
TOWARDS A SECURE FEDERATED
INFORMATION SYSTEM

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Mon Jed Liu

August 2012

© 2012 Mon Jed Liu

ALL RIGHTS RESERVED

TOWARDS A SECURE FEDERATED INFORMATION SYSTEM

Mon Jed Liu, Ph.D.

Cornell University 2012

We are entering an era in which federated information systems are widely used

to share information and computation. Federated systems support new services

and capabilities by integrating computer systems across independent adminis-

trative domains. Each domain has policies for security, but does not fully trust

other domains to enforce them. This dissertation explores, in two parts, the chal-

lenge of designing and building federated information systems that are secure

and reliable while supporting mutually distrusting participants.

First, this dissertation presents Fabric, a new system and language for build-

ing secure federated information systems. Fabric allows heterogeneous network

nodes to securely share information and computation despite mutual distrust. It

uses optimistic, nested transactions to ensure global consistency, and has a peer-

to-peer dissemination layer for better availability and load balancing. Fabric’s

high-level programming language provides a rich, Java-like object model, and

keeps distribution and persistence largely transparent to programmers. It sup-

ports data shipping and function shipping: both information and computation

can move between nodes to meet security requirements or to improve perfor-

mance. Confidentiality and integrity policies on objects are enforced through a

combination of compile-time and run-time mechanisms. Results from building

Fabric applications suggest that Fabric has a clean and concise programming

model, offers good performance, and enforces security.

Next, this dissertation examines the security implications of providing refer-

ential integrity in a federated system. Referential integrity ensures that named

resources can be accessed when needed. This is an important property for re-

liability and security. However, the attempt to provide referential integrity can

itself lead to security vulnerabilities that are currently not well understood. This

dissertation identifies three such referential security vulnerabilities, and formal-

izes security conditions corresponding to their absence. A language model cap-

tures key aspects of programming distributed systems with named, persistent

resources in the presence of an adversary. A new type system is proved to en-

force the conditions for referential security.

BIOGRAPHICAL SKETCH

Mon Jed Liu was born in Toronto, Canada to wonderful and loving parents.

Jed first became interested in computers at a young age, after having been ex-

posed to them at a summer camp. His first computer was a laptop he built at age

seven. It had a stunning 10.1” display and was quite literally paper-thin, putting

today’s MacBook Air to shame. It supported video calling over a built-in wire-

less radio, long before 802.11 and Skype existed. It was a glorious contraption

made out of loose-leaf paper and powered by imagination.

Jed’s second computer was delicious and lasted only a few days—a birthday

cake with an image of a computer printed on it. His third computer was the

rather entertaining Family Computer, which introduced him to such timeless

classics as The Legend of Zelda and Dragon Warrior.

Computers became a little more serious for Jed at the age of ten, with his

fourth computer, an Apple IIGS. On it, between sessions of playing Pool of Radi-

ance, Carmen Sandiego, and Earl Weaver Baseball with his brothers, he taught him-

self how to program, in Applesoft BASIC. Sadly, his masterful creations were

only stored in RAM, and are now lost to the sands of time.

Jed has since built several more computers, not all of which were based on

arboreal cellulose technology. Within his family, he has earned the title of Com-

puter Assistant, and has an awesome nameplate to prove it. He graduated from

Upper Canada College in 1997 and received the Governor General’s Academic

Medal. He received a Bachelor of Arts in Mathematics (cum laude) and Com-

puter Science (magna cum laude), with distinction in all subjects, from Cornell

University in 2001. The following year, he received a Master of Engineering in

Computer Science, also from Cornell. As part of his doctoral studies at Cornell,

he completed a graduate minor in mathematics.

iii

https://en.wikipedia.org/wiki/Pool_of_Radiance
https://en.wikipedia.org/wiki/Pool_of_Radiance
https://en.wikipedia.org/wiki/Earl_Weaver_Baseball

For阿公,阿嬤,爸爸,媽媽, Richard, and Rex.

iv

ACKNOWLEDGEMENTS

Many people deserve my thanks for their role in making this dissertation and

my degree a reality. First and foremost, I wish to thank my family. To阿公,

thank you for instilling in me my love of mathematics, which forms the founda-

tion of so much of my life, including my passion for computer science. To阿嬤,

thank you for being so supportive of my academic pursuits. You were always

incredibly proud of me, Richard, and Rex. I wish you and阿公 had lived to see

us graduate. To Mom and Dad, I cannot thank you enough for always being so

loving and supportive. You have worked very hard and sacrificed too much to

ensure that I get the best possible education, and you have consistently encour-

aged me to do what I love, to the best of my ability. To Richard and Rex, you

have been invariably proud and supportive of me. I am lucky to have you as

brothers, and I wish we could spend more time together. To all six of you, I owe

much gratitude, and it is to you that I dedicate this dissertation.

My advisor, Andrew Myers, has been invaluable in his guidance of my re-

search. Andrew has been an inspiration from the moment I stepped into his

CS 412 class in January of 2000. He is never afraid to tackle difficult questions,

and his high standards have made him a wonderful role model. He has always

been eager to share his sharp insight, superb advice, and keen enthusiasm for

research. Andrew has unfailingly provided encouragement when I needed it

most, and for this, I am truly indebted to him. I also thank the other members

of my thesis committee, Robbert van Renesse and Ravi Ramakrishna, for their

insightful feedback on this dissertation.

Research is much more rewarding when done collaboratively, and I have

been fortunate to have worked with many talented individuals. I thank my fel-

low Fabricators, who have made working on Fabric a rich and engaging learn-

v

ing experience: Owen Arden, Aslan Askarov, Mike George, Nate Nystrom, Xin

Qi, Krishnaprasad Vikram, Lucas Waye, and Xin Zheng. Mike was especially

instrumental in the design and implementation of Fabric, and this dissertation

would not have been possible without him. My thanks also to my non-Fabric

collaborators: Aaron Kimball, Stephen Chong, and Lantian Zheng.

I owe a debt to my labmates in the Cornell Systems Lab (Syslab): Mahesh

Balakrishnan, Hitesh Ballani, Tuan Cao, Saikat Guha, Oliver Kennedy, and Alan

Shieh. They were invariably a good avenue of procrastination, be it through

random discussions, movies, video games, or nerf guns. Becky Stewart and

Stephanie Meik have always been available with a smile to provide friendly

advice on navigating the Big Red Tape.

Many thanks to the Cornell Karate Club. Karate has provided a much-

needed outlet for the frustrations that inevitably arise from difficult research.

As sensei, Mike Eschenbrenner has provided insightful guidance in my train-

ing. My fellow karatekas Gabriella Bensur, José Delgado, and Marissa Giovino

have been essential in making training fun. I especially thank Gabriella for be-

ing a wonderful friend. Our conversations have always brightened my day,

whether they be about life, school, or just plain geekery.

Finally, I would like to add a big thanks to many others who have made my

graduate life fun over the years: Kavita Bala, Mark Bushnell, Meghan Dowd,

Marisa Genuardi, Ingrid Kiehl, Leeann Louis, Joe McCourt, Jeff Mermin, Ryan

O’Neil, Derek Plotkowski, Lena Sawin, Brian Shore, Steve Sinnott, Tim Snapp,

John Thacker, Barbara Varsanofieva, and Marielle Volz.

The research reported in this dissertation was supported in part by the Na-

tional Science Foundation under grants 0430161, 0541217, 0627649, and 0964409;

by a grant from Microsoft Corporation; by the Air Force Team for Research in

vi

Ubiquitous Secure Technology (AF-TRUST), which receives support from the

DAF Air Force Office of Scientific Research (FA9550-06-1-0244) and the NSF

(0424422); by National Intelligence Community Enterprise Cyber Assurance

Program (NICECAP) Grant FA8750-08-2-0079, monitored by Air Force Research

Laboratories; and by the Office of Naval Research under award N00014-09-1-

0652. This work does not necessarily represent the opinions, expressed or im-

plied, of any of these sponsors.

The graphic representing the researcher in Figure 1.1 is the Aperture Science

logo from the video game Portal by Valve Corporation. In the same figure, the

graphic representing the pharmaceutical company is adapted from the logo for

Prescott Pharmaceuticals, proud sponsor of Cheating Death with Dr. Stephen T.

Colbert, D.F.A. on the television program The Colbert Report. “Prescott: the only

medicine on the market with a cap so simple, even a child could open it.”

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . viii
List of Tables . xi
List of Figures . xii

1 Introduction 1
1.1 Example . 2
1.2 Contributions of this dissertation . 5

1.2.1 Secure federated computation and storage 5
1.2.2 Referential security . 8

1.3 Dissertation outline . 10

2 Fabric: Secure Federated Computation and Storage 11
2.1 System architecture overview . 11

2.1.1 Security and assumptions . 13
2.1.2 Storage nodes . 14
2.1.3 Worker nodes . 15
2.1.4 Dissemination nodes . 17

2.2 The Fabric language . 18
2.2.1 Principals . 19
2.2.2 Labels . 22
2.2.3 Object labels . 29
2.2.4 Tracking implicit flows . 31
2.2.5 Remote calls . 32
2.2.6 Transactions . 33
2.2.7 Java interoperability . 35

2.3 The Fabric runtime system . 36
2.3.1 Object model . 36
2.3.2 Object groups . 39
2.3.3 Dissemination and encryption 39
2.3.4 Node authentication . 40
2.3.5 Authorization checks . 41
2.3.6 Transaction management and object locking 42
2.3.7 Memory management . 43
2.3.8 The security cache . 43
2.3.9 Handling failures of optimism 44
2.3.10 Object subscriptions . 45

2.4 Support for distributed computation 46
2.4.1 Writer maps . 46
2.4.2 Distributed transaction management 48

viii

2.4.3 Hierarchical commit protocol 51
2.5 Implementation . 54

2.5.1 Store . 54
2.5.2 Dissemination layer . 55
2.5.3 Memory management . 55
2.5.4 Unimplemented features . 58

2.6 Evaluation . 58
2.6.1 Course Management System 58
2.6.2 Travel example . 61
2.6.3 Run-time overhead . 62

2.7 Related work . 63

3 Defining and Enforcing Referential Security 66
3.1 Language model . 66

3.1.1 Modelling distributed computing as a language 66
3.1.2 Objects and references . 68

3.2 Policies for persistent programming 69
3.2.1 Persistence policies . 69
3.2.2 Characterizing the adversary 71
3.2.3 Storage attacks and authority policies 72
3.2.4 Integrity . 73
3.2.5 Integrity of dereferences and garbage collection 74
3.2.6 Security properties . 76

3.3 Types for persistent programming . 77
3.3.1 Labels . 77
3.3.2 Example . 77
3.3.3 Modelling objects and references 78
3.3.4 Modelling distributed systems 79

3.4 Accidental persistence and storage attacks 79
3.4.1 Syntax of λ0

persist . 79
3.4.2 Example . 80
3.4.3 Operational semantics of λ0

persist 81
3.4.4 Subtyping in λ0

persist . 84
3.4.5 Static semantics of λ0

persist . 85
3.5 Ensuring referential integrity . 89

3.5.1 Persistence handler levels . 90
3.5.2 Example . 90
3.5.3 Operational semantics of λpersist 91
3.5.4 Subtyping in λpersist . 91
3.5.5 Static semantics of λpersist . 93

3.6 The power of the adversary . 94
3.7 Results . 96

3.7.1 Well-formedness . 96
3.7.2 Completeness of [λpersist] evaluation 99

ix

3.7.3 Soundness of [λpersist] type system 101
3.7.4 Limited adversary influence 136
3.7.5 Storage attacks . 139
3.7.6 Referential security . 150

3.8 Related work . 182
3.A Appendix . 183

3.A.1 Full syntax of λpersist . 183
3.A.2 Full small-step operational semantics for ordinary (non-

adversarial) execution of λpersist 184
3.A.3 Full subtyping rules for λpersist 185
3.A.4 Full typing rules for λpersist . 186

4 Conclusion 187
4.1 Securely sharing computation and storage 187
4.2 Defining and enforcing referential security 188
4.3 Future work . 188

Bibliography 191

x

LIST OF TABLES

2.1 CMS page load times (ms) under continuous load 60
2.2 Breakdown of OO7 traversal time (times in ms) 62

xi

LIST OF FIGURES

1.1 A medical example . 3

2.1 Fabric architecture . 12
2.2 Orderings on reader and writer policies 25
2.3 Orderings on the space of labels . 27
2.4 Code example illustrating information-flow rules 28
2.5 A remote call in Fabric . 32
2.6 Compile-time and run-time checks for remote calls 32
2.7 Authentication protocol sequence . 40
2.8 The object-subscription mechanism 45
2.9 Distributed transaction logs . 50
2.10 A hierarchical, distributed transaction 51
2.11 A FabIL class and its Java translation 57

3.1 Directory example . 69
3.2 Authority affects integrity of dereferences 75
3.3 Interpretations of the extremal policy labels 76
3.4 Syntax of λ0

persist . 76
3.5 Small-step operational semantics for ordinary (non-adversarial)

execution of λ0
persist . 82

3.6 Subtyping rules for λ0
persist . 85

3.7 Typing rules for λ0
persist . 86

3.8 Well-formedness of types . 87
3.9 Additional small-step evaluation and typing rules for λpersist . . . 89
3.10 Small-step operational semantics extensions for ordinary execu-

tion of [λpersist] . 92
3.11 Effects caused by the α-adversary . 94
3.12 Equivalence of expressions in [λpersist] 138

xii

CHAPTER 1

INTRODUCTION

Distributed information systems network computers together to provide fast,

efficient access to data and computation. We rely on complex, distributed in-

formation systems for many important activities. Government agencies, banks,

hospitals, schools, and many other enterprises use distributed information sys-

tems to manage information and interact with the public.

These systems often have security requirements, of which there are three

central goals: confidentiality, that information be protected from unauthorized

disclosure; integrity, that information be protected from unauthorized modifica-

tion; and availability, that information be protected from loss of use [18]. Viola-

tions of these requirements can have financial, legal, and ethical consequences.

Current practice does not offer general, principled techniques for implementing

the functionality of these systems while also satisfying their security require-

ments.

The trend towards integration makes the security problem ever more im-

portant and difficult. Whereas distributed information systems are operated by

individual administrative domains, federated systems provide new services and

capabilities by connecting these systems together. However, each domain has

its own policies for security, and does not fully trust other domains to enforce

them. Future information systems will need to function correctly and securely

despite having code and data distributed across these trust boundaries.

This dissertation examines in two ways the challenge of designing and build-

ing federated information systems that are secure and reliable. The first half

presents the design and implementation of Fabric, a platform for building fed-

erated information systems with confidentiality and integrity assurances.

1

While Fabric offers confidentiality and integrity assurances, these alone are

not sufficient for building secure and reliable federated systems. The challenge

is made more difficult because information is not merely bits—it has structure.

Information resources use names to refer to other, perhaps remote, resources.

For example, web pages can have hyperlinks to other pages, tuples in relational

databases can have foreign keys that refer to other tuples in the database, and

objects in distributed object systems can point to other objects in the system.

The precise details of how references are represented are not germane, so we

refer to all these constructs collectively as references. Similarly, we use the term

objects to refer generically to information resources that are connected by refer-

ences, whether web pages, database tuples, or distributed objects. Regardless

of the kind of system, security and reliability vulnerabilities are created when

references cross trust boundaries in a distributed system.

The second half of this dissertation identifies three kinds of referential security

vulnerabilities, a class of availability vulnerabilities that appear in federated in-

formation systems with persistent information. It formally characterizes these

vulnerabilities and explores a language-based approach for modelling, analyz-

ing, and preventing them.

1.1 Example

Epidemiological research is one domain that would benefit from a secure, fed-

erated information system. Because of patient confidentiality concerns, re-

searchers have limited access to epidemiological data in the US and Canada,

especially for STIs such as HIV/AIDS. When available, data sets are highly

regional—often restricted to a single city—and in some cases must be obtained

in person or hand-delivered by courier. The data is incomplete because it does

2

anonymized
data

General
Practitioner

Psychiatrist

Pharmaceutical
Company

Researcher

Medical
Record

query

full patient data

update

info flow

remote ref

full patient data

update

Figure 1.1: A medical example

not include full patient records. Instead, it is derived from population surveys

and diagnosis forms that are unable to fully anticipate researchers’ needs [75]. A

secure, federated information system would allow researchers to directly mine

patient records for real-time epidemiological trends while protecting patient

confidentiality.

To illustrate the challenges, consider the scenario in Figure 1.1. A patient, Al-

ice, has two doctors—a general practitioner and a psychiatrist—and has given

consent for her medical record to be used anonymously for research. The med-

ical record is kept in a federated information system. This not only provides re-

searchers with direct access to her medical data, but her two doctors at separate

medical institutions can securely and quickly share her medical information.1

1The ability of doctors to effectively collaborate on patient information is important. Accord-
ing to a 1999 Institute of Medicine study, at least 44,000 US deaths annually result from medical
errors, with incomplete patient information identified as a leading cause [40].

3

Automated sharing of patient data poses difficulties. First, the security and

privacy policies of the two institutions must be satisfied (as mandated by the

Health Insurance Portability and Accountability Act (HIPAA) [34] in the US),

restricting which information can be shared or modified by the two institutions.

While Alice’s doctors might have access to her complete medical record, the

researchers’ view of the record should not contain any personally identifying

information, such as Alice’s address or phone number.

Second, the patient record may be updated by both institutions as treatment

progresses, yet the record should be consistent and up to date when viewed by

the researcher and from the two institutions. It is inadequate to simply transmit

a copy of the record in a common format such as XML, because the copy and the

original are likely to diverge over time. Instead, the researcher and institutions

should have easy, secure, consistent and efficient access to what is logically a

single patient record.

Third, the record is likely composed of several objects, with references to

other, perhaps remote, objects. For example, an object representing a prescrip-

tion might refer to an object at a pharmaceutical company, identifying the pre-

scribed drug and providing information about it, such as contraindications, side

effects, and drug interactions. This is useful, because when the pharmaceu-

tical company adds new information about the drug, it is instantly reflected

in Alice’s medical record. However, the referential integrity of Alice’s record is

now dependent on the pharmaceutical company: information in Alice’s medi-

cal record becomes missing if the drug information is deleted or is temporarily

unavailable. It is therefore important that either the pharmaceutical company

be trusted to enforce this referential integrity, or that users of Alice’s medical

record be prepared for a potential failure in referential integrity.

4

1.2 Contributions of this dissertation

1.2.1 Secure federated computation and storage

This dissertation presents the design and implementation of Fabric, a federated

system that supports secure, shared access to information and computation, de-

spite distrust between cooperating entities. The goal of Fabric is to make secure

distributed applications much easier to develop, and to enable the secure inte-

gration of information systems controlled by different organizations.

To achieve this goal, Fabric provides a shared computational and storage

substrate implemented by an essentially unbounded number of Internet hosts.

As with the Web, there is no notion of an “instance” of Fabric. Two previously

non-interacting sets of Fabric nodes can interact and share information without

prior arrangement. There is no centralized control over admission: new nodes,

even untrustworthy nodes, can join the system freely.

Untrustworthy nodes pose a challenge for security. The guiding principle for

security in Fabric is that one’s security should never depend on components of

the system that one does not trust. Fabric provides security assurance through

a combination of mechanisms at the language and system levels.

Fabric gives programmers a high-level programming abstraction in which

security policies and some distributed computing features are explicitly visible

to the programmer. Programmers access Fabric objects in a uniform way, even

though the objects may be local or remote, persistent or non-persistent, and

object references may cross between Fabric nodes.

The Fabric programming language is an extension to the Jif programming

language [53, 56], in turn based on Java [30]. Fabric extends Jif with support for

distributed programming and transactions. Like Jif, Fabric has several mech-

5

anisms, including access control and information-flow control, to prevent un-

trusted nodes from violating confidentiality and integrity. All objects in Fabric

are labelled with policies from the decentralized label model (DLM) [54], which

expresses security requirements in terms of principals (e.g., users and organi-

zations). Object labels prevent a node that is not trusted by a given principal

from compromising the security policies of that principal. Therefore, Fabric has

fine-grained trust management that allows principals to control to what extent

other principals (and nodes) can learn about or affect their information.

To achieve good performance while enforcing security, Fabric supports both

data shipping, in which data moves to where computation is happening, and

function shipping, in which computations move to where data resides. Data

shipping enables Fabric nodes to compute using cached copies of remote ob-

jects, with good performance when the cache is populated. Function shipping

enables computations to span multiple nodes. Inconsistency is prevented by

performing all object updates within transactions, which are exposed at the lan-

guage level. The availability of information, and scalability of Fabric, are in-

creased by replicating objects within a peer-to-peer dissemination layer.

Of course, there has been much previous work on making distributed sys-

tems both easier to build and more secure. Prior mechanisms for remotely

executing code, such as CORBA [61], Java RMI [62], SOAP [33] and web ser-

vices [50], generally offer only limited support for information security, consis-

tency, and data shipping. J2EE persistence (EJB) [23] provides a limited form

of transparent access to persistent objects, but does not address distrust or dis-

tributed computation. Peer-to-peer content-distribution and wide-area storage

systems (e.g., [20, 42, 65, 68]) offer high data availability, but do little to ensure

that data is neither leaked to nor damaged by untrusted users, nor do they en-

6

sure consistency of mutable data. Prior distributed systems that enforce con-

fidentiality and integrity in the presence of distrusted nodes (e.g., [12, 80, 81])

have not supported consistent computations over persistent data.

Fabric integrates many ideas from prior work, including compile-time and

run-time information flow, access control, peer-to-peer replication, and opti-

mistic transactions. This unique integration makes possible a higher-level pro-

gramming model that simplifies reasoning about security and consistency. In-

deed, it does not seem possible to provide a high-level programming model

like that of Fabric by simply layering previous distributed-systems abstractions.

Several new ideas were also needed to make Fabric possible:

• A programming language that integrates information flow, persistence,

transactions, and distributed computation.

• A trust ordering on information-flow labels, supporting reasoning about

information flow in distributed systems.

• An integration of function shipping and data shipping that also enforces

secure information flows within and among network nodes.

• A way to manage transactions distributed among mutually distrusting

nodes, and to propagate object updates while enforcing confidentiality

and integrity.

Fabric does not require application developers to abandon other standards

and methodologies; it seems feasible for Fabric to interoperate with other stan-

dards. In fact, Fabric already interoperates with existing Java application code.

It seems feasible to implement many existing abstractions (e.g., web services)

using Fabric. Conversely, it seems feasible to implement Fabric nodes by encap-

sulating other services such as databases. We leave further work on interoper-

ability to the future.

7

1.2.2 Referential security

Fabric provides confidentiality and integrity through a combination of

information-flow control and access control. However, experience building

Fabric applications has revealed security and reliability vulnerabilities result-

ing from object references.

References create security issues because they introduce dependencies be-

tween different parts of the system. We say that a system has referential integrity

if a reference can be relied upon to continue pointing to the same object. This

is both an availability and an integrity property. Referential integrity fails when

an object is deleted while a reference to it still exists, resulting in a dangling ref-

erence (an availability failure), or when the reference points to a different object

altogether (an integrity failure). Because Fabric does not address availability,

Fabric programs can encounter dangling references.

Referential integrity appears in many guises. We use the term in a more

general sense than in the database literature, where referential integrity is an

important aspect of the relational model [17]. The Web is a system whose lack

of referential integrity is well known: the referent of a hyperlink can be deleted,

leading to the familiar “404” error. Referential integrity is also an important

property for programming language design; in programming languages that

lack referential integrity, such as C, dangling pointers are a serious problem. To-

day, many languages have automatic garbage collection, allowing the automatic

reclamation of memory while preserving referential integrity.

While absolute referential integrity is desirable, it cannot be achieved in a

federated system such as Fabric: referential integrity is necessarily limited by

the trustworthiness of the node (or nodes) storing the referent object. Therefore,

we generalize referential integrity to systems where nodes are partially trusted.

8

In a federated system, referential integrity must be balanced against other

security and reliability properties. Indeed, violations of referential integrity are

only the first of three referential security vulnerabilities considered in this disser-

tation. In a system with referential integrity, a reference to an object is a promise

to the referrer that the object will not move or disappear. It must be persis-

tent. Therefore, reachability implies persistence, as in various object-oriented

databases (e.g., [4,8]) and also in marshalling mechanisms such as Java serializa-

tion. However, if all reachable objects are persistent, objects can become acciden-

tally persistent because they are unexpectedly reachable. Accidental persistence

can inflate resource consumption, leading to poor performance and system fail-

ure. This problem is familiar to programmers who have used Java serialization.

Avoiding accidental persistence is our second goal.

The third goal is preventing what we call storage attacks. Referential integrity

prevents discarding reachable objects. But this gives an adversary a means to

mount a denial-of-service attack. The adversary creates references to objects in-

tended to be discarded, preventing reclamation and perhaps exhausting avail-

able storage space.

In summary, the second part of this dissertation studies the problem of pro-

gramming in distributed object systems while preventing three kinds of referen-

tial vulnerabilities: dangling pointers that violate referential integrity, acciden-

tal persistence that leaks storage, and storage attacks that consume resources.

While recent work has explored programming models and languages for build-

ing federated systems (e.g., [42]), these referential vulnerabilities have not been

clearly identified or addressed in prior work.

This dissertation formalizes referential vulnerabilities in terms of security

properties corresponding to their absence. These referential security properties are

9

formalized in the context of a simple programming language that captures the

key elements of distributed programming in a federated system with persistent

information and pointers. A new type system is defined to enforce these se-

curity properties, ensuring that the system is secure and reliable. Because these

properties can be viewed as integrity properties, the language must also enforce

integrity in the information-flow sense. The correctness of security enforcement

by the type system has been proved.

1.3 Dissertation outline

The rest of this dissertation is structured as follows. Chapter 2 presents the de-

sign and implementation of Fabric. Chapter 3 turns to the problem of referential

security and presents a type system for its enforcement. Chapter 4 concludes.

The material in Chapter 2 is joint work with Michael George, Krishnaprasad

Vikram, Xin Qi, Lucas Waye, and Andrew Myers, and is adapted from [48]. The

work on referential security is joint work with Andrew Myers.

10

CHAPTER 2

FABRIC: SECURE FEDERATED COMPUTATION AND STORAGE

Fabric is a system and language for building secure federated information

systems. It is a decentralized system that supports secure, shared access to infor-

mation and computation, despite mutual distrust between cooperating entities.

It has a high-level programming language that makes distribution and persis-

tence largely transparent to programmers. Fabric supports both data shipping

and function shipping: data and computation can move between nodes to meet

security requirements or to improve performance. Fabric provides a rich, Java-

like object model. Objects are labelled with confidentiality and integrity policies

that are enforced through a combination of compile-time and run-time mecha-

nisms. Optimistic, nested transactions ensure consistency across all objects and

nodes. A peer-to-peer dissemination layer helps to increase availability and

to balance load. Results from applications built using Fabric suggest that Fabric

has a clean, concise programming model, offers good performance, and enforces

security.

2.1 System architecture overview

Each Fabric node takes on one of the three roles depicted in Figure 2.1:

• Storage nodes (or stores) store objects persistently and provide object data

when requested.

• Worker nodes perform computation, using both their own objects and pos-

sibly copies of objects from storage nodes or other worker nodes.

• Dissemination nodes provide copies of objects, giving worker nodes lower

latency access and offloading work from storage nodes.

11

worker nodes
compute on cached
persistent objects

storage nodes
securely store

persistent objects

read write

disseminate

subscribe

remote
call

distributed transaction

dissemination nodes
replicate objects

for high availability

Figure 2.1: Fabric architecture

Although Fabric nodes serve these three distinct roles, a single host machine

can have multiple Fabric nodes on it, typically colocated in the same Java VM.

For example, a store typically has a colocated worker, allowing the store to in-

voke code at the worker with low overhead. This capability is useful, for ex-

ample, when a store needs to evaluate a user-defined access-control policy to

decide whether an object update is allowed (Section 2.3.5). It also gives the

colocated worker the ability to efficiently execute queries against the store. Sim-

ilarly, a worker node can be colocated with a dissemination node, making Fabric

more scalable.

12

2.1.1 Security and assumptions

The design of Fabric is intended to allow secure sharing of computations and

information, despite the presence of adversaries that control some Fabric nodes.

The security goal of Fabric is the decentralized security principle: the security of a

Fabric user should not depend on any part of the system that the user does not

trust. (Equivalently, the security of a user should only depend on components

of the system that the user trusts.)

Fabric users are able to express complete or partial trust in Fabric nodes. If

a user expresses trust in a node, the compromise of that node might harm the

security of that user. The goal of Fabric is to ensure that the degree of trust

expressed bounds the degree to which security might be violated from the per-

spective of that user.

Assumptions

The security of any system depends on the assumptions made about the threats

it is designed to defend against. The threat assumptions that Fabric makes are

typical and weak, so the adversaries considered are typical, if not more power-

ful. This strengthens the security assurances of Fabric.

Compromised nodes are assumed to be malicious. They can give the out-

ward appearance of a well-behaved node while behaving maliciously. Although

Fabric provides a programming language with information-flow security, mali-

cious behaviour is not constrained by the language. The runtime exposes more

information than what is available at the language level, and malicious nodes

can misuse the information they receive from the runtime, such as object iden-

tifiers, object version numbers, and cryptographic keys.

Misuse of information can include leaking confidential information or pro-

13

viding corrupt information to other nodes. However, without the appropriate

cryptographic keys, nodes are assumed to be unable to learn encrypted content

or forge digital signatures. As with most work on distributed systems, Fabric

does not attempt to control read channels [78], timing channels, or termination

channels.

Network adversaries are assumed to be unable to read or fabricate network

messages on trusted channels. This assumption is justified by the use of SSL

for all store–worker and worker–worker communication. Adversaries can learn

information from the size, existence, and timing of network messages. As with

most work on distributed systems, Fabric ignores these covert channels. Net-

work adversaries can also prevent the delivery of messages. The availability of

services written using Fabric depends on an assumption that network messages

are eventually delivered.

2.1.2 Storage nodes

Storage nodes (stores) persistently store objects and, on request, provide copies

of object data to worker nodes and dissemination nodes. Access control pre-

vents nodes from obtaining data they should not see. The mechanism for this is

described briefly here; details are given in Section 2.3.5.

Every object has an associated label describing the confidentiality and in-

tegrity requirements of the object’s data (Section 2.2.3). When a worker requests

a copy of an object from a store, the store examines the confidentiality part of

the object’s label. If the worker is trusted enough to read the object, then the

store can securely send the worker an unencrypted copy of the object (though

the network channel is of course encrypted by SSL).

This access-control mechanism works by treating each Fabric node as a prin-

14

cipal that tracks how much it trusts the nodes with which it interacts. Trust re-

lationships are created by the delegation mechanisms described in Section 2.2.1.

After a worker fetches an object, it can perform computations using this

cached copy, perhaps modifying its state. When the transaction containing these

computations completes, the worker commits object updates to the stores that

hold objects involved in the transaction. The transaction succeeds only if it is se-

rializable with other transactions at those stores. As with object fetch requests,

the store also enforces access control on update requests based on the degree of

trust in the worker and the integrity policies in these objects’ labels.

2.1.3 Worker nodes

Workers execute Fabric programs, which are typically written in the Fabric lan-

guage. Programs may incorporate code written in other languages, such as the

Fabric intermediate language, FabIL. However, such code is considered trusted:

a worker running such code must trust it to maintain the security and consis-

tency of the objects it uses. A worker only executes trusted code if it is stored

on its local file system. In principle, mobile code (code provided by other nodes)

can be downloaded and executed if the code is written in Fabric, and compiled

and signed by a node that the worker trusts. The design described in this dis-

sertation has been extended in [3] to add partial support for mobile code.

Fabric could, in principle, provide certifying compilation [58], allowing Fab-

ric nodes to check that compiled code obeys the Fabric type system—and there-

fore that it correctly enforces access control and information-flow control—

without relying on trusting the compiler or the node that runs it. The design

and implementation of this feature are left to future work.

Fabric programs modify objects only inside transactions, which the Fabric

15

programming language exposes to the programmer as a simple atomic con-

struct. Transactions can be nested, which is important for making code compo-

sitional. During transactions, object updates are logged in an undo/redo log,

and are rolled back if the transaction fails. Such failures can happen because of

inconsistency, deadlock, or an application-defined failure.

A Fabric program may be run entirely on a single worker that issues requests

to stores (or to dissemination nodes) for objects that it needs. This data-shipping

approach makes sense if the cost of moving data is small compared to the cost of

computation, and if the objects’ security policies permit the worker to compute

using them.

When data shipping does not make sense, function shipping may be used in-

stead. Execution of a Fabric program may be distributed across multiple work-

ers, by using remote method calls to transfer control to other workers. Remote

method calls in Fabric differ from related mechanisms such as Java RMI [62] or

CORBA [61]:

• The receiver object on which the method is invoked need not be located at

the remote worker (more precisely, cached at it) at the time of the call. In

fact, the receiver object could be cached at the caller, at the callee, or at

neither. Invocation causes the callee worker to cache a copy of the receiver

object if it does not yet have a copy.

• The entire method call is executed in its own nested transaction. The ef-

fects of this transaction are not visible to other code running on the remote

node until the commit of the top-level transaction containing the nested

transaction. The commit protocol (Section 2.4.3) causes all workers par-

ticipating in the top-level transaction to commit the sub-transactions that

they executed as part of it.

16

• Remote method calls are subject to compile-time and run-time access-

control checks. The caller side is checked at compile time to determine

if the callee is trusted enough to enforce security for the method; the callee

checks at run time that the calling node is trusted enough to invoke the

method that is being called and to see the results of the method (Sec-

tion 2.2.5).

Fabric workers are multithreaded and can concurrently serve requests from

other workers. Pessimistic concurrency control (locking) is used to isolate trans-

actions in different threads from each other.

One important use of remote calls is to invoke an operation on a worker

colocated with a store. Since a colocated worker has low-cost access to persis-

tent objects, this can improve performance substantially. This idea is analogous

to a conventional application issuing a database query for low-cost access to

persistent data. In Fabric, a remote call to a worker that is colocated with a store

can be used to achieve this goal, with two advantages compared to database

queries: the worker can run arbitrary Fabric code, and information-flow secu-

rity is enforced.

2.1.4 Dissemination nodes

Objects are cached at dissemination nodes, to prevent stores with popular ob-

jects from becoming bottlenecks. Rather than requesting objects from remote or

heavily loaded stores, workers can request objects from dissemination nodes.

Objects are disseminated at the granularity of object groups, thereby amortizing

the costs associated with fetching remote objects (Section 2.3.2).

On request, stores provide object data in encrypted form to dissemination

nodes. Receiving encrypted objects does not require as much trust, because the

17

fields of the object are not visible without the object’s encryption key, which

dissemination nodes do not possess in general.

Fabric has no prescribed dissemination layer; workers may use any dissem-

ination nodes they choose, and dissemination nodes may use whatever mecha-

nism they want to find and provide objects. In the dissemination layer provided

with the current Fabric implementation, the dissemination nodes form a peer-

to-peer content distribution network based on FreePastry [69]. However, other

dissemination architectures can be substituted if the interface to workers and

stores remains the same.

To help keep caches up to date, workers and dissemination nodes are im-

plicitly subscribed to any object group they read from a store. When any object

in the group is updated, the store sends the updated group to its subscribers.

The dissemination layer is responsible for relaying group updates to workers

that have read them. A transaction that has read out-of-date data can then be

aborted and retried by its worker on receipt of the updated group. Updated

groups are delivered to their subscribers on a best-effort basis.

2.2 The Fabric language

Fabric offers a high-level language for building distributed programs with

information-flow security. It is an extension to the Jif programming lan-

guage [53,56], which also enforces secure information flow and has been used to

build significant systems (e.g., [12, 14, 16, 36]). Fabric adds three major features

to Jif:

• Nested transactions ensure that computations observe and update objects

consistently, and provide clean recovery from failures.

18

• Remote method calls (remote procedure calls to methods) allow dis-

tributed computations that span multiple workers.

• Remote objects are accessed transparently, as if they are local objects.

While these features may seem unusual, they are not new.1 The contribution

of Fabric, however, is in combining these features with information-flow secu-

rity. This requires new mechanisms to ensure that, for example, transactions do

not leak confidential information, and remote calls are properly authorized. To

support compile-time and run-time enforcement of secure distributed compu-

tation, Fabric also adds a new trust ordering on information-flow labels.

2.2.1 Principals

Principals in Fabric represent entities with authority, privilege, or trust. This

includes users, roles, groups, organizations, privileges, and Fabric nodes. As in

Jif [53], they are manifested in the Fabric programming language as objects with

the built-in type principal.

Expressing trust: acts-for

Trust relationships between principals are represented by the acts-for rela-

tion [55]. If a principal p acts for principal q, any action by principal p can be

considered to come from principal q as well. These actions include statements

made by principal p. Thus, this acts-for relationship means q trusts p completely.

We write this relationship more compactly as p ≽ q. The acts-for relation ≽ is a

pre-order (transitive and reflexive).

There is a most-trusted top principal ⊺ that acts for all other principals, and a

least-trusted bottom principal � that all principals act for. The operators ∧ and ∨
1Argus [47] has the first two, for example.

19

can be used to form conjunctions and disjunctions of principals. The conjunctive

principal p ∧ q represents the joint authority of p and q, and acts for them both:

p ∧ q ≽ p and p ∧ q ≽ q. The disjunctive principal p ∨ q represents the disjoint

authority of p and q. Both p and q act for the disjunctive principal p ∨ q (i.e.,

p ≽ p ∨ q and q ≽ p ∨ q). The conjunctive and disjunctive principal operators are

both commutative and associative.

Object representation of principals

The Fabric model of principals is similar to the model in Jif 3.0 [14].

Principals are represented as objects that inherit from the abstract class

fabric.lang.security.Principal.2 Instances of any subclass can be used as

principals. Like other Fabric objects, principals can be distributed and persis-

tent.

Principals control their acts-for relationships by implementing a method

p.delegatesTo(q), which tests whether q directly acts for p. This allows a

principal to say who can directly act for it. The Fabric runtime system at each

worker node automatically computes and stores the transitive closure of these

direct acts-for relationships in a security cache (Section 2.3.8). The runtime sys-

tem also exposes operations for notifying it that acts-for relationships have been

added, which causes the acts-for cache to be updated conservatively to remove

any information that might be stale. In general, worker nodes may have differ-

ent partial views of the acts-for relation. The monotonicity of the label system

ensures that security decisions based on these partial views are sound: any acts-

for relationships that a worker has not observed would only make its security

decisions more permissive [55].

2Instances of fabric.lang.security.Principal can be implicitly cast to the built-in type
principal, and vice versa.

20

The Fabric runtime also supports the revocation of acts-for relationships.

Supporting revocation involves a trade-off between security and performance

(or availability), a challenge commonly encountered in the design of public-key

infrastructures. To ensure sound authorization decisions, revocation notifica-

tions must rapidly propagate to all who might rely on the revoked authority.

However, rapid propagation comes at a performance cost, and the propagation

mechanism itself can be vulnerable to denial-of-service attack.

Fabric does not guarantee immediate notification of revoked acts-for rela-

tionships. A worker with a cached copy of principal p will not see a revoca-

tion of “q acts for p” until it receives an updated copy of p. This can happen

through object subscriptions (Section 2.3.10). However, the subscription mech-

anism only operates on a best-effort basis. In the worst case, the worker will not

receive the updated p until a transaction attempts to commit, after having ob-

served the revoked acts-for relationship. As with any transaction that observes

stale data, the transaction is rolled back and retried with the new version of p.

Node principals

Principals can use acts-for relationships to specify the degree to which they

trust Fabric nodes. Fabric nodes are represented as first-class objects in Fab-

ric that can be implicitly converted to principal objects that represent the node.

For example, a storage node might be represented as a variable s of type

fabric.worker.Store. The test s actsfor p would then test whether a prin-

cipal p trusts s. This would always be the case if the principal p were stored at

store s.

Fabric has a built-in way to authenticate worker nodes as corresponding

to their Fabric worker-node objects. This is accomplished using X.509 certifi-

21

cates [37] that include the node’s public key and the oid of its principal object

(Section 2.3.4). Whether the certificates of a given certificate authority are ac-

cepted is decided by the Fabric node receiving them.

Authority

When running, Fabric code can possess the authority of a principal, and may

carry out actions permitted to that principal, such as declassifying information

to lower its confidentiality, or endorsing information to raise its integrity. As in

Jif, code can obtain the authority of a principal p in two ways. In both cases, the

code must be compiled and signed by a node that acts for p.

First, a class can declare it has authority by using a clause authority(p).

A method of the class can then claim this authority with a clause where

authority(p). Second, authority can be delegated via a method call, if the

method being called is annotated with a clause where caller(p). Such meth-

ods with delegated authority can only be called from code that possesses the

authority of p. While this model of delegating authority has similarities to Java

stack inspection [76], it differs in that authority is statically checked except at re-

mote method calls, where the receiver checks that the calling node is sufficiently

trusted (Section 2.2.5).

Principals express their security concerns by labelling information with

information-flow policies.

2.2.2 Labels

Information security in Fabric is provided by information-flow control. All

information is labelled with information-flow policies. These labels are prop-

agated through computation using compile-time type checking, but run-time

22

checks are used for dynamic policies and to deal with untrusted nodes. There

are two kinds of policies: confidentiality policies and integrity policies. While

these policies are similar to those in Jif, they have a subtly different interpreta-

tion in Fabric because of the federated nature of the system.

Confidentiality and integrity policies

Confidentiality policies and integrity policies are built up from reader policies

and writer policies, respectively. These, in turn, have two components: owners

and subjects. The owner of a policy specifies the principal whose information is

being governed by the policy. The subject specifies the principal who can act on

(learn or affect) that information.

The reader policy alice→bob, for example, says that principal alice owns the

policy and that she permits principal bob to indirectly learn about (or directly

read) information that is labelled with the policy. If bob is trustworthy, however,

he will not leak this information to untrusted third parties, because the informa-

tion is not his to disclose. Therefore, alice is trusting bob to not inappropriately

leak information labelled with the policy alice→bob.

Similarly, the writer policy alice←bob means that alice permits bob to indi-

rectly affect (or directly modify) the labelled information; she is trusting bob to

not inappropriately taint that information with data from untrusted sources.

Owners are implicitly subjects in their own policies. A principal is a reader

for a reader policy o → r if the principal acts for o ∨ r. A principal is a writer for

a writer policy o ← w if the principal acts for o ∨ w. So, the policy alice→bob

is equivalent to alice→bob∨alice, also written as alice→bob,alice. Similarly,

alice←bob is equivalent to alice←bob∨alice, also written alice←bob,alice.

A confidentiality policy is a set of reader policies, all of which are enforced

23

simultaneously; a principal can learn about a value only when it is a reader for

all reader policies in the value’s confidentiality policy. An integrity policy is a set

of writer policies; a principal can affect a value only when it is a writer for any

writer policy in the value’s integrity policy.

A label is simply a set of confidentiality and integrity policies, such as

{alice→bob;bob←alice}. These decentralized labels [55] keep track of whose se-

curity is being enforced, which is useful for Fabric, where principals need to

cooperate despite mutual distrust.

Declassification and endorsement

Information-flow security policies are expressed in terms of principals, which is

important because it enables the integration of access control and information-

flow control. A key use of this integration is for authorizing the downgrading

of information-flow policies through declassification (for confidentiality) and

endorsement (for integrity).

For example, on a worker w trusted by alice (i.e., w ≽ alice), information

labelled with the policy alice→bob can be explicitly declassified by code that is

running with the authority of alice, removing that policy from the label.

Information-flow ordering

The Fabric compiler checks information flows at compile time to ensure that

both explicit and implicit [25] information flows are secure. To do this, it uses

Jif’s information-flow ordering ⊑, which captures when information flow is secure:

if L1 ⊑ L2, then information labelled L1 can securely flow to (or be relabelled

with) L2. The relationship L1 ⊑ L2 can be read “L1 flows to L2”.

