n) where n is the

size of the database. If multiple replicas of the database are available, and the

hosts maintaining those replicas do not collude, the user can cleverly code his

requests to each database separately in a way that the responses can be used to

infer the answer to his query. Each database individually sees a request for a

random subset of data elements, which may or may not contain a request for

the element that the user is looking for. This way, the database does not learn

anything about the user’s query. With replicated databases, the communica-

tion complexity can always be sublinear; for instance for the two replicas case,

a communication complexity of O(n1/3) is possible [11].

Simultaneously, it was shown that a sublinear communication complexity

can be achieved without replicating the database [?]. This method, however,

127

assumes that the adversary (database) is computationally bounded and relies

on the quadratic residuosity assumption, i.e. the computational hardness of

testing for quadratic residues [?].

A related but different problem is that of designing an oblivious machine,

motivated by the problem of protecting software from illegitimate duplica-

tion [?]. The solution to the problem of software protection is to distribute

a software-hardware package (instead of only software) consisting of an en-

crypted program and a physically shielded CPU storing the decryption key. The

shielded CPU is installed in a conventional computer system by connecting it

to the address and data buses and the encrypted program is loaded into one of

the memory devices. The program is executed by fetching the next encrypted

instruction and having the CPU decrypt the instruction and execute it. Memory

I/O is done by decrypting after reading and encrypting the data before writing.

The physical shielding of the CPU is meant to make it tamper resistant in a way

that the encryption key is lost if the CPU is tampered with (similar to smart

cards). Thus, the encryption key never leaves the CPU. The above scheme,

however, does not fully protect the program against reverse engineering by a

determined adversary (even if we assume that the physical shielding works as

intended). In particular, by reading the list of memory addresses that the pro-

gram accesses, the adversary can infer “essential properties” of the program

that could not have been inferred from only the specification of the software [?].

Preventing information leakage through the sequence of fetch addresses can be

done by making the CPU fetch the same sequence of addresses, independent of

the program input – this is called making the CPU oblivious [?].

Designing an efficient oblivious machine for a given random access machine

128

(RAM) can be done only by interpreting obliviousness in a probabilistic manner

and assuming that the CPU has access to a random oracle [?]. Obliviousness, in-

terpreted probabilistically, means that the probability distribution of the sequence

of fetch addresses is independent of the program input. A given RAM can be

simulated by a probabilistic oblivious RAM with a polylogarithmic overhead

in both time and memory space. On the other hand, a given one-tape Turing

machine can be transformed into an equivalent oblivious deterministic two-tape

Turing machine [?]. In this case, the time overhead is logarithmic. A lower

overhead is possible in the case of a Turing machine since the head movement

is always local, in contrast to a random access machine in which the next mem-

ory address accessed could be anywhere in memory. A more restrictive head

movement limits the range of possible fetch address sequences for a Turing ma-

chine and thus makes it easier to hide access patterns.

Information leaks through memory access patterns is also a concern in sys-

tem architectures with a cache shared between mutually distrusting applica-

tions. Two common examples of such an architecture are modern personal

computers installed with a multi-user operating system and cloud computing

platforms that instantiate, and sell to different clients, multiple virtual machines

running on the same physical infrastructure. In such systems, sharing the cache

across multiple applications enhances performance [?]. However, it introduces

security problems. One of the applications can learn information about an-

other application’s memory access patterns by issuing fetch requests for various

memory addresses and measuring the response time for each request. A quick

response would very likely mean that the memory address was already in cache

and that a fetch request for it was issued by the other application. Learning the

memory access pattern of an application can be problematic if, for example, the

129

application is performing an AES encryption. The entire encryption key can be

learnt without knowledge of the plaintext or the ciphertext [51]. Cloud comput-

ing platforms are somewhat resistant to the fine-grained information leaks re-

quired to steal cryptographic keys. However, the amount of cache usage (cache

load) itself is enough to mount a keystroke timing attack that can steal pass-

words entered through the keyboard [56]. There has also been a lot of recent

work on adapting oblivious RAMs to the cloud [?], targeting other applications

that are vulnerable to read channels: behavioral advertising [?], location and

map services, web search, etc.

These previous works indicate that the problem of information leaks via the

pattern of remote fetches is an important and relevant, yet unsolved problem.

This work addresses the problem by introducing development methodologies

that provide assurance that a given distributed program does not have read

channels, in line with the philosophy of security by construction. In contrast

to PIR, the goal of this work is not to hide all memory (database) accesses, but

to enforce the security policies associated with data values in the distributed

program. For instance, going back to the example in Section 4.1.1, the fetch of

o is itself not so much the problem as fetching o inside a high-pc context. The

solution would not be to fetch all the objects stored on S (that still hides the fact

that o was being dereferenced, as in PIR protocols) but to prefetch into the local

cache objects referred to by o and r just before the start of the if statement (that

hides the value of h from S as required by the policy). In general, all objects that

could possibly be read in a block of code with a high pc need to be prefetched

before entering the code block. Section 4.3 discusses how the set of such ob-

jects can be computed using an abstract interpretation. PIR protocols could still

be exploited by altering our notion of the database i.e. assume that the set of

130

all possible objects read by a high-pc block is the entire database and that each

dereference in a particular run would correspond to a query. For instance, if

the possible objects are present on one or more dissemination nodes, the PIR

protocol for replicated databases can be used to significantly reduce communi-

cation overhead. These enhancements, however, rely on the non-collusion of

dissemination nodes and stores and is orthogonal to this work.

This work also focuses on perfect information theoretic secrecy, in contrast

to computational PIR schemes and oblivious RAMs, which focus on compu-

tational indistinguishability and probabilistic secrecy respectively. In contrast

to oblivious Turing Machines, this work provides a more practical methodol-

ogy for avoiding read channels in programs written in a general purpose lan-

guage. The problem of cache side channels can potentially be addressed using

this work. Each application can be developed using the development method-

ology presented here, so that its cache access patterns do not reveal sensitive

information. Evaluating the efficacy of this approach is left to future work.

4.2 A Type System for Controlling Read Channels

In this section, we present a type system that checks whether a Fabric program

has a read channel. We focus on object dereferences, since they are the only

program points which need to fetch remote data (from stores or dissemination

nodes). For instance, referring to the code fragment in Section 4.1.1, the pro-

gram points of interest are lines 2 and 7 (assuming there are no object deref-

erences elsewhere). Since we are interested in perfect secrecy, we can prevent

information leaks through the pattern of object fetches by ensuring that there is

131

no information leak from each of the object fetches.

4.2.1 Threat Model

Similar to previous work on language-based security, the security of the system

is characterized relative to an adversary A. The threat model is that the adver-

sary has complete knowledge of the source programs running on all the hosts

and all the data that is labeled l such that l v {> → A}. The public visibility of all

source code is assumed in order to avoid the pitfalls of security by obscurity. In

addition, A controls all hosts H such that A actsfor H. An adversary can attempt

to learn secret information by simulating a run of the program and following

the sequence of object fetches performed by the actual execution to infer which

branch was taken on each conditional. For instance, in the code fragment from

Section 4.1.1, the adversary can simulate the program, keeping track of the pos-

sible values of o and r. After the last object fetch before line 1, if the program

issues a fetch for an object that o (respectively r) can point to, then the adversary

can infer that the value of h is true (respectively false).

4.2.2 A Simple Type System with Access Labels

In the original Fabric system, objects are placed onto stores that can enforce

their labels, including their confidentiality. However, this does not prevent read

channels. According to this rule, public data can be stored on a low (adversary-

controlled) node. But then accesses to the object from a high context would

violate confidentiality.

132

Read channels are not controlled in the original Fabric system, but they be-

come easy to exploit once the adversary can provide mobile code that generates

such accesses [2]. Read channels are not a Fabric-specific problem, either—holes

in the same-origin policy also permit read channels: for example, via images

fetched from ad servers, as explained in the introduction to this chapter.

When an object is accessed during computation on a worker, but is not yet

cached at the worker, the worker must fetch the object data from the node where

it is stored. Thus, the contacted node learns that an access to the object has oc-

curred. The access results in a read channel only if it is a read. To prevent ad-

versaries from exploiting read channels i.e. learning secret information through

object fetches, we need to statically check Fabric programs to ensure that each

object access is secure. Static checking is necessary since read channels are a

kind of implicit flow and require reasoning about all possible program paths

rather than only the current program path.

An object dereference has an insecure information leak if Lpc @ {> → S }

where Lpc is the program counter label just before the object dereference and S

is the store on which the object is stored. In this context, S is the adversary and

Lpc is the upper bound on the information contained in the program execution

context. The constraint says that if the execution context depends on informa-

tion that the store is not allowed to view, then an fetching an object from the

store in that context is insecure. To prevent such information leaks, we can sim-

ply require Lpc v {> → S } to be true for each object dereference. However, given

an object reference, statically, we do not know which store contains the object

that the reference points to. The Fabric language does support an expression of

the form o.store that returns a reference to the store containing the object o.

133

It is possible to evaluate o.store without fetching o, since the runtime repre-

sentation of the Fabric reference o contains the details of the store, along with

the oid. However, o.store can only be evaluated at runtime and asserting

Lpc v {> → o.store} for each dereference of o requires tracking the pc label at

runtime – a prohibitively expensive operation.

To address this issue, we extend the programming language and introduce

an access label associated with each object. It is a confidentiality-only label that

bounds what can be learned from the fact that the object has been accessed. The

access label ensures that the object is stored on a node that is trusted to learn

about all the accesses to it, and it prevents the object from being accessed from

a context that is too high. The access label has no integrity component because

there is no integrity dual to read channels.

The access label can also be thought of as a static approximation of the ob-

ject’s location, i.e. a static approximation of the dynamic label {> → o.store},

which enables static reasoning for read channels. Although, the access label is

logically associated with an object, in practice it is declared within the class def-

inition of the object, as part of the label of its fields. Given object label lu and

access label la, a label annotation lu@la on a field means that the field, and by

extension all instances of that class and all the references to them, have the cor-

responding access label la. Since access labels protect reads and updates and

update labels protect only updates, it will always be the case that access labels

are more restrictive than update labels, i.e. lu v la.

For example, to declare an object containing public information (in field

data) that can be accessed without leaking information (according to any prin-

cipal that trusts node n to enforce its confidentiality), we can write code like

134

this:

1 class Public {

2 int{}@{> → n} data;

...

11 }

Even though the information is public and untrusted (label {}), objects of this

class can be stored only on nodes that are at least as trusted as node n. Con-

versely, if we had given the field data the annotation {}@{}, the object could

be stored on any node, but the type system would prevent accesses from non-

public contexts.

Access labels require two new static checks in Fabric code, that are imple-

mented by extending the Fabric type system:

1. The access label on fields allows the compiler to check all reads from and

writes to fields to ensure that they occur in a low context. The program-counter

label pc must be lower than the access label (i.e., pc v la) at each field access

(read or update). This is in addition to the existing check, inherited from Jif [43],

that requires pc v lu at each update.

2. At the point where an object is constructed using new, the node at which

the object is created must be able to enforce the access label. In Fabric, an object

of class C is explicitly allocated at a node n using the syntax new C@n(...).

We require pc v la and n < la at this point in the code, because node n learns

about the future accesses to the object.

135

4.2.3 Interaction with Object-Oriented Features

In a simple imperative language with mutable cells on the heap and language

level references, the label checking rules in the previous section would be

enough to prevent read channels. However, the various features of a general

purpose object-oriented language offered by Fabric requires further extensions

to the type system.

Specification. Access labels are only specified on fields. An access label

can contain elements , since they have the property that they are runtime rep-

resentable and can be known for an object prior to fetching it. -access labels

are contravariant - doesn’t matter because Fabric doesn’t support contravariant

parameters, in any case covariant params cannot be used.

Access labels need to have a statically known value so that they can be com-

pared with the pc label at compile time. Also, the access label of an object cannot

depend on the state of the object. This is because access labels help prevent in-

secure object fetches and if computing the access label would require fetching

the object, the purpose of access labels would be defeated. Thus, access labels

cannot have dynamic label/principal components such as label/principal vari-

ables and fields. Access labels also need to be runtime representable so that the

constraint n < la (equivalent to la v {> → n} where n is dynamically known)

can be established at all constructor call sites. Thus, access labels cannot have

components such as {this} and arg labels such as {x}, which are not runtime

representable. A field whose access label is not explicitly specified is assigned a

default access label equal to the field’s update label.