24

(a) Reader policies (b) Writer policies

Figure 2.2: Orderings on reader and writer policies

Reader policies Figure 2.2a depicts how the acts-for relation and information-

flow ordering relate for reader policies. Information flows upwards in the di-

agram. The information-flow ordering is covariant in both the owner and the

subject. For example, we have {alice→ bob} ⊑ {charlie→ dora} exactly when

charlie ≽ alice (owner covariance) and dora ≽ bob ∨ alice3 (subject covari-

ance).

As a value flows through a program, the set of principals that can declassify

or read should only get smaller (unless the value is declassified or the principal

hierarchy changes). Owner covariance is important because it ensures control

of declassification is not lost. The new owner acts for the old owner, so any

principal having the authority to declassify under the new policy also had that

authority under the old policy. Subject covariance ensures information is not

leaked; the new subject acts for the old subject, so any principal able to read

under the new policy also had that ability under the old policy.

Therefore, the least reader policy, at the bottom of Figure 2.2a, describes in-

formation that is completely public: {� → �}. The greatest reader policy, at the

top of the figure, describes information that is completely secret: {⊺→ ⊺}.

3The subject covariance condition is technically dora ∨ charlie ≽ bob ∨ alice, but the dis-
junction with dora is omitted because it is satisfied by owner covariance.

25

Writer policies Integrity works the opposite way, because integrity policies

allow flow from trusted sources to untrusted recipients. Integrity policies reflect

the set of principals that could have endorsed or modified a value. To be safe,

this should only get larger (unless the value is further endorsed or the principal

hierarchy changes).

Figure 2.2b shows how the acts-for relation and information-flow ordering

relate for writer policies. Information flows downwards in the diagram. The

information-flow ordering is contravariant in both the owner and the subject.

The relationship {alice ← bob} ⊑ {charlie ← dora} holds exactly when we

have alice ≽ charlie (owner contravariance) and bob ≽ dora∨charlie4 (subject

contravariance).

Owner contravariance ensures those principals who have endorsed the la-

belled information are reflected in the new owner. The old owner acts for the

new owner, so any principal who may have endorsed to the old policy could

also have endorsed to the new policy. Subject contravariance ensures those

principals who have affected the labelled information are reflected in the new

subject. The old subject acts for the new subject, so any principal able to modify

under the old policy also has that ability under the new policy.5

Therefore, the least writer policy, at the top of Figure 2.2b, describes infor-

mation that is completely uncorrupted: {⊺ ← ⊺}. The greatest writer policy,

at the bottom of the figure, describes information that is completely corrupted:

{� ← �}. While this ordering is opposite of the intuitive ordering for integrity,

we still refer to information labelled {� ← �} as having low integrity, and infor-

mation labelled {⊺← ⊺} as having high integrity. Similarly, phrases such as lower

integrity and higher integrity refer to the intuitive ordering.

4The subject contravariance condition is technically bob ∨ alice ≽ dora ∨ charlie, but the
disjunction with alice is omitted because it is satisfied by owner contravariance.

5See [54] for more justification of these rules.

26

Figure 2.3: Orderings on the space of labels

Labels Information labelled L1 can flow to another label L2 if every reader

policy in L1 can flow to every reader policy in L2, and every writer policy in L1

can flow to every writer policy in L2.

Figure 2.3 depicts the information-flow ordering on labels.6 Information

flows upwards in the diagram. The least label, at the bottom of the figure, de-

scribes information that can flow anywhere, because it is public and completely

uncorrupted: {� → �;⊺ ← ⊺}. The greatest label, at the top of the figure, de-

scribes information that can flow nowhere, because it is completely secret and

completely corrupted: {⊺→ ⊺;�← �}.

Formally, the information-flow ordering is a pre-order over the set of labels.

The equivalence classes of labels form a bounded join-semilattice, where lifted

set unions are joins.7 The equivalence classes of confidentiality policies form a

sub-semilattice, as do the equivalence classes of integrity policies.

6Whereas Figure 2.2 shows each of the spaces of confidentiality and integrity policies in two
dimensions, in Figure 2.3 they are each collapsed to one dimension for clarity.

7A meet operator can be defined as well to obtain a full lattice. See [54] for details.

27

1 int {alice→bob} x;

2 int {alice→bob, charlie} y;

3 x = y; // OK: bob ≽ (bob ∨ charlie)

4 y = x; // Invalid

5 if (charlie actsfor bob) {

6 y = x; // OK: charlie ≽ bob, so (bob ∨ charlie) ≽ bob

7 }

Figure 2.4: Code example illustrating information-flow rules

Example The code in Figure 2.4 illustrates these rules. The assignment from

y to x (line 3) is secure because the information in y can be learned by fewer

readers (only bob rather than both bob and charlie). The assignment from x

to y (line 4) is rejected by the compiler, because it permits charlie to read the

information. However, the second assignment from x to y (line 6) is allowed

because it occurs in a context where charlie is known to act for bob, and can

therefore already read any information that bob can.

Trust ordering

Fabric extends the DLM by defining a second ordering on labels, the trust or-

dering, which is useful for reasoning about the enforcement of policies by a par-

tially trusted platform. A label L1 may require at least as much trust as a label

L2, which we write as L1 ≽ L2 by analogy with the trust ordering on princi-

pals. If L1 requires at least as much trust as L2, then any platform trusted to

enforce L1 is also trusted to enforce L2. This happens when L1 describes confi-

dentiality and integrity policies that are at least as strong as those in L2; unlike

in the information-flow ordering, integrity is not opposite to confidentiality in

the trust ordering.

Therefore, both confidentiality and integrity use the same rules in the trust

ordering. As shown in Figure 2.2, they are covariant in both the owner and the

subject; required trust increases upwards in the diagram. Both {alice → bob} ≽

28

{charlie→ dora} and {alice← bob} ≽ {charlie← dora} are true exactly when

alice ≽ charlie and bob ≽ dora ∨ charlie.

Figure 2.3 depicts the trust ordering on labels, and how it relates to the

information-flow ordering. Required trust increases rightwards in the diagram.

In the trust ordering, the least label (leftmost in the figure) describes informa-

tion that requires no trust to enforce its security, because it is completely public

and completely corrupted: {� → �;� ← �}. The greatest label (rightmost in the

figure) is for information that is completely secret and completely uncorrupted:

{⊺→ ⊺;⊺← ⊺}.

2.2.3 Object labels

Like in Jif, each field in a Fabric object can have a different label that the compiler

uses to control the flow of the information contained in that field. For efficiency,

these field labels are summarized into a single object label that governs the use

of information in that object at run time. This label determines which storage

nodes can store the object persistently and which worker nodes can cache and

compute directly on the object. It also controls which object groups an object

may be part of and which key objects may be used to encrypt it for dissemina-

tion.

An object with label Lo may be stored securely on a store n if the store is

trusted to enforce Lo. Recalling that n can be used as a principal, this condition

is captured formally using the trust ordering on labels:

{⊺→ n;⊺← n} ≽ Lo (2.1)

To see this, suppose Lo has a confidentiality policy {p → q}, which is equivalent

to {p→ p∨q}. Condition 2.1 holds exactly when ⊺ ≽ p (always true) and n ≽ p∨q,

29

which implies n ≽ p or n ≽ q—either p must trust n, or p must believe that n

is allowed to read things that q is allowed to read. Conversely, if Lo has an

integrity policy {p← q}, we require the same condition, n ≽ p∨ q—either p trusts

n, or p believes that n is allowed to affect things that q is. Therefore we can write

L(n) to denote the label corresponding to node n, which is {⊺ → n;⊺ ← n}, and

express condition 2.1 simply as L(n) ≽ Lo.

The object label is defined as the trust-ordering join of the object’s field labels.

This is a safe but conservative summary that can prohibit some secure flows

at run time; however, per-field precision can be recovered by introducing an

additional level of indirection in the object graph.

Fabric classes may be parameterized with respect to labels or principals, so

different instances of the same class may have different labels. This feature, in-

herited from Jif, allows implementation of reusable classes, such as data struc-

tures that can hold information with different labels.

By design, Fabric does not provide persistence by reachability [4] because it

can lead to unintended persistence. Therefore, constructors are annotated to

indicate the store on which the newly created object should be made persistent.

The call new C@s(...) creates a new object of class C on the store identified

by the variable s. Except for reserving oids,8 no communication with the store

is needed until commit. If the store of an object is omitted, the new object is

created at the same store as the object whose method calls new. Objects may

have non-final fields that are marked transient. These transient fields are not

saved persistently, which is similar to their treatment by Java serialization [32].

8This is done in batch ahead of time, so the communication cost for this can be amortized
across many objects.

30

2.2.4 Tracking implicit flows

Information can be conveyed by program control flow. If not controlled, these

implicit flows can allow adversaries to learn about confidential information from

control flow, or to influence high-integrity information by affecting control flow.

Fabric controls implicit flows through the program-counter label, written pc,

which captures the confidentiality and integrity of control flow. The program-

counter label works by constraining side effects; to assign to a variable x with

label Lx, Fabric requires pc ⊑ Lx. If this condition does not hold, either informa-

tion with a stronger confidentiality policy could leak into x, or information with

a weaker integrity policy could affect x.

Implicit flows cross method-call boundaries, both local and remote. To track

these flows, object methods are annotated with a begin label that constrains the

program-counter label of the caller, as well as the effects of the method. The

pc of the caller must flow to the begin label, which in turn must flow to the

label of any variables assigned by the method. This ensures that the caller’s pc

can flow to the method’s assignments. Implicit flows via exceptions and other

control-flow mechanisms are also tracked [53].

Because implicit flows are controlled, untrusted code and untrusted data

cannot affect high-integrity control flow unless an explicit downgrading action

is taken, using the authority of the principals whose integrity policies are af-

fected. Furthermore, because Fabric enforces robustness [13], untrusted code

and untrusted data cannot affect information release. Thus, Fabric provides

general protection against a wide range of security vulnerabilities.

31

1 void m1{alice←} () {

2 Worker rw = findWorker("bob.example.org");

3 if (rw actsfor bob) {

4 int{alice→bob} data = 1;

5 int{alice→} y = m2@rw(data);

6 }

7 }

8

9 int{alice→bob} m2{alice←} (int{alice→bob} x) {

10 return x+1;

11 }

Figure 2.5: A remote call in Fabric

Figure 2.6: Compile-time and run-time checks for remote calls

2.2.5 Remote calls

Distributed control transfers are always explicit in Fabric. Fabric introduces the

syntax o.m@w(a1,...,an) to signify a remote method call to the worker node

identified by variable w, invoking the method m of object o. If the syntax @w is

omitted, the method call is always local, even if the object o is not cached on the

current node (in which case, the object will be fetched and the method invoked

locally). Figure 2.5 shows example code in which, at line 5, a method m1 calls

a method m2 on the same object, but at a remote worker that is dynamically

looked up using its hostname.

Remote method calls are subject to both compile-time and run-time check-

ing. Figure 2.6 illustrates the checks made. The compiler permits a call to a re-

32

mote method only if it can statically determine that the call is secure, as shown

on the left side of the figure. Information sent to a receiver worker rw can be

read by rw, so all information sent in the call (the object, the arguments, and the

implicit flow) must have labels Ls where Ls ⊑ {⊺ → rw}. For example, in Fig-

ure 2.5, the variable data, with label {alice→ bob}, can be passed to method m2

only because the call happens in a context where it is known that rw ≽ bob, and

hence {alice→ bob} ⊑ {⊺→ rw}.

Information received from rw can be affected by it, so by a similar argument,

all information returned from the call must have labels Lr where {⊺← rw} ⊑ Lr.

The recipient of a remote method call has no a priori knowledge that the

caller is to be trusted, so run-time checking is needed. When a call occurs from

caller worker cw to receiver worker rw, the receiver checks all information sent

or received at label L (including implicit flows), to ensure that {⊺← cw} ≽ L. For

example, in Figure 2.5, the method m2 has a begin label that requires the integrity

{alice ←}. Therefore, when bob.example.org receives the remote call to m2, it

will check that the calling worker has the authority of alice, thereby ensuring

{⊺ ← cw} ≽ {alice ←}. The compiler makes additional checks to ensure that

these run-time checks themselves do not leak information.

2.2.6 Transactions

All changes to Fabric objects take place inside transactions, to provide concur-

rency control and ensure consistency of reads and writes. A transaction is in-

dicated in Fabric code by the construct atomic { S }, where the transaction

body S is a sequence of statements. The semantics is that the statement S is

executed atomically and in isolation from all other computations in Fabric. In

other words, Fabric enforces serializability of transactions.

33

Accesses to mutable fields of Fabric objects are not permitted outside trans-

actions. Reads from objects that occur outside transactions are each treated as

its own transaction.

If a transaction body throws an exception, the transaction is considered to

have failed, and is aborted. If the body terminates successfully, its side effects

become visible outside its transaction. Failure due to conflict with other transac-

tions causes the atomic block to be retried automatically with exponential back-

off. If the maximum number of retries is exceeded, the transaction is terminated.

Transactions may also be explicitly retried or aborted by the programmer. A

retry statement rolls back the enclosing atomic block and restarts it from the

beginning; an abort statement also rolls back the enclosing atomic block, but

results in throwing the exception UserAbortException. Aborting a transaction

creates an implicit flow; therefore, Fabric statically enforces that the pc of the

abort is lower than or equal to the pc of the atomic block: pcabort ⊑ pcatomic.

Exceptions generated by the transaction body are checked similarly.

Atomic blocks may be used even during a transaction, because Fabric al-

lows nested transactions. This allows programmers to enforce atomicity with-

out worrying about whether their abstractions are at “top level” or not. Atomic

blocks can also be used as a way to cleanly recover from application-defined

failures, via abort.

Multi-worker computations (i.e., computations with remote calls) take place

in atomic, isolated transactions that span all the workers involved. The Fabric

runtime system ensures that when multiple workers use the same object within

a transaction, updates to the object are propagated between them as necessary

(Section 2.4.1).

Transactions are single-threaded; new threads cannot be started inside a

34

transaction, though a worker may run multiple transactions concurrently. This

choice was made largely to simplify the implementation, though it maps well

onto many of the applications for which Fabric is intended.

Fabric uses a mix of optimistic and pessimistic concurrency control. In the

distributed setting, it is optimistic, because worker nodes compute on cached

copies of objects that may be out of date, and a distributed two-phase com-

mit protocol [31] ensures consistency at commit time. However, to coordinate

threads running on the same worker, Fabric uses pessimistic concurrency con-

trol, in which threads acquire locks on objects.

Though distributed deadlocks may occur in Fabric, there are standard tech-

niques (e.g, edge chasing [11]) for detecting and avoiding them in a non-

federated context. We leave to future work the design and implementation of a

secure deadlock-detection mechanism for a federated system like Fabric.

2.2.7 Java interoperability

Fabric programs can be written using a mixture of Java, Fabric, and FabIL (the

Fabric intermediate language). FabIL is an extension to Java that supports trans-

actions and remote calls, but not information-flow labels or static information-

flow control. More concretely, FabIL supports the atomic construct and gives

the ability to invoke methods and constructors with annotations @w and @s re-

spectively. Transaction management is performed on Fabric and FabIL objects

but not on Java objects, so the effects of failed transactions on Java objects are

not rolled back.

FabIL and Java code is considered trusted, and workers only execute trusted

code that is stored on their local file system. Therefore, the use of FabIL or

Java code in Fabric programs offers lower assurance to principals who trust the

35

nodes running this code. This is compatible with the decentralized security

principle, because the effects of trusted code is confined to these principals.

FabIL can be convenient for code whose security properties are not accu-

rately captured by static information-flow analysis, making the labels of the full

Fabric language counterproductive. An example is code implementing cryptog-

raphy.

2.3 The Fabric runtime system

This section describes the features of the Fabric runtime system for supporting

single-worker transactions. Section 2.4 extends these features with support for

multi-worker transactions and remote calls.

2.3.1 Object model

Information in Fabric is stored in objects. Fabric objects are similar to Java ob-

jects; they are typically small and can be manipulated directly at the language

level. Fabric also has array objects, to support larger data aggregates. Like Java

objects, Fabric objects are mutable and are equipped with a notion of identity.

Naming

Objects are named throughout Fabric by object identifiers (oids). An object iden-

tifier has two parts: a store identifier, which is a fully qualified DNS hostname,

and a 64-bit object number (onum), which identifies the object on that node.

An object identifier can be transmitted through channels external to Fabric, by

writing it as a uniform resource locator (URL) with the form fab://store/onum,

where store is a fully qualified DNS hostname and onum is the object number.

36

An object identifier is permanent in the sense that it continues to refer to the

same object for the lifetime of that object, and Fabric nodes always can use the

identifier to find the object. If an object moves to a different store, acquiring an

additional oid, the original oid still works because the original store is respon-

sible for keeping a forwarding pointer in a surrogate object. Long forwarding

chains of surrogate objects can reduce performance and reliability; path com-

pression can be used to avoid this [22, 28, 38].

Knowing the oid of an object gives the power to name that object, but not

the power to access it: oids are not capabilities [26]. If object names were capa-

bilities, knowing the name of an object would confer the power to access any

object reachable from it. To prevent covert channels that might arise because

adversaries can see object identifiers, object numbers are generated by a crypto-

graphically strong pseudo-random number generator. Therefore, an adversary

cannot probe for the existence of a particular object, and an oid conveys no in-

formation other than the name of the node that persistently stores the object.

Fabric uses DNS to map hostnames to IP addresses, but relies on X.509 cer-

tificates to verify the identity of the named hosts and to establish secure SSL

connections to them. Therefore, certificate authorities are the roots of trust and

naming, as in the Web.

Fabric applications can implement their own naming schemes using Fabric

objects. For example, a naming scheme based on directories and path names is

easy to implement using a persistent hash map.

Labels

Every object has an associated object label that summarizes the confidential-

ity and integrity requirements associated with the object’s data. It is used for

37

information-flow control and to control access to the object by Fabric nodes.

The object label is defined as the trust-ordering join of the labels of the fields in

the object’s class. This join is computed by the compiler, where possible. How-

ever, some of this computation is performed by the Fabric runtime system. For

example, if the compiler determines that an object label depends on a class pa-

rameter, which can happen when a field label uses a class parameter, then part

of the object-label computation must be done at run time, when the object is

constructed.

Classes

Every Fabric object, including array objects, contains a ClassRef, which is a

reference to the object’s class that is paired with the SHA-256 hash of the class’s

code. For classes stored in Fabric, the reference is the oid of a class object, a Fabric

object that represents the object’s class in the Fabric language and contains the

class’s code. For other classes, the reference is simply the Java fully qualified

name of the class.

The ClassRef creates an unforgeable binding between each object and the

correct code for implementing that object. When objects are received over the

network, the expected hash in the object’s ClassRef is checked against the actual

hash of the object’s class.

Versions

Fabric objects can be mutable. Each object has a current version number, which

is incremented when a transaction that updates the object is committed. The

version number distinguishes current and old versions of objects. If worker

nodes try to compute with out-of-date object versions, the transaction will fail

38

on commit and will be retried with the current versions. The version number is

an information channel with the same confidentiality and integrity as the fields

of the object; therefore, it is protected by the same mechanisms.

2.3.2 Object groups

On a store, objects are associated with object groups containing a set of related

objects. Object groups are the unit of object distribution: when an object is

requested by a worker or dissemination node, the entire group is pre-fetched

from the store, amortizing the cost of store operations over multiple objects. Ev-

ery object in the object group is required to have the same security policy, so

that the entire group can be treated uniformly with respect to access control,

confidentiality, and integrity. The binding between an object and its group is

not permanent; the store constructs object groups as needed and discards infre-

quently used object groups. To improve locality, the store tries to create object

groups from objects connected in the object graph.

2.3.3 Dissemination and encryption

To avoid placing trust in the dissemination layer, disseminated object groups

are encrypted using a symmetric key and signed with the public key of the

originating store. The symmetric encryption key is stored in a key object that is

not disseminated and must be fetched directly from its store. When an object

group is fetched, the dissemination node sends the oid of the key object and the

random initialization vector needed for decryption. Key objects are ordinarily

shared across many disseminated object groups, so workers should not need to

fetch them often.

39

A B
B’s server certificate:

[B, kpub
B]

CA

A’s principal certificate chain:
[A’s principal oid, kpub

A]
SA

, [SA, kpub
SA

]
CA

B’s principal certificate chain:

[B’s principal oid, k
pub
B]

SB

, [SB, kpub
SB

]
CA

Phase I

(Client-authenticated
SSL handshake∗)

Phase II

∗For simplicity, only certifi-
cate messages are shown in
the SSL handshake.

Figure 2.7: Authentication protocol sequence. Node A is connecting to node B.

Disseminated object groups are identified by dissemination nodes based on

the oid of a contained object called the head object. The oid of the head object is

exposed in the object group, but other oids in the object group (and the contents

of all objects) are hidden by encryption.

2.3.4 Node authentication

Workers and stores authenticate each other when communicating over the net-

work. The goal of authentication is to establish the principal oid (i.e., the oid of

the principal object) of the remote host, so that it can be used in authorization

checks. Figure 2.7 shows a protocol sequence diagram for the mutual authenti-

cation of nodes A and B. Authentication occurs in two phases.

In the first phase, A connects to B and performs a client-authenticated SSL

handshake. Each node B that is capable of receiving connections has a server

certificate, which is an X.509 certificate signed by a certificate authority (CA).

This certificate binds B’s DNS hostname to B’s public key, and is therefore simi-

lar to an SSL certificate for the web. Whether the certificates of a given CA are

accepted is decided by the Fabric node receiving them.

Every node A has a principal certificate for performing SSL client authentica-

40

tion. This is an X.509 certificate that binds A’s principal oid to A’s public key. The

certificate is signed by the storage node that stores the principal object. With the

store’s server certificate, this gives a CA-rooted certificate chain for the oid of

A’s principal object.

After a successful SSL handshake, A knows it has contacted the correct node,

because it knows the remote node has B’s private key. Similarly, B knows A’s

principal oid, because of SSL client authentication, so A is authenticated to B.

In the second phase, B completes the mutual authentication by sending its

principal certificate to A. This authenticates B if A can validate the certificate’s

signature, and can match the public key in the certificate with the one in B’s

server certificate.

Once the principal object of a remote node is established, it can be used in

authorization checks.

2.3.5 Authorization checks

A Fabric node performs authorization checks to ensure confidentiality and in-

tegrity are maintained when sending or receiving data over the network. Stores

perform authorization checks in a fresh top-level transaction on a colocated

worker. When a worker w requests an object with label L, the store ensures

that the worker is trusted to enforce the confidentiality part of L by checking

L ⊑ {⊺ → w}. Similarly, when the worker commits an update to the object, the

store ensures that the worker is trusted to enforce the integrity part of L by

checking {⊺← w} ⊑ L.

Workers perform analogous checks when receiving an object from a store,

and when committing an object to a store. The authorization checks for remote

calls are the run-time checks described in Section 2.2.5.

41

2.3.6 Transaction management and object locking

Every thread in the worker has a transaction manager that holds transaction

state. The copy of each Fabric object at a worker has a reader-writer lock for

isolating transactions in different threads from each other.

Each object also contains a version number that its store increments when it

commits an update to the object. These are used to ensure consistency at commit

time, as described below.

During computation, the transaction manager logs the version numbers of

objects that are read or written, and the identities of the objects that are created.

It acquires read locks for objects that are read, and write locks for objects that

are written or created. The first write to an object during a transaction also logs

the prior state of the object in an object history so that the transaction manager

can restore the object’s state in case the transaction aborts.

Because transactions can be nested, transaction logs and object histories are

hierarchical. When a local sub-transaction is created, it inherits the locks held by

its parent. When the sub-transaction commits, its log is merged with the parent

transaction log, and its locks are transferred to the parent transaction. If the sub-

transaction aborts, it discards its log, relinquishes the locks it has acquired, and

restores the state of the objects it has modified.

To reduce logging overhead, the copy of each object at a worker has a reader

stamp, which is a reference to the last transaction that read the object. No logging

needs to be done for a read access if the current transaction matches the reader

stamp. Similarly, each object has a writer stamp for the last transaction that mod-

ified the object, and no logging is needed if the current transaction matches the

writer stamp. Obtaining the write lock clears the reader stamp.

When a worker commits a top-level transaction, it initiates a two-phase com-

42

mit protocol [31] with the stores for the objects accessed during the transaction.

The information sent to each store includes the version numbers of objects ac-

cessed during the transaction and the new data for written objects. The store

checks that its authoritative version numbers match the version numbers re-

ported by the worker, to ensure the transaction used up-to-date information.

For security, the store also performs the authorization checks described in Sec-

tion 2.3.5 to ensure that the worker is trusted to modify the written objects.

2.3.7 Memory management

To conserve memory, cached objects may be evicted if they have no uncommit-

ted changes. In the current implementation, cached objects are evicted auto-

matically by the Java runtime system, because they are referenced using a Java

SoftReference object. When an object is modified or created, its eviction is pre-

vented by creating a hard reference to the object in the transaction log. This hard

reference is destroyed when the transaction aborts or commits.

2.3.8 The security cache

The Fabric runtime system caches the results of acts-for tests and label compar-

isons. This memoization mechanism is adapted from Jif [14] and reduces the

overhead of these dynamic tests.

The contents of the cache is the same as in Jif. Separate caches are kept for

positive and negative results of acts-for tests and label comparisons. As with

Jif, soundness is maintained by clearing the negative caches when a principal

delegation is added, and by removing the positive-cache entries that depend on

any principal delegation that is removed.

43

In Fabric, the security cache is tied to the transaction manager, to ensure that

the use of the security cache does not introduce unsoundness. Each transaction

has its own security cache, and because transactions can be nested, the security

cache is hierarchical. When a sub-transaction is created, it inherits the cache

entries from its parent. When the sub-transaction commits, its cache is merged

with the parent cache; if the sub-transaction aborts, its cache is discarded. This

ensures that the security cache of the parent transaction is isolated from changes

to the principal hierarchy made in an aborted sub-transaction.

2.3.9 Handling failures of optimism

Computations on workers run transactions optimistically, which means that a

transaction can fail in various ways. The worker has enough information to roll

the transaction back safely in each case. At commit time, the system can detect

inconsistencies that have arisen because another worker has updated an object

that was accessed during the transaction. The stores inform the workers which

objects involved in the transaction were out of date; the workers then flush their

caches of the stale objects before retrying the transaction.

Another possible failure is that the objects read by the transaction are already

inconsistent, breaking invariants on which the application code relies. Broken

invariants can lead to errors in the execution of the application. Incorrectly com-

puted results are not an issue because they will be detected and rolled back at

commit time. Exceptions may also result, but as discussed earlier, exceptions

also cause transaction failure and rollback. Finally, an application’s computa-

tion might diverge rather than terminate. Fabric handles divergence by retrying

transactions that are running too long. On retry, the transaction is given more

time in case it is genuinely a long-running transaction. By geometrically grow-

44

worker A

1
read X

7
disseminate X

dissem B

5

6

2
A is subscribed to X

4

B and C are
subscribed to X

write X

disseminate X

worker C

3 read X store D

Figure 2.8: The object-subscription mechanism

ing the retry timeout, the expected running time is inflated by only a constant

factor.

Because Fabric has subscription mechanisms for refreshing workers and dis-

semination nodes with updated objects, the object cache at a worker should

tend to be up-to-date, and inconsistent computations in an application can be

detected before a transaction completes.

2.3.10 Object subscriptions

To help keep caches up to date, workers and dissemination nodes are implicitly

subscribed to any object group they read. Figure 2.8 illustrates this subscription

mechanism. When a worker reads an object group from a dissemination node

(1), it becomes subscribed to the group (2). Workers and dissemination nodes

that read directly from a store (3) are similarly subscribed (4).

When any object in the group is updated (5), the store sends the updated

group to its subscribers (6). The dissemination layer is responsible for relaying

group updates to workers that have read them (7). Group updates are delivered

on a best-effort basis. On receipt of the updated group, a worker can abort and

retry any transaction that has read out-of-date data.

45

2.4 Support for distributed computation

Fabric transactions can be distributed across multiple workers by executing re-

mote calls within a transaction. The whole transaction runs in isolation from

other Fabric transactions, and its side effects are committed atomically. The

ability to distribute transactions is crucial for reconciling expressiveness with

security. Although some workers are not trusted enough to read or write some

objects, it is secure for them to perform these updates by calling code on a suffi-

ciently trusted worker. This section describes the features of the runtime system

that support secure distributed transactions.

2.4.1 Writer maps

In a distributed transaction, an object can be shared and updated by multiple

workers. This is challenging. For consistency, workers need to compute on the

latest version of the shared object as it is updated. For performance, workers

should be able to locally cache objects that are shared but not updated. For

security, updates to an object with confidentiality L should not be learned by a

worker w unless L ⊑ {⊺→ w}. To allow workers to efficiently check for updates to

objects they are caching, without revealing information to workers not trusted

to learn about updates, Fabric introduces writer maps.

Every object used during a distributed transaction has a writer, which is the

worker that last updated the object during the transaction. The object’s writer,

therefore, stores the definitive copy of the object for the transaction. Every trans-

action has a writer map that records the writer for each object used in the trans-

action. The writer map is passed through the distributed computation along

with control flow.

46

When a worker w updates an object, the object’s writer w′ is notified and

relinquishes the role. The notifying worker w becomes the new writer, and this

change is recorded in the writer map. Notification of the old writer w′ is not a

covert channel, because the program-counter label pc of the write must be lower

than the object’s label L, which the old writer is already trusted to read:

pc ⊑ L ⊑ {⊺→ w′}

The writer map contains two kinds of mappings: writer mappings and label

mappings. An update to object o at worker w adds a writer mapping with the

form hash(oid,tid,key) ↦ {w}key, where oid is the oid of object o, tid is the

identifier for the top-level transaction, and key is the encryption key for o, stored

in o’s key object. This mapping permits a worker that has the ability to read or

write o—and therefore has the encryption key for o—to learn whether there

is a corresponding entry in the writer map, and to determine which node is

currently the object’s writer. Nodes lacking the key cannot exploit the writer

mapping because without the key, they cannot verify the hash. Because the

top-level transaction id is included in the hash, they also cannot watch for the

appearance of the same writer mapping across multiple transactions.

Label mappings support object creation. The creation of a new object with

oid oid adds an entry with the form hash(oid) ↦ oidlabel, where oidlabel is the

oid of the object’s label, which contains the object’s encryption key. This second

kind of mapping allows a worker to find the encryption key for newly created

objects, and then to check the writer map for a mapping of the first kind.

The writer map is an append-only structure, so if an untrusted worker fails

to maintain a mapping, it can be restored. The size of the writer map is a side

channel, but the capacity of this channel is bounded by always padding out the

number of writer map entries added by each worker to the next largest power

47

of 2, introducing dummy entries containing random data as needed. Therefore

a computation that modifies n objects leaks at most lg lgn bits of information.

The writer map is threaded through the distributed computation along with

control flow: it is included in every remote-call request, and is returned with the

result of the call. Each worker in the computation keeps a local version number

for the writer map, and increments this version number when incorporating

new writer-map information from a remote-call request or a remote-call result.

During computation, while logging an object access, the transaction man-

ager checks the writer map. If a writer is found, the latest version of the object

is fetched from the writer, and for write accesses, the writer role is transferred.

To reduce overhead, the copy of each object at a worker has a writer-map

stamp, which records the version number of the writer map seen during the

previous access. No fetch needs to be done if the current writer-map version

number matches the writer-map stamp.

2.4.2 Distributed transaction management

To maintain consistency, transaction management must in general span multiple

workers. A worker maintains transaction logs for each top-level transaction it

is involved in. These transaction logs must be stored on the workers where the

logged actions occurred, because the logs may contain confidential information

that other workers may not see. For example, in the code below, the existence

of a or b in the transaction log can reveal the value of secret.

int x;

if (secret) x = a.f;

else x = b.f;

48

Figure 2.9 illustrates the log structures that could result during a distributed

transaction involving three workers. Each transaction, including nested trans-

actions, is identified by a randomly generated transaction id (tid). (For clarity,

the figure uses sequential tids.) Each remote-call request includes the tids for

the call’s entire transactional context. This allows the receiving worker to syn-

chronize its transaction state with that of the calling worker.

In Figure 2.9a, a transaction (tid=01) starts on worker A, then calls code

on worker B, which starts a nested sub-transaction (tid=02) there. Because

the request from worker A includes the context ctxt=01, worker B knows that

tid=02 occurs within tid=01. The code then calls to worker C, starting an-

other sub-transaction (tid=03), which finally calls back to worker B, starting

sub-transaction tid=04. Conceptually, all the transaction logs together form a

single log that is distributed among the participating workers, as shown at the

bottom of the figure.

When worker B returns to worker C, it commits tid=04, resulting in the

state shown in Figure 2.9b. The procedure for committing a sub-transaction

with a distributed transaction log is the same as for a transaction with a non-

distributed log. To commit tid=04, worker B merges its portion of the log for

tid=04 with that of tid=03. Though worker C also has a portion of the log for

tid=03, the two parts are kept separate.

Figure 2.9c shows the state of the distributed transaction log after worker

C returns to worker B, and tid=03 has committed. Before returning, worker C

commits its portion of tid=03, so it merges its log for tid=03 with that of tid=02.

When control returns from a remote call, the worker always commits up to

the context in which the remote call occurred. Therefore, when worker B re-

ceives control, it also commits its portion of tid=03 so it can continue working

49

worker A

tid=01 R1,W2

worker B

tid=01
tid=02 R3

worker C

tid=01

tid=03
tid=02

R4

tid=03
tid=04 W5

Conceptual view

tid=01

tid=03
tid=02

tid=04
R4
R3
R1,W2

W5

call
ctxt=01

01:02
call

ctxt=
call
ctxt=01:02:03

(a)

Conceptual view

tid=01

tid=03
tid=02

tid=04
R4,W5
R3
R1,W2

worker A

tid=01 R1,W2

worker B

tid=01
tid=02 R3

worker C

tid=01

tid=03
tid=02

R4

tid=03 W5

return

committed

(b)

Conceptual view

tid=01

tid=03
tid=02 R3,R4,W5

R1,W2

worker A

tid=01 R1,W2

worker B

tid=01
tid=02 R3,W5

worker C

tid=01
tid=02 R4

return

committed

(c)

worker A

tid=01 R1,W2

worker B

tid=01
tid=05

R3,W5
R6,R7

Conceptual view

tid=01

tid=06
tid=05

W8,W9
R6,R7
R1,W2,R3,R4,W5

call
ctxt=01

call
ctxt=01:05

worker C

tid=01

tid=06
tid=05

W8,W9

R4

(d)

Figure 2.9: Distributed transaction logs

within tid=02. This merges worker B’s portion of tid=03 (which includes en-

tries from tid=04) with tid=02.

The return from worker B to worker A is elided. The diagram looks like

that in Figure 2.9c, except worker B has merged tid=02 into tid=01. Although

a similar merge does not happen at worker C, this is not a problem, because the

merge will occur when worker C receives control again, or when the top-level

transaction commits. Figure 2.9d shows the former case. Worker A calls worker

B again, which starts tid=05 and calls worker C, starting tid=06.

When a worker receives a remote call, it compares its transactional context

with the one it receives. The worker synchronizes its transaction log by com-

mitting up to the most recent common ancestor of the two contexts, and starting

any transactions it has missed. Therefore, when worker C receives the remote

call, it compares its transactional context (01:02) with the one it receives (01:05).

50

Bank
cores
Bank
cores

Bank
worker

Airline
worker

Bank
stores

Bank
cores
Bank
cores

Airline
stores

Broker
worker

customer
worker

Figure 2.10: A hierarchical, distributed transaction

It commits up to the most recent common ancestor, tid=01, and starts the trans-

action it has missed, tid=05, before starting tid=06 for the incoming call.

When the top-level transaction commits, workers A, B, and C participate in a

hierarchical commit protocol to communicate with the stores of the objects they

have accessed, using their respective parts of the logs.

2.4.3 Hierarchical commit protocol

In general, a transaction may span worker nodes that do not trust each other.

This creates both integrity and confidentiality concerns. An untrusted node can-

not be relied to commit its part of a transaction correctly. More subtly, the com-

mit protocol might also cause an untrusted node to learn information it should

not. Just learning the identities of other nodes that participated in a transaction

could allow sensitive information to be inferred. Fabric’s hierarchical two-phase

commit protocol avoids these problems.

For example, consider a transaction that updates objects owned by a bank

and other objects owned by an airline, perhaps as part of a transaction in which

51

a customer purchases an air ticket (see Figure 2.10). The bank and the airline do

not necessarily trust each other; nor do they trust the customer purchasing the

ticket. Therefore some computation is run on workers managed respectively by

the bank and the airline. When the transaction is to be committed, some updates

to persistent objects are recorded on these different workers.

Because the airline and the bank do not trust the customer, their workers

will reject remote calls from the customer—the customer’s worker lacks suffi-

cient integrity. Therefore, this scenario requires the customer to find a trusted

third party. As shown in the figure, a third-party broker can receive requests

from the customer, and then invoke operations on the bank and airline. Because

the broker runs at a higher integrity level than the customer that calls it, Fabric’s

endorsement mechanism must be used to boost integrity. This reflects a security

policy that anyone is allowed to make requests of the broker. It is the responsi-

bility of the broker to sanitize and check the customer request before endorsing

it and proceeding with the transaction.

The hierarchical commit protocol begins with the worker that started the

top-level transaction. It initiates commit by contacting all the stores for whose

objects it is the current writer in the writer map, and all the other workers to

which it has issued remote calls. These other workers then recursively do the

same, constructing a commit tree. This process allows all the stores involved in

a transaction to be informed about the transaction commit, without relying on

untrusted workers to choose which workers and stores to contact and without

revealing to workers which other workers and stores are involved in the trans-

action lower down in the commit tree. The two-phase commit protocol then

proceeds as usual, except that messages are passed up and down the commit

tree rather than directly between a single coordinator and the stores.

52

Of course, a worker in this tree could be compromised and fail to correctly

carry out the protocol, causing some stores to be updated in a way that is incon-

sistent with other stores. However, a worker that could do this could already

have introduced this inconsistency by simply failing to update some objects or

by failing to issue some remote method calls. In our example above, the broker

could cause payment to be rendered without a ticket being issued, but only by

violating the trust that was placed in it by the bank and airline. The customer’s

power over the transaction is merely to prevent it from happening at all, which

is not a security violation.

Once a transaction is prepared, it is important for the availability of the stores

involved that the transaction is committed quickly. The transaction coordinator

should remain available, and if it fails after the prepare phase, it must recover

in a timely way. An unavailable transaction coordinator could become an avail-

ability problem for Fabric, and the availability of the coordinator is therefore

a trust assumption. To prevent denial-of-service attacks, prepared transactions

are timed out and aborted if the coordinator is unresponsive. In the example

given, the broker can cause inconsistent commits by permanently failing after

telling only the airline to commit, in which case the bank will abort its part

of the transaction. This failure is considered a violation of trust, but in keep-

ing with the security principles of Fabric, the failing coordinator can only affect

the consistency of objects whose integrity it is trusted to enforce. This design

weakens Fabric’s consistency guarantees in a circumscribed way, in exchange

for stronger availability guarantees.

53

2.5 Implementation

The Fabric implementation uses a mixture of Java, FabIL, and Fabric code. Not

counting code ported to FabIL from earlier Java and Jif libraries, the implemen-

tation includes a total of 35k lines of code.

In addition to a common base of 7.7k lines of code supporting the worker,

store, and dissemination nodes, the worker is implemented as 3.8k lines of Java

code and 3.1k lines of FabIL code; the store is 1.9k lines of Java; and the dissem-

ination layer is 1.2k lines of Java code. In addition, some of the GNU Classpath

collection libraries have been ported to FabIL for use by Fabric programs (an-

other 6.3k lines of code),

The Fabric compiler, supporting both Fabric and FabIL source files, is a 11k-

line extension to the Jif 3.3 compiler [56], itself a 30k-line extension to the Poly-

glot compiler framework [59].

Implementing Fabric in Java has the advantage that it supports integration

with and porting of legacy Java applications, and access to functionality avail-

able in Java libraries. However, it limits control over memory layout and pre-

vents the use of many implementation techniques. In an ideal implementation,

the virtual machine and JIT would be extended to support Fabric directly. For

example, the Java SoftReference capability that is used for eviction could be

implemented with fewer indirections. We leave VM extensions to future work.

2.5.1 Store

The current store implementation uses Berkeley DB [60] as a backing store in

a simple way: each object is entered individually with its onum as its key and

its serialized representation as the corresponding value. Because stores cache

54

both object groups and object versions in memory, and because workers are able

to aggressively cache objects, the performance of this simple implementation is

reasonable for the applications we have studied. For write-intensive workloads,

object clustering at the backing store is likely to improve performance; we leave

this to future work.

It is important for performance to keep the representation of an object at a

store and on the wire compact. Therefore, references from one object to another

are stored as onums rather than as full oids. A reference to an object located at

another Fabric node is stored as an onum that is bound at that store to the full

oid of the referenced object. This works well assuming most references are to an

object in the same store.

2.5.2 Dissemination layer

The current dissemination layer is built using FreePastry [69], extended with

proactive popularity-based replication based on Beehive [64]. The popularity-

based replication algorithm replicates objects according to their popularity, with

the aim of achieving a constant expected number of hops per lookup.

One standard configuration of Fabric worker nodes includes a colocated dis-

semination node to which dissemination-layer requests are directed; with this

configuration, the size of the dissemination layer scales in the number of worker

nodes.

2.5.3 Memory management

The current implementation uses Java’s SoftReference feature for memory

management. To achieve this, the FabIL compiler translates each class into a

55

pair of classes, a Proxy class and an Impl class, that follow the delegation de-

sign pattern. Conceptually, Fabric objects refer to each other through Proxy

instances. Each such instance has a SoftReference to its corresponding Impl,

and contains code that delegates to the Impl. The Impl class contains the actual

class code, and its instances are the actual objects.

If an object has not been modified, its Impl object will only be accessible

through the SoftReferences in its Proxy objects. This gives the JVM discretion

to collect the Impl when there is memory pressure. When an object is created or

modified, a direct reference to its Impl is added to transaction log, preventing

the Impl from being garbage-collected.

Figure 2.11 shows a FabIL class C and its Java translation. The class C has two

fields x and y, and a method m that copies y to x and assigns a new C instance to y.

The class is translated into an interface C with a pair of nested classes, Proxy and

Impl, which implement the interface. The interface exposes a getter-setter pair

for each field (lines 2–3), and a method corresponding to each method declared

in the source class (line 4).

The Proxy class (lines 6–8) extends the superclass’s Proxy class. All Proxy

classes ultimately inherit from fabric.lang.Object. Proxy, which holds the

SoftReference to the corresponding Impl object. Each Proxy method dele-

gates to the Impl object. Line 7 shows the translation for the method m. It first

obtains the Impl object by calling fetch(). This will fetch the Impl object if the

JVM has evicted it from memory, or if the object has been updated by another

node in the transaction. Once it has the Impl object, the code then delegates to

it by calling the appropriate method.

The Impl class (lines 10–20) extends the superclass’s Impl class, and has

the actual field data (line 11) and the actual implementations of C’s methods.

56

class C extends D implements I {

C x,y;

void m(Store s) { x = y; y = new C@s(); }

}
(a) FabIL class

1 interface C extends D, I {

2 C get$x(); C set$x(C val);

3 C get$y(); C set$y(C val);

4 void m(Store s);

5

6 static class _Proxy extends D._Proxy implements C {

7 void m(Store s) { ((C._Impl) fetch()).m(s); } ...

8 }

9

10 static class _Impl extends D._Impl implements C {

11 C x,y;

12 C get$x() {

13 TransactionManager.getInstance().registerRead(this);

14 return this.x;

15 }

16 void m(Store s) {

17 set$x(get$y());
18 set$y((C) new C._Impl(s).$getProxy());
19 } ...

20 } ...

21 }
(b) Java translation

Figure 2.11: A FabIL class and its Java translation

Field-accessor methods call into the transaction manager to register read/write

operations (line 13). Field accesses are translated into calls to the appropriate

accessor methods (line 17). New object instances are created by constructing an

Impl object, and immediately calling a $getProxy method to obtain its Proxy

(line 18).

57

2.5.4 Unimplemented features

Most of the Fabric design described in this dissertation has been implemented in

the current prototype. A few features are not, though no difficulties are foreseen

in implementing them: distributed deadlock detection via edge chasing [11],

timeout-based abort of possibly divergent computations, timeout-based abort

of prepared transactions for availability, subscriptions, retry and abort state-

ments, path compression for pointer chains created by mobile objects, and

avoidance of read channels at dissemination nodes.

2.6 Evaluation

2.6.1 Course Management System

To examine whether Fabric can be used to build real-world programs, and how

its performance compares to common alternatives, we ported a portion of a

course management system (CMS) [7] to FabIL. CMS is a 54k line J2EE web

application written using EJB 2.0 [23], backed by an Oracle database. It has

been used for course management at Cornell University since 2005; at present,

it is used by more than 40 courses and more than 2,000 students.

Implementation CMS uses the model/view/controller design pattern; the

model is implemented with Enterprise JavaBeans using Bean-Managed Per-

sistence. For performance, hand-written SQL queries are used to implement

lookup and update methods, while generated code manages object caches and

database connections. The model contains 35 Bean classes encapsulating stu-

dents, assignments, courses, and other abstractions. The view is implemented

using Java Server Pages.

58

We ported CMS to FabIL in two phases. First, we replaced the Enterprise Jav-

aBean infrastructure with a simple, non-persistent Java implementation based

on the Collections API. We ported the entire data schema and partially imple-

mented the query functionality of the model, focusing on the key application

features. Of the 35 Bean classes, five have been fully ported. By replacing com-

plex SQL queries with object-oriented code, we were able to simplify the model

code a great deal: the five fully ported classes were reduced from 3,100 lines

of code to 740 lines, while keeping the view and controller mostly unchanged.

This intermediate version, which we will call the Java implementation, took one

developer a month to complete and contains 23k lines of code.

Porting the Java implementation to FabIL required only superficial changes,

such as replacing references to the Java Collections Framework with references

to the corresponding Fabric classes, and adding label and store annotations. The

FabIL version adds fewer than 50 lines of code to the Java implementation, and

differs in fewer than 400 lines. The port was done in less than two weeks by

an undergraduate initially unfamiliar with Fabric. These results suggest that

porting web applications to Fabric is not difficult and results in shorter, simpler

code.

A complete port of CMS to Fabric would have the benefit of federated, secure

sharing of CMS data across different administrative domains, such as different

universities, assuming that information is assigned labels in a fine-grained way.

It would also permit secure access to CMS data from applications other than

CMS. We leave this to future work.

Performance The performance of Fabric was evaluated by comparing five dif-

ferent implementations of CMS: the production CMS system based on EJB 2.0,

the in-memory Java implementation (a best case), the FabIL implementation, the

59

Page Latency (ms)
Course Students Update

EJB 305 485 473
Hilda 432 309 431
FabIL 35 91 191
FabIL/memory 35 57 87
Java 19 21 21

Table 2.1: CMS page load times (ms) under continuous load

FabIL implementation running with an in-memory store (“FabIL/memory”),

and a fifth implementation developed earlier using the Hilda language [77].

Comparing against the Hilda implementation is useful because it is the best-

performing prior version of CMS. The performance of each of these systems

was measured for some representative user actions on a course containing 55

students: viewing the course overview page, viewing information about all stu-

dents enrolled in the course, and updating the final grades for all students in

the course. All three of these actions are compute- and data-intensive.

All Fabric and Java results were acquired with the app server on a 2.6 GHz

single-core Intel Pentium 4 machine with 2 GB RAM. The Hilda and EJB results

were acquired on slightly better hardware: the Hilda machine had the same

CPU and 4 GB of memory; EJB results were acquired on the production config-

uration, a 3 GHz dual-core Intel Xeon with 8 GB RAM.

Table 2.1 shows the median time to perform three user actions under con-

tinuous load, for each of the measured systems. The first three measurements

in Table 2.1 show that the Fabric implementation of CMS runs faster than the

previous implementations of CMS. The comparison between the Java and non-

persistent FabIL implementations illustrates that much of the run-time over-

head of Fabric comes from transaction management and from communication

with the remote store.

60

2.6.2 Travel example

Fabric can be used to build secure distributed applications, in which transac-

tions span mutually distrusting workers. To evaluate this use, we built a simple

prototype of the bank–airline example described in Section 2.4.3.

This application models an interaction between mutually distrusting users,

banks, and merchants. Each principal has security concerns: banks are con-

cerned that users and merchants only modify account balances in allowed ways,

and users and merchants are concerned that their accounts are modified only

when they decide to participate in a transaction.

These concerns are reflected in the labels placed on the objects implementing

banks, accounts, users, and merchants. These labels restrict the possible place-

ment of the data in the system. For example, a bank account is conceptually

represented as follows:9

class Account[principal bank] {

final Principal{bank←bank} user;

int{bank→user; bank←bank} balance; ...

}

To satisfy the integrity policy, accounts must be stored at a bank machine.

Some operations in the example require trusted code. For example, the

createAccount operation should be executable by any user, yet it must modify

the list of accounts, which the bank considers to be high integrity. Implementing

such operations requires information downgrading; static and runtime checks

force such code to be explicitly approved by the affected principals, and to exe-

cute on workers trusted by those principals.

9In actuality, the account balance is broken out into a separate object, to prevent the confi-
dentiality of the balance from tainting the account’s object label.

61

total app tx log fetch store
Cold 9,153 10% 2% 12% 74% 2%

Warm 6,043 27% 3% 6% 61% 3%
Hot 840 46% 14% 24% 0% 17%

Table 2.2: Breakdown of OO7 traversal time (times in ms)

The application core is about 400 lines of Fabric code. Surrounding this core

is another 1,000 lines of Fabric code to provide a web interface built on a Fabric

port of SIF [14]. The labels and the trust relationships ensure its code and data

are mapped securely onto the available nodes. Because of the mutual distrust in

this example, transactions are committed using the hierarchical commit protocol

described in Section 2.4.3.

2.6.3 Run-time overhead

To evaluate the overhead of Fabric computation at the worker when compared

to ordinary computation on non-persistent objects, and to understand the effec-

tiveness of object caching at both the store and the worker, we used the OO7

object-oriented database benchmark [9]. We measured the performance of a

read-only (T1) traversal on an OO7 small database, which contains 153k objects

totalling 24 MB. Performance was measured in three configurations: (1) cold;

(2) warm, with stores caching object groups; and (3) hot, with both the store and

worker caches warmed up.

Table 2.2 summarizes these measurements and breaks down the running

times into time spent on application code (app), on local transaction process-

ing (tx), on logging reads and writes (log), on fetching objects from the store

(fetch), and on waiting for the store to process transaction messages (store).

The results show that caching is effective at both the worker and the store.

62

However the plain in-memory Java implementation of OO7 runs in 66 ms,

which is about 10 times faster than the worker-side part of the hot traversal. Be-

cause Fabric is designed for computing on persistent data, this is an acceptable

overhead for many, though not all, applications. For computations that require

lower overhead, Fabric applications can always incorporate ordinary Java code,

though that code must implement its own failure recovery.

2.7 Related work

Fabric provides a higher-level abstraction for programming distributed sys-

tems. Because it aims to help with many different issues, including persistence,

consistency, security, and distributed computation, it overlaps with many sys-

tems that address a subset of these issues. However, none of these prior systems

addresses all the issues tackled by Fabric.

OceanStore [66] shares the goal with Fabric of a federated, distributed object

store. OceanStore is more focused on storage than on computation. It provides

consistency only at the granularity of single objects, and does not help with

consistent distributed computation. OceanStore focuses on achieving durabil-

ity via replication. Fabric stores could be replicated but currently are not. Un-

like OceanStore, Fabric provides a principled model for declaring and enforcing

strong security properties in the presence of distrusted workers and stores.

Prior distributed systems that use language-based security to enforce strong

confidentiality and integrity in the presence of distrusted participating nodes,

such as Jif/split [79], SIF [14], and Swift [12], have had more limited goals. They

do not allow new nodes to join the system, and they do not support consistent,

distributed computations over shared persistent data. They do use program

analysis to control read channels [79], which Fabric does not.

63

DStar [80] controls information flow in a distributed system using run-time

taint tracking at the OS level, with Flume-style decentralized labels [41]. Like

Fabric, DStar is a decentralized system that allows new nodes to join, but does

not require certificate authorities. DStar has the advantage that it does not re-

quire language support, but controls information flow more coarsely. DStar

does not support consistent distributed computations or data shipping.

Some previous distributed storage systems have used transactions to im-

plement strong consistency guarantees, including Mneme [52], Thor [46] and

Sinfonia [1]. Cache management in Fabric is inspired by that in Thor [10]. Fab-

ric is also related to other systems that provide transparent access to persistent

objects, such as ObjectStore [43] and GemStone [8]. These prior systems do not

focus on security enforcement in the presence of distrusted nodes, and do not

support consistent computations spanning multiple compute nodes.

Distributed computation systems with support for consistency, such as Ar-

gus [47] and Avalon [35], usually do not have a single-system view of persistent

data and do not enforce information security. Emerald [6] gives a single-system

view of a universe of objects while exposing location and mobility, but does

not support transactions, data shipping or secure federation. InterWeave [74]

synthesizes data- and function-shipping in a manner similar to Fabric, and al-

lows multiple remote calls to be bound within a transaction, remaining atomic

and isolated with respect to other transactions. However, InterWeave has no

support for information security. The work of Shrira et al. [73] on exo-leases

supports nested optimistic transactions in a client–server system with discon-

nected, multi-client transactions, but does not consider information security.

MapJAX [57] provides an abstraction for sharing data structures between the

client and server in web applications, but does not consider security. Other

64

recent language-based abstractions for distributed computing such as X10 [71]

and Live Objects [63] also raise the abstraction level of distributed computing

but do not support persistence or information-flow security.

Some distributed storage systems such as PAST [68], Shark [2], CFS [20], and

Boxwood [49] use distributed data structures to provide scalable file systems,

but offer weak consistency and security guarantees for distributed computation.

65

CHAPTER 3

DEFINING AND ENFORCING REFERENTIAL SECURITY

Referential integrity guarantees that named resources can be accessed when

referenced. This an important property for reliability and security. In dis-

tributed systems, however, the attempt to provide referential integrity can itself

lead to security vulnerabilities that are not currently well understood.

In this chapter, we identify three kinds of referential security vulnerabilities

related to the referential integrity of distributed, persistent information. Secu-

rity conditions corresponding to the absence of these vulnerabilities are formal-

ized. A language model is used to capture the key aspects of programming

distributed systems with named, persistent resources in the presence of an ad-

versary. The referential security of distributed systems is proved to be enforced

by a new type system.

3.1 Language model

3.1.1 Modelling distributed computing as a language

We model referentially secure distributed computing using a core programming

language that we call λpersist . One motivation for a language-based model is

the popularity of high-level language-based models for distributed computing.

Similarly to λpersist , widely used middleware-based systems make distributed

and persistent information appear to be ordinary language objects: they aim

to make persistence and distribution more transparent. These systems include

CORBA [61], Java RMI [62], and J2EE/EJB [23]. Fabric and various other re-

search systems also take this approach (e.g., [5,6]). Prior work has also compiled

high-level programs to distributed realizations. This approach has been devel-

66

oped for web applications (e.g., [12, 19, 72]) and for more general distributed

applications (e.g., [27,78]). We expect our language model will help with under-

standing the security of all such language-based systems.

In addition, λpersist should give insight into referential security in systems

that do not attempt to make persistence and distribution transparent, because

λpersist faithfully models referential security in such systems as well.

In λpersist , persistence, distribution, and communication are implicit but

are constrained by policy annotations. Programs in λpersist are assumed to be

mapped onto distributed host nodes in some way that agrees with these anno-

tations. This mapping could be done manually by the programmer, or automat-

ically by a compiler.

This implicit translation to a distributed implementation means that some

apparently ordinary source-level operations may be implemented using dis-

tributed communication and computation, much in the same manner as in Fab-

ric. For example, function application may be implemented as a remote pro-

cedure call. Similarly, following references at the language level may involve

communication between nodes to fetch referenced objects.

Although the concrete mapping from source-level constructs onto host

nodes is left implicit, we can nevertheless faithfully evaluate the security of

source-level computations. The key is to ensure that the system is secure un-

der any possible concrete mapping that is consistent with the policy annotations

in the source program. That is, any given computation or information might

be located on any host that satisfies the source-level security constraints. The

technical contribution of this chapter is to develop an effective system of such

source-level constraints, expressed as a type system.

Although we refer to λpersist as a source language, little attempt is made to

67

make this language congenial to actual programming. In particular, the type

annotations introduced would be onerous in practice. They could be inferred

automatically using standard techniques, but we leave this to future work. One

can view the type system as describing a program (or system) analysis, and the

formal results of this chapter as a demonstration that this analysis achieves its

security goals.

3.1.2 Objects and references

Persistent objects are modelled in λpersist as records with mutable fields. The

fields of an object can point to other objects through references. References con-

tain the names of these mutable objects. References are not assignable as in

ML [51]; imperative updates are achieved by assigning to mutable fields.

The language has two types of references: hard and soft. A hard reference is

a reference with referential integrity: a promise that the referenced object will

not be destroyed if its host is trustworthy. Because of this promise, hard ref-

erences can only be created by trusted code. A soft reference does not create an

obligation to maintain the referenced object. When following a soft reference

or an untrusted hard reference, a program must be prepared to handle a failure

in case the referenced object no longer exists. For example, a garbage collector

may destroy objects reachable only via soft references. Hard links in Unix and

references in Java are examples of hard references. URLs, Unix symbolic links,

and Java SoftReference objects are examples of soft references.

This simple data model can represent many different kinds of systems, such

as distributed objects, databases, and the Web. The shared directory structure

shown in Figure 3.1 serves as a running example. Alice and Bob are travelling

together and are using the system to share photos and itineraries. The root

68

p=⊤

p=⊥

p=alice p=bob

a=⊥

root

a=bob

bob

a=bob

docs

a=bob

photos

a=bob

philly

a=alice

alice

a=alice

docs

a=alice

photos

a={alice,bob}

itinerary

a=⊥

scratchpad

hard ref

soft ref

A

B C

D

Figure 3.1: Directory example

directory is kept on a host R. Alice and Bob keep their directory objects on their

own hosts, A and B, respectively. To share sightseeing ideas, they use a common

scratchpad stored on host U. Solid arrows in the figure represent hard references,

and dashed arrows are soft references. The a and p annotations are policies,

which we now explain.

3.2 Policies for persistent programming

3.2.1 Persistence policies

Referential integrity ensures that a pointer can be followed to its referent—that

there are no dangling pointers. In a federated system, referential integrity can-

69

not be absolute, because the referenced object may be located on an untrusted,

perhaps maliciously controlled, host machine. Therefore, referential integrity

must be constrained by the degree of trust in the referenced host. This con-

straint is expressed by assigning each object a persistence policy expressing how

much it can be trusted to remain in existence.

The precise form of the persistence policy is left abstract. Persistence policies

p are assumed to be drawn from a bounded lattice (L,≼) of policy levels with least

element � and greatest element ⊺. If p1 ≼ p2 for two persistence policies p1 and

p2, then p2 describes an object at least as persistent as that described by p1.

While this description might seem to leave persistence policies too abstract

to be meaningful, they have a simple, concrete interpretation. Absent repli-

cation, objects are located only on host nodes that are trusted to enforce their

persistence policies, so a persistence policy p corresponds to a set of sufficiently

trusted host nodes H(p). Therefore, if p1 ≼ p2, then p2 must be enforceable by a

smaller set of hosts: H(p1) ⊇H(p2). In fact, it is reasonable to think of a policy p

as simply a set of hosts.

For example, in Figure 3.1, the root directory has persistence policy ⊺ and is

kept on host R, which is trusted to enforce this policy. Alice and Bob each have

a user directory with their own persistence policy (alice and bob, respectively)

and is stored on their own host (A and B, respectively). The shared scratchpad is

kept on an untrusted host U, which enforces the persistence policy �.

Persistence policies are integrated into the type system of λpersist . The type

of an object reference includes a lower bound on the persistence policy of the

object it refers to; the type system ensures that the persistence of the object is

always at least as high as that of any reference pointing to it. Programs can

therefore use the persistence of a reference to determine whether the reference

70

can be trusted to be intact. This rule enables sound reasoning about persistence

and referential integrity as the graph of objects is traversed.

For example, in Figure 3.1, while Alice and Bob both have a hard reference

to the scratchpad, they must be prepared for a persistence failure when using

the reference. The type system of λpersist will ensure their code handles such a

failure. Any reference to the scratchpad must have a type with � persistence,

because it can be no higher than the � persistence of the scratchpad itself.

In λpersist , persistence is defined not by reachability, but by policy. This re-

solves by fiat one of the three problems identified earlier: accidental persistence.

Accidents are avoided by allowing programmers to express their intention ex-

plicitly. An object that is not intended to be persistent is prevented from being

treated as a persistent object.

3.2.2 Characterizing the adversary

Security involves an adversary, and is always predicated on assumptions about

the power of the adversary. In the kind of decentralized, federated system under

consideration, the adversary is assumed to control some of the nodes in the

system.

Different participants in a distributed system may have their own view-

points about who the adversary is, yet all participants need security assurance.

Therefore, a given adversary is modelled as a point α in the lattice of persistence

policy levels. In the host-set interpretation of persistence policies, α defines the

set of trusted hosts that the adversary does not control. If an object’s persistence

is not at least as high in the lattice as α, the adversary is assumed to have the

power to delete (i.e., violate the persistence of) that object, because it is poten-

tially stored at a host node controlled by the adversary.

71

The formal results for the security properties enforced by λpersist treat the

adversary as an arbitrary parameter. Therefore, these properties hold for any

adversary.

3.2.3 Storage attacks and authority policies

We introduce the idea of storage attacks, in which a malicious adversary tries to

prevent reclamation of object storage by exploiting the enforcement of referen-

tial integrity. For example, in Figure 3.1, Bob has shared with Alice an album

containing the photos he has so far taken during their trip. Bob doesn’t consider

the album to be private, so others may create references to his album, as Alice

has done. However, an adversary that creates a hard reference to this album can

prevent Bob from reclaiming its storage.

To prevent such storage attacks, we ensure that hard references can be cre-

ated only in sufficiently trusted code. We introduce creation authority to ab-

stractly define this power to create new references. This is the only action re-

quiring some form of authority in our discussion, so for brevity, we refer to

creation authority simply as authority.

Like persistence policies, authority policies a are assumed to be drawn from

a bounded lattice (L,≼) of policy levels. Without loss of expressive power, they

are assumed to be drawn from the same lattice as persistence policies. Authority

prevents storage attacks because hard references can only be created to objects

whose authority policy a is less than or equal to the authority of the process ap.

That is, we require a ≼ ap.

A hard reference is a reference that should have referential integrity, so creat-

ing hard references requires authority. The adversary is assumed to have some

ability to create hard references, described by its authority level α. Soft refer-

72

ences do not keep an object alive, so no creation authority is required to create

a soft reference.

In Figure 3.1, the root directory has the authority policy �, so anyone can

create a hard reference to it. Bob’s philly album is large, so he has given it the

authority policy bob; only he can create hard references that prevent the album

from being deleted. Therefore, Alice’s reference to the album must be soft. Alice

has drafted an itinerary, giving it the authority policy {alice,bob} to indicate she

will persist the document for as long as Bob requires. Bob’s reference to the

itinerary, therefore, can be hard.

It may sound odd to posit control over creation of references. But a reference

with referential integrity is a contract between the referrer and the referent. For

example, the node containing the referent is obligated to notify the referrer if

the object moves. Entering into a contract requires agreement by both parties,

so it is reasonable for the node containing the referent to refuse the creation of a

reference.

3.2.4 Integrity

Thus far, the enumerated powers of the adversary include creating references to

low-authority objects and destroying objects with low persistence. Because the

adversary may control some nodes, the adversary can also change the state of

objects located at these nodes. This may in turn affect code running on nodes

not controlled by the adversary, if the adversary supplies inputs to that code, or

if the adversary affects the decision to run that code.

Integrity levels describe limitations on these effects of the adversary. An

integrity level w is drawn from a bounded lattice (L,≼) of policy levels; without

loss of expressive power, it is assumed to be the same lattice as for persistence

73

and authority policies. The ordering ≼ corresponds to increasing integrity. If

w1 ≼ w2, an information flow from level w2 to w1 would be secure: more-trusted

information would be affecting less-trusted information.1

In λpersist , each variable and each field of an object has an associated integrity

level describing how trusted it is, and hence how powerful an adversary must

be to damage it. The integrity of a reference is the integrity of the field or vari-

able it was read from. Each object also has a persistence and an authority level,

which we can think of as the integrity of other, implicit attributes of the object.

For persistence, this implicit attribute is the existence of the object itself. For au-

thority, the attribute is the set of incoming references to the object. This unifying

view of different policies as different aspects of integrity explains why all three

kinds of policies can come from the same lattice.

The interpretation of these policies for integrity, authority, and persistence is

summarized in Figure 3.3.

3.2.5 Integrity of dereferences and garbage collection

An adversary can directly affect the result of a dereference in two ways. First,

if the reference has low integrity, the adversary can alter it to point to a differ-

ent object. Second, if the referent has low persistence, the adversary can delete

it. Therefore, the integrity of any dereference can be no higher than the in-

tegrity and persistence annotations on the reference. So, in Figure 3.1, if Alice

follows the reference from her docs directory to the scratchpad, she obtains an

untrusted result; the untrusted host U influences the result by choosing whether

to delete the scratchpad object.

More subtly, the adversary can manipulate hard references to influence the

1This ordering corresponds to the trust ordering described in Section 2.2.2.

74

B

p=bob

a=⊥

philly
A

p=alice

a=alice

photos

U

p=⊥

a=⊥

photos

(a)

B

p=bob

A

p=alice

a=alice

photos

hard ref

soft ref

U

p=⊥

a=⊥

photos

(b)

Figure 3.2: Authority affects integrity of dereferences. Alice is following her
soft reference to the philly album. An adversary can affect the outcome of the
dereference, because the album has low authority. (a) The untrusted host U has
a hard reference preventing philly from being garbage collected; Alice’s derefer-
ence succeeds. (b) Host U has removed its hard reference, allowing philly to be
garbage collected; Alice’s dereference fails.

garbage collector, and thereby indirectly affect the result of a dereference. For

example, in Figure 3.2a, Alice is following her soft reference to Bob’s philly

album. Bob has marked philly as only requiring low authority, allowing the

untrusted, adversarial host U to create a hard reference, and thereby prevent-

ing philly from being garbage-collected. Therefore, Alice’s dereference must

succeed.

However, in Figure 3.2b, the adversary U has removed its reference. Subse-

quently, philly has been garbage-collected, and Alice’s dereference fails. The

adversary has indirectly affected the outcome of the dereference. To account for

this, the integrity of Alice’s dereference must be no higher than the authority

required by philly.

75

Integrity Authority Persistence Set of hosts

⊺
“High”

Trusted, Untainted: “root”: Persistent:
No host nodesNo one No one can make No one can

can affect data a hard reference delete object

�
“Low”

Untrusted, Tainted: “anyone”: Transient:
All host nodesAnyone Anyone can make Anyone can

can affect data a hard reference delete object

Figure 3.3: Interpretations of the extremal policy labels

Variables x, y ∈ Var Policy levels w,a, p, ` ∈ L
Memory locations m ∈ Mem PC labels pc ∶∶= w

Labelled record types S ∶∶= {ÐÐÐ⇀xi ∶ τi}s Storage labels s ∶∶= (a, p)
Labelled reference types R ∶∶= {ÐÐÐ⇀xi ∶ τi}r Reference labels r ∶∶= (a+, a−, p)

Base types b ∶∶= bool ∣ τ1
pcÐ→ τ2 ∣ R ∣ soft R Types τ ∶∶= bw ∣ 1

Values v, u ∶∶= x ∣ true ∣ false ∣ ∗ ∣mS ∣ softmS ∣ λ(x ∶ τ)[pc]. e (∣ �p)
Terms e ∶∶= v ∣ v1 v2 ∣ if v1 then e2 else e3 ∣ {ÐÐÐ⇀xi = vi}S ∣ v.x

∣ v1.x ∶= v2 ∣ soft e ∣ e1∥e2 ∣ exists v as x ∶ e1 else e2

∣ let x = e1 in e2

Figure 3.4: Syntax of λ0
persist

3.2.6 Security properties

We now informally summarize how λpersist prevents the three referential vulner-

abilities discussed earlier: accidental persistence, referential integrity, and stor-

age attacks. The adversary is described by a single point in the lattice of policy

levels, describing the adversary’s ability to destroy, modify, and link to objects.

Accidental persistence is prevented because persistence is determined by poli-

cies expressing the programmer’s intent, rather than by reachability. Referential

integrity is maintained by a λpersist program with respect to a particular adver-

sary if following hard references whose persistence and integrity are above the

level of the adversary never leads to an object that has been destroyed by the

adversary or garbage-collected. Storage attacks are prevented if the adversary

is unable to change the set of high-authority objects that are reachable through

hard references.

76

3.3 Types for persistent programming

To formalize the ideas introduced in the previous section, we introduce the

λpersist language, an extension to the simply typed lambda calculus. Its type

system prevents the referential vulnerabilities identified above. Figure 3.4 gives

the formal syntax of λpersist . We first focus on how it integrates policies for per-

sistence, authority, and integrity into its types.

3.3.1 Labels

We assume a bounded lattice (L,≼) of policy levels with least element � and great-

est element ⊺, from which integrity (w), authority (a), and persistence policies

(p) are drawn.

Objects and reference values are annotated with storage labels consisting of a

creation authority policy and a persistence policy. All non-unit types τ consist

of a base type b along with an integrity policy annotation w; fields and variables

thereby acquire integrity policies, because they are part of their types. Objects

do not have their own integrity labels because all of their state is in their fields,

which do.

The program-counter label pc [24] is an integrity level indicating the degree

to which the program’s control flow has been tainted by untrusted data. This

label restricts the side effects of code.

3.3.2 Example

Suppose we want to create a hierarchical, distributed directory structure, such

as in Figure 3.1. Each directory maps names to either strings, representing or-

dinary files, or to other directories, and contains a reference to its parent direc-

77

tory (elided in the figure). To faithfully model ordinary file systems, directories

higher in the hierarchy should be more persistent: if they are destroyed, so is

everything below.

A fully general directory structure would require augmenting λpersist with

recursive and dependent types; for simplicity, these features have been omitted

from λpersist because they do not appear to add interesting issues. However, we

can capture the security of a general directory structure by using λpersist records

to build a fixed-depth directory structure with a fixed set of entry names for

each directory.

3.3.3 Modelling objects and references

The security policies of λpersist are about objects and references to them. There-

fore, λpersist extends the lambda calculus with records that represent the content

of objects. The record {ÐÐÐ⇀xi = vi} comprises a set of fields xi with corresponding

values vi. Records are not values in the language; instead, they are accessed via

references mS , where m is the identity of the object and S = {ÐÐÐ⇀xi ∶ τi}s gives its

base type. The storage label s is a pair (a, p). The authority label a is an upper

bound on the authority required to create a new reference to the referent object.

References to objects have labelled reference types {ÐÐÐ⇀xi ∶ τi}r. A reference la-

bel r is a triple (a+, a−, p) that gives upper and lower bounds on the authority

required by the referent, and a lower bound on the persistence of the referent.

The upper authority label a+ prevents storage attacks. The lower authority label a−

prevents the adversary from exploiting garbage collection to damage integrity.

78

3.3.4 Modelling distributed systems

The goal of the λpersist language is to model a distributed system in which code is

running at different host nodes. A single program written in λpersist is intended

to represent such a system. The key to modelling distributed, federated com-

putation faithfully is that different parts of the program can be annotated with

different integrity labels, representing the trust that has been placed in that part

of the code. To model a set of computations (subprograms Ð⇀ei) executing at dif-

ferent nodes, the individual computations are composed in parallel (e1∥⋯∥en)

into a single λpersist program.

From the viewpoint of a given principal in the system, code with a low in-

tegrity label, relative to that principal, can be replaced by any code at all. For the

purposes of evaluating the security of the system, this code is in effect erased

and replaced by the adversary. Therefore the single-program representation

faithfully models a distributed system containing an adversary.

3.4 Accidental persistence and storage attacks

We present λpersist in two phases. In this section, we present λ0
persist , a simplified

subset of λpersist that prevents accidental persistence and storage attacks.

3.4.1 Syntax of λ0
persist

Figure 3.4 gives the syntax of λ0
persist . The names x and y range over variable

names Var; m ranges over a space of memory addresses Mem; w, a, p, and `

range over the lattice L of policy levels; s ranges over the space of storage labels

L2; and r ranges over the space of reference labels L3.

Types in λ0
persist consist of base types with an integrity label (bw), and also

79

the unit type 1, which needs no integrity label. Base types include booleans,

functions, and two kinds of references to mutable records: hard (R) and soft

(soft R). The metavariable R denotes a labelled reference type.

The type τ1
pcÐ→ τ2 is an ordinary function type with a pc annotation that is

a lower bound on the pc label of the caller. It gives an upper bound on the

integrity of data the function affects, on the authority level of references the

function creates, and on the authority level of any references in the function

body.

Values include variables x, booleans true and false, the unit value ∗, typed

memory locations (references) mS , soft references softmS , functions λ(x ∶

τ)[pc]. e, and p-persistence failures �p. A function λ(x ∶ τ)[pc]. e has one argu-

ment x with type τ . The pc component has the same meaning as that in function

types.

Terms include values v and u, applications v1 v2, if expressions

if v1 then e2 else e3, record constructors {ÐÐÐ⇀xi = vi}S , field selections v.x, field assign-

ments v1.x ∶= v2, soft references soft e, parallel composition e1∥e2, soft-reference

tests exists v as x ∶ e1 else e2, and let expressions let x = e1 in e2.

3.4.2 Example

Returning to the directory example in Figure 3.1, Bob can add to the itinerary

with the code below. It starts at the root of the directory structure, traverses

down to the itinerary, and invokes an add method to add a museum.

let home = root.bob

in exists home as bob:

let docs = bob.docs

itin = docs.itinerary

in itin.add "Rodin Museum"

else: ...

80

The soft reference home to Bob’s home directory may have been snapped

by the garbage collector, so exists is used to determine whether the reference

is still valid. If so, the body of the exists is evaluated with bob bound to a

hard reference to the home directory. (This reference can be created because

the pc label at this point has sufficient creation authority.) The second select

expression, bob.docs, dereferences the hard reference.

3.4.3 Operational semantics of λ0
persist

The small-step operational semantics of λ0
persist is given in Figure 3.5. The no-

tation e{v/x} denotes capture-avoiding substitution of value v for variable x in

expression e. The value of a memory location that has failed or been garbage-

collected is �.

Let M represent a memory that is a finite partial map from typed mem-

ory locations mS to closed record values, and let ⟨e,M⟩ be a system configura-

tion. A small evaluation step is a transition from ⟨e,M⟩ to another configuration

⟨e′,M ′⟩, written ⟨e,M⟩→ ⟨e′,M ′⟩.

To avoid using undefined memory locations, we restrict the form of ⟨e,M⟩.

Let locs(e) represent the set of locations appearing explicitly in e. A memory M

is well-formed only if every address m appears at most once in dom(M), and

for any location mS in dom(M), locs(M(mS)) ⊆ dom(M). A configuration ⟨e,M⟩

is well-formed only if M is well-formed, locs(e) ⊆ dom(M), and e has no free

variables. Evaluation preserves well-formed configurations (see Lemma 10 in

Section 3.7.3).

Most of the operational semantics rules are straightforward, but a few de-

serve more explanation.

The record constructor {ÐÐÐ⇀xi = vi}S (rule CREATE) creates a new memory lo-

81

[APPLY] ⟨(λ(x ∶τ)[pc]. e) v,M⟩ eÐ→ ⟨e{v/x},M⟩

[LET]
∀p. v ≠ �p

⟨let x = v in e,M⟩ eÐ→ ⟨e{v/x},M⟩
[IF-TRUE] ⟨if true then e1 else e2,M⟩ eÐ→ ⟨e1,M⟩

[IF-FALSE] ⟨if false then e1 else e2,M⟩ eÐ→ ⟨e2,M⟩

[CREATE]
m = newloc(M)

⟨{ÐÐÐ⇀xi = vi}S ,M⟩ eÐ→ ⟨mS ,M[mS ↦ {ÐÐÐ⇀xi = vi}]⟩

[PARALLEL-
RESULT

] ⟨v1∥v2,M⟩ eÐ→ ⟨∗,M⟩ [SELECT]
M(mS) = {ÐÐÐ⇀xi = vi}

⟨mS .xc,M⟩ eÐ→ ⟨vc,M⟩

[ASSIGN]
M(mS) ≠ � ∀p. v ≠ �p

⟨mS .xc ∶= v,M⟩ eÐ→ ⟨∗,M[mS .xc ↦ v]⟩

[DANGLE-
SELECT

]
M(mS) = � p = persist(mS)

⟨mS .xc,M⟩ eÐ→ ⟨�p,M⟩
[DANGLE-

ASSIGN
]

M(mS) = � p = persist(mS)
⟨mS .xc ∶= v,M⟩ eÐ→ ⟨�p,M⟩

[EXISTS-
TRUE

]
M(mS) ≠ �

⟨exists softmS as x ∶ e1 else e2,M⟩ eÐ→ ⟨e1{mS/x},M⟩

[EXISTS-
FALSE

]
M(mS) = �

⟨exists softmS as x ∶ e1 else e2,M⟩ eÐ→ ⟨e2,M⟩

[EVAL-
CONTEXT

]
⟨e,M⟩ eÐ→ ⟨e′,M ′⟩

⟨E[e],M⟩ eÐ→ ⟨E[e′],M ′⟩
[FAIL-

PROP
] ⟨F [�p] ,M⟩ eÐ→ ⟨�p,M⟩

E ∶∶= soft [⋅] ∣ let x = [⋅] in e ∣ [⋅]∥e ∣ e∥[⋅]
F ∶∶= soft [⋅] ∣ let x = [⋅] in e

[PROG-STEP]
⟨e,M⟩ eÐ→ ⟨e′,M ′⟩
⟨e,M⟩→ ⟨e′,M ′⟩

[GC]
gc(G, ⟨e,M⟩)

⟨e,M⟩→ ⟨e,M[G↦ �]⟩

Figure 3.5: Small-step operational semantics for ordinary (non-adversarial) ex-
ecution of λ0

persist

cation mS to hold the record. The component S specifies the base type and

storage label of the record. The storage label governs at what nodes the ob-

ject can be created. The function newloc(M) deterministically generates a fresh

memory location. If address-space(M) represents the set of location names in

M (i.e., {m ∶ ∃S.mS ∈ dom(M)}), then newloc(M) /∈ address-space(M) and

newloc(M ′) = newloc(M) if address-space(M ′) = address-space(M).

Parallel composition expressions e1∥e2 evaluate to the unit value (rule

PARALLEL-RESULT).

82

The field-selection expression v.x (rules SELECT and DANGLE-SELECT) eval-

uates v to a memory location mS . If the location has not failed, the result of

the selection is the value of the field x of the record at that location. Otherwise,

a p-persistence failure occurs, where p is the persistence level of mS , written

p = persist(mS).

The field-assignment expression v1.x ∶= v2 evaluates v1 to a memory location

mS (rules ASSIGN and DANGLE-ASSIGN) If the location has not failed, v2 is as-

signed into the field x of the record at that location; otherwise, a p-persistence

failure occurs (where p = persist(mS)). The notation M[mS.xc ↦ v] denotes the

memory resulting from updating with value v the field xc of the record at loca-

tion mS .

Persistence failures propagate outward dynamically (FAIL-PROP) until the

whole program fails. The full λpersist language, defined in Section 3.5, can handle

these failures.

In rule EVAL-CONTEXT, E represents an ordinary evaluation context,

whereas F , in rule FAIL-PROP, specifies the contexts from which persistence

failures propagate. Contexts are given as a term with a single hole (denoted by

[⋅]) in redex position. The syntax of E specifies the evaluation order.

The soft-reference expression soft e evaluates e to a hard reference and turns

it into a soft reference. The soft-reference test (exists v as x ∶ e1 else e2) promotes

the soft reference v (if valid) to a hard reference bound to x and evaluates e1. If

the reference is invalid, e2 is evaluated instead.

In rule GC, the notation gc(G, ⟨e,M⟩) means that G is a set of locations that

is collectible. G is considered collectible if it has no GC roots (i.e., hard references

in e), and no location outside G has a hard reference into G.

Definition 1 (GC roots). A location mS is a GC root in an expression e, written

83

root(mS, e), if it is a hard reference in e. This is formally defined by the following

inference rules:

[R1]
root(mS ,mS)

[R2]
root(mS , e) ∀mS0

0 . e ≠mS0
0

root(mS , soft e)

[R3]
∃i. root(mS , vi)

root(mS ,{ÐÐÐ⇀xi = vi}S
′)

[R4]
root(mS , v)
root(mS , v.x)

[R5]
∃i. root(mS , vi)

root(mS , v1.x ∶= v2)
[R6]

root(mS , e)
root(mS , λ(x ∶τ)[pc]. e)

[R7]
∃i. root(mS , vi)
root(mS , v1 v2)

[R8]
∃i. root(mS , ei)

root(mS , let x = e1 in e2)

[R9]
∃i. root(mS , ei)

root(mS , if e1 then e2 else e3)
[R10]

∃i. root(mS , ei)
root(mS , exists e1 as x ∶ e2 else e3)

[R11]
∃i. root(mS , ei)
root(mS , e1∥e2)

λpersist , defined in Section 3.5, adds R12; and [λpersist], defined in Section 3.6, adds R13:

[R12]
∃i. root(mS , ei)

root(mS , try e1 catch p∶ e2)
[R13]

root(mS , e)
root(mS , [e])

Definition 2 (Collectible groups). A set of locations G is a collectible group in a

configuration ⟨e,M⟩, written gc(G, ⟨e,M⟩), if it does not contain any roots of e, and

no location outside G has a hard reference into G.

gc(G, ⟨e,M⟩)
def.
⇐⇒

G ⊆ dom(M)

∧ (∄mS ∈ G. root(mS, e))

∧ ∀mS0
0 ∈ dom(M). (M(mS0

0) ≠ � ∧ ∃mS ∈ G. root(mS,M(mS0
0)))⇒mS0

0 ∈ G

3.4.4 Subtyping in λ0
persist

The subtyping judgement ⊢ τ1 ≤ τ2 states that any value of type τ1 can be treated

as a value of type τ2. Subtyping in λ0
persist is the least reflexive and transitive

84

[S1]
n >m

⊢ {x1 ∶τ1, . . . , xn ∶τn}r ≤ {x1 ∶τ1, . . . , xm ∶τm}r

[S2]
⊢ R1 ≤ R2

⊢ soft R1 ≤ soft R2
[S3]

⊢ b1 ≤ b2
⊢ w2 ≼ w1

⊢ (b1)w1 ≤ (b2)w2

[S4]
⊢ τ2 ≤ τ1 ⊢ τ ′1 ≤ τ ′2 ⊢ pc1 ≼ pc2

⊢ τ1
pc1ÐÐ→ τ ′1 ≤ τ2

pc2ÐÐ→ τ ′2

[S5]
⊢ a+1 ≼ a+2 ⊢ a−2 ≼ a−1 ⊢ p2 ≼ p1

⊢ {ÐÐÐ⇀xi ∶ τi}(a+1 ,a−1 ,p1) ≤ {ÐÐÐ⇀xi ∶ τi}(a+2 ,a−2 ,p2)

Figure 3.6: Subtyping rules for λ0
persist

relation consistent with the rules given in Figure 3.6. Rule S1 gives standard

width subtyping on records. Because records are mutable, there is no depth

subtyping.

Subtyping on soft references is covariant (rule S2). While hard references

may be soundly used as soft references, this is omitted for simplicity.

Rule S3 gives contravariant subtyping on integrity labels. Rule S4 gives

standard subtyping on functions; the additional pc component is covariant.

These are the opposite of the rules typically seen in work on information-flow

security, accounting for our use of the trust ordering.

Rule S5 gives subtyping for labelled reference types. Subtyping is covariant

on the a+ component of the reference label and contravariant on the other two

components. This ensures the bounds specified by the reference label of the

subtype are at least as precise as those of the supertype.