Multiple fields/methods. In a class with multiple fields, the access label

136

for the class needs to be computed from the access labels on individual fields,

which can all be different from each other. The language allows access labels to

be specified on a per-field basis for greater expressiveness. The access label on a

field can thus be specified based on the sensitivity of the program points where

that particular field is accessed. The access label for the class is conservatively

approximated as the join of the individual field access labels and the confiden-

tiality components of the method begin labels. Only public and package visible

members (fields and methods) need to be included in computation of the access

label, since accessing private and protected members can be done only after the

object has already been fetched and a separate access is not necessary.

If a field’s access label (explicit or default) has dynamic label or arg label

components, an error is thrown and the programmer is expected to rewrite

the label by replacing disallowed components with appropriate bounds. Of-

ten, this involves the use of label parameters, which are allowed within access

labels. Method begin labels, however, can legally contain dynamic and arg label

components. To be able to include them into the access label, we require pro-

grammer supplied bounds for them expressed within the where clauses of the

corresponding method, as shown in the following example:

137

1 class D {

2 int{}@{Chuck�} x;

3 int{}@{} y;

4 void m{*l1;l1;l2}(label l1, label l2)

5 where l1 <= {Alice�},

6 {l1} <= {Bob�},

7 {l2} <= {Bob�}

8 {

...

29 }

30 }

The access label for class D is {Chuck→}t{} joined with a bound on

{*l1;l1;l2} computed using the where clauses. The bound needs to be writ-

ten using constant and parameter labels, which is {Alice→;Bob→} in this

case. The access label for D is therefore {Chuck→;Alice→;Bob→}. The in-

tegrity component of all access labels is assigned the dummy value of {⊥ ←}.

In a full system, we can imagine achieving greater precision by boxing each

of the individual fields into an object of a new class and including a reference to

this object in the original class. Each new class would have a single field with

the same access label as the field it boxes, and all the references to instances of

these classes can be given the same access label, computed by taking the meet

of all the original access labels. This scheme, called class splitting, can actually

be performed automatically by the compiler as an extra translation phase. Class

splitting would provide more flexibility – for instance in the example above we

can place x and y on different stores, instead of finding a store that can host both

138

fields. At field accesses, we would need to compare the pc label with the access

label of the particular field, instead of the class access label, allowing more local

reasoning. This allows us to tighten the begin labels of methods that do not

access all the fields of its class, to a less restrictive value. It is useful to tighten

the begin label when it does not affect where the method can be called from,

since it increases the number of possible workers that can execute the method

remotely. Class splitting is also motivated by more precision in reasoning of

update labels in classes containing fields with different update labels. We leave

the design and implementation details of class splitting to future work.

An Alternate Type System. An alternate type system with access labels

could associate them with individual object references instead of associating

them with all instances of a particular static type. Thus, we could declare access

labels on local variables as follows:

1 class C {

2 C{}@{} p;

...

12 static void m(Store store) {

13 C{}@{Alice�} o = new C@store(. . .);

14 int y = o.f;

15 p = o;

...

26 }

27 }

The compiler would need to prove on line 13 that {Alice→} v {> → store}.

Subsequently, if o is dereferenced as on line 14, the compiler would simply need

139

to check pc v {Alice →}. If o is copied into another variable/field p, we need

to check that the access label on p is at most as restrictive as the access label on

o. Thus the assignment on line 15 is secure since {} v {Alice →}. Similar to

our type system, if the access label contains dynamic labels or arg labels, the

compiler would need the programmer to specify constant upper bound labels

for them. Although, superficially, this scheme seems to not require elaborate

where clauses on every method of a class and thus have a lesser annotation

burden, it is easy to see that it results in annotation burden elsewhere. where

clauses are still required for bounding access labels containing dynamic labels

and arg labels. Object references that are passed around as method arguments

all need to have an extra access label annotation. This scheme also requires

checking pc v la at method calls in addition to checking that the pc is less re-

strictive than the begin label. More importantly, there are two reasons why we

reject this scheme in favour of our earlier proposed one. Firstly, the reasoning

associated with accesses to a particular object are spread out over all the individ-

ual accesses which could be anywhere in the system. In contrast, in the earlier

scheme, the reasoning associated with the access of an object are well contained

within the class definition of that object, making it easier to maintain. Secondly,

our earlier scheme would be more compatible with a future version of the Fab-

ric compiler that has an automatic class splitting pass. In the alternate scheme

the access label becomes a property of the object reference, and accesses cannot

be fine tuned depending on the particular field/method accessed. This results

in lesser expressiveness.

Inheritance. If a class A inherits another class B, we compute the access

label of A by taking the join of field access labels and method begin labels of

both A and B. In general, the access label of a class is computed by taking the

140

join of access labels and begin labels of all members of this class and all its

superclasses until we reach fabric.lang.Object. Similar to any other class

that has no members, Object would have an access label of {⊥ →}. This would

mean that these objects can be placed on any store, but can be accessed only

from a public context. This is not restrictive for Object since no object reference

is ever accessed (a down cast or an instanceof also counts as an access) at the

level of Object. In general, it is rare for “empty” classes to be accessed via a

down cast or an instanceof and thus will not be restrictive for them. In those

cases where an access to an empty class needs to happen in a secret context,

the programmer can always introduce a dummy field in the class and assign it

an appropriate access label. Computing access labels this way ensures that if

A <: B then lA
a w lB

a .

Overriding. In Jif and earlier version of Fabric, an overriding method needs

to have a begin label at least as restrictive as the one in the parent class. For

instance, let us define a class C that subclasses D and overrides the method D.m,

which is defined as follows:

1 void m{*l1}(label{} l1, label{} l2)

2 where l1 <= {Alice�},

3 {

...

24 }

Let us also say that the begin label of C.m is more restrictive than the begin

label of D.m. Since the access label computation requires constant bounds on the

begin label of C.m, we can imagine defining C.m with where clauses as follows:

141

1 void m{*l1;*l2;*lbl}(label{} l1, label{} l2)

2 where l1 <= {Alice�},

3 l2 <= L,

4 lbl <= {Chuck�}

5 {

...

26 }

where L is a label parameter of C and lbl is a final label field in C. This definition

of C.m would actually be unsound, since the where clauses of an overriding

method need to be weaker than (or implied by) the where clauses of the over-

ridden method. This can be fixed by using class-level where clauses for final

label fields and breaking up l2 <= L into l2 <= {Bob→} and {Bob→}<= L

where l2 <= {Bob→} is a condition that holds true at all call sites of D.m. The

resulting code is shown in Figure 4.1. Note that the where clauses of D.m imply

the where clause of C.m. Class-level where clauses can name entities that are in

scope at the class level, such as final label/principal fields, class parameters and

static constants. Class-level where clauses are checked as post-conditions of the

constructors of the class, and are assumed to be true for all instances of the class.

The class level where clause of the inherited class C needs to be stronger than

(needs to imply) the class level where clause of the parent class D.

Interfaces and Abstract Classes. Similar to classes, an interface level access

label is computed by taking the join of confidentiality projections of method

begin labels. Constant bounds for dynamic labels and arg labels need to be

stated for interface methods similar to classes, which might require interface

level where clauses in some cases. If an interface I extends interfaces J and K,

142

1 class D {
2 void m{*l1}(label{} l1, label{} l2)
3 where l1 <= {Alice�},
4 l2 <= {Bob�}
5 {
...
26 }
27 }
28

29 class C[label L] extends D
30 where {Bob�} <= L,
31 lbl <= {Chuck�}
32 {
33 final label lbl;
34 C() {
35 lbl = ...
...
46 }
47 void m{*l1;*l2;*lbl}(label{} l1, label{} l2)
48 where l2 <= L
49 {
...
70 }
71 }

Figure 4.1: Access Labels and Method Overriding

the rules for overriding are similar to those for classes. A class C that imple-

ments an interface I needs to ensure proper rules of overriding as well. For in-

stance, the implementation C.m cannot have stronger where clauses than I.m.

In general, the type of an implemented method C.m needs to be a subtype of

the signature I.m. Also, the class level where clauses of C need to imply the

interface level where clauses of I. Since interfaces do not have constructors,

interface level where clauses are never enforced directly. Rather, they serve as

constraints on the class level where clauses of the classes that implement it.

Similar to classes, the class level access label for an abstract class is com-

143

puted by taking the join of field access labels and method begin labels, after

replacing dynamic and arg labels with their bounds. Similar to interfaces, class

level where clauses are not enforced directly but serve as constraints for class

level where clauses of inherited classes. The where clauses on a class C that

inherits an abstract class B need to imply the where clauses on B.

Casts and Instanceofs. Both a cast and an instanceof require fetching the

dynamic type (class object) of the instance and therefore counts as an access. At

the program point that the cast/instanceof is performed, say, to a class C, the

compiler checks pc v lCa . At runtime, prior to fetching the object instance, the

worker executing the code checks if lCa v {> → o.store}where o is the runtime

reference to the object. This check can be performed without fetching o since the

store on which this object is located needs to be encoded within the reference.

Also, the cast/instanceof is translated into runtime code in a way that retains

the value of lCa , possible since access labels are runtime representable. The object

is fetched only if the runtime check succeeds.

4.2.4 Interaction with Mobile Code

Access labels also interact with provider-bounded label checking. Recall that

the compiler ensures the initial pc of methods contain at least as much confi-

dentiality as the label of the code. Therefore, the access label of objects used by

confidential code must be at least as high as the confidentiality of the code.

Mobile Fabric also encounters a new kind of read channel that did not exist

in the original Fabric system: class object read channels. Fetching an object may

require fetching its class, so the class object must be stored on a node that is

144

trusted to enforce the object’s access label. To satisfy this requirement without

unnecessary restrictiveness, we can ensure that when an object is created on a

node, its class object is stored at a suitably trusted node. Since the node storing

the object itself must be such a node, the class object can be replicated onto the

same node as the object if necessary. Since class objects are immutable, their

replication is harmless in Fabric.

4.2.5 Runtime Mechanisms

Access labels also introduce a new dynamic check. When a worker fetches an

object, the access label bounds how much information is leaked to the object’s

store. However, if the reference to the object is provided by an adversary, there

is no guarantee that the store is trusted to learn that information. Therefore,

before the fetch is performed, the worker must check dynamically that the store

can enforce the access label.

A second potential source of read channels arises in distributed computa-

tions spanning multiple worker nodes. In Fabric, a cached object is owned by

a single worker in a multi-worker distributed transaction. This worker is con-

tacted when the object is accessed. If the worker is not trusted to enforce the

object’s access label, this access creates an insecure read channel.

A solution to this problem is to modify Fabric’s writer map, which securely

maintains the mapping between oids and the workers that currently own them.

If a node is not trusted to enforce the access label, it must give up ownership

at control transfers. Instead of putting current ownership information into the

writer map, the node inserts the object update directly into the map. If a node

145

were to misbehave by claiming ownership incorrectly, other nodes will refuse

to attempt to access the object. This fatal error is a termination channel, which

is ignored.

4.3 Automatic Elimination of Read Channels

Experience suggests that programming against a type system with access labels

can easily get tricky and/or cumbersome. The rest of this chapter investigates

automatic program-analysis based methods to help the programmer address

read channels.

In the automated scheme, the programmer writes his program without con-

cerning himself with read channels. Objects are still annotated with access la-

bels, restricting the hosts on which they can be placed, and thus restricting the

hosts that can potentially learn about accesses to the objects. An object with a

high access label can be placed only on a high host. An object with a low ac-

cess label can be placed anywhere. However, access labels in the type system

do not restrict where the objects can be accessed from. Program analysis and

transformation methods are used to automatically eliminate any read channels

the program might contain.

With the previous type system with access labels, many details needed to be

specified by the programmer. The programming model offered by automatic

read channel elimination is more expressive because:

• It is more concise. It copies data structures automatically without the pro-

grammer having to explicitly do the copying himself.

146

• It provides a guarantee that all relevant objects are copied, which is not

available in the manual copying case. In the manual copying case with a

simple type system, it is awkward, annoying and burdensome to do the

copying and having to check that the copies are made correctly.

We investigate automatic elimination of read channels by considering a sim-

plified source language instead of the Fabric language. The simplified language

contains all the basic features of the Fabric language, such as labeled types,

records and arrays, loops, function calls and recursive types. It does not contain

more complex features such as object-oriented features, exceptions, etc. This

simplification allows us to focus on the interesting aspects of automatic read

channel elimination. We then discuss an automatic program transformation

technique based on an abstract interpretation to transform a given program in

this source language to a program that is guaranteed to not have read channels

vulnerabilities.

In Section 4.3.3, we present an alternate interpretation for the same source

program that eliminates the read channel. It does this by running the abstract

interpretation on each block of sensitive code, before executing that code nor-

mally. The abstract interpretation computes the set of possible objects that the

sensitive code might need, independent of secret information. This makes it

safe to prefetch exactly these objects into a cache, and then use the cache while

executing the block of sensitive code. Since the alternate interpretation is a pur-

poseful hybrid of the regular interpretation (denotational semantics), we call it

the interleaved interpretation.

In Section 4.3.4, we discuss the implementation of the three interpreters and

the performance overhead of the approach. A real system would use the in-

147

terleaved semantics to transform the source program into a program in a suit-

able target language. The performance results from the implementation of the

interleaved interpretation is only suggestive. A transformed program would

perform significantly better, since there would be no interpretation overhead.

Using the interleaved semantics to perform an actual program transformation

is left to future work.

4.3.1 Source Language

The source language is an extension of the simple while-language with higher

level language features such as arrays and records and information flow labels.

Arrays and records are also associated with access labels. These access labels

restrict only the stores on which the objects can be created. They do not restrict

accesses to the object. Since they serve as an abstraction of the location of the

object, a better name for them would be location labels. However, in order to

maintain continuity of the notion and to leave the door open for their inference,

we will still call them access labels. Let us call the source language IMPPAR

(IMP with procedures, arrays and records). We now present the grammar, type

system and denotational semantics for IMPPAR. The abstract interpretation in

the following section will build upon the denotational semantics at the end of

this section.

Grammar

se stands for “simple expression”, defined as either a value or a local variable.

The idea is to define a (non-exhaustive) subset of expressions which will se-

148

mantically never require a remote fetch. Restricting certain expressions such

as method arguments, initializers, etc. to be simple expressions helps simplify

some of the presentation related to read channels.

Variables x, y ∈ V

Names f , g ∈ F

Binary Operators ⊕ ∈ {+,−,÷,×,∧,∨, >, <,≥,≤,==, ! =}

Unary Operators 	 ∈ {−, !}

Confidentiality Labels l ∈ L = {>,⊥}

PC/Begin/Access Labels k ∈ L

Hosts h ∈ H

Types αl, τl ::= intl | booleanl | ω
k
l

Heap Types ωk
l ::= arrayl(k, τl′) |

µα.recordl(k, f1 : τ1l1 , f2 : τ2l2 , ..., fm : τmlm)

Function Body f b ::= τ1l1 x1, τ2l2 x2, ..., τmlm xm ; s ; return x

Function Declarations di ::= τi
l gi{ki}@hi(τi

1li1
x1, τ

i
2li2

x2, ..., τ
i
mlimi

xmi) { f bi}

Simple Expressions se ::= n | true | f alse | null | x

Expressions e ::= se | 	 e | e1 ⊕ e2 | (e) | x. f | x[y] |

length(x) | g(se1, se2, ..., sem) |

new τl se | new τl { f1 = se1, f2 = se2, ..., fm = sem}

Statements s ::= skip | x = e | x. f = e |

x[y] = e | s1; s2 | if x then s1 else s2 |

while x do s | g(se1, se2, ..., sem)

Program P ::= d1 d2 ... dp f b

149

Type System

Preliminaries:

Typing Judgement: Γ; h; pc ` e : τl

L(h) : Label associated with host h

150

v : Information flow ordering on labels

Typing Rules for Expressions.

Γ; h; pc ` n : int⊥ Γ; h; pc ` true : boolean⊥ Γ; h; pc ` f alse : boolean⊥

Γ; h; pc ` null : ωk
⊥

x ∈ Γ

Γ; h; pc ` x : Γ(x)

Γ; h; pc ` e : intl

Γ; h; pc ` −e : intl

Γ; h; pc ` e : booleanl

Γ; h; pc ` !e : booleanl

Γ; h; pc ` e1 : intl1 Γ; h; pc ` e2 : intl2 ⊕ ∈ {+,−,÷,×}

Γ; h; pc ` e1 ⊕ e2 : intl1tl2

Γ; h; pc ` e1 : intl1 Γ; h; pc ` e2 : intl2 ⊕ ∈ {>, <,≥,≤,==, ! =}

Γ; h; pc ` e1 ⊕ e2 : booleanl1tl2

Γ; h; pc ` e1 : booleanl1 Γ; h; pc ` e2 : booleanl2 ⊕ ∈ {∧,∨}

Γ; h; pc ` e1 ⊕ e2 : booleanl1tl2

Γ; h; pc ` e1 : ωk
l1 Γ; h; pc ` e2 : ωk

l2 ⊕ ∈ {==, ! =}

Γ; h; pc ` e1 ⊕ e2 : booleanl1tl2

Γ; h; pc ` e : τl

Γ; h; pc ` (e) : τl

Γ; h; pc ` x : µα.recordl(k, ..., f : τl′ , ...)

τ′l′ = τ{µα.record(k, ..., f : τl′ , ...)/α}

Γ; h; pc ` x. f : τ′ltl′

Γ; h; pc ` x : arrayl1(k, τl) Γ; h; pc ` y : intl2

Γ; h; pc ` x[y] : τltl1tl2

Γ; h; pc ` x : arrayl(k, τl′)

Γ; h; pc ` length(x) : intltl′

Γ(g) = τl {k}@h′(τ1l1 , τ2l2 , ..., τmlm) Γ; h; pc ` sei : τil′i
pc t l′i v li pc v k

Γ; h; pc ` g(se1, se2, ..., sem) : τl

151

Γ; h; pc ` se : intl1 τl = arrayl(k, τl2) pc t l1 v l2 l v L(h) k v L(h)

Γ; h; pc ` new τl se : τl

Γ; h; pc ` sei : τil′i
{µα.record(k, f1 : τ1l1 , ..., fm : τmlm)/α}

τl = µα.recordl(k, f1 : τ1l1 , ..., fm : τmlm) pc t l′i v li li v L(h) k v L(h)

Γ; h; pc ` new τl { f1 = se1, f2 = se2, ..., fm = sem} : τl

Γ′ = Γ, x1 : τ1l1 , x2 : τ2l2 , ..., xm : τmlm Γ′; h; pc ` s Γ′(x) = τl

Γ; h; pc ` τ1l1 x1, τ2l2 x2, ..., τmlm xm ; s ; return x : τl

Typing Rules for Statements. Judgement: Γ; h; pc ` s

Γ; h; pc ` skip

Γ; h; pc ` e : ωk
l′ Γ(x) = ωk

l pc t l′ v l

Γ; h; pc ` x = e

Γ; h; pc ` e : intl′ Γ(x) = intl pc t l′ v l

Γ; h; pc ` x = e

Γ; h; pc ` e : booleanl′ Γ(x) = booleanl pc t l′ v l

Γ; h; pc ` x = e

Γ; h; pc ` x : µα.recordl1(k, ..., f : τl, ...)

Γ; h; pc ` e : τl2{µα.record(k, ..., f : τl, ...)/α} pc t l1 t l2 v l

Γ; h; pc ` x. f = e

152

Γ; h; pc ` x : arrayl1(k, τl)

Γ; h; pc ` y : intl2 Γ; h; pc ` e : τl3 pc t l1 t l2 t l3 v l

Γ; h; pc ` x[y] = e

Γ; h; pc ` s1 Γ; h; pc ` s2

Γ; h; pc ` s1; s2

Γ; h; pc ` x : booleanl Γ; h; pc t l ` s1 Γ; h; pc t l ` s2

Γ; h; pc ` if x then s1 else s2

Γ; h; pc ` x : booleanl Γ; h; pc t l ` s

Γ; h; pc ` while x do s

Γ; h; pc ` g(se1, se2, ..., sem) : τl

Γ; h; pc ` g(se1, se2, ..., sem)

x1 : τ1l1 , x2 : τ2l2 , ..., xm : τmlm; h; k ` f b : τl k v L(h) li v L(h)

` τl g{k}@h(τ1l1 x1, τ2l2 x2, ..., τmlm xm) { f b}

` di ` f b : τl

` d1 d2 ... dm f b

Denotational Semantics

The denotational semantics is defined only for well-typed programs. This is

indicated by defining the semantic rules over the typing judgement of the cor-

responding expression or statement. However, to simplify presentation, the se-

mantic rules for certain expressions and statements elide the typing judgement.

In these rules, the type information is either not relevant or is obvious from

context. The abstract interpretation in the next section will build upon the de-

notational semantics presented here.

153

Preliminaries:

Locations ` (∈ Loc) ::= (ω, n, h) | NULL

h ∈ H

EJΓ; h; pc ` e : τKρσφh ∈ (Dτ × Σ)⊥

CJΓ; h; pc ` sKρσφh ∈ (P × Σ)⊥

where

Dτ = T JτK

ρ ∈ P = Var → Value : ρ(x) ∈ T JΓ(x)K ∧ (ω(ρ(x)) = Γ(x), if ρ(x) ∈ Loc)

σ ∈ Σ = Loc→ Ob ject : σ(`) ∈ Z × (Z→ T JτK), if ω(`) = array(k, τl)

σ(`) ∈ S tring→ Value ∧ σ(`)(“ fi”) ∈ T Jτi{ω(`)/α}K),

if ω(`) = µα.record(k, f1 : τ1l1 , f2 : τ2l2 , ..., fm : τmlm)

T JintK = Z,T JbooleanK = B = {T, F},T JωK = Loc

ZERO(int) = 0,ZERO(boolean) = F,ZERO(ω) = NULL

φ ∈ F = (P × Σ→ (Dτ1 × Σ)⊥) × (P × Σ→ (Dτ2 × Σ)⊥) × ... × (P × Σ→ (Dτp × Σ)⊥)

φ = fix λF ∈ F .(λρ ∈ P.λσ ∈ Σ.EJ f b1KρσFh1 ,

...

λρ ∈ P.λσ ∈ Σ.EJ f bpKρσFhp)

Value = Z + B + Loc

Ob ject = Arr + Rec

Arr = Z × (Z→ Value)

Rec = S tring→ Value

Given f : D→ E⊥, define f ∗ : D⊥ → E⊥ = λd : D⊥.if d = bd′c then f (d′) else ⊥E

Define let bxc = e1 in e2 = (λx.e2)∗e1

Use bv, σc and b(v, σ)c interchangeably

154

Denotational Semantics for Expressions

EJΓ; h; pc ` n : int⊥Kρσφh = bn, σc

EJΓ; h; pc ` true : boolean⊥Kρσφh = bT, σc

EJΓ; h; pc ` f alse : boolean⊥Kρσφh = bF, σc

EJΓ; h; pc ` null : ωk
⊥Kρσφh = bNULL, σc

EJΓ; h; pc ` x : Γ(x)Kρσφh = bρ(x), σc

EJΓ; h; pc ` x. f : τltl′Kρσφh = let b`, σc =

EJΓ; h; pc ` x : µα.recordl(k, ..., f : τl′ , ...)Kρσφh in

if ` = NULL then ⊥ else bσ(`)(“ f ”), σc

EJΓ; h; pc ` x[y] : τltl1tl2Kρσφh = let b`, σc =

EJΓ; h; pc ` x : arrayl1(k, τl)Kρσφh in

if ` = NULL then ⊥ else

let bi, σc = EJΓ; h; pc ` y : intl2Kρσφh in

let (n, a) = σ(`) in

if i ≥ n then ⊥ else ba(i), σc

EJΓ; h; pc ` length(x) : intltl′Kρσφh = let b`, σc =

EJΓ; h; pc ` x : arrayl1(k, τl)Kρσφh in

if ` = NULL then ⊥ else

let (n, a) = σ(`) in bn, σc

EJΓ; h; pc ` e1 ⊕ e2 : τlKρσφh = let bv1, σ1c = EJΓ; h; pc ` e1 : τ1l1Kρσφh in

let bv2, σ2c = EJΓ; h; pc ` e2 : τ2l2Kρσ1φh in

in if v1 ⊕ v2 = undefined then ⊥

else bv1 ⊕ v2, σ2c

155

EJ	eKρσφh = let bv, σ1c = EJeKρσφh in

if 	 v = undefined then ⊥ else b	v, σ1c

EJgi(se1, se2, ..., sem)Kρσφh′ = let bv1, σc = EJse1Kρσφh′ in

let bv2, σc = EJse2Kρσφh′ in

...