3.4.5 Static semantics of λ0
persist

Typing rules for λ0
persist are given in Figure 3.7. The notation auth+(r), auth−(r),

and persist(r) give the upper authority (a+), lower authority (a−), and persis-

tence (p) component of a reference label r, respectively. The notation auth+(s)

85

[T-BOOL]
b ∈ {true, false}
Γ;pc ⊢ b ∶ bool⊺

[T-UNIT] Γ;pc ⊢ ∗ ∶ 1

[T-VAR]
Γ(x) = τ

Γ;pc ⊢ x ∶ τ
[T-BOTTOM]

p ≠ ⊺
Γ;pc ⊢ �p ∶ τ

[T-LOC]
⊢wf S ∶ rectype S = {ÐÐÐ⇀xi ∶ τi}(a,p)

Γ;pc ⊢mS ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺
[T-SOFT]

Γ;pc ⊢ e ∶ Rw

Γ;pc ⊢ soft e ∶ (soft R)w

[T-IF]

Γ;pc ⊢ v ∶ boolw
Γ;pc ⊓w ⊢ ei ∶ τ (∀i)
⊢ auth+(τ) ≼ pc ⊓w

Γ;pc ⊢ if v then e1 else e2 ∶ τ ⊓w
[T-PARALLEL]

Γ;pc ⊢ ei ∶ τi (∀i)
⊢ auth+(τi) ≼ pc (∀i)

Γ;pc ⊢ e1∥e2 ∶ 1

[T-ABS]

Γ, x ∶τ ′;pc′ ⊢ e ∶ τ
⊢wf (τ ′

pc′Ð→ τ)⊺ ∶ type ⊢ pc′ ≼ pc

Γ;pc ⊢ λ(x ∶τ ′)[pc′]. e ∶ (τ ′ pc′Ð→ τ)⊺
[T-APP]

Γ;pc ⊢ v1 ∶ (τ ′
pc′Ð→ τ)w

Γ;pc ⊢ v2 ∶ τ ′
⊢ pc′ ≼ pc ⊓w

Γ;pc ⊢ v1 v2 ∶ τ ⊓w

[T-RECORD]

⊢wf S ∶ rectype S = {ÐÐÐ⇀xi ∶ τi}(a,p) Γ;pc ⊢ vi ∶ τ ′i (∀i)
⊢ τ ′i ≤ τi (∀i) ⊢ auth+(τ ′i) ≼ pc (∀i) ⊢ integ(τi) ≼ pc (∀i) ⊢ p ≼ pc

Γ;pc ⊢ {ÐÐÐ⇀xi = vi}S ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺

[T-SELECT]

Γ;pc ⊢ v ∶ ({ÐÐÐ⇀xi ∶ τi}r)w
⊢ auth+(r) ≼ pc
w′ = w ⊓ persist(r)

Γ;pc ⊢ v.xc ∶ τc ⊓w′
[T-ASSIGN]

Γ;pc ⊢ v1 ∶ ({ÐÐÐ⇀xi ∶ τi}r)w
⊢ auth+(r) ≼ pc

Γ;pc ⊢ v2 ∶ τ
⊢ τ ⊓ pc ⊓w ≤ τc
⊢ auth+(τ) ≼ pc ⊓w
Γ;pc ⊢ v1.xc ∶= v2 ∶ 1

[T-EXISTS]

Γ;pc ⊢ v ∶ (soft {ÐÐÐ⇀xi ∶ τi}r)w ⊢ auth+(r) ≼ pc ⊓w
w′ = auth−(r) ⊓ persist(r) ⊓w Γ, x ∶({ÐÐÐ⇀xi ∶ τi}r)w;pc ⊓w′ ⊢ e1 ∶ τ

Γ;pc ⊓w′ ⊢ e2 ∶ τ ⊢ auth+(τ) ≼ pc ⊓w′

Γ;pc ⊢ exists v as x ∶ e1 else e2 ∶ τ ⊓w′

[T-LET]

Γ;pc ⊢ e1 ∶ τ ′ ⊢ auth+(τ ′) ≼ pc
w = integ(τ ′) pc′ = pc ⊓w

Γ, x ∶τ ′;pc′ ⊢ e2 ∶ τ ⊢ auth+(τ) ≼ pc′

Γ;pc ⊢ let x = e1 in e2 ∶ τ ⊓w
[T-SUBSUME]

Γ;pc ⊢ e ∶ τ ′ ⊢ τ ′ ≤ τ
Γ;pc ⊢ e ∶ τ

Figure 3.7: Typing rules for λ0
persist

86

[WT1] ⊢wf boolw ∶ type [WT2]
⊢wf R⊺ ∶ type

⊢wf (soft R)w ∶ type
[WT3] ⊢wf 1 ∶ type

[WT4]

⊢ pc ≼ w ⊢ auth+(τ1) ⊔ auth+(τ2) ≼ pc
⊢wf τ1 ∶ type ⊢wf τ2 ∶ type
⊢wf (τ1

pcÐ→ τ2)w ∶ type

[WT5]

⊢wf τi ∶ type (∀i) ⊢ auth+(τi) ≼ a+ (∀i)

⊢ a+ ≼ w ⊓ p ⊢ a− ≼ a+

⊢wf ({ÐÐÐ⇀xi ∶ τi}(a+,a−,p))w ∶ type

[WT6]
⊢wf ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺ ∶ type ⊢ integ(τi) ≼ p (∀i)

⊢wf {ÐÐÐ⇀xi ∶ τi}(a,p) ∶ rectype

Figure 3.8: Well-formedness of types

and persist(s) give the authority and persistence component of a storage label,

respectively. The notation auth+(τ) gives the authority level needed to create a

hard reference to a value of type τ , the integrity of τ is integ(τ), and τ ⊓` denotes

the type obtained by tainting (meeting) the integrity of τ with `:

auth+(bool) = auth+(1) = auth+(soft R) = �

integ(bw) = w (bw) ⊓ ` = bw⊓` auth+(τ1
pcÐ→ τ2) = pc

integ(1) = ⊺ 1 ⊓ ` = 1 auth+({ÐÐÐ⇀xi ∶ τi}s) = auth+(s)

The typing context includes a type assignment Γ and the program-counter

label pc. Γ is a finite partial map from variables x to types τ , expressed as a

finite list of x ∶ τ entries. We write x ∶ τ ∈ Γ and Γ(x) = τ interchangeably. For

an expression e that is well-typed in a context Γ;pc, the type checker produces a

type τ . The typing assertion Γ;pc ⊢ e ∶ τ , therefore, means that the expression e

has type τ under type assignment Γ with program-counter label pc.

Most of the typing rules are standard rules, extended to ensure that the pc is

sufficiently high to obtain any hard references that may result from evaluating

subexpressions, and that the pc is suitably tainted where appropriate.

Rule T-BOTTOM says persistence failures can have any well-formed type.

87

Rule T-ABS checks function values. It ensures that the function’s program-

counter label pc′ accurately summarizes the authority levels of the references

contained in the closure, and that the pc is high enough to create this closure.

The body is checked with program-counter label pc′, so in rule T-APP, the func-

tion can only be used by code with sufficient integrity.

Rule T-RECORD checks the creation of records. It requires that the annota-

tion S be well-formed. Also, the pc must be high enough to create any hard

references that appear in the fields, and to write to the fields themselves.

When using a hard reference v1, the pc must have sufficient authority to

possess v1 (rules T-SELECT and T-ASSIGN). When assigning through v1, hard

references contained in the assigned value v2 also require authority. Since the

integrity and persistence of v1 can affect whether the assignment succeeds, we

taint the pc with these labels before comparing with the authority requirement

of v2.

Rule T-EXISTS checks soft-reference validity tests. It ensures that the pc has

the authority to promote the reference.

The rules for determining the well-formedness of types are given in Fig-

ure 3.8. In rule WT5, a reference type ({ÐÐÐ⇀xi ∶ τi}(a+,a−,p))w is well-formed only if

the upper authority label a+ is an upper bound on the authority levels of the

field types τi. This ensures that the upper authority label is an accurate sum-

mary of the authority required by the fields. We also require a+ be bounded

from above by the integrity w of the reference, since low-integrity data should

not influence the creation of high-authority references. To ensure that hosts are

able to create hard references to the objects they store, we also require auth+(r)

to be bounded from above by the persistence level p of the record.

88

⎡⎢⎢⎢⎣
SOFT-

SELECT

⎤⎥⎥⎥⎦

⟨mS .xc,M⟩ eÐ→ ⟨v,M⟩

⟨(softmS).xc,M⟩ eÐ→ ⟨v,M⟩

⎡⎢⎢⎢⎣
SOFT-

ASSIGN

⎤⎥⎥⎥⎦

⟨mS .xc ∶= v,M⟩ eÐ→ ⟨v′,M ′⟩

⟨(softmS).xc ∶= v,M⟩ eÐ→ ⟨v′,M ′⟩
⎡⎢⎢⎢⎣

TRY-
VAL

⎤⎥⎥⎥⎦

∀p′. v ≠ �p′

⟨try v catch p∶ e,M⟩ eÐ→ ⟨v,M⟩

⎡⎢⎢⎢⎣
TRY-

CATCH

⎤⎥⎥⎥⎦

p ≼ p′

⟨try �p′ catch p∶ e,M⟩ eÐ→ ⟨e,M⟩
⎡⎢⎢⎢⎣

TRY-
ESC

⎤⎥⎥⎥⎦

p /≼ p′

⟨try �p′ catch p∶ e,M⟩ eÐ→ ⟨�p′ ,M⟩
E ∶∶= . . . ∣ try [⋅] catch p∶ e

⎡⎢⎢⎢⎣
T-SOFT-
SELECT

⎤⎥⎥⎥⎦

Γ;pc;H ⊢ v ∶ (soft {ÐÐÐ⇀xi ∶ τi}r)w,⊺ ⊢ auth+(τc) ≼ pc

p = auth−(r) ⊓ persist(r) ⊓w ⊢H ≼ p
Γ;pc;H ⊢ v.xc ∶ τc ⊓ p, p

⎡⎢⎢⎢⎣
T-SOFT-
ASSIGN

⎤⎥⎥⎥⎦

Γ;pc;H ⊢ v1 ∶ (soft {ÐÐÐ⇀xi ∶ τi}r)w,⊺ p = auth−(r) ⊓ persist(r) ⊓w
Γ;pc;H ⊢ v2 ∶ τ,⊺ ⊢ τ ⊓ pc ⊓ p ≤ τc ⊢ auth+(τ) ≼ pc ⊓ p ⊢H ≼ p

Γ;pc;H ⊢ v1.xc ∶= v2 ∶ 1, p

[T-TRY]

Γ;pc;H, p ⊢ e1 ∶ τ,X1 w = ⊓
p′∈X1

(p ⊔ p′)

Γ;pc ⊓w ⊓ integ(τ);H ⊢ e2 ∶ τ,X2 ⊢ auth+(τ) ≼ pc

Γ;pc;H ⊢ try e1 catch p∶ e2 ∶ τ ⊓w, (X1/p) ⊓X2

Figure 3.9: Additional small-step evaluation and typing rules for λpersist

3.5 Ensuring referential integrity

In a distributed system, references can span trust domains, so to be secure and

reliable, program code must in general be ready to encounter a dangling refer-

ence, one perhaps created by the adversary. Therefore, we extend λ0
persist with

persistence-failure handlers to obtain the full λpersist language (see Appendix 3.A.1

for its full syntax). The type system of λpersist forces the programmer to be aware

of and to handle all potential failures.

Because low-persistence references may be used frequently, handling persis-

tent failures immediately at each use would be awkward. Instead, λpersist factors

out failure-handling code from ordinary code by treating failures as a kind of

exception.

The value of (try e1 catch p∶ e2) is the value of evaluating e1. If a dangling

pointer at persistence level p or higher is encountered, the error-handling ex-

pression e2 is evaluated instead. A try expression creates a context (e1) in which

the programmer can write simpler code under the assumption that certain per-

89

sistence failures are impossible, yet without sacrificing the property that all fail-

ures are handled.

3.5.1 Persistence handler levels

To track the failures that can be handled in the current context, a set of persis-

tence levelsH is used. Formally,H is drawn from the bounded meet-semilattice

given by the upper powerdomain of persistence levels. The elements of the

powerdomain are the finitely generated subsets2 of L, modulo equivalence re-

lation (3.1). The ordering on these elements is given by (3.2). If we choose

maximal sets to represent the equivalence classes, then the meet operation is set

union.

A ∼ B
def.
⇐⇒ ∀` ∈ L. ((∃a ∈ A. a ≼ `)⇔ (∃b ∈ B. b ≼ `)) (3.1)

A ≼℘ B
def.
⇐⇒ ∀b ∈ B. ∃a ∈ A. a ≼ b (3.2)

Functions λ(x ∶ τ)[pc;H]. e and function types τ1
pc,HÐÐ→ τ2 are extended with

an H component, which is an upper bound on the H label of the caller. It gives

a set of lower bounds on the persistence levels of references that the function

follows.

3.5.2 Example

Returning to the directory example in Figure 3.1, Alice can add a place to the

list of sightseeing ideas with the code below. This code starts at Alice’s docs

directory, traverses the reference to the scratchpad, and invokes an add method

to add a museum.
2Non-empty subsets that are either finite or contain �.

90

let pad = docs.scratchpad

in try pad.add "Rodin Museum"

catch �: ...

The expression pad.add follows a hard reference to the scratchpad. Despite the

hard reference, a try is needed because Alice does not trust host U to persist the

scratchpad.

3.5.3 Operational semantics of λpersist

The small-step operational semantics of λpersist extends that of λ0
persist with the

rules in Figure 3.9. Two rules are for using soft references directly, and three

are for persistence-failure handlers. Failures propagate outward dynamically

(TRY-ESC) until either they are handled by a failure handler (TRY-CATCH), or

the whole program fails.

The persistence-failure handler try e1 catch p∶ e2 handles p-persistence fail-

ures. (Failures that occur at persistence levels higher than p are also considered

to be p-persistence failures.) If e1 fails with such a failure, then e2 is evaluated;

otherwise the result of the try is that of e1. Persistence-failure handlers enable e1

to call functions that require more trust (lowerH) than provided by the context.

Appendix 3.A.2 gives the full operational semantics for λpersist .

3.5.4 Subtyping in λpersist

The subtyping rules are the same as for λ0
persist , except that function subtyping

is also contravariant on the H component. Full subtyping rules are given in

Appendix 3.A.3.

91

[CREATE]
m = newloc(M) S = {ÐÐÐ⇀xi ∶ τi}s v′i = vi ▸α τi

⟨{ÐÐÐ⇀xi = vi}S ,M⟩ eÐ→ ⟨mS ,M[mS ↦ {
ÐÐÐ⇀
xi = v′i}]⟩

[SELECT]

M(mS) = {ÐÐÐ⇀xi = vi}
S = {ÐÐÐ⇀xi ∶ τi}(a,p)

⟨mS .xc,M⟩ eÐ→ ⟨vc ▸α p,M⟩
[ASSIGN]

M(mS) ≠ � ∀p′. v ≠ �p′
S = {ÐÐÐ⇀xi ∶ τi}(a,p)

M ′ =M[mS .xc ↦ v ▸α τc]

⟨mS .xc ∶= v,M⟩ eÐ→ ⟨∗ ▸α p,M ′⟩

⎡⎢⎢⎢⎣
DANGLE-
SELECT

⎤⎥⎥⎥⎦

M(mS) = �
S = {ÐÐÐ⇀xi ∶ τi}(a,p)

⟨mS .xc,M⟩ eÐ→ ⟨�p ▸α p,M⟩

⎡⎢⎢⎢⎣
DANGLE-
ASSIGN

⎤⎥⎥⎥⎦

M(mS) = �
S = {ÐÐÐ⇀xi ∶ τi}(a,p)

⟨mS .xc ∶= v,M⟩ eÐ→ ⟨�p ▸α p,M⟩
⎡⎢⎢⎢⎣

SOFT-
SELECT

⎤⎥⎥⎥⎦

⟨mS .xc,M⟩ eÐ→ ⟨v,M⟩ S = {ÐÐÐ⇀xi ∶ τi}(a,p)
⟨(softmS).xc,M⟩ eÐ→ ⟨v ▸α (a ⊓ p),M⟩

⎡⎢⎢⎢⎣
SOFT-

ASSIGN

⎤⎥⎥⎥⎦

⟨mS .xc ∶= v,M⟩ eÐ→ ⟨v′,M ′⟩ S = {ÐÐÐ⇀xi ∶ τi}(a,p)
⟨(softmS).xc ∶= v,M⟩ eÐ→ ⟨v′ ▸α (a ⊓ p),M ′⟩

⎡⎢⎢⎢⎣
EXISTS-
TRUE

⎤⎥⎥⎥⎦

M(mS) ≠ � S = {ÐÐÐ⇀xi ∶ τi}(a,p)
⟨exists softmS as x ∶ e1 else e2,M⟩ eÐ→ ⟨(e1{mS/x}) ▸α (a ⊓ p),M⟩

⎡⎢⎢⎢⎣
EXISTS-
FALSE

⎤⎥⎥⎥⎦

M(mS) ≠ � S = {ÐÐÐ⇀xi ∶ τi}(a,p)
⟨exists softmS as x ∶ e1 else e2,M⟩ eÐ→ ⟨e2 ▸α (a ⊓ p),M⟩

⎡⎢⎢⎢⎣
BRACKET-

SELECT

⎤⎥⎥⎥⎦
⟨[mS].xc,M⟩ eÐ→ ⟨[mS .xc],M⟩

⎡⎢⎢⎢⎣
BRACKET-

ASSIGN

⎤⎥⎥⎥⎦
⟨[mS].xc ∶= v,M⟩ eÐ→ ⟨[mS .xc ∶= v],M⟩

⎡⎢⎢⎢⎣
BRACKET-

SOFT-SELECT

⎤⎥⎥⎥⎦
⟨[softmS].xc,M⟩

eÐ→ ⟨[(softmS).xc],M⟩

⎡⎢⎢⎢⎣
BRACKET-

SOFT-ASSIGN

⎤⎥⎥⎥⎦
⟨[softmS].xc ∶= v,M⟩

eÐ→ ⟨[(softmS).xc ∶= v],M⟩
⎡⎢⎢⎢⎣

BRACKET-
SOFT

⎤⎥⎥⎥⎦
⟨soft [mS],M⟩ eÐ→ ⟨[softmS],M⟩

⎡⎢⎢⎢⎣
DOUBLE-
BRACKET

⎤⎥⎥⎥⎦
⟨[[v]],M⟩ eÐ→ ⟨[v],M⟩

⎡⎢⎢⎢⎣
BRACKET-

EXISTS

⎤⎥⎥⎥⎦
⟨exists [v] as x ∶ e1 else e2,M⟩

eÐ→ ⟨[exists v as x ∶ e1 else e2],M⟩

⎡⎢⎢⎢⎣
BRACKET-

APPLY

⎤⎥⎥⎥⎦
⟨[λ(x ∶τ)[pc;H]. e] v,M⟩

eÐ→ ⟨[(λ(x ∶τ)[pc;H]. e) v],M⟩
⎡⎢⎢⎢⎣

BRACKET-
TRY

⎤⎥⎥⎥⎦
⟨try [v] catch p∶ e,M⟩

eÐ→ ⟨[try v catch p∶ e],M⟩

⎡⎢⎢⎢⎣
BRACKET-

IF

⎤⎥⎥⎥⎦
⟨if [v] then e1 else e2,M⟩

eÐ→ ⟨[if v then e1 else e2],M⟩
⎡⎢⎢⎢⎣

BRACKET-
LET

⎤⎥⎥⎥⎦

∀p. v ≠ �p
⟨let x = [v] in e,M⟩ eÐ→ ⟨[e{[v]/x}],M⟩

⎡⎢⎢⎢⎣
BRACKET-
CONTEXT

⎤⎥⎥⎥⎦

⟨e,M⟩ eÐ→ ⟨e′,M ′⟩

⟨[e],M⟩ eÐ→ ⟨[e′],M ′⟩

⎡⎢⎢⎢⎣
BRACKET-

FAIL

⎤⎥⎥⎥⎦
⟨F [[�p]],M⟩ eÐ→ ⟨[�p],M⟩

Figure 3.10: Small-step operational semantics extensions for ordinary execution
of [λpersist]

92

3.5.5 Static semantics of λpersist

The typing rules for λpersist extend those for λ0
persist . They augment the typing

context with a handler environment H, indicating the set of persistence failures

the evaluation context can handle. For an expression e that is well-typed in a

context Γ;pc;H, typing judgements additionally produce an effect X , which is

a set indicating the persistence failures e can produce during evaluation. The

typing assertion Γ;pc;H ⊢ e ∶ τ,X , therefore, means that the expression e has

type τ and effect X under type assignment Γ, current program-counter label pc,

and handler environment H.

The typing rules for λ0
persist are converted straightforwardly to thread H and

X through typing judgements. Rules T-SELECT and T-ASSIGN gain premises

to ensure the context has a suitable handler in case dereferences fail. Ap-

pendix 3.A.4 gives the full set of converted rules.

Figure 3.9 gives three new typing rules. T-SOFT-SELECT and T-SOFT-ASSIGN

check direct uses of soft references. They taint the integrity of the dereference

with auth−(r) because the result of the dereference is affected by those able to

create a hard reference and thereby prevent the referent from being garbage-

collected (Section 3.2.5). Rule T-TRY checks try expressions. To reflect the in-

stallation of a p-persistence handler, p is added to the handler environment H

when checking e1. The value w in the typing rule is a conservative summary of

the persistence errors that can occur while evaluating e1 and not handled by the

p-persistence handler. Because evaluation of e2 depends on the result of e1, the

pc label for evaluating e2 is tainted by w. In this rule, the notation X /p denotes

the subset of persistence errors X not handled by p.

H/p ∆= {p′ ∈ H ∶ p /≼ p′}

93

[α-CREATE]

m = newloc(M) ∅;⊺;⊺ ⊢ {
ÐÐÐÐ⇀
xi = [vi]}S ∶ R⊺,⊺

⊢α[wf] M[mS ↦ {
ÐÐÐÐ⇀
xi = [vi]}] α /≼ persist(S)

⟨e,M⟩↝α ⟨e,M[mS ↦ {
ÐÐÐÐ⇀
xi = [vi]}]⟩

[α-ASSIGN]

mS ∈ dom(M) M(mS) ≠ � S = {ÐÐÐ⇀xi ∶ τi}s
∅;⊺;⊺ ⊢ [v] ∶ τc,⊺ ⊢α[wf] M[mS .xc ↦ [v]]

⟨e,M⟩↝α ⟨e,M[mS .xc ↦ [v]]⟩

[α-FORGET]
mS ∈ dom(M) α /≼ persist(S)

⟨e,M⟩↝α ⟨e,M[mS ↦ �]⟩

Figure 3.11: Effects caused by the α-adversary

3.6 The power of the adversary

The power of the adversary is modelled by extending the operational semantics

of Figure 3.5 with additional transitions. To support reasoning about what an

adversary may have affected in a partially evaluated program, λpersist is aug-

mented to include bracketed forms. We call the resulting augmented language

[λpersist]. We write [e] to indicate an expression that may have been influenced

by the adversary, and [v] to indicate an influenced value. Doubly bracketed

values are considered expressions and not values.

The extended syntax and the rule for typing bracketed forms appear below.

Extensions for the operational semantics appear in Figure 3.10.

Values v ∶∶= . . . ∣ [v]

Terms e ∶∶= . . . ∣ [e]

[T-BRACKET]

Γ;pc ⊓ `;H ⊢ e ∶ τ,X

α /≼ ` ⊢ auth+(τ) ≼ pc ⊓ `

Γ;pc;H ⊢ [e] ∶ τ ⊓ `,X

The operational semantics is extended by adding new rules that propagate

brackets in the obvious manner. Rules CREATE, SELECT, DANGLE-SELECT,

94

ASSIGN, DANGLE-ASSIGN, SOFT-SELECT, SOFT-ASSIGN, EXISTS-TRUE, and

EXISTS-FALSE are amended to ensure low-integrity expressions are bracketed.

To do this, they use the auto-bracketing function e ▸α `. The notation e ▸α τ is

shorthand for e ▸α integ(τ).

e ▸α ` =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e, if ⊢ α ≼ ` or ∃e′. e = [e′];

[e] , otherwise.

Also, rules TRY-VAL and LET are amended to prevent a transition when

v is bracketed, and rules that disallow transitions on bottom values (�p) are

amended to prevent transitions on bracketed bottom values.

It is important to know that any evaluation of a program in the original lan-

guage can be simulated in the augmented language, which amounts to showing

that the rules cover all the ways that brackets can appear. A straightforward in-

duction proves this (see Lemma 1 in Section 3.7).

Rules for the adversary’s transitions are given in Figure 3.11. Adversaries

may create new records, modify existing records, or remove records from mem-

ory altogether, but their ability is bounded by an integrity label α ∈ L. Such

an α-adversary has all creation authority except α and higher, can modify any

record field except those with α (or higher) integrity, and can delete any record

except those with α (or higher) persistence. A small evaluation step taken in the

presence of an α-adversary is a transition from a machine configuration ⟨e,M⟩

to another configuration ⟨e′,M ′⟩, written ⟨e,M⟩→α ⟨e′,M ′⟩.

While it is reasonable to allow the adversary to create ill-typed values, an im-

plementation with run-time type checking can catch ill-typed values when they

cross between hosts and replace them with well-typed default values. There-

fore, the adversary’s transitions embody a simplifying assumption that the ad-

versary can only create well-typed values.

95

Rule α-CREATE lets the adversary create records at new memory locations.

The premise ∅;⊺;⊺ ⊢ {
ÐÐÐÐ⇀
xi = [vi]}S ∶ R⊺,⊺ ensures that the records are well-typed

values and that new hard references satisfy the restrictions on the adversary.

The premise ⊢α[wf] M[mS ↦ {
ÐÐÐÐ⇀
xi = [vi]}] ensures that the resulting memory is

well-formed (formally defined in Section 3.7.1), so the adversary cannot create

references to unknown memory locations.

Rule α-ASSIGN lets the adversary modify existing records. The premise

M(mS) ≠ � ensures that the record being modified still exists in memory. The

premise ∅;⊺;⊺ ⊢ [v] ∶ τc,⊺ ensures that the assignment is well-typed and that

new hard references satisfy the restrictions on the adversary. The premise

⊢α[wf] M[mS.xc ↦ [v]] ensures that the resulting memory is well-formed, so the

adversary cannot create references to unknown memory locations.

Rule α-FORGET lets the adversary drop records from memory. The premise

α /≼ persist(S) restricts the persistence level of dropped records.

3.7 Results

The goal of λpersist is to prevent accidental persistence and to ensure that the ad-

versary cannot damage referential integrity or cause storage attacks. Accidental

persistence is prevented by the use of persistence policies. We now show how

to formalize the other security properties and prove that λpersist satisfies these

properties.

3.7.1 Well-formedness

To ensure we consider only sensible memories and configurations, we define

well-formedness for memories, and use that in the definition for configurations.

96

Definition 3 (Well-formed λpersist memory). A λpersist memory M is well-formed,

written ⊢wf M , if each record stored in M satisfies two conditions: the record’s type

corresponds to the type of the record’s location in M , and every location mentioned in

the record is valid in M .

More precisely, whenever M maps a reference mS to a record value {ÐÐÐ⇀xi = vi},

• S is well-formed,

• each vi has the appropriate type (as specified by S),

• the locations mentioned in the field values vi are in the domain of M :

⊢wf M
def.
⇐⇒ (M(mS) = {ÐÐÐ⇀xi = vi} ∧ S = {ÐÐÐ⇀xi ∶ τi}(a,p)

⇒ ⊢wf S ∶ rectype

∧ (∀i. ∅;⊺;⊺ ⊢ vi ∶ τi,⊺)

∧ locs({ÐÐÐ⇀xi = vi}) ⊆ dom(M))

Our notion of a well-formed configuration relies on knowing when a loca-

tion is non-collectible (cannot be garbage collected), which we now define.

Definition 4 (Non-collectible locations). A memory location mS is non-collectible

in a configuration ⟨e,M⟩, written nc(mS, ⟨e,M⟩), if it is reachable from a GC root of e

through a path of hard references.

This is defined formally by the following induction rules:

[NC1]
root(mS, e)

nc(mS, ⟨e,M⟩)
[NC2]

root(mS1
1 , e) M(mS1

1) = {ÐÐÐ⇀xi = vi}
∃c. nc(mS, ⟨vc,M⟩)
nc(mS, ⟨e,M⟩)

Well-formedness of configurations is parameterized on an adversary α.

Definition 5 (Well-formed λpersist configuration). A λpersist configuration ⟨e,M⟩ is

well-formed, written ⊢αwf ⟨e,M⟩, if the following all hold:

97

• M is well-formed;

• the locations mentioned in e are valid in M ;

• no non-collectible high-persistence location is deleted; and

• if G is a minimal collectible group in which a high-persistence location is deleted,

then all locations in G are also deleted.

Formally,

⊢αwf ⟨e,M⟩
def.
⇐⇒ ⊢wf M ∧ locs(e) ⊆ dom(M)

∧(∀mS.nc(mS, ⟨e,M⟩)∧ ⊢ α ≼ persist(S)

⇒M(mS) ≠ �)

∧(∀G. gc(G, ⟨e,M⟩) ∧ (∄G′ ⊆ G. gc(G′, ⟨e,M⟩))

∧(∃mS0
0 ∈ G. ⊢ α ≼ persist(S0) ∧M(mS0

0) = �)

⇒ ∀mS ∈ G. M(mS) = �)

A λpersist configuration is well-formed in a non-adversarial setting, written ⊢wf ⟨e,M⟩,

if it is well-formed with respect to the � adversary.

Corresponding well-formedness conditions are defined similarly for [λpersist]

memories, written ⊢α[wf] M and ⊢[wf] M , and for [λpersist] configurations, written

⊢α[wf] ⟨e,M⟩ and ⊢[wf] ⟨e,M⟩. Well-formedness of [λpersist] memories is param-

eterized on an α-adversary, because values appearing in low-integrity record

fields must be bracketed.

Definition 6 (Well-formed [λpersist] memory). A [λpersist] memoryM is well-formed

with respect to an adversary α (written ⊢α[wf] M) if it is a well-formed λpersist memory

and all low-integrity field values are bracketed:

⊢α[wf] M
def.
⇐⇒ ⊢wf M ∧ (M(mS) = {ÐÐÐ⇀xi = vi} ∧ S = {ÐÐÐ⇀xi ∶ τi}s ∧ α /≼ integ(τi)

⇒ ∃v′. vi = [v′])

98

Definition 7 (Well-formed [λpersist] configuration). A [λpersist] configuration

⟨e,M⟩ is well-formed if it is a well-formed λpersist configuration with a well-formed

[λpersist] memory. A configuration is well-formed in a non-adversarial setting if it is

well-formed in the presence of a � adversary.

⊢α[wf] ⟨e,M⟩
def.
⇐⇒ ⊢α[wf] M∧ ⊢αwf ⟨e,M⟩

⊢[wf] ⟨e,M⟩
def.
⇐⇒ ⊢�[wf] ⟨e,M⟩

3.7.2 Completeness of [λpersist] evaluation

For [λpersist] to be adequate for reasoning about referential security properties of

λpersist , we must be able to simulate any λpersist execution in [λpersist]. This is a

completeness property. To do this, we first need to define what it means for a

[λpersist] configuration to simulate a λpersist configuration. This involves defining

a correspondence on expressions and heaps between the two languages.

We write e1 ≲ e2 to denote that the λpersist term e1 corresponds to the [λpersist]

term e2. The terms correspond if erasing brackets from e2 produces e1.

Definition 8 (Correspondence between [λpersist] and λpersist expressions). A

[λpersist] expression e is related to a λpersist expression e′, written ⊢ e ≲ e′, if the two

are equal when brackets in e are removed. This is formally defined by the following

induction rules.

e = e

⊢ e ≲ e

⊢ e ≲ e′

⊢ [e] ≲ e′

⊢ e ≲ e′

⊢ λ(x ∶τ)[pc;H]. e ≲ λ(x ∶τ)[pc;H]. e′

⊢ vi ≲ ui (∀i)

⊢ v1 v2 ≲ u1 u2

⊢ ei ≲ e′i (∀i)

⊢ if e1 then e2 else e3 ≲ if e′1 then e′2 else e′3

⊢ vi ≲ ui (∀i)

⊢ {ÐÐÐ⇀xi = vi}S ≲ {ÐÐÐ⇀xi = ui}S

(rules continued on next page)

99

⊢ v ≲ u

⊢ v.x ≲ u.x

⊢ vi ≲ ui (∀i)

⊢ v1.x ∶= v2 ≲ u1.x ∶= u2

⊢ e ≲ e′

⊢ soft e ≲ soft e′

⊢ ei ≲ e′i (∀i)

⊢ e1∥e2 ≲ e′1∥e′2
⊢ ei ≲ e′i (∀i)

⊢ exists e1 as x ∶ e2 else e3 ≲ exists e′1 as x ∶ e′2 else e′3

⊢ ei ≲ e′i (∀i)

⊢ try e1 catch p∶ e2 ≲ try e′1 catch p∶ e′2

⊢ ei ≲ e′i (∀i)

⊢ let x = e1 in e2 ≲ let x = e′1 in e′2

This correspondence on expressions naturally induces a correspondence on

heaps, and the two together give the correspondence on configurations.

Definition 9 (Correspondence between [λpersist] and λpersist memories). A

[λpersist] memory M1 is related to a λpersist memory M2, written ⊢ M1 ≲ M2, if they

map the same set of locations, and the memories map each location to values that are

related.

⊢M1 ≲M2

def.
⇐⇒ dom(M1) = dom(M2)

∧ ∀mS ∈ dom(M1). M1(mS) =M2(mS) = �

∨ ⊢M1(mS) ≲M2(mS)

Definition 10 (Correspondence between [λpersist] and λpersist configurations). A

[λpersist] configuration ⟨e1,M1⟩ is related to a λpersist configuration ⟨e2,M2⟩, written

⊢ ⟨e1,M1⟩ ≲ ⟨e2,M2⟩, if both the expressions and the memories are related:

⊢ ⟨e1,M1⟩ ≲ ⟨e2,M2⟩
def.
⇐⇒ ⊢ e1 ≲ e2∧ ⊢M1 ≲M2

We can now state and prove the completeness of [λpersist].

Lemma 1 (Completeness of [λpersist] with respect to λpersist). Let ⟨e1,M1⟩ be a well-

formed λpersist configuration with e1 well-typed. Let ⟨e2,M2⟩ be a well-formed [λpersist]

100

configuration corresponding to ⟨e1,M1⟩, with e2 well-typed. If ⟨e1,M1⟩ takes a→ tran-

sition to ⟨e′1,M ′
1⟩, then there exists a configuration ⟨e′2,M ′

2⟩ corresponding to ⟨e′1,M ′
1⟩

such that ⟨e2,M2⟩→∗
α ⟨e′2,M ′

2⟩.

⊢αwf ⟨e1,M1⟩ ∧ ∅;pc;H ⊢ e1 ∶ τ,X

∧ ⊢α[wf] ⟨e2,M2⟩ ∧ ∅;pc;H ⊢ e2 ∶ τ,X

∧ ⊢ ⟨e1,M1⟩ ≲ ⟨e2,M2⟩ ∧ ⟨e1,M1⟩→ ⟨e′1,M ′
1⟩

⇒ ∃e′2,M ′
2. ⟨e2,M2⟩→∗

α ⟨e′2,M ′
2⟩ ∧ ⟨e′1,M ′

1⟩ ≲ ⟨e′2,M ′
2⟩

Proof. Induction on the derivation of ⟨e1,M1⟩→α ⟨e′1,M ′
1⟩.

3.7.3 Soundness of [λpersist] type system

We prove the type system sound via the usual method of proving type preserva-

tion (Lemma 9) and progress (Lemma 13). Because we are only concerned with

well-formed configurations, it is important to know that they are preserved by

the operational semantics. This is captured by Lemma 10.

We first show some preliminary results for weakening the typing context.

Lemma 2 (Type-environment weakening). Extra type assumptions can be safely

added to typing contexts: Γ;pc;H ⊢ e ∶ τ,X ∧ x /∈ FV(e)⇒ Γ, x ∶τ ′;pc;H ⊢ e ∶ τ,X .

Proof. By induction on the derivation of Γ;pc;H ⊢ e ∶ τ,X .

Lemma 3 (pc weakening). The pc label in a typing context can be safely raised.

⊢ pc ≼ pc′ ∧ Γ;pc;H ⊢ e ∶ τ,X ⇒ Γ;pc′;H ⊢ e ∶ τ,X

Proof. By induction on the derivation of Γ;pc;H ⊢ e ∶ τ,X .

101

Rules T-BOOL, T-UNIT, T-LOC, T-BOTTOM, and T-VAR are trivial base cases.

Rule T-ABS follows from the transitivity of ≼. Rules T-SOFT, T-PARALLEL, and

T-SUBSUME follow from the induction hypothesis.

Rules T-RECORD, T-SELECT, T-SOFT-SELECT, T-ASSIGN, T-SOFT-ASSIGN,

T-EXISTS, T-APP, T-LET, T-TRY, T-IF, and T-BRACKET follow from the in-

duction hypothesis and the transitivity of ≼. In rules T-ASSIGN and T-SOFT-

ASSIGN, we need to show ⊢ τ⊓pc′⊓p ≤ τc. By assumption, we have ⊢ τ⊓pc⊓p ≤ τc.

Let bw = τ . Then using S3, we can show

⊢ b ≤ b ⊢ w ⊓ pc ⊓ p ≼ w ⊓ pc′ ⊓ p

⊢ τ ⊓ pc′ ⊓ p ≤ τ ⊓ pc ⊓ p ,

and the result follows from transitivity of subtyping.

Lemma 4 (Handler weakening). Extra handler assumptions can be safely added to

the typing context.

⊢ H′ ≼ H ∧ Γ;pc;H ⊢ e ∶ τ,X ⇒ Γ;pc;H′ ⊢ e ∶ τ,X

Proof. By induction on the derivation of Γ;pc;H ⊢ e ∶ τ,X .

Rules T-BOOL, T-UNIT, T-LOC, T-BOTTOM, T-VAR, T-ABS, and T-PARALLEL

are trivial base cases.

Rules T-SOFT, T-RECORD, T-SELECT, T-ASSIGN, T-SOFT-SELECT, T-SOFT-

ASSIGN, T-EXISTS, T-APP, T-LET, T-IF, T-SUBSUME, and T-BRACKET follow

from the induction hypothesis.

Rule T-TRY follows from the induction hypothesis and the fact thatH′∪{p} ≼

H ∪ {p}.

Corollary 5 summarizes these results.

102

Corollary 5 (Context weakening). Suppose Γ;pc;H ⊢ e ∶ τ,X with x /∈ FV(e),

pc ≼ pc′ and H′ ≼ H. Then

Γ, x ∶τ ′;pc′;H′ ⊢ e ∶ τ,X

We can now prove the substitution lemma.

Lemma 6 (Substitution). Γ, x ∶ τ ′;pc;H ⊢ e ∶ τ,X ∧ ∅;pc;H ⊢ v ∶ τ ′,⊺⇒ Γ;pc;H ⊢

e{v/x} ∶ τ,X .

Proof. By induction on the derivation of Γ, x ∶ τ ′;pc;H ⊢ e ∶ τ,X . Note that since

v was typed in an empty type assignment (Γ = ∅), we must have FV(v) = ∅.

Rules T-BOOL, T-UNIT, T-LOC, and T-BOTTOM are trivial base cases.

Rules T-SOFT, T-RECORD, T-SELECT, T-ASSIGN, T-SOFT-SELECT, T-SOFT-

ASSIGN, T-APP, T-PARALLEL, T-TRY, T-IF, T-SUBSUME, and T-BRACKET follow

from the definition of substitution and the induction hypothesis.

Case T-VAR:

Suppose e = x. Then e{v/x} = v and τ ′ = τ and the result holds in this case

via Corollary 5 and T-SUBSUME. Alternatively, suppose e = y ≠ x. In this

case, e{v/x} = e and the result holds trivially.

Case T-ABS (e = λ(y ∶τ1)[pc1;H1]. e1):

If y = x, then e{v/x} = e and the result holds trivially. Alternatively, sup-

pose y ≠ x. We have FV(v) = ∅, so e{v/x} = λ(y ∶ τ1)[pc1;H1]. e1{v/x}. Let

Γ′ = Γ, x ∶τ ′. From the typing of e, we have

Γ, x ∶τ ′, y ∶τ1;pc1;H1 ⊢ e1 ∶ τ2,H1

⊢wf (τ1

pc1,H1ÐÐÐ→ τ2)⊺ ∶ type ⊢ pc1 ≼ pc

Γ, x ∶τ ′;pc;H ⊢ λ(y ∶τ1)[pc1;H1]. e1 ∶ (τ1

pc1,H1ÐÐÐ→ τ2)⊺,⊺ ,

103

where τ = (τ1

pc1,H1ÐÐÐ→ τ2)⊺ and X = ⊺. So, we know Γ, x ∶τ ′, y ∶τ1;pc1;H1 ⊢ e1 ∶

τ2,H1. Therefore, by the induction hypothesis, we have Γ, y ∶ τ1;pc1;H1 ⊢

e1{v/x} ∶ τ2,H1. So the result holds in this case via an application of T-ABS:

Γ, y ∶τ1;pc1;H1 ⊢ e1{v/x} ∶ τ2,H1

⊢wf (τ1

pc1,H1ÐÐÐ→ τ2)⊺ ∶ type ⊢ pc1 ≼ pc

Γ;pc;H ⊢ λ(y ∶τ1)[pc1;H1]. e1{v/x} ∶ (τ1

pc1,H1ÐÐÐ→ τ2)⊺,⊺ .

Case T-EXISTS (exists u as y ∶ e1 else e2):

From the typing of e, we have

Γ, x ∶τ ′;pc;H ⊢ u ∶ (soft {ÐÐÐ⇀xi ∶ τi}r)w,⊺

⊢ auth+(r) ≼ pc ⊓w w′ = auth−(r) ⊓ persist(r) ⊓w

Γ, x ∶τ ′, y ∶({ÐÐÐ⇀xi ∶ τi}r)w;pc′;H ⊢ e1 ∶ τ ′′,X1

Γ, x ∶τ ′;pc′;H ⊢ e2 ∶ τ ′′,X2 ⊢ auth+(τ ′′) ≼ pc′

Γ, x ∶τ ′;pc;H ⊢ exists u as y ∶ e1 else e2 ∶ τ ′′ ⊓w′,X1 ⊓X2 ,

where pc′ = pc⊓w′, τ = τ ′′⊓w′, andX = X1⊓X2. By the induction hypothesis,

we therefore have

Γ;pc;H ⊢ u{v/x} ∶ (soft {ÐÐÐ⇀xi ∶ τi}r)w,⊺ (3.3)

Γ;pc′;H ⊢ e2{v/x} ∶ τ ′′,X2 (3.4)

Suppose y = x. Then e{v/x} = exists u{v/x} as y ∶ e1 else e2{v/x}, so from

(3.3) and (3.4), the result holds in this case via an application of T-EXISTS:

Γ;pc;H ⊢ u{v/x} ∶ (soft {ÐÐÐ⇀xi ∶ τi}r)w,⊺

⊢ auth+(r) ≼ pc ⊓w w′ = auth−(r) ⊓ persist(r) ⊓w

Γ, y ∶({ÐÐÐ⇀xi ∶ τi}r)w;pc′;H ⊢ e1 ∶ τ ′′,X1

Γ;pc′;H ⊢ e2{v/x} ∶ τ ′′,X2 ⊢ auth+(τ ′′) ≼ pc′

Γ;pc;H ⊢ exists u{v/x} as y ∶ e1 else e2{v/x} ∶ τ ′′ ⊓w′,X1 ⊓X2 .

104

Alternatively, suppose y ≠ x. We have FV(v) = ∅, so e{v/x} =

exists u{v/x} as y ∶ e1{v/x} else e2{v/x}. From the typing of e, we know

Γ, x ∶ τ ′, y ∶ ({ÐÐÐ⇀xi ∶ τi}r)w;pc′;H ⊢ e1 ∶ τ ′′,X1. By the induction hypothesis, we

have Γ, y ∶ ({ÐÐÐ⇀xi ∶ τi}r)w;pc′;H ⊢ e1{v/x} ∶ τ ′′,X1. From this, (3.3), and (3.4),

the result holds in this case via an application of T-EXISTS:

Γ;pc;H ⊢ u{v/x} ∶ (soft {ÐÐÐ⇀xi ∶ τi}r)w,⊺

⊢ auth+(r) ≼ pc ⊓w w′ = auth−(r) ⊓ persist(r) ⊓w

Γ, y ∶({ÐÐÐ⇀xi ∶ τi}r)w;pc′;H ⊢ e1{v/x} ∶ τ ′′,X1

Γ;pc′;H ⊢ e2{v/x} ∶ τ ′′,X2 ⊢ auth+(τ ′′) ≼ pc′

Γ;pc;H ⊢ exists u{v/x} as y ∶ e1{v/x} else e2{v/x} ∶ τ ′′ ⊓w′,X1 ⊓X2 .

Case T-LET (e = let y = e1 in e2):

From the typing of e, we have

Γ, x ∶τ ′;pc;H ⊢ e1 ∶ τ1,X1 ⊢ auth+(τ1) ≼ pc w = (⊓X1) ⊓ integ(τ1)

pc′ = pc ⊓w Γ, x ∶τ ′, y ∶τ1;pc′;H ⊢ e2 ∶ τ2,X2 ⊢ auth+(τ2) ≼ pc′

Γ, x ∶τ ′;pc;H ⊢ let y = e1 in e2 ∶ τ2 ⊓w,X1 ⊓X2 ,

where τ = τ2⊓w and X = X1⊓X2. By the induction hypothesis, we therefore

have

Γ;pc;H ⊢ e1{v/x} ∶ τ1,X1. (3.5)

Suppose y = x. Then e{v/x} = let x = e1{v/x} in e2, so from (3.5), the result

holds in this case via an application of T-LET:

Γ;pc;H ⊢ e1{v/x} ∶ τ1,X1 ⊢ auth+(τ1) ≼ pc w = (⊓X1) ⊓ integ(τ1)

pc′ = pc ⊓w Γ, y ∶τ1;pc′;H ⊢ e2 ∶ τ2,X2 ⊢ auth+(τ2) ≼ pc′

Γ;pc;H ⊢ let y = e1{v/x} in e2 ∶ τ2 ⊓w,X1 ⊓X2 .

105

Alternatively, suppose y ≠ x. We have FV(v) = ∅, so e{v/x} = let y =

e1{v/x} in e2{v/x}. From the typing of e, we know Γ, x ∶ τ ′, y ∶ τ1;pc′;H ⊢

e2 ∶ τ2,X2. By the induction hypothesis, we have Γ, y ∶ τ1;pc′;H ⊢ e2{v/x} ∶

τ2,X2. From this and (3.5), the result holds in this case via an application

of T-LET:

Γ;pc;H ⊢ e1{v/x} ∶ τ1,X1 ⊢ auth+(τ1) ≼ pc w = (⊓X1) ⊓ integ(τ1)

pc′ = pc ⊓w Γ, y ∶τ1;pc′;H ⊢ e2{v/x} ∶ τ2,X2 ⊢ auth+(τ2) ≼ pc′

Γ;pc;H ⊢ let y = e1{v/x} in e2{v/x} ∶ τ2 ⊓w,X1 ⊓X2 .