let bvm, σc = EJsemKρσφh′ in

let ρ′ = [x1 7→ v1, x2 7→ v2, ..., xm 7→ vm] in

(πiφ)(ρ′, σ)

EJ f bKρσφh = let ρ′ =

ρ[x1 7→ ZERO(τ1), x2 7→ ZERO(τ2), ..., xm 7→ ZERO(τm)]

in let bρ′′, σ′c = CJsKρ′σφh

in bρ′′(x), σ′c

where f b = τ1l1 x1, τ2l2 x2, ..., τmlm xm ; s ; return x

EJnew τ seKρσφh = let bn, σc = EJseKρσφh in

let z = ZERO(τ) in

let ` = `
f resh
τ,h in

b`, σ[` 7→ (n, [1 7→ z, 2 7→ z, ..., n 7→ z])]c

where τ = arrayl(k, τl′)

156

EJnew τ { f1 = se1, f2 = se2, ..., fm = sem}Kρσφh = let bv1, σc = EJse1Kρσφh in

let bv2, σc = EJse2Kρσφh in

...

let bvn, σc = EJsenKρσφh in

let ` = `
f resh
τ,h in

b`, σ[` 7→ [“ f1” 7→ v1, ..., “ fn” 7→ vn]]c

where τ = µα.recordl(k, f1 : τ1l1 , ..., fn : τnln)

Denotational Semantics for Statements

CJskipKρσφh = bρ, σc

CJx = eKρσφh = let bv, σ′c = EJeKρσφh in

bρ[x 7→ v], σ′c

CJΓ; h; pc ` x. f = eKρσφh = let bv, σ′c = EJΓ; h; pc ` e : τl2Kρσφh in

let b`, σ′c =

EJΓ; h; pc ` x : µα.recordl1(k, ..., f : τl, ...)Kρσφ′h in

if ` = NULL then ⊥ else

bρ, σ′[` 7→ σ′(`)[“ f ” 7→ v]]c

157

CJΓ; h; pc ` x[y] = eKρσφh = let bv, σ′c = EJΓ; h; pc ` eKρσφh in

let bi, σ′c = EJΓ; h; pc ` y : intl2Kρσφ′h in

let b`, σ′c = EJΓ; h; pc ` x : arrayl1(k, τl)Kρσφ′h in

if ` = NULL then ⊥ else

let (n, a) = σ′(`) in

if i ≥ n then ⊥ else

bρ, σ′[` 7→ (n, a[i 7→ v])]c

CJs1; s2Kρσφh = let bρ′, σ′c = CJs1Kρσφh in CJs2Kρ′σ′φh

CJif x then s1 else s2Kρσφh = let bv, σc = EJxKρσφh in

if v = true then CJs1Kρσφh

else CJs2Kρσφh

CJwhile x do sKρσφh = let f = (fix λw : P × Σ→ (P × Σ)⊥.

λρ′ : P.λσ′ : Σ.

let bv, σ′c = EJxKρ′σ′φh in

let bρ′′, σ′′c = CJsKρ′σ′φh in

if v = true then w(ρ′′, σ′′) else (ρ′, σ′)) in

f (ρ, σ)

CJg(se1, se2, ..., sem)Kρσφh = let bv, σ′c = EJg(se1, se2, ..., sem)Kρσφh in

bρ, σ′c

4.3.2 Abstract Interpretation

A correct IMPPAR program may still have read channel vulnerabilities. We now

present a methodology for automatically eliminating read channel vulnerabil-

ities in a given IMPPAR program. We first present, in this section, an abstract

interpretation that computes for a given IMPPAR program segment, the set of all

158

objects that are dereferenced within it and have a low access label. In Section

4.3.3, we show how this can be interleaved with the original IMPPAR semantics to

yield an interpretation of an IMPPAR program such that data is prefetched into a

cache before it is read within a secret context. Given enough cache, the program

executes without any read channels.

159

Abstract Interpretation

Preliminaries. (extending from denotational semantics)

EJΓ; h; pc ` e : τKρ̂σ̂ĉφh ∈ D̂τ × Σ̂ × Ĉ

CJΓ; h; pc ` sKρ̂σ̂ĉφh ∈ P̂ × Σ̂ × Ĉ where

Dτ = T JτK and D̂τ = P(Dτ)

ρ̂ ∈ P̂ = Var → V̂alue : ρ̂(x) ∈ P(T JΓ(x)K) ∧ (ω(` ∈ ρ̂(x)) = Γ(x), if ρ̂(x) ∈ P(Loc))

σ̂ ∈ Σ̂ = Loc→ Ôb ject : σ̂(`) ∈ P(Z) × (Z→ P(T JτK)), if ω(`) = array(k, τl)

σ̂(`) ∈ String→ V̂alue ∧ σ̂(`)(“ fi”) ∈ P(T Jτi{ω(`)/α}K)),

if ω(`) = µα.record(k, f1 : τ1l1 , f2 : τ2l2 , ..., fm : τmlm)

ĉ ∈ Ĉ = P(Loc + Loc × Z)

φ ∈ F = (P̂ × Σ̂ × Ĉ → D̂τ1 × Σ̂ × Ĉ) × ... × (P̂ × Σ̂ × Ĉ → D̂τp × Σ̂ × Ĉ)

φ = fix λF ∈ F .(λρ̂ ∈ P̂.λσ̂ ∈ Σ̂.λĉ ∈ Ĉ.EJ f b1Kρ̂σ̂ĉFh1 ,

...

λρ̂ ∈ P̂.λσ̂ ∈ Σ̂.λĉ ∈ Ĉ.EJ f bpKρ̂σ̂ĉFhp)

V̂alue = P(Z) + P(B) + P(Loc)

Ôb ject = Ârr + R̂ec

Ârr = P(Z) × (Z→ V̂alue)

R̂ec = String→ V̂alue

ˆ̀ ∈ P(Loc) = L̂oc

⊕̂ : V̂alue × V̂alue→ V̂alue = λV1 ∈ V̂alue.λV2 ∈ V̂alue.

{v1 ⊕ v2 | v1 ∈ V1 ∧ v2 ∈ V2 ∧ v1 , undefined ∧ v2 , undefined}

	̂, ∪̂ : analogous to ⊕̂

.̂ : L̂oc × String→ V̂alue = λ ˆ̀ ∈ L̂oc.λ f ∈ String.{`. f | ` ∈ ˆ̀ ∧ ` , NULL}

ˆ[] : L̂oc × P(Z)→ V̂alue = λ ˆ̀ ∈ L̂oc.λI ∈ P(Z).{`[i] | ` ∈ ˆ̀ ∧ i ∈ I ∧ ` , NULL}

160

Abstract Interpretation for Expressions

EJΓ; h; pc ` n : int⊥Kρ̂σ̂ĉφh = ({n}, σ̂, ĉ)

EJΓ; h; pc ` true : boolean⊥Kρ̂σ̂ĉφh = ({T }, σ̂, ĉ)

EJΓ; h; pc ` f alse : boolean⊥Kρ̂σ̂ĉφh = ({F}, σ̂, ĉ)

EJΓ; h; pc ` null : ωk
⊥Kρ̂σ̂ĉφh = ({NULL}, σ̂, ĉ)

EJΓ; h; pc ` x : Γ(x)Kρ̂σ̂ĉφh = (ρ̂(x), σ̂, ĉ)

EJΓ; h; pc ` x. f : τltl′Kρ̂σ̂ĉφh = let (ˆ̀, σ̂, ĉ) =

EJΓ; h; pc ` x : µα.recordl(k, ..., f : τl′ , ...)Kρ̂σ̂ĉφh in

let ˆ̀′ = {` ∈ ˆ̀ | ` , NULL} in

let ĉ′ = if pc t l = > ∧ k = ⊥

then ĉ ∪ ˆ̀′ else ĉ in

(∪`∈ ˆ̀′ σ̂(`)(“ f ”), σ̂, ĉ′)

EJΓ; h; pc ` x[y] : τltl1tl2Kρ̂σ̂ĉφh = let (ˆ̀, σ̂, ĉ) =

EJΓ; h; pc ` x : arrayl1(k, τl)Kρ̂σ̂ĉφh in

let ˆ̀′ = {` ∈ ˆ̀ | ` , NULL} in

let (î, σ̂, ĉ) = EJΓ; h; pc ` y : intl2Kρ̂σ̂ĉφh in

let ĉ′ = if pc t l1 t l2 = > ∧ k = ⊥

then ĉ∪̂(ˆ̀′, î) else ĉ in

(∪`∈ ˆ̀′,i∈î (π2 σ̂(`))(i), σ̂, ĉ′)

EJΓ; h; pc ` length(x) : intltl′Kρ̂σ̂ĉφh = let (ˆ̀, σ̂, ĉ) =

EJΓ; h; pc ` x : arrayl(k, τl′)Kρ̂σ̂ĉφh in

let ˆ̀′ = {` ∈ ˆ̀ | ` , NULL} in

let ĉ′ = if pc t l t l′ = > ∧ k = ⊥

then ĉ ∪ ˆ̀′ else ĉ in

(∪`∈ ˆ̀′,i∈î π1 σ̂(`), σ̂, ĉ′)

161

EJΓ; h; pc ` e1 ⊕ e2 : τlKρ̂σ̂ĉφh = let (v̂1, σ̂1, ĉ1) = EJΓ; h; pc ` e1 : τ1l1Kρ̂σ̂ĉφh

in let (v̂2, σ̂2, ĉ2) = EJΓ; h; pc ` e2 : τ2l2Kρ̂σ̂1ĉ1φh

in (v̂1⊕̂ v̂2, σ̂2, ĉ2)

EJ	eKρ̂σ̂ĉφh = let (v̂, σ̂1, ĉ1) = EJeKρ̂σ̂ĉφh in

(̂v̂, σ̂1, ĉ1)

EJgi(se1, se2, ..., sem)Kρ̂σ̂ĉφh′ = let (v̂1, σ̂, ĉ) = EJse1Kρ̂σ̂ĉφh′

in let (v̂2, σ̂, ĉ) = EJse2Kρ̂σ̂ĉφh′

...

in let (v̂m, σ̂, ĉ) = EJsemKρ̂σ̂ĉφh′

in let ρ̂′ = [x1 7→ v̂1, x2 7→ v̂2, ..., xm 7→ v̂m]

in (πiφ)(ρ̂′, σ̂, ĉ)

EJ f bKρ̂σ̂ĉφh = let ρ̂′ = ρ̂[x1 7→ {ZERO(τ1)}, ..., xm 7→ {ZERO(τm)}]

in let (ρ̂′′, σ̂′, ĉ′) = CJsKρ̂′σ̂ĉφh

in (ρ̂′′(x), σ̂′, ĉ′)

where f b = τ1l1 x1, τ2l2 x2, ..., τmlm xm ; s ; return x

EJnew τ seKρ̂σ̂ĉφh = let (n̂, σ̂, ĉ) = EJseKρ̂σ̂ĉ in

let z = ZERO(τ) in

let ` = `
f resh
τ,h in

({`}, σ̂[` 7→ (n̂, [1 7→ {z}, 2 7→ {z}, ..., n 7→ {z}])], ĉ)

where τ = arrayl(k, τl′), n = max(n|n ∈ n̂)

162

EJnew τ { f1 = se1, f2 = se2, ..., fm = sem}Kρ̂σ̂ĉφh = let (v̂1, σ̂, ĉ) = EJse1Kρ̂σ̂ĉφh in

let (v̂2, σ̂, ĉ) = EJse2Kρ̂σ̂ĉφh in

...

let (v̂n, σ̂, ĉ) = EJsenKρ̂σ̂ĉφh in

let ` = `
f resh
τ,h in

({`}, σ̂[` 7→ [“ f1” 7→ v̂1, ..., “ fn” 7→ v̂n]], ĉ)

where τ = recordl(k, f1 : τ1l1 , ..., fn : τnln)

Abstract Interpretation for Statements

CJskipKρ̂σ̂ĉφh = (ρ̂, σ̂, ĉ)

CJx = eKρ̂σ̂ĉφh = let (v̂, σ̂′, ĉ′) = EJeKρ̂σ̂ĉφh in

(ρ̂[x 7→ v̂], σ̂′, ĉ′)

CJΓ; h; pc ` x. f = eKρ̂σ̂ĉφh = let (v̂, σ̂′, ĉ′) = EJeKρ̂σ̂ĉφh in

let (ˆ̀, σ̂′, ĉ′) =

EJΓ; h; pc ` x : µα.recordl(k, ..., f : τl′ , ...)Kρ̂σ̂′ĉ′φh in

let {`1, `2, ..., `n} s.t. `i ∈ ˆ̀ ∧ `i , NULL in

(ρ̂, σ̂′[`1 7→ σ̂′(`1)[“ f ” 7→ v̂]][`2 7→ σ̂′(`2)[“ f ” 7→ v̂]]

...[`n 7→ σ̂′(`n)[“ f ” 7→ v̂]], ĉ′)

163

CJx[y] = eKρ̂σ̂ĉφh = let (v̂, σ̂′, ĉ′) = EJeKρ̂σ̂ĉφh in

let (ˆ̀, σ̂′, ĉ′) =

EJΓ; h; pc ` x : arrayl1(k, τl)Kρ̂σ̂′ĉ′φh in

let (î, σ̂, ĉ) = EJΓ; h; pc ` y : intl2Kρ̂σ̂′ĉ′φh in

let {`1, `2, ..., `n} s.t. `i ∈ ˆ̀ ∧ `i , NULL in

let (n̂i, âi) = σ̂′(`i) in

let { ji1, ji2, ..., jim} s.t. jik ∈ î ∧ jik < max(n̂i) in

let â′i = âi[ji1 7→ v̂][ji2 7→ v̂]...[jim 7→ v̂] in

(ρ̂, σ̂′[`i 7→ (n̂i, â′i)], ĉ
′)

CJs1; s2Kρ̂σ̂ĉφh = let (ρ̂′, σ̂′, ĉ′) = CJs1Kρ̂σ̂ĉφh in CJs2Kρ̂′σ̂′ĉ′φh

CJΓ; h; pc ` if x then s1 else s2Kρ̂σ̂ĉφh = let (v̂, σ̂, ĉ) = EJΓ; h; pc ` x : booleanlKρ̂σ̂ĉφh in

if v̂ == {true} then CJs1Kρ̂σ̂ĉφh

else if v̂ == { f alse} then CJs2Kρ̂σ̂ĉφh

else CJs1Kρ̂σ̂ĉφh t CJs2Kρ̂σ̂ĉφh

CJΓ; h; pc ` while x do sKρ̂σ̂ĉφh = let f = (fix λw ∈ P̂ × Σ̂ × Ĉ → P̂ × Σ̂ × Ĉ.

λρ̂′ ∈ P̂.λσ̂′ ∈ Σ̂.λĉ′ ∈ Ĉ

let (v̂, σ̂′, ĉ′) = EJΓ; h; pc ` x : booleanlKρ̂′σ̂′ĉ′φh in

let (ρ̂′′, σ̂′′, ĉ′′) = CJsKρ̂′σ̂′ĉ′φh in

if v == {true} then w(ρ̂′′, σ̂′′, ĉ′′) else

if v == { f alse} then (ρ̂′, σ̂′, ĉ′) else

w(ρ̂′′, σ̂′′, ĉ′′) t (ρ̂′, σ̂′, ĉ′)) in

f (ρ̂, σ̂, ĉ)

CJg(se1, se2, ..., sem)Kρ̂σ̂ĉφh = let (v̂, σ̂′, ĉ′) = EJg(se1, se2, ..., sem)Kρ̂σ̂ĉφh in

(ρ̂, σ̂′, ĉ′)

164

Computing the Fixpoint

The two program constructs for which the denotation might not be computable

are mutually recursive functions and the while loop.

Computing the denotation of the while loop.

Let G : L→ L where L = P̂ × Σ̂ × Ĉ → P̂ × Σ̂ × Ĉ.

be the function whose fixpoint gives us the denotation of the while loop. The

least upper bound of the following iterative sequence should give us the fix-

point:

G(⊥L),G2(⊥L),G3(⊥L), ...

where ⊥L = λρ̂ ∈ P̂.λσ̂ ∈ Σ̂.λĉ ∈ Ĉ.(ρ̂, σ̂, ĉ)

However, the sequence might not converge. To make it converge, we can

use a widening operator ∇ : P̂ × Σ̂ × Ĉ × P̂ × Σ̂ × Ĉ → P̂ × Σ̂ × Ĉ which guarantees

that the following sequence will converge to an approximation of the fixpoint:

G(⊥L), G(⊥L)∇G2(⊥L), G(⊥L)∇G2(⊥L)∇G3(⊥L), ...

One way of obtaining such a widening operator is to first define a Galois con-

nection between V̂alue and F̂Value (say, ‘Finite Value’), where F̂Value is coarser

than V̂alue and is of finite height. Using α and γ from the Galois connection, the

widening operator is given by:

v̂1∇V̂aluev̂2 = γ(α(v̂1) t α(v̂2))

Similarly, we need to define F̂Arr, F̂C and the corresponding ∇Ârr,∇Ĉ. We can

then define ∇ above as follows:

165

(ρ̂1, σ̂1, ĉ1)∇(ρ̂2, σ̂2, ĉ2) =

(λx : Var.ρ̂1(x)∇V̂alueρ̂2(x),

λ` : Loc.let ô1, ô2 = σ̂1(`), σ̂2(`) in

case ô1, ô2 of

in1(â1), in1(â2).â1∇Ârrâ2

| in2(r̂1), in2(r̂2).λ f : String.r̂1(f)∇V̂aluer̂2(f),

ĉ1∇Ĉ ĉ2)

We now define F̂Value, F̂Arr, F̂C and the corresponding αs and γs.

F̂Value = PN(Loc) × {PLAINSET ,REACHABLE} + Ω + P(B) + PN(Z) + Z′ × Z′

α : V̂alue→ F̂Value, γ : F̂Value→ V̂alue

Intuitively, we modify the lattice V̂alue as follows, to make it finite in height.

We replace P(Loc) with three possibilities. PN(Loc) is the powerset of Loc with N

as the upper limit on the size of the sets of elements from Loc. Sets of locations

with more than N elements can be represented by a set of seed locations from

which the other locations are reachable. Both cases are represented by a set

of locations – they are distinguished by using a tag: PLAINSET for the former

and REACHABLE for the latter. If the size of the REACHABLE set also grows

beyond N, the entire set is just represented by the type of the locations, which

are all required to be the same. Ω is the set of all reference types.

The powerset of booleans is already finite and need not be replaced. The

powerset of integers P(Z) is replaced by two possibilities. Again, PN(Z) is the

powerset of integers with a maximum set size of N. Larger sets are represented

by intervals, which are pairs of elements from Z′ = Z ∪ {−∞,+∞}.

166

α(v̂) =

(v̂,PLAINSET) v̂ ∈ P(Loc) ∧ |v̂| ≤ N

(ˆ̀,REACHABLE) v̂ ∈ P(Loc) ∧ |v̂| > N ∧ v̂ ⊆ reachable − from(ˆ̀) ∧ | ˆ̀| ≤ N

τ v̂ ∈ P(Loc) ∧ ∀` ∈ v̂.ω(`) = τ ∧ | ˆ̀| > N

v̂ v̂ ∈ P(B)

v̂ v̂ ∈ P(Z) ∧ |v̂| ≤ N

(min(v̂), max(v̂)) v̂ ∈ P(Z) ∧ |v̂| > N

(−∞,+∞) v̂ = Z

γ(v̂F) =

v̂ v̂F = (v̂,PLAINSET)

reachable − from(ˆ̀) v̂F = (ˆ̀,REACHABLE)

{`|ω(`) = τ} v̂F = τ

v̂F v̂F ∈ P(B)

v̂F v̂F ∈ P(Z)

{n|n ≥ n1 ∧ n ≤ n2} v̂F = (n1, n2)

Z v̂F = (−∞,+∞)

F̂Arr = (PN(Z) + Z+
M ∪ {+∞}) × (ZN → V̂alue + V̂alue)

The first element in this pair is the coarse abstraction of P(Z): It is either a

set of possible integers of maximum size n, or a single integer (could be ∞ too)

representing the set of all integers up to that integer.

The second element is the coarse abstraction of Z→ V̂alue: It is either a map

of integers to abstract values, with n being the maximum element in the the

domain of the map. Or it could be a simple abstract value representing the set

of all possible values, regardless of index.

α : Ârr → F̂Arr, γ : F̂Arr → Ârr

167

α((n̂, â)) =

(n̂, â) max(n̂) ≤ N

(n̂,∪i<max(n̂)â(i)) max(n̂) > N ∧ |n̂| ≤ N

(max(n̂),∪i<max(n̂)â(i)) max(n̂) ≤ M ∧ |n̂| > N

(+∞,∪i<max(n̂)â(i)) max(n̂) > M ∧ |n̂| > N

γ(âF) =

(n̂, â) âF = (n̂, â)

(n̂, [0 7→ v̂, ..., j 7→ v̂]) âF = (n̂, v̂) ∧ j = max(n̂) − 1

({i|0 ≤ i < j}, [0 7→ v̂, ..., j 7→ v̂]) âF = (j, v̂)

(Z, λi ∈ Z.v̂) âF = (+∞, v̂)

F̂C = PN(Loc + Loc × (PN(Z) + Z+
M ∪ {+∞})) + P(Ω)

Ĉ′ = P(Loc + Loc × P(Z)) (easy to define α : Ĉ → Ĉ′ and γ : Ĉ′ → Ĉ)

α : Ĉ′ → F̂C, γ : F̂C → Ĉ′

α(ĉ = {`1, `2, ..., `k, (`k+1, n̂1), ..., (`k+m, n̂m}) =

ĉ m ≤ N ∧ ∀i.|n̂i| ≤ N

{`1, `2, ..., `k, (`k+1, n̂1), ..., (`k+ j, max(n̂ j)), ..., (`k+m, n̂m} m ≤ N ∧ ∀i , j.|n̂i| ≤ N ∧ ∀ j.N < |n̂ j| ≤ M

{`1, `2, ..., `k, (`k+1, n̂1), ..., (`k+ j,+∞), ..., (`k+m, n̂m} m ≤ N ∧ ∀i , j.|n̂i| ≤ N ∧ ∀ j.M < |n̂ j|

ω̂ = {ω1, ω2, ...} m > N ∧ ∀i ≤ m.ω(`i) ∈ ω̂

γ(ĉF) =

ĉF ĉF = {`1, `2, ..., `k, (`k+1, n̂1), ..., (`k+m, n̂m}

ĉF − (`, j) ∪ (`, {i|0 ≤ i ≤ j}) (`, j) ∈ ĉF

ĉF − (`,+∞) ∪ (`,Z) (`,+∞) ∈ ĉF

{`|ω(`) ∈ ĉF} ĉF = {ω1, ω2, ...}

168

Computing the function environment.

Again, let G : L→ L where L = (P̂× Σ̂× Ĉ → D̂τ1 × Σ̂× Ĉ) × ... × (P̂× Σ̂× Ĉ →

D̂τp × Σ̂ × Ĉ).

be the function whose fixpoint gives us the function environment. The least

upper bound of the following iterative sequence should give us the fixpoint:

G(⊥L),G2(⊥L),G3(⊥L), ...

where ⊥L = (λρ̂ ∈ P̂.λσ̂ ∈ Σ̂.λĉ ∈ Ĉ.({>τ1}, σ̂, ĉ),
...

λρ̂ ∈ P̂.λσ̂ ∈ Σ̂.λĉ ∈ Ĉ.({>τp}, σ̂, ĉ))

A widening operator ∇ : L × L→ L is one that guarantees that the following

sequence will converge to an approximation of the fixpoint:

G(⊥L), G(⊥L)∇G2(⊥L), G(⊥L)∇G2(⊥L)∇G3(⊥L), ...

We use a simple widening operator that limits the call depth to a given pa-

rameter k. Mathematically,

f ∇Gn(⊥L) =

Gn(⊥L) n < k

Gk(⊥L) n ≥ k

We can imagine more sophisticated widening operators that gradually

coarsen the results of the functions at successive call depth parameters, instead

of a sudden coarsening to >. We leave this to future work.