Lemma 7 (Effect bound). The effect of a well-typed expression is bounded from below

by its handler environment.

Γ;pc;H ⊢ e ∶ τ,X ⇒ H ≼ X

Proof. By induction on the derivation of Γ;pc;H ⊢ e ∶ τ,X . Rule T-TRY relies on

the easily proved fact that if H ∪ {p} ≼ X1, then H ≼ X1/p.

Lemma 8 (Value typing). The handler environment is irrelevant for typing non-

bottom values. Such a value v can also be typed with any pc that has the authority

of the references that appear in v, and can have any effect bounded from below by the

handler environment. Formally,

Γ;pc;H ⊢ v ∶ τ,X ∧ (∀p. v ≠ �p ∧ v ≠ [�p])

∧ ⊢ auth+(τ) ≼ pc′∧ ⊢ H′ ≼ X ′

⇒ Γ;pc′;H′ ⊢ v ∶ τ,X ′

Proof. By induction on the derivation of Γ;pc;H ⊢ v ∶ τ,X .

We are now ready to prove type preservation for [λpersist].

106

Lemma 9 (Type preservation). Let M be a well-formed memory. Let e be an expres-

sion with type τ and effect X . Let α ∈ L. If the configuration ⟨e,M⟩ takes an →α

transition, then the new expression e′ will also have type τ and effect X :

⊢α[wf] M ∧ ∅;pc;H ⊢ e ∶ τ,X

∧ ⟨e,M⟩→α ⟨e′,M ′⟩

⇒ ∅;pc;H ⊢ e′ ∶ τ,X .

Proof. By induction on the derivation of ∅;pc;H ⊢ e ∶ τ,X .

Given ⟨e,M⟩→α ⟨e′,M ′⟩, the proof proceeds by cases according to the evalu-

ation rules. For cases GC, α-CREATE, α-ASSIGN, and α-FORGET, we have e = e′,

so the result follows trivially.

By Lemma 7, we have H ≼ X .

Case CREATE (⟨{ÐÐÐ⇀xi = vi}S,M⟩ →α ⟨mS,M[mS ↦ {ÐÐÐ⇀xi = v′i}]⟩, where m is fresh,

S = {ÐÐÐ⇀xi ∶ τi}(a,p), and v′i = vi ▸α τi):

We have ∅;pc;H ⊢ {ÐÐÐ⇀xi = vi}S ∶ R⊺,⊺ with R = {ÐÐÐ⇀xi ∶ τi}(a,a,p) and ⊢wf S ∶

rectype. We need to show ∅;pc;H ⊢ mS ∶ R⊺,⊺. This is given by trivial

application of T-LOC.

Case APPLY (⟨(λ(x ∶τ1)[pc1;H1]. e1) v,M⟩→α ⟨e1{v/x},M⟩):

From the typing of e, we have

∅;pc;H ⊢ λ(x ∶τ1)[pc1;H1]. e1 ∶ (τ1

pc1,H1ÐÐÐ→ τ)⊺,⊺ (3.6)

and

∅;pc;H ⊢ v ∶ τ1,⊺ (3.7)

with ⊢ H ≼ H1 and H1 = X . We need to show ∅;pc;H ⊢ e1{v/x} ∶ τ,H1.

From the derivation of (3.6), we know

x ∶τ1;pc1;H1 ⊢ e1 ∶ τ,H1

107

with ⊢ pc1 ≼ pc. Applying Corollary 5 to this, we get

x ∶τ1;pc;H ⊢ e1 ∶ τ,H1.

The result follows from this and (3.7) via Lemma 6.

Case SELECT (⟨mS.xc,M⟩ →α ⟨vc ▸α p,M⟩, where M(mS) = {ÐÐÐ⇀xi = vi} and S =

{ÐÐÐ⇀xi ∶ τi}(a,p)):

We have ∅;pc;H ⊢ mS.xc ∶ τc ⊓ p, p and need to show ∅;pc;H ⊢ vc ▸α p ∶

τc ⊓ p, p.

From the typing of e, we know ∅;pc;H ⊢ mS ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺ and ⊢ a ≼

pc with ⊢wf S ∶ rectype. Therefore, the following holds:

• ⊢ auth+(τc) ≼ a ≼ pc and

• ⊢ auth+(τc) ≼ p.

So, we know ⊢ auth+(τc) ≼ pc ⊓ p.

By Lemma 7, we have ⊢ H ≼ p. Since M is well-formed, we also know that

∅;⊺;⊺ ⊢ vc ∶ τc,⊺, so by Lemma 8, we have

∅;pc ⊓ p;H ⊢ vc ∶ τc, p. (3.8)

Suppose ⊢ α ≼ p or vc is bracketed. Then vc ▸α p = vc and the result follows

from (3.8) via Corollary 5 and T-SUBSUME.

Otherwise, α /≼ p and vc is unbracketed. So vc ▸α p = [vc], and the result

follows via T-BRACKET:

∅;pc ⊓ p;H ⊢ vc ∶ τc, p α /≼ p ⊢ auth+(τc) ≼ pc ⊓ p

∅;pc;H ⊢ [vc] ∶ τc ⊓ p, p .

108

Case DANGLE-SELECT (⟨mS.xc,M⟩ →α ⟨�p ▸α p,M⟩, where M(mS) = � and S =

{ÐÐÐ⇀xi ∶ τi}(a,p)):

We have ∅;pc;H ⊢ mS.xc ∶ τc ⊓ p, p and need to show ∅;pc;H ⊢ �p ▸α p ∶

τc ⊓ p, p.

From the typing of e, we know ∅;pc;H ⊢ mS ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺ and ⊢ a ≼

pc with ⊢wf S ∶ rectype. Therefore, the following holds:

• ⊢ auth+(τc) ≼ a ≼ pc and

• ⊢ auth+(τc) ≼ p.

So, we know ⊢ auth+(τc) ≼ pc ⊓ p.

By Lemma 7, we know ⊢ H ≼ p, so by T-BOTTOM, we have

∅;pc ⊓ p;H ⊢ �p ∶ τc, p. (3.9)

Suppose ⊢ α ≼ p. Then �p ▸α p = �p and the result follows from (3.8) via

Corollary 5 and T-SUBSUME.

Otherwise, α /≼ p. So �p ▸α p = [�p], and the result follows via T-BRACKET:

∅;pc ⊓ p;H ⊢ �p ∶ τc, p α /≼ p ⊢ auth+(τc) ≼ pc ⊓ p

∅;pc;H ⊢ [�p] ∶ τc ⊓ p, p .

Case SOFT-SELECT (⟨(softmS).xc,M⟩ →α ⟨v ▸α (a ⊓ p),M⟩, where S =

{ÐÐÐ⇀xi ∶ τi}(a,p) and ⟨mS.xc,M⟩ eÐ→ ⟨v,M⟩):

From the typing of e, we have ∅;pc;H ⊢ (softmS).xc ∶ τc ⊓ p′, p and

⊢ auth+(τc) ≼ pc, where p′ = a ⊓ p. So τ = τc ⊓ p′ and X = p. We need to

show ∅;pc;H ⊢ v ▸α p′ ∶ τc ⊓ p′, p.

109

From the typing of e, it follows that ⊢wf S ∶ rectype, and therefore, we know

⊢ auth+(τc) ≼ p′. Since we also know ⊢ auth+(τc) ≼ pc, we therefore have

⊢ auth+(τc) ≼ pc ⊓ p′.

We proceed by cases according to the evaluation rules for ⟨mS.xc,M⟩ eÐ→

⟨v,M⟩.

Sub-case SELECT (⟨mS.xc,M⟩ eÐ→ ⟨vc ▸α p,M⟩, where M(mS) = {ÐÐÐ⇀xi = vi}):

We have v = vc ▸α p.

By Lemma 7, we have ⊢ H ≼ p. Since M is well-formed, we also know

that ∅;⊺;⊺ ⊢ vc ∶ τc,⊺, so by Lemma 8, we have

∅;pc ⊓ p′;H ⊢ vc ∶ τc, p. (3.10)

Suppose ⊢ α ≼ p′. Then ⊢ α ≼ p, so v ▸α p′ = v = vc ▸α p = vc. Similarly, if

vc is bracketed, then v▸α p′ = vc. In these cases, the result follows from

(3.10) via Corollary 5 and T-SUBSUME.

Otherwise, α /≼ p′ and vc is unbracketed. So v▸α p′ = [vc] and the result

follows via T-BRACKET:

∅;pc ⊓ p′;H ⊢ vc ∶ τc, p α /≼ p′ ⊢ auth+(τc) ≼ pc ⊓ p′

∅;pc;H ⊢ [vc] ∶ τc ⊓ p′, p .

Sub-case DANGLE-SELECT (⟨mS.xc,M⟩ eÐ→ ⟨�p ▸α p,M⟩):

We have v = �p ▸α p.

By Lemma 7, we know ⊢ H ≼ p, and we have ⊢ p′ ≼ p by definition, so

by T-BOTTOM, we have ∅;pc ⊓ p′;H ⊢ �p ∶ τc ⊓ p′, p.

Suppose ⊢ α ≼ p′. Then ⊢ α ≼ p, so v ▸α p′ = v = �p ▸α p = �p, and the

result follows via Corollary 5.

110

Otherwise, α /≼ p′, so v ▸α p′ = [�p], and the result follows via T-

BRACKET:

∅;pc ⊓ p′;H ⊢ �p ∶ τc ⊓ p′, p α /≼ p′ ⊢ auth+(τc) ≼ pc ⊓ p′

∅;pc;H ⊢ [�p] ∶ τc ⊓ p′, p .

Case ASSIGN (⟨mS.xc ∶= v,M⟩ →α ⟨∗ ▸α p,M[mS.xc ↦ v′]⟩, where S =

{ÐÐÐ⇀xi ∶ τi}(a,p)):

From the typing of e, we have ∅;pc;H ⊢mS.xc ∶= v ∶ 1, p and need to show

∅;pc;H ⊢ ∗ ▸α p ∶ 1, p. By Lemma 7, we have ⊢ H ≼ p, so from T-UNIT and

T-SUBSUME, we have ∅;pc ⊓ p;H ⊢ ∗ ∶ 1, p.

If ⊢ α ≼ p, then ∗ ▸α p = ∗, and the result follows by Corollary 5.

Otherwise, α /≼ p and ∗ ▸α p = [∗], and the result follows via T-BRACKET.

Case DANGLE-ASSIGN (⟨mS.xc ∶= v,M⟩ →α ⟨�p ▸α p,M⟩, where S =

{ÐÐÐ⇀xi ∶ τi}(a,p)):

From the typing of e, we have ∅;pc;H ⊢ mS.xc ∶= v ∶ 1, p and we need

to show ∅;pc;H ⊢ �p ▸α p ∶ 1, p. By Lemma 7, we have ⊢ H ≼ p, so by

T-BOTTOM, we have ∅;pc ⊓ p;H ⊢ �p ∶ 1, p.

If ⊢ α ≼ p, then �p ▸α p = �p, and the result follows by Corollary 5.

Otherwise, α /≼ p and �p ▸α p = [�p], and the result follows via T-BRACKET.

Case SOFT-ASSIGN (⟨(softmS).xc ∶= v,M⟩ →α ⟨v′ ▸α (a ⊓ p),M ′⟩, where

⟨mS.xc ∶= v,M⟩ eÐ→ ⟨v′,M ′⟩ and S = {ÐÐÐ⇀xi ∶ τi}(a,p)):

From the typing of e, we have ∅;pc;H ⊢ (softmS).xc ∶= v ∶ 1, p. By

Lemma 7, we have ⊢ H ≼ p. Let p′ = a ⊓ p. We need to show ∅;pc;H ⊢

v′ ▸α p′ ∶ 1, p. We proceed by cases according to the evaluation rules for

⟨mS.xc ∶= v,M⟩ eÐ→ ⟨v′,M ′⟩.

111

Sub-case ASSIGN (⟨mS.xc ∶= v,M⟩ eÐ→ ⟨∗ ▸α p,M ′⟩):

We have v′ = ∗ ▸α p.

If ⊢ α ≼ p′, then ⊢ α ≼ p, so v′ ▸α p′ = v′ = ∗ ▸α p = ∗. The result follows

from T-UNIT and T-SUBSUME.

Otherwise, α /≼ p′, so v′ ▸α p′ = [∗]. The result follows from T-UNIT,

T-BRACKET, and T-SUBSUME.

Sub-case DANGLE-ASSIGN (⟨mS.xc ∶= v,M⟩ eÐ→ ⟨�p ▸α p,M⟩):

We have v′ = �p ▸α p.

If ⊢ α ≼ p′, then ⊢ α ≼ p, so v′ ▸α p′ = v′ = �p ▸α p = �p. The result follows

from T-BOTTOM.

Otherwise, α /≼ p′, so v′▸αp′ = [�p]. The result follows from T-BOTTOM

and T-BRACKET.

Case EXISTS-TRUE (⟨exists softmS as x ∶ e1 else e2,M⟩→α ⟨(e1{mS/x}) ▸α w,M⟩,

where S = {ÐÐÐ⇀xi ∶ τi}(a,p) and w = a ⊓ p):

From the typing of e, we have

∅;pc;H ⊢ softmS ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺ ⊢ a ≼ pc w = a ⊓ p

x ∶({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺;pc ⊓w;H ⊢ e1 ∶ τ ′,X1

∅;pc ⊓w;H ⊢ e2 ∶ τ ′,X2 ⊢ auth+(τ ′) ≼ pc ⊓w

∅;pc;H ⊢ exists softmS as x ∶ e1 else e2 ∶ τ ′ ⊓w,X1 ⊓X2

where τ = τ ′ ⊓w and X = X1 ⊓X2. We need to show

∅;pc;H ⊢ (e1{mS/x}) ▸α w ∶ τ,X .

112

By T-LOC, we have ∅;pc ⊓ w;H ⊢ mS ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺. Therefore, by

Lemma 6, we know ∅;pc ⊓w;H ⊢ e1{mS/x} ∶ τ ′,X1. Also, by Lemma 7, we

know ⊢ H ≼ X1 ⊓X2, so by T-SUBSUME, we know

∅;pc ⊓w;H ⊢ e1{mS/x} ∶ τ,X .

Suppose ⊢ α ≼ w. Then (e1{mS/x}) ▸α w = e1{mS/x}. The result therefore

follows by Corollary 5.

Otherwise, we have α /≼ w, so (e1{mS/x}) ▸α w = [e1{mS/x}]. The result

therefore follows via T-BRACKET:

∅;pc ⊓w;H ⊢ e1{mS/x} ∶ τ ′ ⊓w,X α /≼ w ⊢ auth+(τ ′) ≼ pc ⊓w

∅;pc;H ⊢ [e1{mS/x}] ∶ τ ′ ⊓w,X

Case EXISTS-FALSE (⟨exists softmS as x ∶ e1 else e2,M⟩ →α ⟨e2 ▸α w,M⟩, where

S = {ÐÐÐ⇀xi ∶ τi}(a,p) and w = a ⊓ p):

From the typing of e, we have

∅;pc;H ⊢ softmS ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺ ⊢ a ≼ pc w = a ⊓ p

x ∶({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺;pc ⊓w;H ⊢ e1 ∶ τ ′,X1

∅;pc ⊓w;H ⊢ e2 ∶ τ ′,X2 ⊢ auth+(τ ′) ≼ pc ⊓w

∅;pc;H ⊢ exists softmS as x ∶ e1 else e2 ∶ τ ′ ⊓w,X1 ⊓X2

where τ = τ ′ ⊓w and X = X1 ⊓X2. We need to show ∅;pc;H ⊢ e2 ▸α w ∶ τ,X .

Suppose ⊢ α ≼ w. Then e2 ▸α w = e2. The result follows from Corollary 5

and T-SUBSUME.

Otherwise, α /≼ w, so e2 ▸α w = [e2]. By Lemma 7, we know ⊢ H ≼ X1 ⊓ X2.

113

The result follows via T-BRACKET and T-SUBSUME:

∅;pc ⊓w;H ⊢ e2 ∶ τ ′,X2 α /≼ w ⊢ auth+(τ ′) ≼ pc ⊓w

∅;pc;H ⊢ [e2] ∶ τ ′ ⊓w,X2

⊢ H ≼ X1 ⊓X2 ⊢ X1 ⊓X2 ≼ X2

∅;pc;H ⊢ [e2] ∶ τ ′ ⊓w,X1 ⊓X2

Case TRY-VAL (⟨try v catch p∶ e1,M⟩ →α ⟨v,M⟩, where v ≠ �p′ and v ≠ [�p′] for

all p′):

From the typing of e, we have

∅;pc;H, p ⊢ v ∶ τ,X1,

for some X1. Since v is a non-bottom value, the result ∅;pc;H ⊢ v ∶ τ,X

follows via Lemma 8.

Case TRY-CATCH (⟨try �p catch p′∶ e2,M⟩→α ⟨e2,M⟩, where ⊢ p′ ≼ p):

We have p′ ≼ p, so from the typing of e, we have

∅;pc ⊓ p ⊓ integ(τ1);H ⊢ e2 ∶ τ1,X ,

where τ = τ1 ⊓ p. We need to show ∅;pc;H ⊢ e2 ∶ τ,X . This follows from

Corollary 5 and T-SUBSUME.

Case TRY-ESC (⟨try �p catch p′∶ e2,M⟩→α ⟨�p,M⟩, where p′ /≼ p):

We have p′ /≼ p, so from the typing of e, it follows that H ≼ X ≼ p. We need

to show ∅;pc;H ⊢ �p ∶ τ,X . This follows from T-BOTTOM and T-SUBSUME.

Case PARALLEL-RESULT (⟨v1∥v2,M⟩→α ⟨∗,M⟩):

From the typing of e, we have τ = 1 and X = ⊺. The result ∅;pc;H ⊢ ∗ ∶ 1,⊺

follows trivially from T-UNIT.

114

Case IF-TRUE (⟨if true then e1 else e2),M⟩→α ⟨e1,M⟩):

From the typing of e, we have ∅;pc;H ⊢ e1 ∶ τ,X1, where X ≼ X1. We need

to show ∅;pc;H ⊢ e1 ∶ τ,X , which follows from Lemma 7 and T-SUBSUME.

Case IF-FALSE (⟨if false then e1 else e2,M⟩→α ⟨e2,M⟩):

From the typing of e, we have ∅;pc;H ⊢ e2 ∶ τ,X2, where X ≼ X2. We need

to show ∅;pc;H ⊢ e2 ∶ τ,X , which follows from Lemma 7 and T-SUBSUME.

Case LET (⟨let x = v in e1,M⟩→α ⟨e1{v/x},M⟩, where v /∈ {�p, [�p]} for all p):

Since v is a non-bottom value, by Lemma 8, it can be typed with ⊺ effect.

From the typing of e, then, we have

∅;pc;H ⊢ v ∶ τ1,⊺

and

x ∶τ1;pc ⊓ integ(τ1);H ⊢ e1 ∶ τ,X .

We need to show ∅;pc;H ⊢ e1{v/x} ∶ τ,X , which follows from Corollary 5

and Lemma 6.

Case EVAL-CONTEXT (⟨E[e1],M⟩→α ⟨E[e′1],M ′⟩, where ⟨e1,M⟩ eÐ→ ⟨e′1,M ′⟩):

We need to show ∅;pc;H ⊢ E[e′1] ∶ τ,X . We proceed by cases according to

the structure of E[e1].

Case soft e1:

From the typing of e, we have ∅;pc;H ⊢ e1 ∶ Rw,X , where τ =

(soft R)w. By the induction hypothesis, we have ∅;pc;H ⊢ e′1 ∶ Rw,X ,

so the result follows via T-SOFT.

115

Cases e1∥e2 and e2∥e1:

We show case e1∥e2. The other case follows symmetrically. From the

typing of e, we have ∅;pc;⊺ ⊢ e1 ∶ τ1,⊺. By the induction hypothesis,

we have ∅;pc;⊺ ⊢ e′1 ∶ τ1,⊺, so the result follows via T-PARALLEL.

Case try e1 catch p∶ e2:

From the typing of e, we have ∅;pc;H, p ⊢ e1 ∶ τ1,X1, where τ = τ1 ⊓w

with w = ⊓p′∈X1
(p ⊔ p′) and X = (X1/p) ⊓X2. By the induction hypoth-

esis, we have ∅;pc;H, p ⊢ e′1 ∶ τ1,X1, so the result follows via T-TRY.

Case let x = e1 in e2:

From the typing of e, we have∅;pc;H ⊢ e1 ∶ τ1,X1, where ⊢ auth+(τ1) ≼

pc and ⊢ X1 ≼ X . By the induction hypothesis, we have ∅;pc;H ⊢ e′1 ∶

τ1,X1, so the result follows via T-LET.

Case FAIL-PROP (⟨F [�p],M⟩→α ⟨�p,M⟩):

We have ∅;pc;H ⊢ e ∶ τ,X and need to show ∅;pc;H ⊢ �p ∶ τ,X . From

the typing of e, it follows that ⊢ H ≼ X ≼ p ≠ ⊺, so the result follows from

T-BOTTOM and T-SUBSUME.

Case BRACKET-SELECT (⟨[mS].xc,M⟩→α ⟨[mS.xc],M⟩):

Without loss of generality, assume S = {ÐÐÐ⇀xi ∶ τi}(a,p). Then, from the typing

of e, we have

∅;pc ⊓w;H ⊢mS ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺

α /≼ w ⊢ a ≼ pc ⊓w

∅;pc;H ⊢ [mS] ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))w,⊺

⊢ a ≼ pc w′ = w ⊓ p ⊢ H ≼ p

∅;pc;H ⊢ [mS].xc ∶ τc ⊓w′, p ,

where τ = τc ⊓w′ and X = p. We need to show ∅;pc;H ⊢ [mS.xc] ∶ τc ⊓w′, p.

116

By the typing of mS , we know ⊢wf S ∶ rectype, and so, ⊢ auth+(τc) ≼ a ≼ pc ⊓

w. Therefore, the result follows from an application of T-SELECT, followed

by T-BRACKET:

∅;pc ⊓w;H ⊢mS ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺

⊢ a ≼ pc ⊓w ⊢ H ≼ p

∅;pc ⊓w;H ⊢mS.xc ∶ τc ⊓ p, p α /≼ w ⊢ auth+(τc) ≼ pc ⊓w

∅;pc;H ⊢ [mS.xc] ∶ τc ⊓w′, p .

Case BRACKET-SOFT-SELECT (⟨[softmS].xc,M⟩→α ⟨[(softmS).xc],M⟩):

Without loss of generality, assume S = {ÐÐÐ⇀xi ∶ τi}(a,p). Then, from the typing

of e, we have

∅;pc ⊓w;H ⊢ softmS ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺

α /≼ w ⊢ a ≼ pc ⊓w

∅;pc;H ⊢ [softmS] ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a,a,p))w,⊺

⊢ auth+(τc) ≼ pc w′ = w ⊓ a ⊓ p ⊢ H ≼ p

∅;pc;H ⊢ [softmS].xc ∶ τc ⊓w′, p ,

where τ = τc ⊓ w′ and X = p. We need to show ∅;pc;H ⊢ [(softmS).xc] ∶

τc ⊓w′, p.

By the typing of mS , we know ⊢wf S ∶ rectype, and so, ⊢ auth+(τc) ≼ a ≼

pc⊓w. Therefore, the result follows from T-SOFT-SELECT and T-BRACKET:

∅;pc ⊓w;H ⊢ softmS ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺

⊢ auth+(τc) ≼ pc ⊓w w′ = w ⊓ a ⊓ p ⊢ H ≼ p

∅;pc ⊓w;H ⊢ (softmS).xc ∶ τc ⊓w′, p

α /≼ w ⊢ auth+(τc) ≼ pc ⊓w

∅;pc;H ⊢ [(softmS).xc] ∶ τc ⊓w′, p .

117

Case BRACKET-ASSIGN (⟨[mS].xc ∶= v,M⟩→α ⟨[mS.xc ∶= v],M⟩):

Without loss of generality, assume S = {ÐÐÐ⇀xi ∶ τi}(a,p). Then, from the typing

of e, we have

∅;pc ⊓w;H ⊢mS ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺

α /≼ w ⊢ a ≼ pc ⊓w

∅;pc;H ⊢ [mS] ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))w,⊺ ⊢ a ≼ pc ∅;pc;H ⊢ v ∶ τ ′,⊺

⊢ τ ′ ⊓ pc ⊓w ≤ τc ⊢ auth+(τ ′) ≼ pc ⊓w ⊢ H ≼ p

∅;pc;H ⊢ [mS].xc ∶= v ∶ 1, p ,

where τ = 1 and X = p. We need to show ∅;pc;H ⊢ [mS.xc ∶= v] ∶ 1, p.

From ⊢ auth+(τ ′) ≼ pc ⊓ w and Lemma 8, we know ∅;pc ⊓ w;H ⊢ v ∶ τ ′,⊺.

The result then follows from an application of T-ASSIGN followed by T-

BRACKET:

∅;pc ⊓w;H ⊢mS ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺ ⊢ a ≼ pc

∅;pc ⊓w;H ⊢ v ∶ τ ′,⊺ ⊢ τ ′ ⊓ pc ⊓w ≤ τc

⊢ auth+(τ ′) ≼ pc ⊓w ⊢ H ≼ p

∅;pc ⊓w;H ⊢mS.xc ∶= v ∶ 1, p α /≼ w

∅;pc;H ⊢ [mS.xc ∶= v] ∶ 1, p .

118

Case BRACKET-SOFT-ASSIGN

(⟨[softmS].xc ∶= v,M⟩→α ⟨[(softmS).xc ∶= v],M⟩):

Without loss of generality, assume S = {ÐÐÐ⇀xi ∶ τi}(a,p). Then, from the typing

of e, we have

∅;pc ⊓w;H ⊢ softmS ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺

α /≼ w ⊢ a ≼ pc ⊓w

∅;pc;H ⊢ [softmS] ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a,a,p))w,⊺ ∅;pc;H ⊢ v ∶ τ ′,⊺

⊢ τ ′ ⊓ pc ⊓w ≤ τc ⊢ auth+(τ ′) ≼ pc ⊓w ⊢ H ≼ p

∅;pc;H ⊢ [softmS].xc ∶= v ∶ ∗, p ,

where τ = 1 and X = p. We need to show ∅;pc;H ⊢ [(softmS).xc ∶= v] ∶ 1, p.

From ⊢ auth+(τ ′) ≼ pc ⊓ w and Lemma 8, we know ∅;pc ⊓ w;H ⊢ v ∶ τ ′,⊺.

The result then follows from T-SOFT-ASSIGN and T-BRACKET:

∅;pc ⊓w;H ⊢ softmS ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺ ∅;pc ⊓w;H ⊢ v ∶ τ,⊺

⊢ τ ′ ⊓ pc ⊓w ≤ τc ⊢ auth+(τ ′) ≼ pc ⊓w ⊢ H ≼ p

∅;pc ⊓w;H ⊢ (softmS).xc ∶= v ∶ 1, p

α /≼ w

∅;pc;H ⊢ [(softmS).xc ∶= v] ∶ 1, p .

Case BRACKET-SOFT (⟨soft [mS],M⟩→α ⟨[softmS],M⟩):

Without loss of generality, assume S = {ÐÐÐ⇀xi ∶ τi}(a,p). Then, from the typing

of e, we have

∅;pc ⊓w;H ⊢mS ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺

α /≼ w ⊢ a ≼ pc ⊓w

∅;pc;H ⊢ [mS] ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))w,⊺

∅;pc;H ⊢ soft [mS] ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a,a,p))w,⊺ ,

119

where τ = (soft {ÐÐÐ⇀xi ∶ τi}(a,a,p))w and X = ⊺. We need to show ∅;pc;H ⊢

[softmS] ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a,a,p))w,⊺. This follows via an application of T-

SOFT followed by T-BRACKET:

∅;pc ⊓w;H ⊢mS ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺

∅;pc ⊓w;H ⊢ softmS ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺ α /≼ w

∅;pc;H ⊢ [softmS] ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a,a,p))w,⊺ .

Case BRACKET-EXISTS

(⟨exists [v] as x ∶ e1 else e2,M⟩→α ⟨[exists v as x ∶ e1 else e2],M⟩):

From the typing of e, we have

∅;pc ⊓ `;H ⊢ v ∶ (soft {ÐÐÐ⇀xi ∶ τi}r)w,⊺

α /≼ ` ⊢ auth+(r) ≼ pc ⊓ `

∅;pc;H ⊢ [v] ∶ (soft {ÐÐÐ⇀xi ∶ τi}r)w⊓`,⊺

⊢ auth+(r) ≼ pc ⊓w ⊓ ` w′ = auth−(r) ⊓ persist(r) ⊓w ⊓ `

x ∶ ({ÐÐÐ⇀xi ∶ τi}r)w⊓`;pc ⊓w′;H ⊢ e1 ∶ τ ′,X1

∅;pc ⊓w′;H ⊢ e2 ∶ τ ′,X2 ⊢ auth+(τ ′) ≼ pc ⊓w′

∅;pc;H ⊢ exists [v] as x ∶ e1 else e2 ∶ τ ′ ⊓w′,X1 ⊓X2

where τ = τ ′ ⊓ w′ and X = X1 ⊓ X2. We need to show ∅;pc;H ⊢

[exists v as x ∶ e1 else e2] ∶ τ ′ ⊓ w′,X1 ⊓ X2. To do this, we need to know

that x ∶ ({ÐÐÐ⇀xi ∶ τi}r)w;pc ⊓ w′;H ⊢ e1 ∶ τ ′,X1, which can be demonstrated

by an easy induction on the derivation of x ∶ ({ÐÐÐ⇀xi ∶ τi}r)w⊓`;pc ⊓ w′;H ⊢

e1 ∶ τ ′,X1. The result therefore follows via an application of T-EXISTS and

T-BRACKET.

120

∅;pc ⊓ `;H ⊢ v ∶ (soft {ÐÐÐ⇀xi ∶ τi}r)w,⊺

⊢ auth+(r) ≼ pc ⊓w ⊓ ` w′′ = auth−(r) ⊓ persist(r) ⊓w

x ∶ ({ÐÐÐ⇀xi ∶ τi}r)w;pc ⊓ ` ⊓w′′;H ⊢ e1 ∶ τ ′,X1

∅;pc ⊓ ` ⊓w′′;H ⊢ e2 ∶ τ ′,X2 ⊢ auth+(τ ′) ≼ pc ⊓ ` ⊓w′′

∅;pc ⊓ `;H ⊢ exists v as x ∶ e1 else e2 ∶ τ ′ ⊓w′′,X1 ⊓X2

α /≼ ` ⊢ auth+(τ ′ ⊓w′′) ≼ pc ⊓ ` ⊓w′′ ≼ pc ⊓ `

∅;pc;H ⊢ [exists v as x ∶ e1 else e2] ∶ τ ′ ⊓w′,X1 ⊓X2

(Note that w′ = ` ⊓w′′.)

Case BRACKET-APPLY

(⟨[λ(x ∶τ1)[pc1;H1]. e1] v2,M⟩→α ⟨[(λ(x ∶τ1)[pc1;H1]. e1) v2],M⟩):

From the typing of e, we have

x ∶τ1;pc1;H1 ⊢ e1 ∶ τ ′,H1

⊢wf (τ1

pc1,H1ÐÐÐ→ τ ′)⊺ ∶ type ⊢ pc1 ≼ pc ⊓w

∅;pc ⊓w;H ⊢ λ(x ∶τ1)[pc1;H1]. e1 ∶ (τ1

pc1,H1ÐÐÐ→ τ ′)⊺,⊺

α /≼ w ⊢ pc1 ≼ pc ⊓w

∅;pc;H ⊢ [λ(x ∶τ1)[pc1;H1]. e1] ∶ (τ1

pc1,H1ÐÐÐ→ τ ′)w,⊺

∅;pc;H ⊢ v2 ∶ τ1,⊺ ⊢ pc1 ≼ pc ⊓w ⊢ H ≼ H1

∅;pc;H ⊢ [λ(x ∶τ1)[pc1;H1]. e1] v2 ∶ τ ′ ⊓w,H1 ,

where τ = τ ′ ⊓ w and X = H1. We need to show ∅;pc;H ⊢ [(λ(x ∶

τ1)[pc1;H1]. e1) v2] ∶ τ ′ ⊓w,H1.

By WT4, from ⊢wf (τ1

pc1,H1ÐÐÐ→ τ ′)⊺ ∶ type, we know ⊢ auth+(τ1) ⊔ auth+(τ ′) ≼

pc1. Since we also know from the above derivation that ⊢ pc1 ≼ pc ⊓ w, it

therefore follows that

⊢ auth+(τ1) ≼ pc ⊓w (3.11)

121

and ⊢ auth+(τ ′) ≼ pc⊓w. From the above derivation, we also have∅;pc;H ⊢

v2 ∶ τ1,⊺. Applying Lemma 8 to this and (3.11), we have ∅;pc ⊓w;H ⊢ v2 ∶

τ1,⊺. The result then follows from an application of T-APP followed by

T-BRACKET:

∅;pc ⊓w;H ⊢ λ(x ∶τ1)[pc1;H1]. e1 ∶ (τ1

pc1,H1ÐÐÐ→ τ ′)⊺,⊺

∅;pc ⊓w;H ⊢ v2 ∶ τ1,⊺ ⊢ pc1 ≼ pc ⊓w ⊢ H ≼ H1

∅;pc ⊓w;H ⊢ (λ(x ∶τ1)[pc1;H1]. e1) v2 ∶ τ ′,H1

α /≼ w ⊢ auth+(τ ′) ≼ pc ⊓w

∅;pc;H ⊢ [(λ(x ∶τ1)[pc1;H1]. e1) v2] ∶ τ ′ ⊓w,H1 .

Case BRACKET-TRY (⟨try [v] catch p∶ e2,M⟩→α ⟨[try v catch p∶ e2],M⟩):

From the typing of e, we have

∅;pc ⊓ `;H, p ⊢ v ∶ τ ′,X1

α /≼ ` ⊢ auth+(τ ′) ≼ pc ⊓ `

∅;pc;H, p ⊢ [v] ∶ τ ′ ⊓ `,X1 w = ⊓
p′∈X1

(p ⊔ p′)

∅;pc ⊓w ⊓ integ(τ ′ ⊓ `);H ⊢ e2 ∶ τ ′ ⊓ `,X2 ⊢ auth+(τ ′ ⊓ `) ≼ pc

∅;pc;H ⊢ try [v] catch p∶ e2 ∶ τ ′ ⊓ ` ⊓w, (X1/p) ⊓X2 ,

where τ = τ ′ ⊓ ` ⊓w and X = (X1/p) ⊓X2.

We need to show

∅;pc;H ⊢ [try v catch p∶ e2] ∶ τ ′ ⊓ ` ⊓w, (X1/p) ⊓X2.

Note that integ(τ ′ ⊓ `) = integ(τ ′) ⊓ ` and auth+(τ ′) = auth+(τ ′ ⊓ `) =

auth+(τ ′ ⊓ ` ⊓ w). The result then follows from S3, T-SUBSUME, T-TRY,

and T-BRACKET:

122

∅;pc ⊓ `;H, p ⊢ v ∶ τ ′,X1

⊢ integ(τ ′) ⊓ ` ≼ integ(τ ′)

⊢ τ ′ ≤ τ ′ ⊓ `

∅;pc ⊓ `;H, p ⊢ v ∶ τ ′ ⊓ `,X1

w = ⊓
p′∈X1

(p ⊔ p′)

∅;pc ⊓ ` ⊓w ⊓ integ(τ ′ ⊓ `);H ⊢ e2 ∶ τ ′ ⊓ `,X2 ⊢ auth+(τ ′ ⊓ `) ≼ pc ⊓ `

∅;pc ⊓ `;H ⊢ try v catch p∶ e2 ∶ τ ′ ⊓ ` ⊓w, (X1/p) ⊓X2

α /≼ ` ⊢ auth+(τ ′ ⊓ ` ⊓w) ≼ pc ⊓ `

∅;pc;H ⊢ [try v catch p∶ e2] ∶ τ ′ ⊓ ` ⊓w, (X1/p) ⊓X2 .

Case BRACKET-IF (⟨if [v] then e1 else e2,M⟩→α ⟨[if v then e1 else e2],M⟩):

From the typing of e, we have

∅;pc ⊓ `;H ⊢ v ∶ boolw,⊺ α /≼ `

∅;pc;H ⊢ [v] ∶ boolw⊓`,⊺

∅;pc ⊓w ⊓ `;H ⊢ ei ∶ τ ′,Xi (∀i) ⊢ auth+(τ ′) ≼ pc ⊓w ⊓ `

∅;pc;H ⊢ if [v] then e1 else e2 ∶ τ ′ ⊓w ⊓ `,X1 ⊓X2 ,

where τ = τ ′ ⊓ w ⊓ ` and X = X1 ⊓ X2. We need to show ∅;pc;H ⊢

[if v then e1 else e2] ∶ τ ′ ⊓w ⊓ `,X1 ⊓X2.

Since auth+(τ ′ ⊓w) = auth+(τ ′) and ⊢ pc ⊓w ⊓ ` ≼ pc ⊓ `, we therefore have

⊢ auth+(τ ′ ⊓w) ≼ pc ⊓ `. The result then follows from T-IF and T-BRACKET:

∅;pc ⊓ `;H ⊢ v ∶ boolw,⊺

∅;pc ⊓ ` ⊓w;H ⊢ ei ∶ τ ′,Xi (∀i) ⊢ auth+(τ ′) ≼ pc ⊓ ` ⊓w

∅;pc ⊓ `;H ⊢ if v then e1 else e2 ∶ τ ′ ⊓w,X1 ⊓X2

α /≼ ` ⊢ auth+(τ ′ ⊓w) ≼ pc ⊓ `

∅;pc;H ⊢ [if v then e1 else e2] ∶ τ ′ ⊓w ⊓ `,X1 ⊓X2 .

123

Case BRACKET-LET (⟨let x = [v] in e1,M⟩ →α ⟨[e1{[v]/x}],M⟩, where v ≠ �p for

all p):

By Lemma 8, we know [v] can be typed with ⊺ effect. Therefore, from the

typing of e, we have

∅;pc ⊓ `;H ⊢ v ∶ τ ′′,⊺

α /≼ ` ⊢ auth+(τ ′′) ≼ pc ⊓ `

∅;pc;H ⊢ [v] ∶ τ ′′ ⊓ `,⊺ ⊢ auth+(τ ′′ ⊓ `) ≼ pc

w = integ(τ ′′ ⊓ `) x ∶τ ′′ ⊓ `;pc ⊓w;H ⊢ e1 ∶ τ ′,X ⊢ auth+(τ ′) ≼ pc ⊓w

∅;pc;H ⊢ let x = [v] in e1 ∶ τ ′ ⊓w,X ,

where τ = τ ′ ⊓w. We need to show ∅;pc;H ⊢ [e1{[v]/x}] ∶ τ ′ ⊓w,X .

From the derivation above, we know ∅;pc;H ⊢ [v] ∶ τ ′′ ⊓ `,⊺. Since

auth+(τ ′′ ⊓ `) = auth+(τ ′′), from ⊢ auth+(τ ′′) ≼ pc ⊓ ` above, we have

⊢ auth+(τ ′′ ⊓ `) ≼ pc ⊓ `. Therefore, by Lemma 8, we know

∅;pc ⊓ `;H ⊢ [v] ∶ τ ′′ ⊓ `,⊺. (3.12)

From the derivation above, we also know x ∶τ ′′ ⊓ `;pc ⊓w;H ⊢ e1 ∶ τ ′,X . By

definition, ⊢ w ≼ `, so by Corollary 5, we know x ∶τ ′′⊓`;pc⊓`;H ⊢ e1 ∶ τ ′,X .

Applying Lemma 6 to this and (3.12), we have

∅;pc ⊓ `;H ⊢ e1{[v]/x} ∶ τ ′ ⊓w,X .

Since auth+(τ ′⊓w) = auth+(τ ′) and ⊢ w ≼ `, from ⊢ auth+(τ ′) ≼ pc ⊓w above,

we have

⊢ auth+(τ ′ ⊓w) ≼ pc ⊓ `.

Finally, by Lemma 7, we have ⊢ H ≼ X .

124

The result, then, follows from T-SUBSUME and T-BRACKET:

∅;pc ⊓ `;H ⊢ e1{[v]/x} ∶ τ ′ ⊓w,X

⊢ H ≼ X

∅;pc ⊓ `;H ⊢ e1{[v]/x} ∶ τ ′ ⊓w,X α /≼ ` ⊢ auth+(τ ′ ⊓w) ≼ pc ⊓ `

∅;pc;H ⊢ [e1{[v]/x}] ∶ τ ′ ⊓w ⊓ `,X .

Case DOUBLE-BRACKET (⟨[[v]],M⟩→α ⟨[v],M⟩):

From the typing of e, we have

∅;pc ⊓ `;H ⊢ [v] ∶ τ ′,X α /≼ ` ⊢ auth+(τ ′) ≼ pc ⊓ `

∅;pc;H ⊢ [[v]] ∶ τ ′ ⊓ `,X ,

where τ = τ ′⊓`. We need to show∅;pc;H ⊢ [v] ∶ τ ′⊓`,X . By Corollary 5, we

know ∅;pc;H ⊢ [v] ∶ τ ′,X . The result then follows via S3 and T-SUBSUME:

∅;pc;H ⊢ [v] ∶ τ ′,X

⊢ integ(τ ′) ⊓ ` ≼ integ(τ ′)

⊢ τ ′ ≤ τ ′ ⊓ `

∅;pc;H ⊢ [v] ∶ τ ′ ⊓ `,X .

Case BRACKET-CONTEXT (⟨[e1],M⟩→α ⟨[e′1],M ′⟩, where ⟨e1,M⟩→α ⟨e′1,M ′⟩):

From the typing of e, we have

∅;pc ⊓ `;H ⊢ e1 ∶ τ ′,X α /≼ ` ⊢ auth+(τ ′) ≼ pc ⊓ `

∅;pc;H ⊢ [e1] ∶ τ ′ ⊓ `,X ,

where τ = τ ′ ⊓ `. We need to show ∅;pc;H ⊢ [e′1] ∶ τ,X .

By the induction hypothesis, we have ∅;pc ⊓ `;H ⊢ e′1 ∶ τ ′,X . The result

follows by T-BRACKET:

∅;pc ⊓ `;H ⊢ e′1 ∶ τ ′,X α /≼ ` ⊢ auth+(τ ′) ≼ pc ⊓ `

∅;pc;H ⊢ [e′1] ∶ τ ′ ⊓ `,X .

125

Case BRACKET-FAIL (⟨F [[�p]],M⟩→α ⟨[�p],M⟩):

We need to show ∅;pc;H ⊢ [�p] ∶ τ,X . We proceed by cases according to

the structure of F [[�p]].

Case soft [�p]:

From the typing of e, we have

p ≠ ⊺ ⊢ H ≼ p

∅;pc ⊓w;H ⊢ �p ∶ R⊺, p α /≼ w ⊢ auth+(R⊺) ≼ pc ⊓w

∅;pc;H ⊢ [�p] ∶ Rw, p

∅;pc;H ⊢ soft [�p] ∶ (soft R)w, p ,

where τ = (soft R)w and X = p. The result follows via T-BOTTOM and

T-BRACKET:

p ≠ ⊺ ⊢ H ≼ p

∅;pc ⊓w;H ⊢ �p ∶ (soft R)⊺, p

α /≼ w ⊢ auth+((soft R)⊺) ≼ pc ⊓w

∅;pc;H ⊢ [�p] ∶ (soft R)w, p .