169

4.3.3 Interleaved Semantics

We extend the denotational semantics of IMPPAR by adding a concrete cache and

interleaving the abstract interpretation to compute the set of objects that will be

prefetched into this cache. The semantics of most program constructs can be

expressed as a simple combination of the denotational semantics and abstract

semantics, as shown in the preliminaries.

170

Preliminaries. (extending from denotational and abstract semantics)

EJΓ; h; pc ` e : τKρ̂σ̂ρσcφh ∈ (Σ̂ × Dτ × Σ)⊥

CJΓ; h; pc ` sKρ̂σ̂ρσcφh ∈ (P̂ × Σ̂ × P × Σ)⊥ where

c ∈ Σ

EJΓ; h; pc ` e : τKρσφh ∈ (Dτ × Σ)⊥

CJΓ; h; pc ` sKρσφh ∈ (P × Σ)⊥

EJΓ; h; pc ` e : τKρ̂σ̂ĉφh ∈ D̂τ × Σ̂ × Ĉ

CJΓ; h; pc ` sKρ̂σ̂ĉφh ∈ P̂ × Σ̂ × Ĉ

φ ∈ F = (P̂ × Σ̂ × P × Σ × Σ→ (Σ̂ × Dτ1 × Σ)⊥) × (P̂ × Σ̂ × P × Σ→ (Σ̂ × Dτ2 × Σ)⊥) × ...

× (P̂ × Σ̂ × P × Σ→ (Σ̂ × Dτp × Σ)⊥)

φ = fix λF ∈ F .(λρ̂ ∈ P̂.λσ̂ ∈ Σ̂.λρ ∈ P.λσ ∈ Σ.λc ∈ Σ.EJ f b1Kρ̂σ̂ρσcFh1 ,

...

λρ̂ ∈ P̂.λσ̂ ∈ Σ̂.λρ ∈ P.λσ ∈ Σ.λc ∈ Σ.EJ f bpKρ̂σ̂ρσcFhp)

If fe : P × Σ ×H → (Dτ × Σ)⊥ and ge : P̂ × Σ̂ × Ĉ ×H → D̂τ × Σ̂ × Ĉ

are the denotations for regular semantics of expressions and abstract semantics of

expressions respectively, then we can define the denotation

de : P̂ × Σ̂ × P × Σ × Σ ×H → (Σ̂ × Dτ × Σ × Σ)⊥ for the interleaved semantics as follows:

(except for the constructs defined right after, which make use of the cache,

directly or by passing it to subterms)

de = λρ̂σ̂ρσch.let (v̂, σ̂′, ĉ) = ge(ρ̂, σ̂, {}) in let (v, σ′) = fe(ρ, σ) in (σ̂′, v, σ′)

Similarly,

ds = λρ̂σ̂ρσch.let (ρ̂′, σ̂′, ĉ) = gs(ρ̂, σ̂, {}) in let (ρ′, σ′) = fs(ρ, σ) in (ρ̂′, σ̂′, ρ′, σ′)

171

Interleaved semantics for expressions

EJΓ; h; pc ` x. f : τltl′Kρ̂σ̂ρσcφh = let b`, σc =

EJΓ; h; pc ` x : µα.recordl(k, ..., f : τl′ , ...)Kρσφh in

if ` = NULL then ⊥ else

let r = if pc t l = > ∧ k = ⊥

then (if pc = ⊥ then

prefetch(ρ̂(x), σ)(`) else c(`))

else σ(`) in bσ̂, r(“ f ”), σc

EJΓ; h; pc ` x[y] : τltl1tl2Kρ̂σ̂ρσcφh = let b`, σc =

EJΓ; h; pc ` x : arrayl1(k, τl)Kρσφh in

if ` = NULL then ⊥ else

let bi, σc = EJΓ; h; pc ` y : intl2Kρσφh in

let (n, a) = if pc t l1 t l2 = > ∧ k = ⊥

then if pc = ⊥ then

prefetch(ρ̂(x) × ρ̂(y), σ)(`)

else c(`)

else σ(`) in

if i ≥ n then ⊥ else bσ̂, a(i), σc

EJΓ; h; pc ` length(x) : intltl′Kρ̂σ̂ρσcφh = let b`, σc =

EJΓ; h; pc ` x : arrayl1(k, τl)Kρσφh in

if ` = NULL then ⊥ else

let (n, a) = if pc t l1 = > ∧ k = ⊥ then

if pc = ⊥ then prefetch(ρ̂(x), σ)(`)

else c(`)

else σ(`) in bσ̂, n, σc

172

EJΓ; h; pc ` e1 ⊕ e2 : τlKρ̂σ̂ρσcφh = let bσ̂1, v1, σ1c = EJΓ; h; pc ` e1 : τ1l1Kρ̂σ̂ρσcφh in

let bσ̂2, v2, σ2c = EJΓ; h; pc ` e2 : τ2l2Kρ̂σ̂1ρσ1cφh in

in if v1 ⊕ v2 = undefined then ⊥

else bσ̂2, v1 ⊕ v2, σ2c

EJ	eKρ̂σ̂ρσcφh = let bσ̂1, v, σ1c = EJeKρ̂σ̂ρσcφh in

if 	 v = undefined then ⊥ else bσ̂1,	v, σ1c

EJΓ; h; pc ` gi(se1, se2, ..., sem) : τlKρ̂σ̂ρσcφh′ = let (v̂, σ̂′, ĉ) = EJgi(se1, se2, ..., sem)Kρ̂σ̂{}φh in

let c′ = if k = > ∧ pc = ⊥

then prefetch(ĉ, σ) else c in

let bv1, σc = EJse1Kρσφh′ in

let bv2, σc = EJse2Kρσφh′ in

...

let bvm, σc = EJsemKρσφh′ in

let ρ′ = [x1 7→ v1, x2 7→ v2, ..., xm 7→ vm] in

let (v̂1, σ̂, ĉ) = EJse1Kρ̂σ̂ĉφh′

in let (v̂2, σ̂, ĉ) = EJse2Kρ̂σ̂ĉφh′

...

in let (v̂m, σ̂, ĉ) = EJsemKρ̂σ̂ĉφh′

in let ρ̂′ = [x1 7→ v̂1, x2 7→ v̂2, ..., xm 7→ v̂m]

in (πiφ)(ρ̂′, σ̂, ρ′, σ, c′)

173

EJ f bKρ̂σ̂ρσcφh = let ρ′ =

ρ[x1 7→ ZERO(τ1), ..., xm 7→ ZERO(τm)]

in let ρ̂′ =

ρ̂[x1 7→ {ZERO(τ1)}, ..., xm 7→ {ZERO(τm)}]

in let bρ̂′′, σ̂′, ρ′′, σ′c = CJsKρ̂′σ̂ρ′σcφh

in bσ̂′, ρ′′(x), σ′c

where f b = τ1l1 x1, τ2l2 x2, ..., τmlm xm ; s ; return x

Interleaved semantics for statements

CJx = eKρ̂σ̂ρσcφh = let (v̂, σ̂′, ĉ) = EJeKρ̂σ̂{}φh in

let bσ̂′, v, σ′c = EJeKρ̂σ̂ρσcφh in

bρ̂[x 7→ v̂], σ̂′, ρ[x 7→ v], σ′c

CJΓ; h; pc ` x. f = eKρ̂σ̂ρσcφh = let (ρ̂′, σ̂′, ĉ′) = CJx. f = eKρ̂σ̂{}φh in

let bσ̂′′, v, σ′c = EJΓ; h; pc ` e : τl2Kρ̂σ̂ρσcφh in

let b`, σ′c =

EJΓ; h; pc ` x : µα.recordl1(k, ..., f : τl, ...)Kρσ′φh in

if ` = NULL then ⊥ else

bρ̂′, σ̂′, ρ, σ′[` 7→ σ′(`)[“ f ” 7→ v]]c

CJg(se1, se2, ..., sem)Kρ̂σ̂ρσcφh = let bσ̂′, v, σ′c = EJg(se1, se2, ..., sem)Kρ̂σ̂ρσcφh in

bρ̂, σ̂′, ρ, σ′c

174

CJΓ; h; pc ` x[y] = eKρ̂σ̂ρσcφh = let (ρ̂′, σ̂′, ĉ′) = CJx[y] = eKρ̂σ̂{}φh in

let bσ̂′′, v, σ′c = EJΓ; h; pc ` eKρ̂σ̂ρσcφh in

let bi, σ′c = EJΓ; h; pc ` y : intl2Kρσ′φh in

let b`, σ′c = EJΓ; h; pc ` x : arrayl1(k, τl)Kρσ′φh in

if ` = NULL then ⊥ else

let (n, a) = σ′(`) in

if i ≥ n then ⊥ else

bρ̂′, σ̂′, ρ, σ′[` 7→ (n, a[i 7→ v])]c

CJs1; s2Kρ̂σ̂ρσcφh = let bρ̂′, σ̂′, ρ′, σ′c = CJs1Kρ̂σ̂ρσcφh in CJs2Kρ̂′σ̂′ρ′σ′cφh

CJΓ; h; pc ` if x then s1 else s2Kρ̂σ̂ρσcφh = let (ρ̂′, σ̂′, ĉ) = CJif x then s1 else s2Kρ̂σ̂{}φh in

let c′ = if l = > ∧ pc = ⊥

then prefetch(ĉ, σ) else c in

let bv, σc = EJΓ; h; pc ` x : τlKρσφh in

let (ρ̂′′, σ̂′′, ρ′, σ′) = if v = true then CJs1Kρ̂σ̂ρσc′φh

else CJs2Kρ̂σ̂ρσc′φh in (ρ̂′, σ̂′, ρ′, σ′)

CJΓ; h; pc ` while x do sKρ̂σ̂ρσcφh = let (ρ̂0, σ̂0, ĉ) = CJwhile x do sKρ̂σ̂{}φh in

let c′ = if l = > ∧ pc = ⊥

then prefetch(ĉ, σ) else c in

let f = (fix λw : P̂ × Σ̂ × P × Σ→ (P̂ × Σ̂ × P × Σ)⊥.

λρ̂′ : P̂.λσ̂′ : Σ̂.λρ′ : P.λσ′ : Σ.

let bv, σ′c = EJΓ; h; pc ` x : τlKρ′σ′φh in

let bρ̂′′, σ̂′′, ρ′′, σ′′c = CJsKρ̂′σ̂′ρ′σ′c′φh in

if v = true then w(ρ̂′′, σ̂′′, ρ′′, σ′′)

else (ρ̂′, σ̂′, ρ′, σ′)) in

let (ρ̂′′′, σ̂′′′, ρ′′′, σ′′′) = f (ρ̂, σ̂, ρ, σ) in

(ρ̂0, σ̂0, ρ
′′′, σ′′′)

175

4.3.4 Evaluation

To evaluate the efficacy of automatic elimination of read channels, we imple-

ment the denotational semantics, abstract interpretation and interleaved inter-

pretation and measure the overhead along various dimensions. The interpreters

are implemented in Java, totaling to 8165 lines of code.

The implementation is tested using three example IMPPAR programs. The

first is a shop application distributed between the client and the server, imple-

mented in 62 lines of IMPPAR code. The client adds items to a shopping cart data

structure, maintained locally. It then makes a remote call to the server, which

uses secret information to compute a discount that can be offered to the shop-

per. In the process, a read channel is introduced as the server tries to access the

shopping cart on the client. The solution is to prefetch the shopping cart on the

server, before beginning the discount computation.

In the second example implemented in 56 lines of IMPPAR code, the server

searches for a secret in a list stored on the client. This program has a read chan-

nel too, since the loop that compares the secret with elements in the list exits as

soon as the secret is found. Since the program is public information, the client

can learn the secret based on which element in the list was accessed last. The

solution is to prefetch the entire list on the server, before entering the loop.

The third example, 143 lines of IMPPAR code, computes the intersection of

two relatively large lists, one on the client and the other on the server. The list

on the server has some elements that are secret. The intersection computation

happens on the server, and fetches elements from the client list as necessary.