Case let x = [�p] in e2:

From the typing of e, we have

p ≠ ⊺ ⊢ H ≼ p

∅;pc ⊓ `;H ⊢ �p ∶ τ1, p α /≼ ` ⊢ auth+(τ1) ≼ pc ⊓ `

∅;pc;H ⊢ [�p] ∶ τ1 ⊓ `, p

⊢ auth+(τ1 ⊓ `) ≼ pc w = p ⊓ integ(τ1 ⊓ `)

x ∶τ1 ⊓ `;pc ⊓w;H ⊢ e2 ∶ τ2,X2 ⊢ auth+(τ2) ≼ pc ⊓w

∅;pc;H ⊢ let x = [�p] in e2 ∶ τ2 ⊓w,X2 ⊓ p ,

126

where τ = τ2 ⊓w and X = X2 ⊓ p. By construction, ⊢ w ≼ `, so we know

α /≼ w. By Lemma 7, we also know ⊢ H ≼ X2⊓p. The result follows via

T-BOTTOM, T-BRACKET and T-SUBSUME:

p ≠ ⊺ ⊢ H ≼ p

∅;pc ⊓w;H ⊢ �p ∶ τ2, p

α /≼ w ⊢ auth+(τ2) ≼ pc ⊓w

∅;pc;H ⊢ [�p] ∶ τ2 ⊓w,p ⊢ H ≼ X2 ⊓ p ⊢ X2 ⊓ p ≼ X2

∅;pc;H ⊢ [�p] ∶ τ2 ⊓w,X2 ⊓ p .

We now show that well-formedness is also preserved during execution.

Lemma 10 (Well-formedness preservation). If ⟨e,M⟩ is a well-formed configuration

wherein e is well-typed, and ⟨e,M⟩ takes an →α transition, then the new configuration

⟨e′,M ′⟩ will also be well-formed:

⊢α[wf] ⟨e,M⟩ ∧ ∅;pc;H ⊢ e ∶ τ,X ∧ ⟨e,M⟩→α ⟨e′,M ′⟩⇒⊢α[wf] ⟨e′,M ′⟩ .

Proof. First, note that dom(M) ⊆ dom(M ′). This can be shown by an easy induc-

tion on the derivation of ⟨e,M⟩→α ⟨e′,M ′⟩.

We prove the lemma by induction on the derivation of ⟨e,M⟩ →α ⟨e′,M ′⟩.

Given ⟨e,M⟩ →α ⟨e′,M ′⟩, the proof proceeds by cases according to the evalua-

tion rules.

Rules DANGLE-SELECT, DANGLE-ASSIGN, PARALLEL-RESULT, TRY-ESC,

FAIL-PROP, and BRACKET-FAIL, are trivial base cases in which locs(e′) = ∅ and

M ′ =M . Rules SELECT, and SOFT-SELECT follow from the definition of ⊢α[wf] M .

Rules APPLY, EXISTS-TRUE, EXISTS-FALSE, TRY-VAL, TRY-CATCH, IF-TRUE,

IF-FALSE, LET, BRACKET-SELECT, BRACKET-SOFT-SELECT, BRACKET-ASSIGN,

127

BRACKET-SOFT-ASSIGN, BRACKET-SOFT, BRACKET-EXISTS, BRACKET-APPLY,

BRACKET-TRY, BRACKET-IF, BRACKET-LET, and DOUBLE-BRACKET follow be-

cause in these cases, locs(e′) ⊆ locs(e), M ′ =M , and root(mS, e′)⇒ root(mS, e).

Rule GC follows from the fact that ⊢α[wf] M and that minimal collectible

groups must be disjoint.

Rules α-CREATE and α-ASSIGN follow trivially from the transition rules.

Rule α-FORGET follows from the fact that ⊢α[wf] M .

Case CREATE (⟨{ÐÐÐ⇀xi = vi}S,M⟩ →α ⟨mS,M[mS ↦ {ÐÐÐÐÐÐÐ⇀xi = vi ▸α τi}]⟩, where mS is

fresh and S = {ÐÐÐ⇀xi ∶ τi}s):

We show ∅;⊺;⊺ ⊢ vi ∶ τi,⊺ for arbitrary i; the rest of this case follows from

⊢α[wf] ⟨e,M⟩.

From the typing of e, we have ∅;pc;H ⊢ vi ∶ τi,⊺. From this, the result

follows via Lemma 8 and T-BRACKET.

Case ASSIGN (⟨mS.xc ∶= v,M⟩ →α ⟨∗ ▸α p,M[mS ↦ v ▸α τc]⟩, where S =

{ÐÐÐ⇀xi ∶ τi}(a,p)):

From the typing of e and by T-SUBSUME, we have ∅;pc;H ⊢ v ∶ τc,⊺. By

Lemma 8, we have ∅;⊺;⊺ ⊢ v ∶ τc,⊺, and the rest of this case follows from

⊢α[wf] ⟨e,M⟩.

Case SOFT-ASSIGN (⟨(softmS).xc ∶= v,M⟩ →α ⟨v′ ▸α (a ⊓ p),M ′⟩, where

⟨mS.xc ∶= v,M⟩ eÐ→ ⟨v′,M ′⟩ and S = {ÐÐÐ⇀xi ∶ τi}(a,p)):

If M(mS) = �, then we have locs(e′) = ∅ and M ′ = M , and the result fol-

lows.

Otherwise,M(mS) ≠ �, so from the definition of ⊢α[wf] ⟨(softmS).xc ∶= v,M⟩,

we can obtain ⊢α[wf] ⟨mS.xc ∶= v,M⟩, and the rest follows similarly to the

previous case.

128

Case EVAL-CONTEXT (⟨E[e1],M⟩→α ⟨E[e′1],M ′⟩, where ⟨e1,M⟩ eÐ→ ⟨e′1,M ′⟩):

Since ⊢α[wf] ⟨e,M⟩, we know ⊢α[wf] ⟨e1,M⟩. Proceeding by cases according to

the structure of E[e1], in each case we have ∅;pc1;H1 ⊢ e1 ∶ τ1,X1 (for some

pc1,H1, τ1, and X1). So, by the induction hypothesis, we have ⊢α[wf] ⟨e′1,M ′⟩.

From this and the fact that ⊢α[wf] ⟨e,M⟩, the result follows.

Case BRACKET-CONTEXT (⟨[e1],M⟩→α ⟨[e′1],M ′⟩, where ⟨e1,M⟩ eÐ→ ⟨e′1,M ′⟩):

Since ⊢α[wf] ⟨e,M⟩, we know ⊢α[wf] ⟨e1,M⟩. From the typing of e, we have

∅;pc′;H ⊢ e1 ∶ τ1,X , for some appropriate pc′ and τ1. So, by the induction

hypothesis, we have ⊢α[wf] ⟨e′1,M ′⟩, and therefore ⊢α[wf] ⟨e′,M ′⟩.

Corollary 11 (Preservation).

⊢α[wf] ⟨e,M⟩ ∧ ∅;pc;H ⊢ e ∶ τ,X ∧ ⟨e,M⟩→∗
α ⟨e′,M ′⟩

⇒⊢α[wf] ⟨e′,M ′⟩ ∧ ∅;pc;H ⊢ e′ ∶ τ,X

Proof. This follows from Lemmas 9 and 10 by induction on the number of →α

transitions taken.

Corollary 12 (Preservation (non-adversarial execution)).

⊢[wf] ⟨e,M⟩ ∧ ∅;pc;H ⊢ e ∶ τ,X ∧ ⟨e,M⟩→∗ ⟨e′,M ′⟩

⇒⊢[wf] ⟨e′,M ′⟩ ∧ ∅;pc;H ⊢ e′ ∶ τ,X

Proof. This follows by Corollary 11 and the definition of ⊢[wf] ⟨e,M⟩.

Lemma 13 (Progress). Let ⟨e,M⟩ be a configuration wherein e has type τ and effect

X , and the locations appearing in e are mapped byM . Then either e is a value, or ⟨e,M⟩

can take an eÐ→ transition:

∅;pc;H ⊢ e ∶ τ,X ∧ locs(e) ⊆ dom(M)

⇒ e is a value ∨ ∃e′,M ′. ⟨e,M⟩ eÐ→ ⟨e′,M ′⟩

(Doubly bracketed values are considered expressions and not values.)

129

Proof. By induction on the derivation of ∅;pc;H ⊢ e ∶ τ,X . We proceed by cases

according to the syntax of e. Note that since e is typed in an empty type context

(Γ = ∅), we must have FV(e) = ∅.

Case e = v:

Trivial since e is a value.

Case e = v1 v2:

From the typing of e, we know that v1 is a value with an arrow type and ⊺

effect, so it is either an abstraction λ(x ∶τ1)[pc1;H1]. e1 or a bracketed value

[v′1]. In the former case, by APPLY, we have

⟨e,M⟩ = ⟨(λ(x ∶τ1)[pc1;H1]. e1) v2,M⟩ eÐ→ ⟨e1{v2/x},M⟩ .

In the latter case, by BRACKET-APPLY, we have ⟨e,M⟩ = ⟨[v′1] v2,M⟩ eÐ→

⟨[v′1 v2],M⟩.

Case e = if v1 then e2 else e3:

From the typing of e, we know that v1 is a value with bool type and ⊺ ef-

fect, so either v1 = true, v1 = false, or v1 is a bracketed value [v′1]. If v1 = true,

then by IF-TRUE, we have ⟨e,M⟩ = ⟨if true then e2 else e3,M⟩ eÐ→ ⟨e2,M⟩. If

v1 = false, then by IF-FALSE, we have ⟨e,M⟩ = ⟨if false then e2 else e3,M⟩ eÐ→

⟨e3,M⟩. Otherwise, v1 = [v′1] and by BRACKET-IF, we have ⟨e,M⟩ =

⟨if [v′1] then e2 else e3,M⟩ eÐ→ ⟨[if v′1 then e2 else e3],M⟩.

Case e = {ÐÐÐ⇀xi = vi}S :

Trivial by CREATE.

Case e = v.xc:

From the typing of e, we know v is a value with record type and ⊺ effect, so

it is either a bracketed hard reference (v = [mS]), a bracketed soft reference

(v = [softmS]), a hard reference (v =mS), or a soft reference (v = softmS).

130

In the first case (v = [mS]), by BRACKET-SELECT, we have ⟨e,M⟩ =

⟨[mS].xc,M⟩ eÐ→ ⟨[mS.xc],M⟩. In the second case (v = [softmS]),

by BRACKET-SOFT-SELECT, we have ⟨e,M⟩ = ⟨[softmS].xc,M⟩ eÐ→

⟨[(softmS).xc],M⟩.

In the third (v = mS) and fourth (v = softmS) cases, assume without loss

of generality S = {ÐÐÐ⇀xi ∶ τi}(a,p). Since locs(e) ⊆ dom(M), we must have mS ∈

dom(M). There are two sub-cases to consider. In each sub-case, we will

show ⟨mS.xc,M⟩ eÐ→ ⟨v′′,M⟩, for some v′′, thereby proving the case of a

hard reference (v = mS). The case of a soft reference (v = softmS) follows

by SOFT-SELECT: ⟨(softmS).xc,M⟩ eÐ→ ⟨v′′ ▸α (a ⊓ p),M⟩.

1. Case M(mS) ≠ �:

Without loss of generality, assume M(mS) = {ÐÐÐ⇀xi = vi}. Then, by SE-

LECT,

⟨mS.xc,M⟩ eÐ→ ⟨vc ▸α p,M⟩ .

2. Case M(mS) = �:

By DANGLE-SELECT, ⟨mS.xc,M⟩ eÐ→ ⟨�p ▸α p,M⟩.

Case e = v.xc ∶= v′:

From the typing of e, we know that v is a value with record type and ⊺ ef-

fect, so it must be either a bracketed hard reference (v = [mS]), a bracketed

soft reference (v = [softmS]), a hard reference (v = mS), or a soft reference

(v = softmS).

In the first case (v = [mS]), by BRACKET-ASSIGN, we have ⟨e,M⟩ =

⟨[mS].xc ∶= v′,M⟩ eÐ→ ⟨[mS.xc ∶= v′],M⟩.

In the second case (v = [softmS]), by BRACKET-SOFT-ASSIGN, we have

⟨e,M⟩ = ⟨[softmS].xc ∶= v′,M⟩ eÐ→ ⟨[(softmS).xc ∶= v′],M⟩.

131

For the remaining cases, suppose v = mS or v = softmS . Then, since

locs(e) ⊆ dom(M), we must have mS ∈ dom(M). Without loss of gener-

ality, assume S = {ÐÐÐ⇀xi ∶ τi}(a,p). From the typing of e, we also know that v′

is a value with ⊺ effect, so v′ ≠ �p′ and v′ ≠ [�p′] for all p′. There are two

sub-cases to consider. In each sub-case, we will show ⟨mS.xc ∶= v′,M⟩ eÐ→

⟨v′′′,M ′⟩, for some v′′′ and some M ′, thereby proving the case of a hard

reference (v = mS). The case of a soft reference (v = softmS) follows by

SOFT-ASSIGN: ⟨(softmS).xc ∶= v′,M⟩ eÐ→ ⟨v′′′ ▸α (a ⊓ p),M ′⟩.

1. Case M(mS) ≠ �:

Without loss of generality, assume M(mS) = {ÐÐÐ⇀xi = vi}. Then, by AS-

SIGN,

⟨mS.xc ∶= v′,M⟩ eÐ→ ⟨∗ ▸α p,M[mS.xc ↦ v′ ▸α τc]⟩ .

2. Case M(mS) = �:

By DANGLE-ASSIGN, ⟨mS.xc ∶= v′,M⟩ eÐ→ ⟨�p ▸α p,M⟩.

Case e = exists v as x ∶ e1 else e2:

From the typing of e, we know that v is a value with soft reference type,

so it is either a bracketed value (v = [v′]) or a soft reference (v = softmS).

In the first case (v = [v′]), by BRACKET-EXISTS, we have

⟨e,M⟩ = ⟨exists [v′] as x ∶ e1 else e2,M⟩ eÐ→ ⟨[exists v′ as x ∶ e1 else e2],M⟩

The second case (v = softmS) splits into two sub-cases. Assume S =

{ÐÐÐ⇀xi ∶ τi}(a,p) without loss of generality. IfM(mS) ≠ �, then by EXISTS-TRUE,

we have

⟨e,M⟩ = ⟨exists softmS as x ∶ e1 else e2,M⟩ eÐ→ ⟨(e1{mS/x}) ▸α (a ⊓ p),M⟩

132

Otherwise, M(mS) = �, and by EXISTS-FALSE, we have

⟨e,M⟩ = ⟨exists softmS as x ∶ e1 else e2,M⟩ eÐ→ ⟨e2 ▸α (a ⊓ p),M⟩

Case e = soft e1:

From the typing of e, we know that ∅;pc;H ⊢ e1 ∶ Rw,X , where τ =

(soft R)w. Since locs(e) ⊆ dom(M), we must also have locs(e1) ⊆ dom(M),

so by the induction hypothesis, either e1 is a value or ⟨e1,M⟩ eÐ→ ⟨e′1,M ′⟩,

for some e′1 and M ′. There are four cases to consider:

1. e1 is a value �p,

2. e1 is a bracketed value [v],

3. e1 is some other value, and

4. ⟨e1,M⟩ eÐ→ ⟨e′1,M ′⟩.

In case 1, by FAIL-PROP, we have ⟨e,M⟩ = ⟨soft �p,M⟩ eÐ→ ⟨�p,M⟩.

In case 2, by BRACKET-SOFT, we have ⟨e,M⟩ = ⟨soft [v],M⟩ eÐ→ ⟨[soft v],M⟩.

In case 3, e1 must be a hard reference mS , so e = softmS is also a value.

In case 4, by EVAL-CONTEXT, we have ⟨e,M⟩ = ⟨soft e1,M⟩ eÐ→ ⟨soft e′1,M ′⟩.

Case e = e1∥e2:

From the typing of e, we have ∅;pc;⊺ ⊢ ei ∶ τi,⊺ for i ∈ {1,2}. Since

locs(e) ⊆ dom(M), we must also have locs(ei) ⊆ dom(M), so by the in-

duction hypothesis, either e1 and e2 are both values, or (without loss of

generality) ⟨e1,M⟩ eÐ→ ⟨e′1,M ′⟩, for some e′1 and M ′.

If e1 and e2 are both values, then by PARALLEL-RESULT, we have ⟨e,M⟩ =

⟨e1∥e2,M⟩ eÐ→ ⟨∗,M⟩.

Otherwise, by EVAL-CONTEXT, we have ⟨e,M⟩ = ⟨e1∥e2,M⟩ eÐ→ ⟨e′1∥e2,M ′⟩.

133

Case e = try e1 catch p∶ e2:

From the typing of e, we have ∅;pc;H, p ⊢ e1 ∶ τ1,X1, where τ = τ1 ⊓w with

w = ⊓p′∈X1
(p ⊔ p′). Since locs(e) ⊆ dom(M), we must also have locs(e1) ⊆

dom(M), so by the induction hypothesis, either e1 is a value or ⟨e1,M⟩ eÐ→

⟨e′1,M ′⟩, for some e′1 and M ′. There are five cases to consider:

1. e1 is a value �p′ and ⊢ p ≼ p′,

2. e1 is a value �p′ and p /≼ p′,

3. e1 is a bracketed value [v],

4. e1 is some other value v, and

5. ⟨e1,M⟩ eÐ→ ⟨e′1,M ′⟩.

In case 1, by TRY-CATCH, we have ⟨e,M⟩ = ⟨try �p′ catch p∶ e2,M⟩ eÐ→

⟨e2,M⟩.

In case 2, by TRY-ESC, we have ⟨e,M⟩ = ⟨try �p′ catch p∶ e2,M⟩ eÐ→ ⟨�p′ ,M⟩.

In case 3, by BRACKET-TRY, we have ⟨e,M⟩ = ⟨try [v] catch p∶ e2,M⟩ eÐ→

⟨[try v catch p∶ e2],M⟩.

In case 4, by TRY-VAL, we have ⟨e,M⟩ = ⟨try v catch p∶ e2,M⟩ eÐ→ ⟨v,M⟩.

Finally, in case 5, by EVAL-CONTEXT, we have

⟨e,M⟩ = ⟨try e1 catch p∶ e2,M⟩ eÐ→ ⟨try e′1 catch p∶ e2,M
′⟩

Case e = let x = e1 in e2:

From the typing of e, we have ∅;pc;H ⊢ e1 ∶ τ1,X1. Since locs(e) ⊆ dom(M),

we must also have locs(e1) ⊆ dom(M), so by the induction hypothesis,

either e1 is a value or ⟨e1,M⟩ eÐ→ ⟨e′1,M ′⟩, for some e′1 and M ′. There are

five cases to consider:

134

1. e1 is a bottom value �p,

2. e1 is a bracketed bottom value [�p],

3. e1 is some other bracketed value [v],

4. e1 is some other value v, and

5. ⟨e1,M⟩ eÐ→ ⟨e′1,M ′⟩.

In case 1, by FAIL-PROP, we have ⟨e,M⟩ = ⟨let x = �p in e2,M⟩ eÐ→ ⟨�p,M⟩.

In case 2, by BRACKET-FAIL, we have ⟨e,M⟩ = ⟨let x = [�p] in e2,M⟩ eÐ→

⟨[�p],M⟩.

In case 3, by BRACKET-LET, we have ⟨e,M⟩ = ⟨let x = [v] in e2,M⟩ eÐ→

⟨[e2{[v]/x}],M⟩.

In case 4, by LET, we have ⟨e,M⟩ = ⟨let x = v in e2,M⟩ eÐ→ ⟨e2{v/x},M⟩.

In case 5, by EVAL-CONTEXT, we have ⟨e,M⟩ = ⟨let x = e1 in e2,M⟩ eÐ→

⟨let x = e′1 in e2,M ′⟩.

Case e = [e′]:

From the typing of e, we have ∅;pc′;H ⊢ e′ ∶ τ ′,X . Since locs(e) ⊆ dom(M),

we must also have locs(e′) ⊆ dom(M), so by the induction hypothesis, ei-

ther e′ is a value or ⟨e′,M⟩ eÐ→ ⟨e′′,M ′⟩.

If e′ is a bracketed value [v], then by DOUBLE-BRACKET, we have ⟨e,M⟩ =

⟨[[v]],M⟩ eÐ→ ⟨[v],M⟩.

If e′ is some other value v, then e = [v] is a value.

Otherwise, by BRACKET-CONTEXT, we have ⟨e,M⟩ = ⟨[e′],M⟩ eÐ→

⟨[e′′],M ′⟩.

135

Corollary 14 (Soundness of [λpersist]).

⊢α[wf] ⟨e,M⟩ ∧ ∅;pc;H ⊢ e ∶ τ,X

⇒ ⟨e,M⟩ ⇑ ∨∃v ∈ Val,M ′. ⟨e,M⟩ eÐ→∗ ⟨v,M ′⟩

Proof. This follows from Corollary 11 and Lemma 13 by induction on the num-

ber of eÐ→ transitions taken.

3.7.4 Limited adversary influence

The key to proving both referential integrity and immunity to storage attacks

is to show that the adversary cannot meaningfully influence the high-integrity

parts of the program and memory. This property is similar to noninterfer-

ence [29], and similarly can be expressed using an equivalence relation on con-

figurations. Two configurations are equivalent if they agree on all high-integrity

parts of the program and of the memory.

The property states that for any execution influenced by the adversary, there

is a corresponding, equivalent execution in which the adversary is not present.

Hence, the adversary’s influence is not significant. More precisely, each config-

uration ⟨e1,M1⟩ reached via the language augmented by adversarial transitions

must be equivalent to some configuration ⟨e2,M2⟩ reachable by purely non-

adversarial execution. This is a possibilistic security property, which is prob-

lematic for confidentiality properties [70], but is acceptable for integrity.

Because the two executions being compared operate on different heaps, with

the adversary behaving differently in the two executions, the addresses cho-

sen when records are allocated may differ. However, the structure of the high-

integrity part of the heap should still correspond. A homomorphism φ is used to

relate corresponding locations in the two heaps that are high-integrity or high-

persistence.

136

Definition 11 (High-integrity homomorphism). An injective partial function φ ∶

dom(M1) ⇀ dom(M2) is a high-integrity homomorphism from M1 to M2 if it

satisfies the following:

• Injective: mS1
1 ≠mS2

2 ∧ {mS1
1 ,m

S2
2 } ⊆ dom(φ)⇒ φ(mS1

1) ≠ φ(mS2
2);

• Type-preserving: mS2
2 = φ(mS1

1)⇒ S1 = S2; and

• Isomorphous when the domain and range are restricted to the high-integrity and

high-persistence locations in M1 and M2:

φ∣D ∶D ↣→ R,

where D = {mS ∈ dom(M1) ∣ ⊢ α ≼ integ(S)∨ ⊢ α ≼ persist(S)} and R = {mS ∈

dom(M2) ∣ ⊢ α ≼ integ(S)∨ ⊢ α ≼ persist(S)}. The notation integ(S) denotes

the integrity of a record with type S: the least upper bound of its fields’ integrity.

integ({ÐÐÐ⇀xi ∶ τi}s) =⊔
i

integ(τi)

We are now ready to define our notion of expression equivalence. The ex-

pression e1 is considered to be equivalent to e2 via a high-integrity homomor-

phism φ, written φ(e1) ≈α e2, if e1 is equal to e2 (modulo bracketed expressions)

when the memory locations in e1 are transformed via φ. This is defined formally

in Figure 3.12.

To ensure that high-integrity dereferences yield equivalent results, we also

define an equivalence relation on memories: M1 and M2 are equivalent via φ,

written φ(M1) ≈α M2, if whenever mS ∈ dom(φ) is not deleted, then φ(mS) maps

to an equivalent record. We also require that if mS ∈ dom(φ) is a deleted high-

137

φ(x) ≈α x
b ∈ {true, false}
φ(b) ≈α b φ(∗) ≈α ∗

φ(mS
1) =mS

2

φ(mS
1) ≈α mS

2

φ(e) ≈α e′

φ(λ(x ∶τ)[pc;H]. e) ≈α λ(x ∶τ)[pc;H]. e′ φ(�p) ≈α �p
φ(vi) ≈α v′i (∀i)

φ(v1 v2) ≈α v′1 v′2
φ(ei) ≈α e′i (∀i)

φ(if e1 then e2 else e3) ≈α if e′1 then e′2 else e′3
φ(vi) ≈α v′i (∀i)

φ({ÐÐÐ⇀xi = vi}S) ≈α {
ÐÐÐ⇀
xi = v′i}S

φ(v) ≈α v′

φ(v.x) ≈α v′.x
φ(vi) ≈α v′i (∀i)

φ(v1.x ∶= v2) ≈α v′1.x ∶= v′2
φ(e) ≈α e′

φ(soft e) ≈α soft e′ φ([e]) ≈α [e′]
φ(ei) ≈α e′i (∀i)

φ(e1∥e2) ≈α e′1∥e′2
φ(ei) ≈α e′i (∀i)

φ(exists e1 as x ∶ e2 else e3) ≈α exists e′1 as x ∶ e′2 else e′3
φ(ei) ≈α e′i (∀i)

φ(try e1 catch p∶ e2) ≈α try e′1 catch p∶ e′2
φ(ei) ≈α e′i (∀i)

φ(let x = e1 in e2) ≈α let x = e′1 in e′2

Figure 3.12: Equivalence of expressions in [λpersist]

authority, high-persistence location, then so is φ(mS). Formally,

φ(M1) ≈α M2

def.
⇐⇒ ∀mS ∈ dom(φ).

(M1(mS) ≠ �

⇒M2(φ(mS)) ≠ � ∧ φ(M1(mS)) ≈α M2(φ(mS)))

∧ (⊢ α ≼ auth+(S) ⊓ persist(S) ∧M1(mS) = �

⇒M2(φ(mS)) = �)

Together, these two equivalence definitions induce a natural equivalence rela-

tion on configurations:

φ⟨e1,M1⟩ ≈α ⟨e2,M2⟩
def.
⇐⇒ φ(e1) ≈α e2 ∧ φ(M1) ≈α M2.

A [λpersist] program has limited adversary influence if equivalent initial config-

urations produce equivalent final configurations.

We use this equivalence relation to formalize referential integrity: the ad-

versary must be unable to cause a persistence failure in the high-integrity parts

138

of the program (expression equivalence), and unable to cause the deletion of

high-authority, high-persistence objects (memory equivalence).

3.7.5 Storage attacks

To formalize immunity to storage attacks, we first show that the adversary is

unable to cause more high-persistence locations to be allocated. This is captured

by the equivalence relation, since all high-persistence locations are mapped by

the homomorphism.

We also need to show that the adversary is unable to cause more high-

authority locations to become reachable through hard references. Lemma 20

shows that this is implied by limited adversary influence.

Lemma 15. Let e be well-typed in a low-integrity context. Assume that if e is a memory

location, then it is low-authority. If mS is a GC root in e, then mS must be low-

authority:

Γ;pc;H ⊢ e ∶ τ,X ∧ α /≼ pc

∧(e ∈ dom(M)⇒ α /≼ auth+(τ)) ∧ root(mS, e)

⇒ α /≼ auth+(S)

Proof. By induction on the derivation of root(mS, e).

Case R1 (e =mS):

Without loss of generality, assume S = {ÐÐÐ⇀xi ∶ τi}(a,p), where α /≼ a. We have

τ = ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺, so auth+(τ) = auth+(S) and the result follows trivially.

Case R2 (e = soft e′, where ∀mS′
1 . e

′ ≠mS′
1):

From the derivation of root(mS, e), we have root(mS, e′). From the typing

of e, we have Γ;pc;H ⊢ e′ ∶ Rw,X . Therefore, the induction hypothesis

applies, and the result follows.

139

Case R3 (e = {ÐÐÐ⇀xi = vi}S′):

From the derivation of root(mS, e), we have root(mS, vc) for some c.

From the typing of e, we know Γ;pc;H ⊢ vc ∶ τ ′,⊺, where ⊢ auth+(τ ′) ≼ pc.

From this, we also know α /≼ auth+(τ ′).

Therefore, the induction hypothesis applies, and the result follows.

Case R4 (e = v.x):

From the derivation of root(mS, e), we have root(mS, v).

From the typing of e, we have Γ;pc;H ⊢ v ∶ τ ′,⊺, where either τ ′ =

({ÐÐÐ⇀xi ∶ τi}(a+,a−,p))w with ⊢ a+ ≼ pc, or τ ′ = (soft R)w for some R. We therefore

know α /≼ auth+(τ ′).

Therefore, the induction hypothesis applies, and the result follows.

Case R5 (e = v1.x ∶= v2):

From the derivation of root(mS, e), we have root(mS, vi), for some i ∈ {1,2}.

From the typing of e, we know Γ;pc;H ⊢ v1 ∶ τ ′,⊺ (where either τ ′ =

({ÐÐÐ⇀xi ∶ τi}(a+,a−,p))w with ⊢ a+ ≼ pc, or τ ′ = (soft R)w for some R) and

Γ;pc;H ⊢ v2 ∶ τ ′′,⊺, where ⊢ auth+(τ ′′) ≼ pc. Therefore, α /≼ auth+(τ ′) and

α /≼ auth+(τ ′′). So, the induction hypothesis applies for i ∈ {1,2}, and the

result follows.

Case R6 (e = λ(x ∶τ ′)[pc′;H′]. e′):

From the typing of e, we know ⊢wf τ ∶ type, ⊢ pc′ ≼ pc, and Γ, x ∶τ ′;pc′;H′ ⊢

e′ ∶ τ ′′,H′, where τ = τ ′ pc′,H′
ÐÐÐ→ τ ′′. Since α /≼ pc, we have α /≼ pc′. From ⊢wf

τ ∶ type, we know ⊢ auth+(τ ′′) ≼ pc′, so we therefore know α /≼ auth+(τ ′′).

From the derivation of root(mS, e), we know root(mS, e′). Therefore, the

induction hypothesis applies, and the result follows.

140

Case R7 (e = v1 v2):

From the derivation of root(mS, e), we have root(mS, vi) for some i ∈ {1,2}.

From the typing of e, we know Γ;pc;H ⊢ v1 ∶ (τ ′
pc′,H′
ÐÐÐ→ τ)w,⊺, Γ;pc;H ⊢ v2 ∶

τ ′,⊺, and ⊢wf (τ ′
pc′,H′
ÐÐÐ→ τ)w ∶ type, with ⊢ pc′ ≼ pc. Therefore, α /≼ pc′.

From the derivation of ⊢wf (τ ′ pc′,H′
ÐÐÐ→ τ)w ∶ type, we have ⊢ auth+(τ ′) ≼ pc

and ⊢ auth+(τ) ≼ pc. We therefore know α /≼ auth+(τ ′).

So, the induction hypothesis applies for i ∈ {1,2}, and the result follows.

Case R8 (e = let x = e1 in e2):

From the derivation of root(mS, e), we have root(mS, ei), for some i ∈ {1,2}.

From the typing of e, we know Γ;pc;H ⊢ e1 ∶ τ ′,X1 and Γ, x ∶τ ′;pc′;H ⊢ e2 ∶

τ ′′,X2, where ⊢ auth+(τ ′) ≼ pc, pc′ = pc ⊓w, and ⊢ auth+(τ ′′) ≼ pc′, for some

w. Therefore, it follows that α /≼ pc′, α /≼ auth+(τ ′), and α /≼ auth+(τ ′′).

So, the induction hypothesis applies for i ∈ {1,2}, and the result follows.

Case R9 (e = if v then e1 else e2):

From the typing of e, we know Γ;pc;H ⊢ v ∶ boolw,⊺ and Γ;pc ⊓w;H ⊢ ei ∶

τ ′,Xi (for i ∈ {1,2}), where ⊢ auth+(τ ′) ≼ pc. From this, we therefore know

α /≼ auth+(τ ′).

From the derivation of root(mS, e), we have either root(mS, v) or

root(mS, ej), for some j ∈ {1,2}. In all cases, the induction hypothesis

applies, and the result follows.

Case R10 (e = exists v as x ∶ e1 else e2):

From the typing of e, we know Γ;pc;H ⊢ v ∶ (soft {ÐÐÐ⇀xi ∶ τi}r)w,⊺ and Γi;pc ⊓

w′;H ⊢ ei ∶ τ ′,Xi (for i ∈ {1,2}), where ⊢ auth+(τ ′) ≼ pc ⊓ w′. From this, we

therefore know α /≼ auth+(τ ′).

141

From the derivation of root(mS, e), we have either root(mS, v) or

root(mS, ej), for some j ∈ {1,2}. In all cases, the induction hypothesis

applies, and the result follows.

Case R11 (e = e1∥e2):

From the derivation of root(mS, e), we have root(mS, ei) for some i ∈ {1,2}.

Without loss of generality, assume i = 1.

From the typing of e, we know Γ;pc;⊺ ⊢ e1 ∶ τ1,⊺ and ⊢ auth+(τ1) ≼ pc.

From this, we also know α /≼ auth+(τ1).

Therefore, the induction hypothesis applies, and the result follows.

Case R12 (e = try e1 catch p∶ e2):

From the derivation of root(mS, e), we have root(mS, ei), for some i ∈ {1,2}.

From the typing of e, we know Γ;pc;H, p ⊢ e1 ∶ τ ′,X1 and Γ;pc′;H ⊢ e2 ∶

τ ′,X2, where ⊢ pc′ ≼ pc and ⊢ auth+(τ ′) ≼ pc. From this, we also know

α /≼ pc′ and α /≼ auth+(τ ′).

So, the induction hypothesis applies for i ∈ {1,2}, and the result follows.

Case R13 (e = [e′]):

From the derivation of root(mS, e), we have root(mS, e′).

From the typing of e, we know Γ;pc′;H ⊢ e′ ∶ τ ′,X , where ⊢ pc′ ≼ pc and

⊢ auth+(τ ′) ≼ pc. From this, it follows that α /≼ pc′ and α /≼ auth+(τ ′).

Therefore, the induction hypothesis applies, and the result follows.

142

Lemma 16. Let e1 and e2 be well-typed expressions, both of type τ , that are equivalent

via a high-integrity homomorphism φ. If mS is a high-authority GC root in e1, then

φ(mS) is also a GC root in ⟨e2,M2⟩.

Γ;pc;H ⊢ e1 ∶ τ,X ∧ Γ;pc;H ⊢ e2 ∶ τ,X

∧ φ(e1) ≈α e2∧ ⊢ α ≼ auth+(S) ∧ root(mS, e1)

⇒ root(φ(mS), e2)

Proof. By induction on the derivation of root(mS, e1). The proof proceeds by

cases according to the syntax of e1. The result holds vacuously in cases e1 = x,

e1 = true, e1 = false, e1 = ∗, and e1 = softmS1
1 , since ¬root(mS, e1) in these cases.

Case e1 =mS1
1 :

Since root(mS,mS1
1), we must have mS1

1 = mS . Therefore, from φ(e1) ≈α e2,

we have e2 = φ(mS), and the result follows via Rule R1.

Case e1 = λ(x ∶τ ′)[pc′;H′]. e3:

From φ(e1) ≈α e2, we have e2 = λ(x ∶ τ ′)[pc′;H′]. e4, where φ(e3) ≈α e4.

From the typing of e1 and e2, we have Γ, x ∶ τ ′;pc′;H′ ⊢ e3 ∶ τ ′′,H′ and

Γ, x ∶τ ′;pc′;H′ ⊢ e4 ∶ τ ′′,H′, for some pc′, H′, and τ ′′. From the derivation of

root(mS, e1), we know root(mS, e3). Therefore, we can apply the induction

hypothesis to obtain root(φ(mS), e4), and the result follows via Rule R6.

Case e1 = v1 v2:

From the derivation of root(mS, e1), we know root(mS, v1) or root(mS, v2).

Without loss of generality, assume root(mS, v1). From φ(e1) ≈α e2, we have

e2 = v3 v4, where φ(v1) ≈α v3. From the typing of e1 and e2, we have

Γ;pc;H ⊢ v1 ∶ τ ′,⊺ and Γ;pc;H ⊢ v3 ∶ τ ′,⊺, for some τ ′. Therefore, we can

apply the induction hypothesis to obtain root(φ(mS), v1), and the result

follows via Rule R7.

143

Case e1 = if e3 then e4 else e5:

From the derivation of root(mS, e1), we know root(mS, ek) for some k ∈

{3,4,5}. From φ(e1) ≈α e2, we have e2 = if e′3 then e
′
4 else e

′
5, where φ(ei) ≈α e′i

for i ∈ {3,4,5}. From the typing of e1 and e2, we have Γ;pc′;H ⊢ ek ∶ τ ′,X ′

and Γ;pc′;H ⊢ e′k ∶ τ ′,X ′, for some pc′, τ ′, and X ′. Therefore, we can apply

the induction hypothesis to obtain root(φ(mS), e′k), and the result follows

via Rule R9.

Case e1 = {ÐÐÐ⇀xi = vi}S1 :

From the derivation of root(mS, e1), we know root(mS, vk) for some k.

From φ(e1) ≈α e2, we have e2 = {ÐÐÐ⇀xi = ui}S1 , where φ(vi) ≈α ui for all i. From

the typing of e1 and e2, we have Γ;pc;H ⊢ ek ∶ τ ′,⊺ and Γ;pc;H ⊢ e′k ∶ τ ′,⊺,

for some τ ′. Therefore, we can apply the induction hypothesis to obtain

root(φ(mS), uk), and the result follows via Rule R3.

Case e1 = v.x:

From the derivation of root(mS, e1), we know root(mS, v). From φ(e1) ≈α

e2, we have e2 = u.x, where φ(v) ≈α u. From the typing of e1 and e2, we

have Γ;pc;H ⊢ v ∶ τ ′,⊺ and Γ;pc;H ⊢ u ∶ τ ′,⊺, for some τ ′. Therefore, we

can apply the induction hypothesis to obtain root(φ(mS), u), and the result

follows via Rule R4.

Case e1 = v1.x ∶= v2:

From the derivation of root(mS, e1), we know root(mS, vk) for some k.

From φ(e1) ≈α e2, we have e2 = u1.x ∶= u2, where φ(vi) ≈α ui for i ∈ {1,2}.

From the typing of e1 and e2, we have Γ;pc;H ⊢ vk ∶ τ ′,⊺ and Γ;pc;H ⊢

uk ∶ τ ′,⊺, for some τ ′. Therefore, we can apply the induction hypothesis to

obtain root(φ(mS), uk), and the result follows via Rule R5.

144

Case e1 = soft e3:

From the derivation of root(mS, e1), we know root(mS, e3) and e3 is not a

memory location. From φ(e1) ≈α e2, we have e2 = soft e4, where φ(e3) ≈α e4;

therefore, e4 is not a memory location. From the typing of e1 and e2, we

have Γ;pc;H ⊢ e3 ∶ τ ′,X and Γ;pc;H ⊢ e4 ∶ τ ′,X , for some τ ′. Therefore,

we can apply the induction hypothesis to obtain root(φ(mS), e4), and the

result follows via Rule R2.

Case e1 = e3∥e4:

From the derivation of root(mS, e1), we know root(mS, ek) for some k ∈

{3,4}. From φ(e1) ≈α e2, we have e2 = e′3∥e′4, where φ(ei) ≈α e′i for i ∈ {3,4}.

From the typing of e1 and e2, we have Γ;pc;⊺ ⊢ ek ∶ τ ′,⊺ and Γ;pc;⊺ ⊢

e′k ∶ τ ′,⊺, for some τ ′. Therefore, we can apply the induction hypothesis to

obtain root(φ(mS), e′k), and the result follows via Rule R11.

Case e1 = exists e3 as x ∶ e4 else e5:

From the derivation of root(mS, e1), we know root(mS, ek) for some k ∈

{3,4,5}. From φ(e1) ≈α e2, we have e2 = exists e′3 as x ∶ e′4 else e′5, where

φ(ei) ≈α e′i for i ∈ {3,4,5}. From the typing of e1 and e2, we have Γ′;pc′;H ⊢

ek ∶ τ ′,X ′ and Γ′;pc′;H ⊢ e′k ∶ τ ′,X ′, for some Γ′, pc′, τ ′ and X ′. Therefore,

we can apply the induction hypothesis to obtain root(φ(mS), e′k), and the

result follows via Rule R10.

Case e1 = let x = e3 in e4:

From the derivation of root(mS, e1), we know root(mS, ek) for some k ∈

{3,4}. From φ(e1) ≈α e2, we have e2 = let x = e′3 in e′4, where φ(ei) ≈α e′i for

i ∈ {3,4}. From the typing of e1 and e2, we have Γ′;pc′;H ⊢ ek ∶ τ ′,X ′ and

Γ′;pc′;H ⊢ e′k ∶ τ ′,X ′, for some Γ′, pc′, τ ′, and X ′. Therefore, we can apply

145

the induction hypothesis to obtain root(φ(mS), e′k), and the result follows

via Rule R8.

Case e1 = try e3 catch p∶ e4:

From the derivation of root(mS, e1), we know root(mS, ek) for some k ∈

{3,4}. From φ(e1) ≈α e2, we have e2 = try e′3 catch p∶ e′4, where φ(ei) ≈α e′i for

i ∈ {3,4}. From the typing of e1 and e2, we have Γ;pc′;H ⊢ ek ∶ τ ′,X ′ and

Γ;pc′;H ⊢ e′k ∶ τ ′,X ′, for some pc′, τ ′, and X ′. Therefore, we can apply the

induction hypothesis to obtain root(φ(mS), e′k), and the result follows via

Rule R12.

Case e1 = [e3]:

From the derivation of root(mS, e1), we know root(mS, e3). From the typ-

ing of e1, we know Γ;pc⊓`;H ⊢ e3 ∶ τ ′,X for some ` and τ ′, where α /≼ ` and

⊢ auth+(τ ′) ≼ pc ⊓ `. Therefore, by Lemma 15, we must have α /≼ auth+(S),

which contradicts the assumption ⊢ α ≼ auth+(S). So, this case holds vac-

uously.

Lemma 17. SupposemS is a high-authority location that is a GC root in the well-typed

value v. Then v must have high-authority type.

⊢ α ≼ auth+(S) ∧ root(mS, v) ∧ ∅;⊺;⊺ ⊢ v ∶ τ,⊺

⇒ ⊢ α ≼ auth+(τ)

Proof. Since root(mS, v), the value v must either be equal to mS , be a lambda

abstraction λ(x ∶τ)[pc;H]. e, or be a bracketed value [v′].

146

Case v =mS :

We therefore have ∅;⊺;⊺ ⊢ mS ∶ τ,⊺. So ⊢ auth+(S) ≼ auth+(τ). Therefore,

⊢ α ≼ auth+(τ), as desired.

Case v = λ(x ∶τ)[pc;H]. e:

From the derivation of root(mS, v), we have root(mS, e). So, we must have

τ = τ1
pc,HÐÐ→ τ2, for some τ1 and some τ2. Therefore, auth+(τ) = pc.

Suppose α /≼ pc. From the typing of v, we know x ∶ τ1;pc;H ⊢ e ∶ τ2,H and

⊢wf τ1
pc,HÐÐ→ τ2 ∶ type. Therefore, we also know ⊢ auth+(τ2) ≼ pc, and hence,

α /≼ auth+(τ2). Since root(mS, e), by Lemma 15, we must have α /≼ auth+(S),

a contradiction. So, we must have ⊢ α ≼ pc = auth+(τ), as desired.

Case v = [v′]:

From the derivation of root(mS, v), we have root(mS, v′). From the typing

derivation of v, we know ∅; `;⊺ ⊢ v′ ∶ τ ′,⊺ and ⊢ auth+(τ ′) ≼ `, where α /≼ `.

Therefore, α /≼ auth+(τ ′). Since root(mS, v′), by Lemma 15, we must have

α /≼ auth+(S), a contradiction. This case therefore holds vacuously.