The program first sorts the two lists before computing the intersection. As a

176

Regular Abstract Interpretation Interleaved Interpretation
Example Interpretation Time Slowdown Time Slowdown

Shop 7 ms 13 ms 1.8 x 24 ms 3.4 x
Secret Search 7 ms 41 ms 5.8 x 74 ms 10.5 x

Set Intersection 8 ms 40 ms 5.0 x 109 ms 13.6 x

Table 4.1: Time usage/overhead of abstract interpretation

Regular Abstract Interpretation Interleaved Interpretation
Example Interpretation Used Blowup Used Blowup

Shop 1.9 MB 1.9 MB 1.0 x 2.6 MB 1.3 x
Secret Search 1.9 MB 2.6 MB 1.3 x 3.9 MB 2.0 x

Set Intersection 1.9 MB 3.3 MB 1.6 x 27.0 MB 13.6 x

Table 4.2: Memory usage/overhead of abstract interpretation

result, only one client list element needs to be prefetched at a time, in order to

eliminate the read channel.

The tests were run on a 64 bit, 8-core (with hyperthreading) Intel computer

running Ubuntu Linux version 14.04. Table 4.1 shows the computation time

overhead of the abstract and the interleaved interpretation. Similarly, table 4.2

shows the memory overhead of the two interpreters. Table 4.3 shows that an

optimal amount of cache was used, suggesting that the just-in-time abstract in-

terpretation is precise.

Example Cache used Minimum Cache needed
Shop 1 cache line 1 cache line

Secret Search 10 cache lines 10 cache lines
Set Intersection 1 cache line 1 cache lines

Table 4.3: Cache space usage/overhead of interleaved interpretation

177

CHAPTER 5

CONCLUSION

We are increasingly witnessing applications and services that are inherently

distributed in nature. The term ‘cloud computing’ is often used to describe this

trend. Such a trend brings up the problem of information security. Safeguarding

the privacy and integrity of valuable information from untrusted entities has

always been known to be a difficult problem. The trend towards distribution

makes the problem even harder.

Information flow control has been shown to provide strong enforcement of

confidentiality and integrity of sensitive data. The goal of this work is to show

how information flow control can be applied to constructing distributed sys-

tems securely.

Web applications are the simplest and most popular instantiations of dis-

tributed systems. Chapter 3 demonstrates how Jif can be extended to support

development of secure web servlets, resulting in a system called SIF and a newer

version of the Jif language: Jif 3.0. At compile time, applications are checked to

see if they respect the confidentiality and integrity of information held on the

server: confidential information is not released inappropriately to clients, and

low-integrity information from clients is not used in high-integrity contexts. SIF

tracks information flow both within the handling of a single request, and over

multiple requests. Jif 3.0 makes building secure web applications possible by

adding sophisticated dynamic mechanisms for access control, authentication,

delegation, and principal management, and shows how to integrate these fea-

tures securely with language-based, largely static, information-flow control.

178

Chapter 3 shows how the above idea can be extended to include more tiers

in the web application, such as persistence and client side code. Both client-

side code and server side persistence are indispensable in today’s web appli-

cations. Section 3.1 discusses SIF-Fabric, which allows tracking information

flow through a persistence tier. A distributed airline reservation system is im-

plemented in SIF-Fabric, demonstrating that real web applications can be de-

veloped securely, using persistent objects and atomic transactions and that the

language of SIF-Fabricis expressive for this purpose. Moreover, in comparison

to a similar implementation using a relational database for persistence, the SIF-

Fabricimplementation is more concise and enforces true end-to-end information

flow security.

Section 3.2 in the same chapter presents Swift, which shows how information

flow can be tracked through client-side code running as JavaScript. We show

that Swift automatically takes care of some awkward tasks: partitioning appli-

cation functionality across the client–server boundary, and designing protocols

for exchanging information. As a result, it is possible to build web applica-

tions with active client-side computation, that enforce security by construction,

resulting in greater security assurance. Swift satisfies three important goals: en-

forcement of information security; a dynamic, responsive user interface; and a

uniform, general-purpose programming model. No prior system delivers these

capabilities. Because web applications are being used for so many important

purposes by so many users, better methods are needed for building them se-

curely. Swift appears to be a promising solution to this important problem.

Chapter 4 discusses the problem of read channels, which often arise when

building a distributed system with security concerns. The problem is first dis-

179

cussed in the context of Fabric [37], and a type system is presented which disal-

lows programs with read channels. The experience of the difficulty of program-

ming against this type system led us to design an automatic program transfor-

mation that eliminates read channels in a given program by prefetching nec-

essary objects into a cache before entering a sensitive block of code. The set

of objects is computed via an abstract interpretation. Preliminary results sug-

gest moderate to high computation overhead and moderate memory overhead.

However, compiling the insecure source program down to a secure target pro-

gram will significantly reduce computation overhead, since the overhead of in-

terpretation will not exist. The automatic approach thus seems promising.

180

APPENDIX A

DOWNGRADING IN CASE STUDIES

These tables describe the case studies’ functional downgrades.

CDIS application

Description Category

Error composing message. If an error is made when composing a

message (e.g., leaving Subject field empty), the user is sent back to

message composition. Downgrading this information flow reveals

very little about the message data.

Application

Message approval. When a reviewer approves a message, he

downgrades his confidentiality restriction. Once all reviewers have

approved the message, the recipient may view it.

Application

Database access. Access to the database is done with the authority

of the principal CDISApp. There are 11 functional downgrades for

database accesses, releasing info from CDISApp to the user.

Access

control

Delegation to CDISRoot. All users delegate authority to a root

user for the CDIS application, CDISRoot, to perform operations

that affect all users. This delegation requires user endorsement.

Application

181

User library

Description Category

Unsuccessful login. When user enters a password on the login

page, he learns if the password was correct. If incorrect, the user is

returned to the login page with an error message. This information

release about the password is acceptable.

Application

Successful login. When the user logs in successfully, he learns that

the password was correct. This information flow is secure.

Application

Delegation to session principal. When the user logs in, he dele-

gates authority to the session principal, using a closure. The deci-

sion to authorize the delegation closure must be declassified.

Application

Delegation to session principal. Delegating authority from a

newly logged in user to the session principal requires the trust of

the user, and thus an endorsement.

Application

Retrieving users from the database. When selecting one or more

users, info must be retrieved from the database, and returned to

the caller of the Select User(s) page. This transfer requires a total of

3 functional downgrades during user selection.

Access

control

Error selecting user(s). A user making an error on the Select

User(s) page (e.g., no user id entered) is returned to the Select

User(s) page. As this page is a reusable component, its label is set

conservatively. A declassification is needed for the error message,

from the conservative label to the actual label used for a given page

invocation.

Imprecision

182

Calendar application

Description Category

Update session state with date to display. The display date must be trusted

by the session principal. The date input by the user is trusted by the user, but

must be endorsed by the session principal before it’s stored in session state.

Access

control

Update session state with which user’s calendar to display. Similarly, the

user selects a user’s calendar to display. This downgrade ensures that the

session principal authority is required to update session state.

Access

control

Fresh id for new event. A new event requires a fresh unique id. The unique id

may act as a covert channel, revealing info about the order in which events are

created. Since ids are generated randomly, downgrading the fresh id is secure.

Application

Update and retrieve info from database. When info needs to be updated in

the database (e.g., edit an event) or retrieved (e.g., fetch user details, or events)

information must be transferred between the current user and the applica-

tion principal CalApp. There are 10 such functional downgrades, for different

database accesses.

Access

control

Go to View/Edit Event page. An event’s name is displayed as a hyperlink to

the View Event or Edit Event page (depending on user’s permissions). Since

the link contains the event’s name, the info gained by invoking View/Edit

Event action is at least as restrictive as the event detail’s label. This reveals

little about which event is being viewed/edited.

Application

Error editing event. The user who makes an error editing an event (e.g.,

end time before start) is sent back to the Edit Event page. Like the “Go to

View/Edit Event” downgrade, this reveals little about the data input.

Application

Changing attendees or viewers of an event. When the user edits an event and

changes the attendees or viewers of an event, the labels to enforce on the event

time and details change. This requires a downgrade.

Application

Delegation to CalRoot. All users delegate their authority to a root user for

the calendar application, CalRoot, whose authority is needed to perform op-

erations that affect all users. This requires an endorsement from each user.

Application

183

BIBLIOGRAPHY

[1] Martı́n Abadi. Secrecy by typing in security protocols. In Theoretical Aspects
of Computer Software: Third International Conference, September 1997.

[2] Owen Arden, Michael D. George, Jed Liu, K. Vikram, Aslan Askarov, and
Andrew C. Myers. Sharing mobile code securely with information flow
control. In IEEE Symp. on Security and Privacy, pages 191–205, May 2012.

[3] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands.
Termination-insensitive noninterference leaks more than just a bit. In ES-
ORICS, pages 333–348, October 2008.

[4] Aslan Askarov and Andrei Sabelfeld. Security-typed languages for imple-
mentation of cryptographic protocols: A case study. In Proc. 10th Euro-
pean Symposium on Research in Computer Security (ESORICS), number 3679
in Lecture Notes in Computer Science. Springer-Verlag, September 2005.

[5] John Barnes. High Integrity Software: The SPARK Approach to Safety and Se-
curity. Addison Wesley, April 2003. ISBN 0321136160.

[6] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified exposition
and Multics interpretation. Technical Report ESD-TR-75-306, MITRE Corp.
MTR-2997, Bedford, MA, 1975. Available as DTIC AD-A023 588.

[7] Hans Bergsten. JavaServer Pages. O’Reilly & Associates, Inc., 3rd edition,
2003.

[8] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian
Zheng, and Xin Zheng. Secure web applications via automatic partition-
ing. In 21st ACM Symp. on Operating System Principles (SOSP), pages 31–44,
October 2007.

[9] Stephen Chong and Andrew C. Myers. Decentralized robustness. In 19th

IEEE Computer Security Foundations Workshop (CSFW), pages 242–253, July
2006.

[10] Stephen Chong, K. Vikram, and Andrew C. Myers. SIF: Enforcing confi-
dentiality and integrity in web applications. In 16th USENIX Security Symp.,
August 2007.

184

[11] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private
information retrieval. J. ACM, 45(6):965–981, 1998.

[12] Lap chung Lam and Tzi cker Chiueh. A general dynamic information flow
tracking framework for security applications. In 22st Annual Computer Se-
curity Applications Conference (ACSAC 2006), December 2006.

[13] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In IEEE
Computer Security Foundations Symp. (CSF), pages 51–65, June 2008.

[14] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web
programming without tiers. In 5th International Symposium on Formal Meth-
ods for Components and Objects, November 2006.

[15] Thomas A. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. MIT Press, 1990.

[16] Danny Coward and Yutaka Yoshida. Java servlet specification, version 2.4,
November 2003. JSR-000154.

[17] Dorothy E. Denning. A lattice model of secure information flow. Comm. of
the ACM, 19(5):236–243, 1976.

[18] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley,
Reading, Massachusetts, 1982.

[19] Dorothy E. Denning and Peter J. Denning. Certification of programs for
secure information flow. Comm. of the ACM, 20(7):504–513, July 1977.

[20] U. Derigs and W. Meier. Implementing Goldberg’s max-flow algorithm—
a computational investigation. Methods and Models of Operations Research
(ZOR), 33:383–403, 1989.

[21] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Approxi-
mate non-interference. In 15th IEEE Computer Security Foundations Workshop
(CSFW), pages 1–15, June 2002.

[22] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey,
David Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert
Morris. Labels and event processes in the Asbestos operating system. In
20th ACM Symp. on Operating System Principles (SOSP), October 2005.

185

[23] David Flanagan. JavaScript: The Definitive Guide. O’Reilly, 4th edition, 2002.

[24] T. Garfinkel, B. Bfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A vir-
tual machine based platform for trusted computing. In 19th ACM Symp. on
Operating System Principles (SOSP), 2003.

[25] Joseph A. Goguen and Jose Meseguer. Security policies and security mod-
els. In IEEE Symp. on Security and Privacy, pages 11–20, April 1982.

[26] Google Web Toolkit. http://code.google.com/webtoolkit/.

[27] W. Halfond and A. Orso. AMNESIA: Analysis and monitoring for neutral-
izing SQL-injection attacks. In International Conference on Automated Soft-
ware Engineering (ASE’05), pages 174–183, November 2005.

[28] Hibernate. http://www.hibernate.org.

[29] Boniface Hicks, Kiyan Ahmadizadeh, and Patrick McDaniel. From Lan-
guages to Systems: Understanding Practical Application Development in
Security-typed Languages. Technical Report NAS-TR-0035-2006, Penn.
State Univ., April 2006.

[30] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai
Lee, and Sy-Yen Kuo. Securing web application code by static analysis
and runtime protection. In 13th International World Wide Web Conference
(WWW’04), pages 40–52, May 2004.

[31] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for
detecting web application vulnerabilities. In IEEE Symp. on Security and
Privacy, pages 258–263, May 2006.

[32] Butler Lampson, Martı́n Abadi, Michael Burrows, and Edward Wobber.
Authentication in distributed systems: Theory and practice. In 13th ACM
Symp. on Operating System Principles (SOSP), pages 165–182, October 1991.
Operating System Review, 253(5).

[33] Butler W. Lampson. A note on the confinement problem. Comm. of the
ACM, 16(10):613–615, October 1973.

[34] Peeter Laud and Varmo Vene. A type system for computationally secure
information flow. In Proceedings of the 15th International Symposium on Fun-
damentals of Computational Theory, pages 365–377, 2005.

186

http://code.google.com/webtoolkit/

[35] Peng Li and Steve Zdancewic. Practical information-flow control in web-
based information systems. In 18th IEEE Computer Security Foundations
Workshop (CSFW), pages 2–15, 2005.

[36] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, Owen Arden,
Danfeng Zhang, and Andrew C. Myers. Fabric 0.1. Software release, http:
//www.cs.cornell.edu/projects/fabric, September 2010.

[37] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C.
Myers. Fabric: A platform for secure distributed computation and storage.
In 22nd ACM Symp. on Operating System Principles (SOSP), pages 321–334,
October 2009.

[38] V. Livshits and M. Lam. Finding security vulnerabilities in Java applica-
tions with static analysis. In USENIX Annual Technical Conference, pages
271–286, August 2005.

[39] Peter Loscocco and Stephen Smalley. Integrating flexible support for secu-
rity policies into the Linux operating system. In Proc. FREENIX Track: 2001
USENIX Annual Technical Conference, 2001.

[40] Gavin Lowe. Quantifying information flow. In 15th IEEE Computer Security
Foundations Workshop (CSFW), June 2002.

[41] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay—a
secure two-party computation system. In 13th Usenix Security Symposium,
pages 287–302, August 2004.

[42] Catherine Meadows and Ira S. Moskowitz. Covert channels – a context-
based view. In Ross Anderson, editor, Proceedings of the First International
Workshop on Information Hiding, volume 1174 of Lecture Notes in Computer
Science, pages 73–93, London, UK, 1996. Springer-Verlag.

[43] Andrew C. Myers. JFlow: Practical mostly-static information flow control.
In 26th ACM Symp. on Principles of Programming Languages (POPL), pages
228–241, January 1999.

[44] Andrew C. Myers. Mostly-static decentralized information flow control.
Technical Report MIT/LCS/TR-783, Massachusetts Institute of Technol-
ogy, Cambridge, MA, January 1999. Ph.D. thesis.

[45] Andrew C. Myers and Barbara Liskov. A decentralized model for informa-

187

http://www.cs.cornell.edu/projects/fabric
http://www.cs.cornell.edu/projects/fabric

tion flow control. In 16th ACM Symp. on Operating System Principles (SOSP),
pages 129–142, October 1997.

[46] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decen-
tralized label model. ACM Transactions on Software Engineering and Method-
ology, 9(4):410–442, October 2000.

[47] Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing ro-
bust declassification. In 17th IEEE Computer Security Foundations Workshop
(CSFW), pages 172–186, June 2004.

[48] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and
Nathaniel Nystrom. Jif 3.0: Java information flow. Software release, http:
//www.cs.cornell.edu/jif, July 2006.

[49] A. Nguyen-Tuong, S. Guarneri, D. Greene, and D. Evans. Automatically
hardening web applications using precise tainting. In 20th International
Information Security Conference, pages 372–382, May 2005.

[50] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Poly-
glot: An extensible compiler framework for Java. In 12th Int’l Conf. on Com-
piler Construction (CC’03), pages 138–152, Berlin, Heidelberg, April 2003.
Springer-Verlag.

[51] D. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures:
the case of AES. Topics in Cryptology–CT-RSA 2006, January 2006.

[52] PHP: hypertext processor. http://www.php.net.

[53] François Pottier and Sylvain Conchon. Information flow inference for free.
In 5th ACM SIGPLAN Int’l Conf. on Functional Programming, ICFP ’00, pages
46–57, 2000.

[54] François Pottier and Vincent Simonet. Information flow inference for ML.
In 29th ACM Symp. on Principles of Programming Languages (POPL), pages
319–330, 2002.

[55] John C. Reynolds. Definitional interpreters for higher-order programming
languages. In ACM ’72: Proceedings of the ACM annual conference, pages
717–740, 1972.

[56] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey,

188

http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif

you, get off of my cloud: exploring information leakage in third-party com-
pute clouds. In 16th ACM Conf. on Computer and Communications Security
(CCS), CCS ’09, pages 199–212, New York, NY, USA, 2009. ACM.

[57] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications, 21(1):5–19,
January 2003.

[58] Andrei Sabelfeld and David Sands. Dimensions and principles of declassi-
fication. In 18th IEEE Computer Security Foundations Workshop (CSFW), pages
255–269, June 2005.

[59] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Trans. on Computer Systems, 2(4):277–288, November 1984.

[60] Fred B. Schneider. Enforceable security policies. ACM Transactions on Infor-
mation and System Security, 3(1):30–50, 2001. Also available as TR 99-1759,
Computer Science Department, Cornell University, Ithaca, New York.

[61] M. Serrano, E. Gallesio, and F. Loitsch. HOP, a language for programming
the Web 2.0. In 1st Dynamic Languages Symposium, pages 975–985, October
2006.

[62] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van
Doorn, and Pradeep Khosla. Pioneer: verifying code integrity and enforc-
ing untampered code execution on legacy systems. In 20th ACM Symp. on
Operating System Principles (SOSP), pages 1–16, October 2005.

[63] Geoffrey Smith and Rafael Alpı́zar. Secure information flow with random
assignment and encryption. In FMSE ’06: Proceedings of the fourth ACM
workshop on Formal methods in security, pages 33–44, 2006.

[64] Guy L. Steele, Jr. RABBIT: A compiler for Scheme. Technical Report AITR-
474, MIT AI Laboratory, Cambridge, MA, May 1978.

[65] Sun Microsystems. Java Language Specification, version 1.0 beta edition, Oc-
tober 1995. Available at ftp://ftp.javasoft.com/docs/\penalty\
z@javaspec.ps.zip.

[66] Nikhil Swamy, Michael Hicks, Stephen Tse, and Steve Zdancewic. Man-
aging policy updates in security-typed languages. In 19th IEEE Computer
Security Foundations Workshop (CSFW), pages 202–216, July 2006.

189

ftp://ftp.javasoft.com/docs/\penalty \z@ javaspec.ps.zip
ftp://ftp.javasoft.com/docs/\penalty \z@ javaspec.ps.zip

[67] Symantec Internet security threat report, volume IX. Symantec Corpora-
tion, March 2006.

[68] Symantec Internet security threat report, volume X. Symantec Corporation,
September 2006.

[69] Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby: The Prag-
matic Programmers’ Guide. The Pragmatic Programmers, 2nd edition, 2004.
ISBN 0-974-51405-5.

[70] Trusted Computing Group. TCG TPM Specification Version 1.2 Revision 94,
March 2006.

[71] Stephen Tse and Steve Zdancewic. Designing a security-typed language
with certificate-based declassification. In 14th European Symposium on Pro-
gramming, 2005.

[72] Dennis Volpano and Geoffrey Smith. A type-based approach to program
security. In 7th International Joint Conference on the Theory and Practice of
Software Development, pages 607–621, 1997.

[73] Dennis Volpano and Geoffrey Smith. Verifying secrets and relative secrecy.
In 27th ACM Symp. on Principles of Programming Languages (POPL), pages
268–276, Boston, MA, January 2000.

[74] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system
for secure flow analysis. Journal of Computer Security, 4(3):167–187, 1996.

[75] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in
scripting languages. In 15th USENIX Security Symp., pages 179–192, July
2006.

[76] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced policy enforce-
ment: A practical approach to defeat a wide range of attacks. In 15th

USENIX Security Symp., pages 121–136, August 2006.

[77] Wei Xu, V.N. Venkatakrishnan, R. Sekar, and I.V. Ramakrishnan. A frame-
work for building privacy-conscious composite web services. In 4th IEEE
International Conference on Web Services (ICWS’06), September 2006.

[78] Fan Yang, Nitin Gupta, Nicholas Gerner, Xin Qi, Alan Demers, Johannes
Gehrke, and Jayavel Shanmugasundaram. A unified platform for data

190

driven web applications with automatic client-server partitioning. In 16th

International World Wide Web Conference (WWW’07), pages 341–350, 2007.

[79] Fan Yang, Jayavel Shanmugasundaram, Mirek Riedewald, and Johannes
Gehrke. Hilda: A high-level language for data-driven web applications.
In 22nd Int’l Conf. on Data Engineering, ICDE ’06, pages 32–43, Washington,
DC, USA, April 2006. IEEE Computer Society.

[80] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. JavaScript
instrumentation for browser security. In 34th ACM Symp. on Principles of
Programming Languages (POPL), POPL ’07, pages 237–249, January 2007.

[81] Steve Zdancewic and Andrew C. Myers. Robust declassification. In 14th

IEEE Computer Security Foundations Workshop (CSFW), pages 15–23, June
2001.

[82] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. My-
ers. Secure program partitioning. Technical Report 2001–1846, Cornell Uni-
versity Department of Computer Science, 2001.

[83] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.
Myers. Secure program partitioning. ACM Trans. on Computer Systems,
20(3):283–328, August 2002.

[84] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David
Mazières. Making information flow explicit in HiStar. In 7th USENIX
Symp. on Operating Systems Design and Implementation (OSDI), pages 263–
278, 2006.

[85] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based
control and mitigation of timing channels. In ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation (PLDI), pages 99–110, June
2012.

[86] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve Zdancewic.
Using replication and partitioning to build secure distributed systems. In
IEEE Symp. on Security and Privacy, pages 236–250, May 2003.

[87] Lantian Zheng and Andrew C. Myers. Dynamic security labels and nonin-
terference. In 2nd Workshop on Formal Aspects in Security and Trust (FAST),
IFIP TC1 WG1.7. Springer, August 2004.

191

[88] Lantian Zheng and Andrew C. Myers. Making distributed computation
trustworthy by construction: Technical report. Technical Report 2006–2040,
Cornell University Computing and Information Science, 2006.

192

	Biographical Sketch
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Information Flow Control Overview
	Distributed Information Flow Control
	Programming Language Design and Analysis for Security and Convenience
	Contributions and Roadmap

	Information Flow in Web Applications
	Introduction
	Servlets with Information Flow
	Threat model and security assurance
	Non-interference and Decentralized Label Model overview
	Java Information Flow (Jif)
	System design
	Information flow across requests
	Deployment

	Language Extensions
	Application-specific principals
	Dynamic labels and principals
	Caching dynamic tests

	Case Studies
	Application descriptions
	Implementing security requirements
	Downgrading
	Programming with information flow

	Related work
	Conclusions

	Information Flow Control Across Web Application Tiers
	Tracking Information Flow through the Persistence Tier
	The Fabric System
	Integrating SIF and Fabric
	The Travel Example

	Tracking Information Flow through Client-side Code
	Architecture
	Writing Swift applications
	Extending Jif 3.0
	A sample application
	Swift user interface framework

	WebIL
	Placement annotations
	Translation from Jif to WebIL
	Goals and constraints
	Partitioning algorithm

	The Swift runtime
	Execution blocks and closures
	Closure results
	Classes and objects
	Integrity of control flow
	Other security considerations
	Concurrency Issues
	GWT and Ajax

	Evaluation
	Example web applications
	Code size results
	Performance results
	Automatic repartitioning

	Related work
	Information flow in web applications
	Uniform web application development
	Security by construction

	Conclusions

	Read Channels
	Problem Definition
	Read Channels in Fabric
	Related Work

	A Type System for Controlling Read Channels
	Threat Model
	A Simple Type System with Access Labels
	Interaction with Object-Oriented Features
	Interaction with Mobile Code
	Runtime Mechanisms

	Automatic Elimination of Read Channels
	Source Language
	Abstract Interpretation
	Interleaved Semantics
	Evaluation

	Conclusion
	Downgrading in case studies
	Bibliography