Lemma 18. Suppose mS is a high-authority location that is non-collectible in the con-

figuration ⟨v,M⟩, where M is well-formed and the value v has type τ . Then τ must be

high-authority.

⊢α[wf] M∧ ⊢ α ≼ auth+(S) ∧ nc(mS, ⟨v,M⟩) ∧ ∅;⊺;⊺ ⊢ v ∶ τ,⊺

⇒ ⊢ α ≼ auth+(τ)

Proof. By induction on the derivation of nc(mS, ⟨v,M⟩).

Case NC1:

We have root(mS, v). The result follows via Lemma 17.

147

Case NC2:

We have root(mS1
1 , v), M(mS1

1) = {ÐÐÐ⇀xi = vi}, and nc(mS, ⟨vc,M⟩) for some

c. Without loss of generality, assume S1 = {ÐÐÐ⇀xi ∶ τi}(a,p). From ⊢α[wf] M , we

have ∅;⊺;⊺ ⊢ vc ∶ τc,⊺. Therefore, we can apply the induction hypothesis

to obtain ⊢ α ≼ auth+(τc). From ⊢α[wf] M , we know ⊢wf S1 ∶ rectype, and

therefore, ⊢ auth+(τc) ≼ a. Hence, ⊢ α ≼ a = auth+(S1). The result follows

via Lemma 17.

Corollary 19. Suppose mS is a high-authority location that is non-collectible in the

configuration ⟨mS1
1 ,M⟩, where M is well-formed. Then mS1

1 is high-integrity, high-

authority, and high-persistence.

⊢α[wf] M∧ ⊢ α ≼ auth+(S) ∧ nc(mS, ⟨mS1
1 ,M⟩)

⇒ ⊢ α ≼ integ(S1) ⊓ auth+(S1) ⊓ persist(S1)

Proof. Since ⊢α[wf] M , we must have ⊢wf S1 ∶ rectype, and so, ⊢ auth+(S1) ≼

integ(S1) ⊓ persist(S1). It therefore suffices to show that mS1
1 is high-authority.

This follows from Lemma 18.

148

We now show that limited adversary influence is sufficient to demonstrate

immunity to storage attacks.

Lemma 20. Let ⟨e1,M1⟩ be a well-formed configuration, wherein e1 has type τ . Let

⟨e2,M2⟩, wherein e2 also has type τ , be a configuration that is well-formed in a non-

adversarial setting. Assume the two configurations are equivalent via a high-integrity

homomorphism φ. If mS is a high-authority non-collectible location in ⟨e1,M1⟩, then

φ(mS) is also non-collectible in ⟨e2,M2⟩.

⊢α[wf] ⟨e1,M1⟩ ∧ ∅;pc;H ⊢ e1 ∶ τ,X

∧ ⊢[wf] M2 ∧ ∅;pc;H ⊢ e2 ∶ τ,X

∧ φ⟨e1,M1⟩ ≈α ⟨e2,M2⟩∧ ⊢ α ≼ auth+(S) ∧ nc(mS, ⟨e1,M1⟩)

⇒ nc(φ(mS), ⟨e2,M2⟩)

Proof. By induction on the derivation of nc(mS, ⟨e1,M1⟩).

Case NC1:

We have root(mS, e1). By Lemma 16, we therefore have root(φ(mS), e2),

and the result follows by NC1.

Case NC2:

We have root(mS1
1 , e1) and nc(mS, ⟨vc,M1⟩) for somemS1

1 , whereM1(mS1
1) =

{ÐÐÐ⇀xi = vi}. It therefore follows that nc(mS, ⟨mS1
1 ,M1⟩), ⊢α[wf] ⟨mS1

1 ,M1⟩, and

⊢α[wf] ⟨vc,M1⟩.

Assume mS1
1 ≠mS . (Otherwise, we would have root(mS, e1), and the argu-

ment for Case NC1 applies.)

Since mS is high-authority and nc(mS, ⟨mS1
1 ,M1⟩), by Corollary 19, we

know mS1
1 is high-integrity, high-authority, and high-persistence.

149

Since root(mS1
1 , e1) and mS1

1 is high-authority, by Lemma 16, we know

root(φ(mS1
1), e2).

From φ⟨e1,M1⟩ ≈α ⟨e2,M2⟩, we know φ(M1) ≈α M2. So, from M1(mS1
1) ≠ �,

we have M2(φ(mS1
1)) = {ÐÐÐ⇀xi = ui}, where φ(vc) ≈α uc, for some Ð⇀ui .

Since ⊢α[wf] M1 and ⊢[wf] M2, we also know ∅;⊺;⊺ ⊢ vc ∶ τc,⊺ and ∅;⊺;⊺ ⊢ uc ∶

τc,⊺, for some τc. Therefore, we can apply the induction hypothesis to get

nc(φ(mS), ⟨uc,M2⟩).

The result follows via NC2.

3.7.6 Referential security

Lemma 21. Let mS be part of a group G that is collectible in ⟨e,M⟩. If mS is non-

collectible in ⟨mS1
1 ,M⟩, then mS1

1 must also be in G.

gc(G, ⟨e,M⟩) ∧mS ∈ G ∧ nc(mS, ⟨mS1
1 ,M⟩)⇒mS1

1 ∈ G

Proof. By induction on the derivation of nc(mS, ⟨mS1
1 ,M⟩).

Case NC1:

We have root(mS,mS1
1). From this, it follows that mS1

1 =mS , and the result

follows trivially.

Case NC2:

We have M(mS1
1) = {ÐÐÐ⇀xi = vi}, and nc(mS, ⟨vc,M⟩) for some c. Suppose

root(mS2
2 , vc) for some mS2

2 ∈ G. From this, we know root(mS2
2 ,M(mS1

1)),

and from the definition of gc(G, ⟨e,M⟩), we have mS1
1 ∈ G, as desired.

We proceed by cases according to the derivation of nc(mS, ⟨vc,M⟩) to find

such an mS2
2 .

150

Case NC1:

We have root(mS, vc), so choose mS2
2 =mS .

Case NC2:

We have root(mS3
3 , vc), M(mS3

3) = {ÐÐÐ⇀xi = ui}, and nc(mS, ⟨uc′ ,M⟩) for

some mS3
3 and some c′. It therefore follows that nc(mS, ⟨mS3

3 ,M⟩). So,

we can apply the induction hypothesis to obtain mS3
3 ∈ G. Therefore,

we can choose mS2
2 =mS3

3 .

Lemma 22. All locations in a collectible group are collectible:

gc(G, ⟨e,M⟩) ∧mS ∈ G⇒ ¬nc(mS, ⟨e,M⟩).

Proof. By contradiction. Let mS ∈ G be such that nc(mS, ⟨e,M⟩). We proceed by

cases according to the derivation of nc(mS, ⟨e,M⟩).

Case NC1:

We have root(mS, e). But from the definition of gc(G, ⟨e,M⟩), no such mS

can exist; a contradiction.

Case NC2:

We have root(mS1
1 , e), M(mS1

1) = {ÐÐÐ⇀xi = vi}, and nc(mS, ⟨vc,M⟩) for some

c. From this, it follows that nc(mS, ⟨mS1
1 ,M⟩). Therefore, by Lemma 21,

we have mS1
1 ∈ G. So, from the definition of gc(G, ⟨e,M⟩), we have

¬root(mS1
1 , e), a contradiction.

Lemma 23. Let C ⊆ dom(M) be a set of locations that are collectible in a configuration

⟨e,M⟩:

∀mS ∈ C. ¬nc(mS, ⟨e,M⟩).

151

Then there is a collectible group that contains C. In particular, let G be the largest

superset ofC such that from every location inG, some location inC is reachable through

a chain of hard references:

∀mS0
0 ∈ G. ∃mS1

1 ∈ C. nc(mS1
1 , ⟨mS0

0 ,M⟩). (3.13)

Then G is a collectible group: gc(G, ⟨e,M⟩).

Proof. Suppose G is not a collectible group. Then either G contains a GC root in

e, or there is a location outside G with a hard reference into G.

Suppose G contains a GC root mS in e: mS ∈ G ∧ root(mS, e). By construc-

tion of G, let mS1
1 ∈ C be a location reachable through a chain of hard refer-

ences from mS : nc(mS1
1 , ⟨mS,M⟩). If M(mS) = �, then from the derivation of

nc(mS1
1 , ⟨mS,M⟩), we must have mS = mS1

1 , and so from root(mS, e), we know

nc(mS1
1 , ⟨e,M⟩), a contradiction. Otherwise, assume M(mS) ≠ � and mS ≠ mS1

1 .

Let Ð⇀vi be such that M(mS) = {ÐÐÐ⇀xi = vi}. From the derivation of nc(mS1
1 , ⟨mS,M⟩),

we know there exists a c such that nc(mS1
1 , ⟨vc,M⟩). Therefore, by NC2, we have

nc(mS1
1 , ⟨e,M⟩), a contradiction.

Otherwise, let mS /∈ G be such that M(mS) has a hard reference to some

mS0
0 ∈ G: root(mS0

0 ,M(mS)). By construction of G, let mS1
1 ∈ C be a location

reachable through a chain of hard references from mS0
0 : nc(mS1

1 , ⟨mS0
0 ,M⟩).

We presently show that nc(mS1
1 , ⟨M(mS),M⟩). If M(mS0

0) = �, then

from the derivation of nc(mS1
1 , ⟨mS0

0 ,M⟩), we must have mS0
0 = mS1

1 , and so

from root(mS0
0 ,M(mS)), we know nc(mS1

1 , ⟨M(mS),M⟩). Otherwise, assume

M(mS0
0) ≠ � and mS0

0 ≠ mS1
1 . Let Ð⇀vi be such that M(mS0

0) = {ÐÐÐ⇀xi = vi}.

From the derivation of nc(mS1
1 , ⟨mS0

0 ,M⟩), we know there exists a c such that

nc(mS1
1 , ⟨vc,M⟩). Therefore, by NC2, we have nc(mS1

1 , ⟨M(mS),M⟩).

So, we know nc(mS1
1 , ⟨M(mS),M⟩). It therefore follows that nc(mS1

1 , ⟨mS,M⟩).

So, G∪{mS} is a set larger thanG satisfying property (3.13), a contradiction.

152

Lemma 24. Let e1 and e2 be well-typed equivalent expressions, and suppose φ(mS) is

a high-authority GC root of e2. Then mS is a GC root of e1.

φ(e1) ≈α e2 ∧ Γ;pc;H ⊢ e1 ∶ τ,X ∧ Γ;pc;H ⊢ e2 ∶ τ,X

∧ ⊢ α ≼ auth+(S) ∧ root(φ(mS), e2)

⇒ root(mS, e1)

Proof. By induction on the derivation of root(φ(mS), e2). Since e2 is well-typed,

by Lemma 15, we know that case R13 holds vacuously.

Lemma 25. Suppose M1 and M2 are well-formed memories. Let φ be a high-integrity

homomorphism such that φ(M1) ≈α M2. LetmS andmS1
1 be locations inM1 mapped by

φ. Assume mS1
1 is high-authority and high-persistence. If nc(φ(mS1

1), ⟨φ(mS),M2⟩),

then nc(mS1
1 , ⟨mS,M1⟩):

⊢α[wf] M1∧ ⊢α[wf] M2 ∧ φ(M1) ≈α M2

∧ ⊢ α ≼ auth+(S1) ⊓ persist(S1) ∧ nc(φ(mS1
1), ⟨φ(mS),M2⟩)

⇒ nc(mS1
1 , ⟨mS,M1⟩).

Proof. By induction on the derivation of nc(φ(mS1
1), ⟨φ(mS),M2⟩).

Case NC1:

We must have φ(mS) = φ(mS1
1). Since φ is injective, we know mS =mS1

1 , so

the result follows by NC1.

Case NC2:

We know there exists someÐ⇀ui and some c such that M2(φ(mS)) = {ÐÐÐ⇀xi = ui}

and nc(φ(mS1
1), ⟨uc,M2⟩). Assume φ(mS) ≠ φ(mS1

1). (Otherwise, the

argument for Case NC1 applies.) Since φ(mS1
1) is high-authority and

nc(φ(mS1
1), ⟨φ(mS),M2⟩), by Corollary 19, we know that mS is high-

integrity, high-authority and high-persistence. Since φ(M1) ≈α M2 and

153

M2(φ(mS)) ≠ �, then we must have M1(mS) ≠ �. So let Ð⇀vi be such that

M1(mS) = {ÐÐÐ⇀xi = vi}.

We show that nc(mS1
1 , ⟨vc,M1⟩). From this, the result follows via an appli-

cation of NC2:

root(mS,mS) M1(mS) = {ÐÐÐ⇀xi = vi} nc(mS1
1 , ⟨vc,M1⟩)

nc(mS1
1 , ⟨mS,M1⟩).

Consider the two cases in the derivation of nc(φ(mS1
1), ⟨uc,M2⟩):

Sub-case NC1:

We have root(φ(mS1
1), uc). From φ(M1) ≈α M2, we know φ(vc) ≈α

uc. From ⊢α[wf] M1 and ⊢α[wf] M2, we know ∅;⊺;⊺ ⊢ vc ∶ τc,⊺ and

∅;⊺;⊺ ⊢ uc ∶ τc,⊺, for some τc. Therefore, we can apply Lemma 24

to get root(mS1
1 , vc), and the result follows via NC1.

Sub-case NC2:

Assume ¬root(φ(mS1
1), uc). (Otherwise, the argument in sub-case

NC1 applies.)

We know there exists somemS2
2 ∈ dom(M2), someÐ⇀ui ′ and some c′ such

that root(mS2
2 , uc), M2(mS2

2) = {ÐÐÐ⇀xi = u′i}, and nc(φ(mS1
1), ⟨u′c′ ,M2⟩).

From this, it follows that nc(φ(mS1
1), ⟨mS2

2 ,M2⟩). Since φ(mS1
1) is high-

authority and nc(φ(mS1
1), ⟨mS2

2 ,M2⟩), by Corollary 19, we know that

mS2
2 is high-integrity, high-authority, and high-persistence.

Since φ is a high-integrity homomorphism, there exists an mS3
3 such

that mS2
2 = φ(mS3

3). Therefore, we can apply the induction hypothesis

to get nc(mS1
1 , ⟨mS3

3 ,M1⟩).

We have root(φ(mS3
3), uc). From φ(M1) ≈α M2, we know φ(vc) ≈α

uc. From ⊢α[wf] M1 and ⊢α[wf] M2, we know ∅;⊺;⊺ ⊢ vc ∶ τc,⊺ and

154

∅;⊺;⊺ ⊢ uc ∶ τc,⊺, for some τc. Therefore, we can apply Lemma 24

to get root(mS3
3 , vc).

Since mS2
2 = φ(mS3

3), from ¬root(φ(mS1
1), uc) and root(mS2

2 , uc),

we know mS3
3 ≠ mS1

1 . Therefore, from the derivation of

nc(mS1
1 , ⟨mS3

3 ,M1⟩), we know there exists some Ð⇀vi ′ and some c′′ such

that M1(mS3
3) = {ÐÐÐ⇀xi = v′i} and nc(mS1

1 , ⟨v′c′′ ,M1⟩).

The result follows via NC2:

root(mS3
3 , vc) M1(mS3

3) = {
ÐÐÐ⇀
xi = v′i} nc(mS1

1 , ⟨v′c′′ ,M1⟩)

nc(mS1
1 , ⟨vc,M1⟩)

Lemma 26. Let G be a collectible group in ⟨e,M⟩ with mS1
1 ∈ G. If nc(mS1

1 , ⟨mS,M⟩),

then mS ∈ G:

gc(G, ⟨e,M⟩) ∧mS1
1 ∈ G ∧ nc(mS1

1 , ⟨mS,M⟩)⇒mS ∈ G

Proof. By induction on the derivation of nc(mS1
1 , ⟨mS,M⟩).

Case NC1:

We must have mS =mS1
1 , so the result follows trivially.

Case NC2:

We know there exists some Ð⇀vi and some c such that M(mS) = {ÐÐÐ⇀xi = vi}

and nc(mS1
1 , ⟨vc,M⟩). Consider the two cases in the derivation of

nc(mS1
1 , ⟨vc,M⟩):

Sub-case NC1:

We have root(mS1
1 , vc), so we therefore know root(mS1

1 ,M(mS)). The

result then follows from the definition of gc(G, ⟨e,M⟩).

155

Sub-case NC2:

We know there exists some location mS2
2 such that root(mS2

2 , vc) and

nc(mS1
1 , ⟨mS2

2 ,M⟩). So, by the induction hypothesis, we know mS2
2 ∈

G. From root(mS2
2 , vc), we know root(mS2

2 ,M(mS)). The result then

follows from the definition of gc(G, ⟨e,M⟩).

Lemma 27. Let M1 and M2 be well-formed memories. Suppose φ⟨e1,M1⟩ ≈α ⟨e2,M2⟩.

Let G be a collectible group in ⟨e1,M1⟩, and let φ(G) denote {φ(mS) ∶ mS ∈ G ∩

dom(φ)}. Let C represent the high-authority, high-persistence members ofG∩dom(φ):

C = {mS ∈ G ∩ dom(φ) ∶ ⊢ α ≼ auth+(S) ⊓ persist(S)}.

Then there exists a set G′ such that φ(G′) is a subset of φ(G), is a collectible group in

⟨e2,M2⟩, and contains all members of φ(C):

⊢α[wf] M1∧ ⊢α[wf] M2 ∧ φ⟨e1,M1⟩ ≈α ⟨e2,M2⟩ ∧ gc(G, ⟨e1,M1⟩)

⇒ ∃G′.gc(φ(G′), ⟨e2,M2⟩) ∧ φ(C) ⊆ φ(G′) ⊆ φ(G)

Proof. First, we show that φ(C) is a set of collectible locations. Suppose it

isn’t. Then let mS ∈ G ∩ dom(φ) be such that φ(mS) ∈ φ(C) is non-collectible:

nc(φ(mS), ⟨e2,M2⟩). Since φ(mS) is high-authority and high-persistence, by in-

duction on the derivation of nc(φ(mS), ⟨e2,M2⟩), we can show that mS must be

non-collectible: nc(mS, ⟨e1,M1⟩). Therefore, by Lemma 22, G cannot be a col-

lectible group, a contradiction.

Let G′ ⊆ dom(φ) be such that φ(G′) is the largest superset of φ(C) such

that from every location in φ(G′), some location in φ(C) is reachable through

a chain of hard references: ∀mS0
0 ∈ φ(G′). ∃mS1

1 ∈ φ(C). nc(mS1
1 , ⟨mS0

0 ,M2⟩). By

Lemma 23, we know φ(G′) is a collectible group.

156

We now show that φ(G′) is also a subset of φ(G) by showingG′ ⊆ G. Suppose

mS ∈ G′. By construction of G′, let mS1
1 ∈ C be such that nc(φ(mS1

1), ⟨φ(mS),M2⟩).

From this, by Lemma 25, we know nc(mS1
1 , ⟨mS,M1⟩). By Lemma 26, then, we

must have mS ∈ G. So G′ ⊆ G.

Lemma 28 (Equivalence substitution). If φ(e1) ≈α e2 and φ(e′1) ≈α e′2, then

φ(e1{e′1/x}) ≈α e2{e′2/x}.

Proof. Simple induction on the derivation of φ(e1) ≈α e2.

Lemma 29 (Auto-bracketing equivalence). Auto-bracketing preserves equivalence:

φ(e1) ≈α e2 ⇒ φ(e1 ▸α τ) ≈α e2 ▸α τ .

Lemma 30. Suppose φ(e1) ≈α e2. Let mS be such that mS /∈ locs(e1) and let φ′ =

φ[mS ↦mS
1]. Then φ′(e1) ≈α e2.

Lemma 31. Evaluating in a low-integrity context preserves memory equivalence.

Let ⟨e1,M1⟩ be a well-formed configuration, wherein e1 is well-typed in a low-

integrity context. Let M2 be a well-formed memory and suppose ⟨e1,M1⟩
eÐ→∗ ⟨e′1,M ′

1⟩.

⊢α[wf] ⟨e1,M1⟩ ∧ α /≼ pc ∧ ∅;pc;H ⊢ e1 ∶ τ,X

∧ ⊢α[wf] M2 ∧ ⟨e1,M1⟩
eÐ→∗ ⟨e′1,M ′

1⟩ .

Then the following holds.

1. φ(M1) ≈α M2 ⇒ φ(M ′
1) ≈α M2 and

2. ⊢[wf] ⟨e1,M1⟩ ∧ φ(M2) ≈α M1 ⇒ φ(M2) ≈α M ′
1.

Proof. If we can show this is true for the case where a single eÐ→ step is taken,

then the rest follows by induction on the number of eÐ→ steps taken. (We know

the induction hypothesis will apply because of Corollary 11 and Corollary 12.)

157

We show the single-step case by induction on the derivation of ⟨e1,M1⟩
eÐ→

⟨e′1,M ′
1⟩. The proof proceeds by cases according to the evaluation rules.

In cases SELECT, DANGLE-SELECT, SOFT-SELECT, DANGLE-ASSIGN, AP-

PLY, EXISTS-TRUE, EXISTS-FALSE, TRY-VAL, TRY-CATCH, TRY-ESC, PARALLEL-

RESULT, IF-TRUE, IF-FALSE, LET, FAIL-PROP, BRACKET-SELECT, BRACKET-

SOFT-SELECT, BRACKET-ASSIGN, BRACKET-SOFT-ASSIGN, BRACKET-SOFT,

BRACKET-EXISTS, BRACKET-APPLY, BRACKET-TRY, BRACKET-IF, BRACKET-

LET, DOUBLE-BRACKET, and BRACKET-FAIL, the result holds trivially, since

M ′
1 =M1.

Case CREATE (⟨{ÐÐÐ⇀xi = vi}S,M1⟩
eÐ→ ⟨mS,M1[mS ↦ {ÐÐÐÐÐÐÐ⇀xi = vi ▸α τi}]⟩, where m is

fresh and S = {ÐÐÐ⇀xi ∶ τi}(a,p)):

1. Suppose φ(M1) ≈α M2. We show that φ(M ′
1) ≈α M2.

From the derivation of ∅;pc;H ⊢ e1 ∶ τ,X , we know ⊢ p ≼ pc and

⊢ integ(τi) ≼ pc for all i. Therefore, we know mS is neither high-

integrity nor high-persistence. The result then follows from the fact

that mS /∈ dom(φ) and the assumption φ(M1) ≈α M2.

2. Suppose ⊢[wf] ⟨e1,M1⟩ and φ(M2) ≈α M1. We show that φ(M2) ≈α M ′
1.

This follows from φ(M2) ≈α M1.

Case ASSIGN (⟨mS.xc ∶= v,M1⟩
eÐ→ ⟨∗ ▸α p,M1[mS.xc ↦ v ▸α τc]⟩, where

M1(mS) ≠ � and S = {ÐÐÐ⇀xi ∶ τi}(a,p)):

Let Ð⇀vi ′ and Ð⇀ui be such that M ′
1(mS) = {ÐÐÐ⇀xi = v′i} and M2(φ(mS)) = {ÐÐÐ⇀xi = ui}.

We therefore have v′c = v ▸α τc.

From ∅;pc;H ⊢ mS.xc ∶= v ∶ τ,X , we know ⊢ τ ′ ⊓ pc ≤ τc, for some τ ′. We

therefore know ⊢ integ(τc) ≼ pc. So, from α /≼ pc, we have α /≼ integ(τc).

Therefore, v′c is a bracketed value: there exists a v′′c such that v′c = [v′′c].

158

From ⊢α[wf] M2 and α /≼ integ(τc), we also know uc is a bracketed value:

uc = [u′c], for some u′c.

1. Suppose φ(M1) ≈α M2. We show that φ(M ′
1) ≈α M2.

Assume mS ∈ dom(φ) (otherwise, the result follows directly from

φ(M1) ≈α M2). Since φ(M1) ≈α M2, it suffices to show φ(v′c) ≈α uc.

This is trivial, since v′c = [v′′c] and uc = [u′c].

2. Suppose ⊢[wf] ⟨e1,M1⟩ and φ(M2) ≈α M1. We show that φ(M2) ≈α M ′
1.

Assume mS ∈ im(φ) (otherwise, the result follows directly from

φ(M2) ≈α M1). Since φ(M2) ≈α M1, it suffices to show φ(uc) ≈α v′c.

This is trivial, since uc = [u′c] and v′c = [v′′c].

Case SOFT-ASSIGN (⟨(softmS).xc ∶= v,M1⟩
eÐ→ ⟨e′1 ▸α (a ⊓ p),M ′

1⟩, where

⟨mS.xc ∶= v,M1⟩
eÐ→ ⟨e′1,M ′

1⟩ and S = {ÐÐÐ⇀xi ∶ τi}(a,p)):

We proceed by cases according to the evaluation rules for ⟨mS.xc ∶= v,M1⟩
eÐ→

⟨e′1,M ′
1⟩.

Sub-case ASSIGN (⟨mS.xc ∶= v,M1⟩
eÐ→ ⟨∗ ▸α p,M1[mS.xc ↦ v ▸α τc]⟩):

Let Ð⇀vi ′ and Ð⇀ui be such that M ′
1(mS) = {ÐÐÐ⇀xi = v′i} and M2(φ(mS)) =

{ÐÐÐ⇀xi = ui}. We therefore have v′c = v ▸α τc.

From ∅;pc;H ⊢ (softmS).xc ∶= v ∶ τ,X , we know ⊢ τ ′ ⊓ pc ≤ τc, for

some τ ′. We therefore know ⊢ integ(τc) ≼ pc. So, from α /≼ pc, we have

α /≼ integ(τc). Therefore, v′c is a bracketed value: there exists a v′′c such

that v′c = [v′′c].

From ⊢α[wf] M2 and α /≼ integ(τc), we also know uc is a bracketed value:

uc = [u′c], for some u′c.

159

1. Suppose φ(M1) ≈α M2. We show φ(M ′
1) ≈α M2.

Assume mS ∈ dom(φ) (otherwise, the result follows directly from

φ(M1) ≈α M2). Since φ(M1) ≈α M2, it suffices to show φ(v′c) ≈α uc.

This is trivial, since v′c = [v′′c] and uc = [u′c].

2. Suppose ⊢[wf] ⟨e1,M1⟩ and φ(M2) ≈α M1. We show φ(M2) ≈α M ′
1.

Assume mS ∈ im(φ) (otherwise, the result follows directly from

φ(M2) ≈α M1). Since φ(M2) ≈α M1, it suffices to show φ(uc) ≈α v′c.

This is trivial, since uc = [u′c] and v′c = [v′′c].

Sub-case DANGLE-ASSIGN (⟨mS.xc ∶= v,M1⟩
eÐ→ ⟨�p ▸α p,M1⟩):

The result holds trivially, since M ′
1 =M1.

Case EVAL-CONTEXT (⟨E[e3],M1⟩
eÐ→ ⟨E[e′3],M ′

1⟩, where ⟨e3,M1⟩
eÐ→ ⟨e′3,M ′

1⟩):

A case analysis on the syntax of E[⋅] shows that from the derivation of

∅;pc;H ⊢ E[e3] ∶ τ,X , we know ∅;pc;H′ ⊢ e3 ∶ τ ′,X ′, for some H′, τ ′,

and X ′. Therefore, we can apply the induction hypothesis and obtain the

result.

Case BRACKET-CONTEXT (⟨[e3],M1⟩
eÐ→ ⟨[e′3],M ′

1⟩, where ⟨e3,M1⟩
eÐ→ ⟨e′3,M ′

1⟩):

From the derivation of ∅;pc;H ⊢ [e3] ∶ τ,X , we know ∅;pc ⊓ `;H ⊢ e3 ∶

τ ′,X , where α /≼ ` and τ = τ ′ ⊓ `. Therefore, we can apply the induction

hypothesis and obtain the result.

160

We can now state our referential security theorem, which encompasses both

referential integrity and, via Lemma 20, immunity to storage attacks.

Theorem 1 (Referential security). Let ⟨e1,M1⟩ be a well-formed configuration

wherein e1 has type τ . Let e2 be an expression also of type τ , and let M2 be well-formed,

such that ⟨e2,M2⟩ is a well-formed non-adversarial configuration. Let φ be a high-

integrity homomorphism from M1 to M2 such that ⟨e1,M1⟩ is equivalent to ⟨e2,M2⟩

via φ. Suppose ⟨e1,M1⟩ takes some number of steps in the presence of an adversary to

another configuration ⟨e′1,M ′
1⟩.

⊢α[wf] ⟨e1,M1⟩ ∧ ∅;pc;H ⊢ e1 ∶ τ,X

∧ ⊢[wf] ⟨e2,M2⟩ ∧ ∅;pc;H ⊢ e2 ∶ τ,X∧ ⊢α[wf] M2

∧ φ⟨e1,M1⟩ ≈α ⟨e2,M2⟩ ∧ ⟨e1,M1⟩→∗
α ⟨e′1,M ′

1⟩

Then either ⟨e2,M2⟩ diverges, or it can take some number of steps in the absence of an

adversary to another configuration

∃e′2,M ′
2. ⟨e2,M2⟩→∗ ⟨e′2,M ′

2⟩ ,

and there exists a high-integrity homomorphism φ′ from M ′
1 to M ′

2 that extends φ, such

that ⟨e′1,M ′
1⟩ is equivalent to ⟨e′2,M ′

2⟩ via φ′:

φ′⟨e′1,M ′
1⟩ ≈α ⟨e′2,M ′

2⟩

Proof. If we can show this is true for the case where a single →α step is taken

to reach ⟨e′1,M ′
1⟩, then the rest follows by induction on the number of →α steps

taken. (We know the induction hypothesis will apply because of Corollary 11

and the fact that ⊢[wf] ⟨e2,M2⟩∧ ⊢α[wf] M2 ⇒⊢α[wf] ⟨e2,M2⟩.)

We show the single-step case by induction on the derivation of ⟨e1,M1⟩ →α

⟨e′1,M ′
1⟩. Assume that ⟨e2,M2⟩ does not diverge. The proof proceeds by cases

161

according to the evaluation rules. For each case, we need to show two things

about e′2, M ′
2, and φ′:

i. Expression equivalence: φ′(e′1) ≈α e′2 and

ii. Memory equivalence: φ′(M ′
1) ≈α M ′

2.

It will be obvious by its construction that φ′ is a high-integrity homomorphism

that extends φ.

Case CREATE (⟨{ÐÐÐ⇀xi = vi}S,M1⟩ →α ⟨mS
1 ,M1[mS

1 ↦ {ÐÐÐÐÐÐÐ⇀xi = vi ▸α τi}]⟩, where m1 is

fresh and S = {ÐÐÐ⇀xi ∶ τi}s):

From φ(e1) ≈α e2, we know e2 = {ÐÐÐ⇀xi = ui}S with φ(vi) ≈α ui for all i. By

CREATE,

⟨e2,M2⟩→ ⟨mS
2 ,M2[mS

2 ↦ {ÐÐÐÐÐÐÐ⇀xi = ui ▸α τi}]⟩ ,

where m2 is fresh. Choose φ′ = φ[mS
1 ↦mS

2].

i. We need to show φ′(mS
1) ≈α mS

2 .

This follows by construction of φ′.

ii. We need to show φ′(M ′
1) ≈α M ′

2, where M ′
1 =M1[mS

1 ↦ {ÐÐÐÐÐÐÐ⇀xi = vi ▸α τi}]

and M ′
2 =M2[mS

2 ↦ {ÐÐÐÐÐÐÐ⇀xi = ui ▸α τi}].

First, let mS′ ∈ dom(φ′) be such that M ′
1(mS′) ≠ �. We show that

M ′
2(φ′(mS′)) ≠ � and φ′(M ′

1(mS′)) ≈α M ′
2(φ′(mS′)).

If mS′ = mS
1 , then M ′

1(mS′) = M ′
1(mS

1) = {ÐÐÐÐÐÐÐ⇀xi = vi ▸α τi} and

M ′
2(φ′(mS′)) =M ′

2(mS
2) = {ÐÐÐÐÐÐÐ⇀xi = ui ▸α τi}, so the result follows from the

assumption φ(e1) ≈α e2 via Lemmas 29 and 30. Otherwise, mS′ ≠ mS
1 ,

so M ′
1(mS′) = M1(mS′) and M ′

2(φ′(mS′)) = M2(φ(mS′)). The result

therefore follows from the assumption φ(M1) ≈α M2.

162

Now, let mS′ ∈ dom(φ′) be such that ⊢ α ≼ auth+(S′) ⊓ persist(S′) and

M ′
1(mS′) = �. We show that M ′

2(φ′(mS′)) = �. Since M ′
1(mS′) = �,

we must have mS′ ≠ mS
1 , so M ′

1(mS′) = M1(mS′) and M ′
2(φ′(mS′)) =

M2(φ(mS′)). The result therefore follows from the assumption

φ(M1) ≈α M2.

Case SELECT (⟨mS
1 .xc,M1⟩ →α ⟨vc ▸α p,M1⟩, where S = {ÐÐÐ⇀xi ∶ τi}(a,p) and

M1(mS
1) = {ÐÐÐ⇀xi = vi}):

From φ(e1) ≈α e2, we know e2 =mS
2 .xc, where φ(mS

1) =mS
2 . Therefore, from

φ(M1) ≈α M2, we have M2(mS
2) = {ÐÐÐ⇀xi = ui} for some Ð⇀ui , where φ(vi) ≈α ui.

So, by SELECT, ⟨e2,M2⟩→ ⟨uc ▸α p,M2⟩. Choose φ′ = φ.

i. We need to show φ(vc ▸α p) ≈α uc ▸α p.

This follows via Lemma 29.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case DANGLE-SELECT (⟨mS
1 .xc,M1⟩ →α ⟨�p ▸α p,M1⟩, where S = {ÐÐÐ⇀xi ∶ τi}(a,p)

and M1(mS
1) = �):

From ⊢α[wf] ⟨mS
1 .xc,M1⟩, nc(mS

1 , ⟨mS
1 .xc,M1⟩), and M1(mS

1) = �, we know

α /≼ p. Therefore, �p ▸α p = [�p]. From φ(e1) ≈α e2, we know e2 =mS
2 .xc.

If M2(mS
2) = �, then by DANGLE-SELECT, ⟨e2,M2⟩→ ⟨[�p],M2⟩.

Otherwise, without loss of generality, assume M2(mS
2) = {ÐÐÐ⇀xi = ui}. Since

α /≼ p, we have uc ▸α p = [u′c] for some u′c. So, by SELECT, ⟨e2,M2⟩ →

⟨[u′c],M2⟩.

Choose φ′ = φ.

163

i. We need to show that φ([�p]) ≈α [u] for u ∈ {u′c,�p}.

This is trivial.

ii. We need to show that φ(M1) ≈α M2.

This is given.

Case SOFT-SELECT (⟨(softmS
1).xc,M1⟩ →α ⟨v′,M1⟩, where ⟨mS

1 .xc,M1⟩
eÐ→

⟨v,M1⟩, S = {ÐÐÐ⇀xi ∶ τi}(a,p)), and v′ = v ▸α (a ⊓ p):

From φ(e1) ≈α e2, we know e2 = ((softmS
2).xc), where φ(mS

1) = mS
2 . If we

can find u so that ⟨mS
2 .xc,M2⟩

eÐ→ ⟨u,M2⟩, then by SOFT-SELECT, we have

⟨e2,M2⟩ = ⟨(softmS
2).xc,M2⟩→ ⟨u ▸α (a ⊓ p),M2⟩. Choose φ′ = φ.

We proceed by cases according to the evaluation rules for ⟨mS
1 .xc,M1⟩

eÐ→

⟨v,M1⟩.

Sub-case SELECT (v = vc ▸α p, where M1(mS
1) = {ÐÐÐ⇀xi = vi}):

From φ(M1) ≈α M2, we know M2(mS
2) = {ÐÐÐ⇀xi = ui} for some Ð⇀ui , where

φ(vi) ≈α ui. So, by SELECT, we have ⟨mS
2 .xc,M2⟩

eÐ→ ⟨uc ▸α p,M2⟩.

Therefore, u = uc ▸α p.

i. We need to show φ((vc ▸α p) ▸α (a ⊓ p)) ≈α (uc ▸α p) ▸α (a ⊓ p).

This follows via Lemma 29.

ii. We need to show φ(M1) ≈α M2.

This is given.

Sub-case DANGLE-SELECT (v = �p ▸α p, where M1(mS
1) = �):

First, suppose ⊢ α ≼ a ⊓ p. Then v ▸α (a ⊓ p) = �p, u ▸α (a ⊓ p) = u, and

⊢ α ≼ p. Therefore, we have mS
1 ∈ dom(φ), and so, φ(mS

1) = mS
2 . From

φ(M1) ≈α M2, then, we know M2(mS
2) = �. So, by SELECT, we have

⟨mS
2 .xc,M2⟩

eÐ→ ⟨�p,M2⟩. Therefore, u = �p.

164

i. We need to show φ(�p) ≈α �p.

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

Now, suppose α /≼ a ⊓ p. Then v ▸α (a ⊓ p) = [�p]. If M2(mS
2) = �,

then by DANGLE-SELECT, ⟨mS
2 .xc,M2⟩

eÐ→ ⟨�p ▸α p,M2⟩. Otherwise,

without loss of generality, assumeM2(mS
2) = {ÐÐÐ⇀xi = ui}. So, by SELECT,

⟨mS
2 .xc,M2⟩

eÐ→ ⟨uc ▸α p,M2⟩. Therefore, u ▸α (a ⊓ p) ∈ {(�p ▸α p) ▸α (a ⊓

p), (uc ▸α p) ▸α (a ⊓ p)} = {[�p], [u′c]}, for some u′c.

i. We need to show φ([�p]) ≈α [u′] for u′ ∈ {u′c,�p}.

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case ASSIGN (⟨mS
1 .xc ∶= v,M1⟩ →α ⟨∗ ▸α p,M1[mS

1 .xc ↦ v ▸α τc]⟩, where

M1(mS
1) ≠ � and S = {ÐÐÐ⇀xi ∶ τi}(a,p)):

From φ(e1) ≈α e2, we know e2 = (mS
2 .xc ∶= u) with φ(mS

1) = mS
2 and

φ(v) ≈α u. From φ(M1) ≈α M2, we have M2(mS
2) ≠ �. So, by ASSIGN,

⟨mS
2 .xc ∶= u,M2⟩→ ⟨∗ ▸α p,M2[mS

2 .xc ↦ u ▸α τc]⟩. Choose φ′ = φ.

i. We need to show φ(∗ ▸α p) ≈α ∗ ▸α p.

This follows via Lemma 29.

ii. We need to show φ(M1[mS
1 .xc ↦ v ▸α τc]) ≈α M2[mS

2 .xc ↦ u ▸α τc].

First, let mS0
0 ∈ dom(φ) be such that M ′

1(mS0
0) ≠ �. We show that

M ′
2(φ(mS0

0)) ≠ � and φ(M ′
1(mS0

0)) ≈α M ′
2(φ(mS0

0)).

If mS0
0 =mS

1 , then φ(mS0
0) =mS

2 . Let Ð⇀vi ′ and Ð⇀ui ′ be such that M ′
1(mS

1) =

{ÐÐÐ⇀xi = v′i} and M ′
2(mS

2) = {ÐÐÐ⇀xi = u′i}. Since φ(v) ≈α u, by Lemma 29, we

165

have φ(v ▸α τc) ≈α u ▸α τc. Since v′c = v ▸α τc and u′c = u ▸α τc, we

therefore have φ(v′c) ≈α u′c. Therefore, from φ(M1) ≈α M2, it follows

that φ({ÐÐÐ⇀xi = v′i}) ≈α {ÐÐÐ⇀xi = u′i}.

Otherwise, mS0
0 ≠ mS

1 , so M ′
1(mS0

0) = M1(mS0
0) and M ′

2(φ(mS0
0)) =

M2(φ(mS0
0)). The result therefore follows from φ(M1) ≈α M2.

Now, let mS0
0 ∈ dom(φ) be such that ⊢ α ≼ auth+(S0) ⊓ persist(S0) and

M ′
1(mS0

0) = �. We show that M ′
2(φ(mS0

0)) = �. This follows from

φ(M1) ≈α M2 by construction of M ′
1 and M ′

2.

Case DANGLE-ASSIGN (⟨mS
1 .xc ∶= v,M1⟩ →α ⟨�p ▸α p,M1⟩, where S =

{ÐÐÐ⇀xi ∶ τi}(a,p) and M1(mS) = �):

From ⊢α[wf] ⟨mS
1 .xc ∶= v,M1⟩, nc(mS

1 , ⟨mS
1 .xc ∶= v,M1⟩), and M1(mS

1) = �, we

know α /≼ p. Therefore, �p ▸α p = [�p].

From φ(e1) ≈α e2, we know e2 =mS
2 .xc ∶= u with φ(mS

1) =mS
2 and φ(v) ≈α u.

If M2(mS
2) = �, then by DANGLE-ASSIGN, ⟨e2,M2⟩→ ⟨[�p],M2⟩.

Otherwise, M2(mS
2) ≠ �. Since α /≼ p, we have ∗ ▸α p = [∗]. So, by ASSIGN,

⟨e2,M2⟩→ ⟨[∗],M2[mS
2 .xc ↦ u ▸α τc]⟩.

Choose φ′ = φ.

i. We need to show φ([�p]) ≈α [u′] for u′ ∈ {∗,�p}.

This is trivial.

ii. We need to show φ(M ′
1) ≈α M ′

2.

First, let mS0
0 ∈ dom(φ) be such that M ′

1(mS0
0) ≠ �. We show that

M ′
2(φ(mS0

0)) ≠ � and φ(M ′
1(mS0

0)) ≈α M ′
2(φ(mS0

0)).

Since M ′
1 = M1 and M ′

1(mS0
0) ≠ �, we must have mS0

0 ≠ mS
1 , so

M ′
1(mS0

0) =M1(mS0
0) andM ′

2(φ(mS0
0)) =M2(φ(mS0

0)). The result there-

fore follows from φ(M1) ≈α M2.

166

Now, let mS0
0 ∈ dom(φ) be such that ⊢ α ≼ auth+(S0) ⊓ persist(S0) and

M ′
1(mS0

0) = �. We show that M ′
2(φ(mS0

0)) = �. This follows from

φ(M1) ≈α M2 by construction of M ′
2.

Case SOFT-ASSIGN (⟨(softmS
1).xc ∶= v,M1⟩ →α ⟨v′ ▸α (a ⊓ p),M ′

1⟩, where

⟨mS
1 .xc ∶= v,M1⟩

eÐ→ ⟨v′,M ′
1⟩ and S = {ÐÐÐ⇀xi ∶ τi}(a,p)):

From φ(e1) ≈α e2, we know e2 = ((softmS
2).xc ∶= u) with φ(mS

1) =

mS
2 and φ(v) ≈α u. If we can find a configuration ⟨u′,M ′

2⟩ so that

⟨mS
2 .xc ∶= u,M2⟩

eÐ→ ⟨u′,M ′
2⟩, then by SOFT-ASSIGN, we have ⟨e2,M2⟩ =

⟨(softmS
2).xc ∶= u,M2⟩→ ⟨u′ ▸α (a ⊓ p),M ′

2⟩. Choose φ′ = φ.

We proceed by cases according to the evaluation rules for ⟨mS
1 .xc ∶= v,M1⟩

eÐ→

⟨v′,M ′
1⟩.

Sub-case ASSIGN (v′ = ∗ ▸α p and M ′
1 = M1[mS

1 .xc ↦ v ▸α τc], where

M1(mS
1) ≠ �):

From φ(M1) ≈α M2, we know M2(mS
2) ≠ �. So, by ASSIGN, we have

⟨mS
2 .xc ∶= u,M2⟩

eÐ→ ⟨∗ ▸α p,M2[mS
2 .xc ↦ u ▸α τc]⟩ .

So u′ = ∗ ▸α p and M ′
2 =M2[mS

2 .xc ↦ u ▸α τc].

i. We need to show φ((∗ ▸α p) ▸α (a ⊓ p)) ≈α (∗ ▸α p) ▸α (a ⊓ p).

This follows via Lemma 29.

ii. We need to show φ(M1[mS
1 .xc ↦ v ▸α τc]) ≈α M2[mS

2 .xc ↦ u ▸α τc].

First, let mS0
0 ∈ dom(φ) be such that M ′

1(mS0
0) ≠ �. We show that

M ′
2(φ(mS0

0)) ≠ � and φ(M ′
1(mS0

0)) ≈α M ′
2(φ(mS0

0)).

If mS0
0 = mS

1 , then φ(mS0
0) = mS

2 . Let Ð⇀vi ′ and Ð⇀ui ′ be such that

M ′
1(mS

1) = {ÐÐÐ⇀xi = v′i} and M ′
2(mS

2) = {ÐÐÐ⇀xi = u′i}. Since φ(v) ≈α u,

by Lemma 29, we have φ(v ▸α τc) ≈α u ▸α τc. Since v′c = v ▸α τc

167

and u′c = u ▸α τc, we therefore have φ(v′c) ≈α u′c. Therefore, from

φ(M1) ≈α M2, it follows that φ({ÐÐÐ⇀xi = v′i}) ≈α {ÐÐÐ⇀xi = u′i}. Otherwise,

mS0
0 ≠mS

1 , soM ′
1(mS0

0) =M1(mS0
0) andM ′

2(φ(mS0
0)) =M2(φ(mS0

0)).

The result therefore follows from φ(M1) ≈α M2.

Now, let mS0
0 ∈ dom(φ) be such that ⊢ α ≼ auth+(S0) ⊓ persist(S0)

and M ′
1(mS0

0) = �. We show that M ′
2(φ(mS0

0)) = �. This follows

from φ(M1) ≈α M2 by construction of M ′
1 and M ′

2.

Sub-case DANGLE-ASSIGN (v′ = �p▸αp andM ′
1 =M1, whereM1(mS

1) = �):

First, suppose ⊢ α ≼ a⊓p. Then v′▸α(a⊓p) = �p and u′▸α(a⊓p) = u′, and

from φ(M1) ≈α M2, we know M2(mS
2) = �. So, by DANGLE-ASSIGN,

we have ⟨mS
2 .xc ∶= u,M2⟩

eÐ→ ⟨�p ▸α p,M2⟩. Therefore, u′ = �p ▸α p = �p

and M ′
2 =M2.

i. We need to show φ(�p) ≈α �p.

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

Now, suppose α /≼ a ⊓ p. Then v′ ▸α (a ⊓ p) = [�p].

If M2(mS
2) = �, then by DANGLE-ASSIGN, ⟨mS

2 .xc ∶= u,M2⟩
eÐ→

⟨�p ▸α p,M2⟩. Otherwise, M2(mS
2) ≠ �, and by ASSIGN,

⟨mS
2 .xc ∶= u,M2⟩

eÐ→ ⟨∗ ▸α p,M2[mS
2 .xc ↦ u ▸α τc]⟩. Therefore, u′ ▸α (a ⊓

p) ∈ {(�p ▸α p) ▸α (a ⊓ p), (∗ ▸α p) ▸α (a ⊓ p)} = {[�p], [∗]}.

i. We need to show φ([�p]) ≈α [u′] for u′ ∈ {∗,�p}.

This is trivial.

ii. We need to show φ(M ′
1) ≈α M ′

2.

First, let mS0
0 ∈ dom(φ) be such that M ′

1(mS0
0) ≠ �. We show that

M ′
2(φ(mS0

0)) ≠ � and φ(M ′
1(mS0

0)) ≈α M ′
2(φ(mS0

0)).

168

Since M ′
1 = M1 and M ′

1(mS0
0) ≠ �, we must have mS0

0 ≠ mS
1 , so

M ′
1(mS0

0) = M1(mS0
0) and M ′

2(φ(mS0
0)) = M2(φ(mS0

0)). The result

therefore follows from φ(M1) ≈α M2.

Now, let mS0
0 ∈ dom(φ) be such that ⊢ α ≼ persist(S0) and

M ′
1(mS0

0) = �. We show that M ′
2(φ(mS0

0)) = �. This follows from

φ(M1) ≈α M2 by construction of M ′
2.

Case APPLY (⟨(λ(x ∶τ)[pc;H]. e3) v1,M1⟩→α ⟨e3{v1/x},M1⟩):

From φ(e1) ≈α e2, we know that e2 = ((λ(x ∶ τ)[pc;H]. e4) v2),

where φ(e3) ≈α e4 and φ(v1) ≈α v2. By APPLY, we have

⟨(λ(x ∶τ)[pc;H]. e4) v2,M2⟩→ ⟨e4{v2/x},M2⟩. Choose φ′ = φ.

i. We need to show φ(e3{v1/x}) ≈α e4{v2/x}.

This follows by Lemma 28.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case EXISTS-TRUE (⟨exists softmS
1 as x ∶ e3 else e4,M1⟩→α

⟨(e3{mS
1 /x}) ▸α (a ⊓ p),M1⟩, where M1(mS

1) ≠ � and S = {ÐÐÐ⇀xi ∶ τi}(a,p)):

From φ(e1) ≈α e2, we know that e2 = exists softmS
2 as x ∶ e5 else e6, where

φ(mS
1) = mS

2 and φ(e3) ≈α e5. Since φ(M1) ≈α M2 and M1(mS
1) ≠ �, we

know M2(mS
2) ≠ �, so by EXISTS-TRUE, we have

⟨exists softmS
2 as x ∶ e5 else e6,M2⟩→ ⟨(e5{mS

2 /x}) ▸α (a ⊓ p),M2⟩

Choose φ′ = φ.

i. We need to show φ((e3{mS
1 /x}) ▸α (a ⊓ p)) ≈α (e5{mS

2 /x}) ▸α (a ⊓ p).

This follows by Lemmas 28 and 29.

169

ii. We need to show φ(M1) ≈α M2.

This is given.

Case EXISTS-FALSE (⟨exists softmS
1 as x ∶ e3 else e4,M1⟩ →α ⟨e4 ▸α (a ⊓ p),M1⟩,

where S = {ÐÐÐ⇀xi ∶ τi}(a,p) and M1(mS
1) = �):

From φ(e1) ≈α e2, we know that e2 = exists softmS
2 as x ∶ e5 else e6, where

φ(mS
1) = mS

2 and φ(e4) ≈α e6. We proceed by cases according to whether

⊢ α ≼ a ⊓ p.

Sub-case ⊢ α ≼ a ⊓ p:

We therefore know e4▸α (a⊓p) = e4 and ⊢ α ≼ p. So, from φ(M1) ≈α M2

and M1(mS
1) = �, we know M2(mS

2) = �, so by EXISTS-FALSE, we have

⟨exists softmS
2 as x ∶ e5 else e6,M2⟩→ ⟨e6,M2⟩. Choose φ′ = φ.

i. We need to show φ(e4) ≈α e6.

This is given.

ii. We need to show φ(M1) ≈α M2.

This is given.

Sub-case α /≼ a ⊓ p:

We therefore have e4 ▸α (a ⊓ p) = [e′4] for some e′4. If M2(mS
2) = �,

then by EXISTS-FALSE, we have ⟨exists softmS
2 as x ∶ e5 else e6,M2⟩ →

⟨[e′6],M2⟩, for some e′6. Otherwise, by EXISTS-TRUE, we have

⟨exists softmS
2 as x ∶ e5 else e6,M2⟩ → ⟨[e′5],M2⟩, for some e′5. Choose

φ′ = φ.

i. We need to show φ([e′4]) ≈α [e′′2] for e′′2 ∈ {e′5, e′6}.

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

170

Case TRY-VAL (⟨try v1 catch p∶ e3,M1⟩ →α ⟨v1,M1⟩, where ∀p′. v1 ≠ �p′ and

∀v′1. v1 ≠ [v′1]):

From φ(e1) ≈α e2, we know that e2 = (try v2 catch p∶ e4), where φ(v1) ≈α

v2 and φ(e3) ≈α e4. From this, it follows that by TRY-VAL, we have

⟨try v2 catch p∶ e4,M2⟩→ ⟨v2,M2⟩. Choose φ′ = φ.

i. We need to show φ(v1) ≈α v2.

This is given.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case TRY-CATCH (⟨try �p′ catch p∶ e3,M1⟩→α ⟨e3,M1⟩, where ⊢ p ≼ p′):

From φ(e1) ≈α e2, we know that e2 = (try �p′ catch p∶ e4), where φ(e3) ≈α e4.

By TRY-CATCH, we have ⟨try �p′ catch p∶ e4,M2⟩→ ⟨e4,M2⟩. Choose φ′ = φ.

i. We need to show φ(e3) ≈α e4.

This is given.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case TRY-ESC (⟨try �p′ catch p∶ e3,M1⟩→α ⟨�p′ ,M1⟩, where p /≼ p′):

From φ(e1) ≈α e2, we know that e2 = (try �p′ catch p∶ e4). By TRY-ESC, we

have ⟨try �p′ catch p∶ e4,M2⟩→ ⟨�p′ ,M2⟩. Choose φ′ = φ.

i. We need to show φ(�p′) ≈α �p′ .

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

171

Case PARALLEL-RESULT (⟨v1∥v2,M1⟩→α ⟨∗,M1⟩):

From φ(e1) ≈α e2, we know that e2 = u1∥u2, where φ(vi) ≈α ui for i ∈ {1,2}.

By PARALLEL-RESULT, we have ⟨u1∥u2,M2⟩→ ⟨∗,M2⟩. Choose φ′ = φ.

i. We need to show φ(∗) ≈α ∗.

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case IF-TRUE (⟨if true then e3 else e4,M1⟩→α ⟨e3,M1⟩):

From φ(e1) ≈α e2, we know that e2 = (if true then e5 else e6), where φ(e3) ≈α

e5. By IF-TRUE, we have ⟨if true then e5 else e6,M2⟩ → ⟨e5,M2⟩. Choose

φ′ = φ.

i. We need to show φ(e3) ≈α e5.

This is given.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case IF-FALSE (⟨if false then e3 else e4,M1⟩→α ⟨e4,M1⟩):

From φ(e1) ≈α e2, we know that e2 = (if false then e5 else e6), where φ(e4) ≈α

e6. By IF-FALSE, we have ⟨if false then e5 else e6,M2⟩ → ⟨e6,M2⟩. Choose

φ′ = φ.

i. We need to show φ(e4) ≈α e6.

This is given.

ii. We need to show φ(M1) ≈α M2.

This is given.

172

Case LET (⟨let x = v1 in e3,M1⟩ →α ⟨e3{v1/x},M1⟩, where ∀p. v1 ≠ �p and

∀v′1. v1 ≠ [v′1]):

From φ(e1) ≈α e2, we know that e2 = (let x = v2 in e4), where φ(v1) ≈α v2 and

φ(e3) ≈α e4. By LET, we have ⟨let x = v2 in e4,M2⟩→ ⟨e4{v2/x},M2⟩. Choose

φ′ = φ.

i. We need to show φ(e3{v1/x}) ≈α e4{v2/x}.

This follows by Lemma 28.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case EVAL-CONTEXT (⟨E[e3],M1⟩→α ⟨E[e′3],M ′
1⟩, where ⟨e3,M1⟩

eÐ→ ⟨e′3,M ′
1⟩):

We proceed by cases according to the syntax of E[⋅]. We only show the

case E[⋅] = try [⋅] catch p∶ e4; the other cases follow similarly.

Sub-case E[⋅] = (try [⋅] catch p∶ e4):

From φ(e1) ≈α e2, we know e2 = (try e5 catch p∶ e6), where φ(e3) ≈α e5

and φ(e4) ≈α e6. To apply the induction hypothesis, we need:

• ⊢α[wf] ⟨e3,M1⟩ and ⊢[wf] ⟨e5,M2⟩

These follow from

⊢α[wf] ⟨try e3 catch p∶ e4,M1⟩

and

⊢[wf] ⟨try e5 catch p∶ e6,M2⟩ .

• ∅;pc;H′ ⊢ e3 ∶ τ ′,X ′ and ∅;pc;H′ ⊢ e5 ∶ τ ′,X ′, for some H′, τ ′, X ′

These follow from the typing derivations for try e3 catch p∶ e4 and

try e5 catch p∶ e6.

173

• ⊢α[wf] M2 and φ⟨e3,M1⟩ ≈α ⟨e5,M2⟩.

These are given.

Therefore, we can apply the induction hypothesis to get a configura-

tion ⟨e′5,M ′
2⟩ and a high-integrity homomorphism φ′ from M ′

1 to M ′
2

that extends φ, such that ⟨e5,M2⟩→ ⟨e′5,M ′
2⟩ and

φ′⟨e′3,M ′
1⟩ ≈α ⟨e′5,M ′

2⟩. (3.14)

So, by EVAL-CONTEXT, we have

⟨try e5 catch p∶ e6,M2⟩→ ⟨try e′5 catch p∶ e6,M
′
2⟩ .

From (3.14), we know φ′⟨try e′3 catch p∶ e4,M ′
1⟩ ≈α ⟨try e′5 catch p∶ e6,M ′

2⟩,

as desired.

In case E[⋅] = soft [⋅], where e2 = soft e4, to apply the induction hypoth-

esis, we need the additional fact that since e3 is not a value, neither is e4,

and therefore ⊢α[wf] ⟨soft e3,M1⟩ and ⊢[wf] ⟨soft e4,M2⟩ imply ⊢α[wf] ⟨e3,M1⟩

and ⊢[wf] ⟨e4,M2⟩.

Case FAIL-PROP (⟨F [�p],M1⟩→α ⟨�p,M1⟩):

From φ(e1) ≈α e2, we know that e2 = F ′[�p]. By FAIL-PROP, we have

⟨F ′[�p],M2⟩→ ⟨�p,M2⟩. Choose φ′ = φ.

i. We need to show φ(�p) ≈α �p.

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

174

Case GC (⟨e1,M1⟩→α ⟨e1,M1[G↦ �]⟩, where gc(G, ⟨e1,M1⟩)):

By Lemma 27, letG′ be such that C ⊆ G′ ⊆ φ(G) and gc(G′, ⟨e2,M2⟩), where

C = {φ(mS) ∶mS ∈ G ∩ dom(φ)∧ ⊢ α ≼ auth+(S) ⊓ persist(S)}

and

φ(G) = {φ(mS) ∶mS ∈ G ∩ dom(φ)}.

Then, by GC, we have ⟨e2,M2⟩→ ⟨e2,M2[G′ ↦ �]⟩. Choose φ′ = φ.

i. We need to show φ(e1) ≈α e2.

This is given.

ii. We need to show φ(M1[G↦ �]) ≈α M2[G′ ↦ �].

First, let mS0
0 ∈ dom(φ) be such that M ′

1(mS0
0) ≠ �. We show that

M ′
2(φ(mS0

0)) ≠ � and φ(M ′
1(mS0

0)) ≈α M ′
2(φ(mS0

0)).

Since M ′
1(mS0

0) ≠ �, we know mS0
0 /∈ G and φ(mS0

0) /∈ G′. Therefore,

M ′
1(mS0

0) =M1(mS0
0) and M ′

2(φ(mS0
0)) =M2(φ(mS0

0)), so the result fol-

lows from the assumption φ(M1) ≈α M2.

Now, let mS0
0 ∈ dom(φ) be such that ⊢ α ≼ auth+(S0) ⊓ persist(S0)

and M ′
1(mS0

0) = �. We show that M ′
2(φ(mS0

0)) = �. If mS0
0 ∈ G, then

φ(mS0
0) ∈ G′, and the result follows by construction of M ′

2. Otherwise,

mS0
0 /∈ G, and so, φ(mS0

0) /∈ G′. Therefore, M ′
1(mS0

0) = M1(mS0
0) and

M ′
2(φ(mS0

0)) =M2(φ(mS0
0)), so the result follows from the assumption

φ(M1) ≈α M2.

Cases BRACKET-SELECT and BRACKET-SOFT-SELECT

(⟨[v].xc,M1⟩→α ⟨[v.xc],M1⟩, where v ∈ {mS1
1 , softm

S1
1 }):

From φ(e1) ≈α e2, we know that e2 = [u].xc. From the grammar, we

must have u ∈ {mS2
2 , softm

S2
2 }. If u = mS2

2 , then by BRACKET-SELECT,

175

⟨[mS2
2].xc,M2⟩→ ⟨[mS2

2 .xc],M2⟩. Otherwise, u = softmS2
2 , and by BRACKET-

SOFT-SELECT, ⟨[softmS2
2].xc,M2⟩→ ⟨[(softmS2

2).xc],M2⟩. Choose φ′ = φ.

i. We need to show φ([v.xc]) ≈α [u.xc].

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case BRACKET-ASSIGN (⟨[v1].xc ∶= v2,M1⟩→α ⟨[v1.xc ∶= v2],M1⟩):

From φ(e1) ≈α e2, we know that e2 = [u1].xc ∶= u2. By BRACKET-ASSIGN,

we have ⟨[u1].xc ∶= u2,M2⟩→ ⟨[u1.xc ∶= u2],M2⟩. Choose φ′ = φ.

i. We need to show φ([v1.xc ∶= v2]) ≈α [u1.xc ∶= u2].

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case BRACKET-SOFT (⟨soft [v],M1⟩→α ⟨[soft v],M1⟩):

From φ(e1) ≈α e2, we know that e2 = soft [e3]. Since ⟨e2,M2⟩ is assumed

to not diverge, ⟨e3,M2⟩ cannot diverge either. So, by Corollary 14, there

is a configuration ⟨u,M ′
2⟩ such that ⟨e3,M2⟩

eÐ→∗ ⟨u,M ′
2⟩. Then by EVAL-

CONTEXT, BRACKET-CONTEXT, and BRACKET-SOFT, we have

⟨soft [e3],M2⟩→∗ ⟨soft [u],M ′
2⟩→ ⟨[soft u],M ′

2⟩ .

Choose φ′ = φ.

i. We need to show φ([soft v]) ≈α [soft u].

This is trivial.

176

ii. We need to show φ(M1) ≈α M ′
2.

This follows by Lemma 31.

Case BRACKET-EXISTS

(⟨exists [v] as x ∶ e3 else e4,M1⟩→α ⟨[exists v as x ∶ e3 else e4],M1⟩):

From φ(e1) ≈α e2, we know that e2 = exists [u] as x ∶ e5 else e6. By BRACKET-

EXISTS, we have

⟨exists [u] as x ∶ e5 else e6,M2⟩→ ⟨[exists u as x ∶ e5 else e6],M2⟩

Choose φ′ = φ.

i. We need to show φ([exists v as x ∶ e3 else e4]) ≈α [exists u as x ∶ e5 else e6].

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case BRACKET-APPLY (⟨[v1] v2,M1⟩→α ⟨[v1 v2],M1⟩):

From φ(e1) ≈α e2, we know that e2 = ([u1] u2). By BRACKET-APPLY, we

have ⟨[u1] u2,M2⟩→ ⟨[u1 u2],M2⟩. Choose φ′ = φ.

i. We need to show φ([v1 v2]) ≈α [u1 u2].

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

177

Case BRACKET-TRY (⟨try [v] catch p∶ e3,M1⟩→α ⟨[try v catch p∶ e3],M1⟩):

From φ(e1) ≈α e2, we know that e2 = (try [e4] catch p∶ e5). Since ⟨e2,M2⟩

is assumed to not diverge, ⟨e4,M2⟩ cannot diverge either. So, by Corol-

lary 14, there is a configuration ⟨u,M ′
2⟩ such that ⟨e4,M2⟩

eÐ→∗ ⟨u,M ′
2⟩. Then

by EVAL-CONTEXT, BRACKET-CONTEXT, and BRACKET-TRY, we have

⟨try [e4] catch p∶ e5,M2⟩→∗ ⟨try [u] catch p∶ e5,M
′
2⟩→ ⟨[try u catch p∶ e5],M ′

2⟩ .

Choose φ′ = φ.

i. We need to show φ([try v catch p∶ e3]) ≈α [try u catch p∶ e5].

This is trivial.

ii. We need to show φ(M1) ≈α M ′
2.

This follows by Lemma 31.

Case BRACKET-IF (⟨if [v] then e3 else e4,M1⟩→α ⟨[if v then e3 else e4],M1⟩):

From φ(e1) ≈α e2, we know that e2 = (if [u] then e5 else e6). By BRACKET-IF,

we have

⟨if [u] then e5 else e6,M2⟩→ ⟨[if u then e5 else e6],M2⟩ .

Choose φ′ = φ.

i. We need to show φ([if v then e3 else e4]) ≈α [if u then e5 else e6].

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

178

Case BRACKET-LET (⟨let x = [v] in e3,M1⟩ →α ⟨[e3{[v]/x}],M1⟩, where ∀p. v ≠

�p):

From φ(e1) ≈α e2, we know that e2 = (let x = [u] in e4). If ∀p. u ≠ �p, then by

BRACKET-LET, we have

⟨let x = [u] in e4,M2⟩→ ⟨[e4{[u]/x}],M2⟩ .

Otherwise, let p be such that u = �p. Then, by BRACKET-FAIL, we have

⟨let x = [u] in e4,M2⟩→ ⟨[�p],M2⟩ .

Choose φ′ = φ.

i. We need to show φ([e3{[v]/x}]) ≈α [e′′2], where e′′2 ∈ {e4{[u]/x},�p}.

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case DOUBLE-BRACKET (⟨[[v]],M1⟩→α ⟨[v],M1⟩):

From φ(e1) ≈α e2, we know that e2 = [e′′2], so we trivially have ⟨[e′′2],M2⟩→∗

⟨[e′′2],M2⟩. Choose φ′ = φ.

i. We need to show φ([v]) ≈α [e′′2].

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case BRACKET-CONTEXT (⟨[e3],M1⟩→α ⟨[e′3],M ′
1⟩, where ⟨e3,M1⟩

eÐ→ ⟨e′3,M ′
1⟩):

From φ(e1) ≈α e2, we know that e2 = [e4], and we trivially have ⟨[e4],M2⟩
eÐ→

∗ ⟨[e4],M2⟩. Choose φ′ = φ.

179

i. We need to show φ([e′3]) ≈α [e4].

This is trivial.

ii. We need to show φ(M ′
1) ≈α M2.

This follows by Lemma 31.

Case BRACKET-FAIL (⟨F [[�p]],M1⟩→α ⟨[�p],M1⟩):

From φ(e1) ≈α e2, an easy case analysis on the syntax of F [⋅] shows that

⟨e2,M2⟩→ ⟨[�p],M2⟩ via BRACKET-FAIL. Choose φ′ = φ.

i. We need to show φ([�p]) ≈α [�p].

This is trivial.

ii. We need to show φ(M1) ≈α M2.

This is given.

Case α-CREATE (⟨e1,M1⟩ →α ⟨e1,M1[mS ↦ {
ÐÐÐÐ⇀
xi = [vi]}]⟩, where mS is fresh,

∅;⊺;⊺ ⊢ {
ÐÐÐÐ⇀
xi = [vi]}S ∶ R⊺,⊺, ⊢α[wf] M[mS ↦ {

ÐÐÐÐ⇀
xi = [vi]}, and α /≼ persist(S)) ∶

We trivially have ⟨e2,M2⟩→∗ ⟨e2,M2⟩. Choose φ′ = φ.

i. We need to show φ(e1) ≈α e2.

This is given.

ii. We need to show φ(M1[mS ↦ {
ÐÐÐÐ⇀
xi = [vi]}]) ≈α M2.

Since mS /∈ dom(φ), this follows from the assumption φ(M1) ≈α M2 by

construction of M ′
1.

Case α-ASSIGN (⟨e1,M1⟩ →α ⟨e1,M1[mS.xc ↦ [v]]⟩, where mS ∈ dom(M1),

M1(mS) ≠ �, S = {ÐÐÐ⇀xi ∶ τi}s, ∅;⊺;⊺ ⊢ [v] ∶ τc,⊺, and ⊢α[wf] M1[mS.xc ↦ [v]]):

We trivially have ⟨e2,M2⟩→∗ ⟨e2,M2⟩. Choose φ′ = φ.

180

i. We need to show φ(e1) ≈α e2.

This is given.

ii. We need to show φ(M1[mS.xc ↦ [v]]) ≈α M2.

If mS /∈ dom(φ), then this follows from the assumption φ(M1) ≈α M2

by construction of M ′
1.

Suppose mS ∈ dom(φ). Then it suffices to show that φ(M ′
1(mS)) ≈α

M2(φ(mS)), since the rest follows from φ(M1) ≈α M2.

Let Ð⇀vi ,
Ð⇀
v′i , and Ð⇀ui be such that M1(mS) = {ÐÐÐ⇀xi = vi} M ′

1(mS) = {ÐÐÐ⇀xi = v′i}

and M2(mS) = {ÐÐÐ⇀xi = ui}. From φ(M1) ≈α M2, we know φ(vi) ≈α ui for

all i. By construction of M ′
1, we have v′c = [v] and v′i = vi for i ≠ c.

Therefore, it remains to be shown that φ([v]) ≈α uc.

From ∅;⊺;⊺ ⊢ [v] ∶ τc,⊺, we know that α /≼ integ(τc). Therefore, from

⊢α[wf] M2, we must have uc = [u], for some u. The result φ([v]) ≈α uc

then follows trivially.

Case α-FORGET (⟨e1,M1⟩ →α ⟨e1,M1[mS ↦ �]⟩, where mS ∈ dom(M1) and α /≼

persist(S)):

We trivially have ⟨e2,M2⟩→∗ ⟨e2,M2⟩. Choose φ′ = φ.

i. We need to show φ(e1) ≈α e2.

This is given.

ii. We need to show φ(M1[mS ↦ �]) ≈α M2.

This follows from the assumption φ(M1) ≈α M2, since α /≼ persist(S).

181

3.8 Related work

This chapter identifies and addresses a new problem, referential security. As a

result, little prior work is closely related.

Some prior work has tried to improve referential integrity through system

mechanisms, for example improving the referential integrity of Web hyper-

links [21, 39]. Systems mechanisms for improving referential integrity (and

other aspects of trustworthiness) are orthogonal to the language model pre-

sented here, but could be used to justify assigning persistence, integrity, and

authority levels to nodes.

Liblit and Aiken [44] develop a type system for distributed data structures.

Its explicit two-level hierarchy distinguishes between local pointers meaningful

only to a single processor, and global pointers that are valid everywhere. The

type system ensures that local pointers do not leak into a global context. This

work was extended in [45] to add types for dealing with private vs. shared data.

However, this line of work does not consider security properties that require

defence against an adversary.

Riely and Hennessey study type safety in a distributed system of partially

trusted mobile agents [67] but do not consider referential security.

Our approach builds on prior work on information-flow security, much of

which is summarized by [70]. The Fabric platform described in Chapter 2 has

a high-level language that, like λpersist , includes integrity annotations and ab-

stracts away the locations of objects. Fabric does not enforce referential security,

however, so adding the features described here is an obvious next step.

Chugh et al. [15] develop an approach to dynamically loading untrusted,

mobile JavaScript code and ensuring that the code satisfies necessary security

properties. However, referential security properties are not covered.

182

3.A Appendix

3.A.1 Full syntax of λpersist
Policy levels w,a, p, ` ∈ L

Variables x, y ∈ Var PC labels pc ∶∶= w
Memory locations m ∈ Mem Storage labels s ∶∶= (a, p)

Labelled
record types S ∶∶= {ÐÐÐ⇀xi ∶ τi}s Reference labels r ∶∶= (a+, a−, p)

Labelled
reference types R ∶∶= {ÐÐÐ⇀xi ∶ τi}r

Persistence
failure handlers H ∶∶= Ð⇀pi

Base types b ∶∶= bool ∣ τ1
pc,HÐÐ→ τ2 ∣ R ∣ soft R Types τ ∶∶= bw ∣ 1

Values v, u ∶∶= x ∣ true ∣ false ∣ ∗ ∣mS ∣ softmS ∣ λ(x ∶ τ)[pc;H]. e (∣ �p)
Terms e ∶∶= v ∣ v1 v2 ∣ if v1 then e2 else e3 ∣ {ÐÐÐ⇀xi = vi}S ∣ v.x ∣ v1.x ∶= v2

∣ soft e ∣ e1∥e2 ∣ exists v as x ∶ e1 else e2 ∣ let x = e1 in e2

∣ try e1 catch p∶ e2

183

3.A.2 Full small-step operational semantics for ordinary (non-

adversarial) execution of λpersist
[APPLY] ⟨(λ(x ∶τ)[pc;H]. e) v,M⟩ eÐ→ ⟨e{v/x},M⟩

[LET]
∀p. v ≠ �p

⟨let x = v in e,M⟩ eÐ→ ⟨e{v/x},M⟩
[IF-TRUE] ⟨if true then e1 else e2,M⟩ eÐ→ ⟨e1,M⟩

[IF-FALSE] ⟨if false then e1 else e2,M⟩ eÐ→ ⟨e2,M⟩

[CREATE]
m = newloc(M)

⟨{ÐÐÐ⇀xi = vi}S ,M⟩ eÐ→ ⟨mS ,M[mS ↦ {ÐÐÐ⇀xi = vi}]⟩

[PARALLEL-
RESULT

] ⟨v1∥v2,M⟩ eÐ→ ⟨∗,M⟩ [SELECT]
M(mS) = {ÐÐÐ⇀xi = vi}

⟨mS .xc,M⟩ eÐ→ ⟨vc,M⟩

[ASSIGN]
M(mS) ≠ � ∀p. v ≠ �p

⟨mS .xc ∶= v,M⟩ eÐ→ ⟨∗,M[mS .xc ↦ v]⟩

[DANGLE-
SELECT

]
M(mS) = � p = persist(mS)

⟨mS .xc,M⟩ eÐ→ ⟨�p,M⟩
[DANGLE-

ASSIGN
]

M(mS) = � p = persist(mS)
⟨mS .xc ∶= v,M⟩ eÐ→ ⟨�p,M⟩

[EXISTS-
TRUE

]
M(mS) ≠ �

⟨exists softmS as x ∶ e1 else e2,M⟩ eÐ→ ⟨e1{mS/x},M⟩

[EXISTS-
FALSE

]
M(mS) = �

⟨exists softmS as x ∶ e1 else e2,M⟩ eÐ→ ⟨e2,M⟩

[EVAL-
CONTEXT

]
⟨e,M⟩ eÐ→ ⟨e′,M ′⟩

⟨E[e],M⟩ eÐ→ ⟨E[e′],M ′⟩
[FAIL-

PROP
] ⟨F [�p] ,M⟩ eÐ→ ⟨�p,M⟩

E ∶∶= soft [⋅] ∣ let x = [⋅] in e ∣ [⋅]∥e ∣ e∥[⋅] ∣ try [⋅] catch p∶ e
F ∶∶= soft [⋅] ∣ let x = [⋅] in e

[SOFT-
SELECT

]
⟨mS .xc,M⟩ eÐ→ ⟨v,M⟩

⟨(softmS).xc,M⟩ eÐ→ ⟨v,M⟩
[SOFT-
ASSIGN

]
⟨mS .xc ∶= v,M⟩ eÐ→ ⟨v′,M ′⟩

⟨(softmS).xc ∶= v,M⟩ eÐ→ ⟨v′,M ′⟩

[TRY-VAL]
∀p′. v ≠ �p′

⟨try v catch p∶ e,M⟩ eÐ→ ⟨v,M⟩
[TRY-
CATCH

]
p ≼ p′

⟨try �p′ catch p∶ e,M⟩ eÐ→ ⟨e,M⟩

[TRY-ESC]
p /≼ p′

⟨try �p′ catch p∶ e,M⟩ eÐ→ ⟨�p′ ,M⟩

[PROG-STEP]
⟨e,M⟩ eÐ→ ⟨e′,M ′⟩
⟨e,M⟩→ ⟨e′,M ′⟩

[GC]
gc(G, ⟨e,M⟩)

⟨e,M⟩→ ⟨e,M[G↦ �]⟩

184

3.A.3 Full subtyping rules for λpersist

[S1]
n >m

⊢ {x1 ∶τ1, . . . , xn ∶τn}r ≤ {x1 ∶τ1, . . . , xm ∶τm}r
[S2]

⊢ R1 ≤ R2

⊢ soft R1 ≤ soft R2

[S3]

⊢ b1 ≤ b2

⊢ w2 ≼ w1

⊢ (b1)w1 ≤ (b2)w2

[S4]

⊢ τ2 ≤ τ1 ⊢ τ ′1 ≤ τ ′2
⊢ pc1 ≼ pc2 ⊢H2 ≼H1

⊢ τ1
pc1,,H1ÐÐÐÐ→ τ ′1 ≤ τ2

pc2,,H2ÐÐÐÐ→ τ ′2

[S5]
⊢ a+1 ≼ a+2 ⊢ a−2 ≼ a−1 ⊢ p2 ≼ p1

⊢ {ÐÐÐ⇀xi ∶ τi}(a+1 ,a−1 ,p1) ≤ {ÐÐÐ⇀xi ∶ τi}(a+2 ,a−2 ,p2)

185

3.A.4 Full typing rules for λpersist

[T-BOOL]
b ∈ {true, false}

Γ;pc;H ⊢ b ∶ bool⊺,⊺
[T-UNIT] Γ;pc;H ⊢ ∗ ∶ 1,⊺ [T-VAR]

Γ(x) = τ
Γ;pc;H ⊢ x ∶ τ,⊺

[T-BOTTOM]
p ≠ ⊺ ⊢H ≼ p
Γ;pc;H ⊢ �p ∶ τ, p

[T-LOC]
⊢wf S ∶ rectype S = {ÐÐÐ⇀xi ∶ τi}(a,p)
Γ;pc;H ⊢mS ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺

[T-PARALLEL]
Γ;pc;⊺ ⊢ ei ∶ τi,⊺ (∀i)

Γ;pc;H ⊢ e1∥e2 ∶ 1,⊺
[T-SOFT]

Γ;pc;H ⊢ e ∶ Rw,X
Γ;pc;H ⊢ soft e ∶ (soft R)w,X

[T-IF]

Γ;pc;H ⊢ v ∶ boolw,⊺
Γ;pc ⊓w;H ⊢ ei ∶ τ,Xi

(∀i) ⊢ auth+(τ) ≼ pc ⊓w
Γ;pc;H ⊢ if v then e1 else e2 ∶ τ ⊓w,X1 ⊓X2

[T-ABS]
Γ, x ∶τ ′;pc′;H′ ⊢ e ∶ τ,H′ ⊢wf (τ ′

pc′,H′

ÐÐÐ→ τ)⊺ ∶ type ⊢ pc′ ≼ pc

Γ;pc;H ⊢ λ(x ∶τ ′)[pc′;H′]. e ∶ (τ ′ pc′,H′

ÐÐÐ→ τ)⊺,⊺

[T-APP]

Γ;pc;H ⊢ v1 ∶ (τ ′
pc′,H′

ÐÐÐ→ τ)w,⊺ Γ;pc;H ⊢ v2 ∶ τ ′,⊺
⊢ pc′ ≼ pc ⊓w ⊢H ≼H′

Γ;pc;H ⊢ v1 v2 ∶ τ ⊓w,H′

[T-RECORD]

⊢wf S ∶ rectype S = {ÐÐÐ⇀xi ∶ τi}(a,p) Γ;pc;H ⊢ vi ∶ τ ′i ,⊺ (∀i)
⊢ τ ′i ≤ τi (∀i) ⊢ auth+(τ ′i) ≼ pc (∀i) ⊢ integ(τi) ≼ pc (∀i) ⊢ p ≼ pc

Γ;pc;H ⊢ {ÐÐÐ⇀xi = vi}S ∶ ({ÐÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺

[T-SELECT]
Γ;pc;H ⊢ v ∶ ({ÐÐÐ⇀xi ∶ τi}(a+,a−,p))w,⊺ ⊢ a+ ≼ pc w′ = w ⊓ p ⊢H ≼ p

Γ;pc;H ⊢ v.xc ∶ τc ⊓w′, p

[T-ASSIGN]

Γ;pc;H ⊢ v1 ∶ ({ÐÐÐ⇀xi ∶ τi}(a+,a−,p))w,⊺ ⊢ a+ ≼ pc Γ;pc;H ⊢ v2 ∶ τ,⊺
⊢ τ ⊓ pc ⊓w ≤ τc ⊢ auth+(τ) ≼ pc ⊓w ⊢H ≼ p

Γ;pc;H ⊢ v1.xc ∶= v2 ∶ 1, p

[T-SOFT-
SELECT

]

Γ;pc;H ⊢ v ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a+,a−,p))w,⊺ ⊢ auth+(τc) ≼ pc
w′ = w ⊓ a− ⊓ p ⊢H ≼ p
Γ;pc;H ⊢ v.xc ∶ τc ⊓w′, p

[T-SOFT-
ASSIGN

]

Γ;pc;H ⊢ v1 ∶ (soft {ÐÐÐ⇀xi ∶ τi}(a+,a−,p))w,⊺ Γ;pc;H ⊢ v2 ∶ τ,⊺
⊢ τ ⊓ pc ⊓w ≤ τc ⊢ auth+(τ) ≼ pc ⊓w ⊢H ≼ p

Γ;pc;H ⊢ v1.xc ∶= v2 ∶ 1, p

[T-EXISTS]

Γ;pc;H ⊢ v ∶ (soft {ÐÐÐ⇀xi ∶ τi}r)w,⊺ ⊢ auth+(r) ≼ pc ⊓w
w′ = auth−(r) ⊓ persist(r) ⊓w Γ, x ∶({ÐÐÐ⇀xi ∶ τi}r)w;pc ⊓w′;H ⊢ e1 ∶ τ,X1

Γ;pc ⊓w′;H ⊢ e2 ∶ τ,X2 ⊢ auth+(τ) ≼ pc ⊓w′

Γ;pc;H ⊢ exists v as x ∶ e1 else e2 ∶ τ ⊓w′,X1 ⊓X2

[T-TRY]

Γ;pc;H, p ⊢ e1 ∶ τ,X1 w = ⊓
p′∈X1

(p ⊔ p′)

Γ;pc ⊓w ⊓ integ(τ);H ⊢ e2 ∶ τ,X2 ⊢ auth+(τ) ≼ pc

Γ;pc;H ⊢ try e1 catch p∶ e2 ∶ τ ⊓w, (X1/p) ⊓X2

[T-LET]

Γ;pc;H ⊢ e1 ∶ τ ′,X1 ⊢ auth+(τ ′) ≼ pc w = (⊓X1) ⊓ integ(τ ′)
pc′ = pc ⊓w Γ, x ∶τ ′;pc′;H ⊢ e2 ∶ τ,X2 ⊢ auth+(τ) ≼ pc′

Γ;pc;H ⊢ let x = e1 in e2 ∶ τ ⊓w,X1 ⊓X2

[T-SUBSUME]
Γ;pc;H ⊢ e ∶ τ ′,X ′ ⊢ τ ′ ≤ τ ⊢H ≼ X ⊢ X ≼ X ′

Γ;pc;H ⊢ e ∶ τ,X

186

CHAPTER 4

CONCLUSION

Federated systems provide new services and capabilities by integrating dis-

tributed information systems across independent administrative domains. We

are entering an era in which federated systems are widely used to share infor-

mation and computation. This dissertation examines the challenge of designing

and building federated information systems that are secure and reliable. In do-

ing so, it makes two key contributions.

The first contribution is the design and implementation of Fabric, a platform

for building federated information systems with confidentiality and integrity

assurances. Fabric aims to make secure distributed applications easier to de-

velop, and to enable the secure integration of information systems controlled

by different organizations.

The second contribution is the identification of referential security vulnera-

bilities, which arise in federated systems with persistent information. We for-

mally characterize these vulnerabilities, and introduce a high-level language for

modelling, analyzing, and preventing them.

4.1 Securely sharing computation and storage

Chapter 2 presented Fabric, a new distributed platform for general secure shar-

ing of information and computation resources. Fabric provides a high-level ab-

straction for secure, consistent, distributed general-purpose computations using

distributed, persistent information. Persistent information is conveniently pre-

sented as language-level objects connected by pointers. Fabric exposes security

assumptions and policies explicitly and declaratively. It flexibly supports both

data-shipping and function-shipping styles of computation. Results from im-

187

plementing complex, realistic systems in Fabric, such as CMS and SIF, suggest

it has the expressive power and performance to be useful in practice.

Fabric led to some technical contributions. Fabric extends the Jif program-

ming language with new features for distributed programming, while showing

how to integrate those features with secure information flow. This integration

requires a new trust ordering on information-flow labels, and new implementa-

tion mechanisms such as writer maps and hierarchical two-phase commit.

4.2 Defining and enforcing referential security

While Fabric perhaps goes farther toward the goal of securely and transpar-

ently sharing distributed resources than prior systems, it does not guarantee

availability in the way that it does confidentiality and integrity. Chapter 3 iden-

tified formalized a class of referential security properties that is important for

availability of distributed systems with persistence, and showed that referential

security requirements can be expressed through label annotations. It introduced

λpersist , a high-level language for modelling referential security issues in a dis-

tributed system, and it demonstrated how to enforce these security properties,

through static analysis expressed as a type system for the language. The type

system was validated by formal proofs that λpersist programs enforce the new

security properties.

4.3 Future work

There are many hard problems left to solve to make the task of building secure,

reliable federated systems easy enough to be achievable by programmers who

are not security experts.

188

The obvious next step is to integrate the features of λpersist with Fabric’s lan-

guage. This would help evaluate how well its types guide programmers in

designing distributed computing systems.

With advanced type systems, such as those in Fabric and λpersist , program-

mer annotation burden is a common concern. More techniques are needed for

reducing this burden while maintaining safety guarantees. For example, Fabric

applications have @s and @w annotations for specifying the stores on which to

place objects, and the workers on which to make remote calls. Inferring these

annotations by automatically partitioning programs and data, while maintain-

ing security and optimizing performance, is an interesting problem and would

reduce annotation burden.

Persistent objects introduce the problem of schema evolution and its security

implications. We have recently developed support in Fabric for basic class evo-

lution [3]. Supporting full schema evolution securely and intuitively remains an

open and difficult problem.

The performance of Fabric is limited by its strong consistency guarantees.

Much of the computational overhead at the worker is due to transaction log-

ging. Reducing this overhead, perhaps through a principled weakening of con-

sistency guarantees, or by leveraging recent work on transactional memory,

would be valuable.

Fabric’s hierarchical commit protocol depends on the availability of the

transaction coordinator. As discussed in Section 2.4.3, Fabric weakens its safety

guarantees for stronger availability guarantees by timing out prepared transac-

tions. Adding consensus mechanisms to the commit protocol appears to be a

promising approach to recovering safety.

Future information systems must be secure and reliable while supporting

189

mutually distrusting participants. An important goal is to put the construction

of these systems within the reach of the everyday programmer. Higher-level

programming models are a key aspect of attaining this goal, and this has been

a guiding principle of the work presented here. I hope that the contributions of

this dissertation will in some way help achieve this goal.

190

BIBLIOGRAPHY

[1] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Chris-
tos Karamanolis. Sinfonia: A new paradigm for building scalable dis-
tributed systems. In Proc. 21st ACM Symposium on Operating System Princi-
ples (SOSP), pages 159–174, Stevenson, WA, USA, October 2007.

[2] Siddhartha Annapureddy, Michael J. Freedman, and David Mazières.
Shark: Scaling file servers via cooperative caching. In Proc. 2nd USENIX
Symposium on Networked Systems Design and Implementation (NSDI), pages
129–142, Boston, MA, USA, May 2005.

[3] Owen Arden, Michael D. George, Jed Liu, K. Vikram, Aslan Askarov, and
Andrew C. Myers. Sharing mobile code securely with information flow
control. In Proc. IEEE 2012 Symposium on Security and Privacy, San Fran-
cisco, CA, USA, May 2012.

[4] Malcom Atkinson, François Bancilhon, David DeWitt, Klaus Dittrich,
David Maier, and Stanley Zdonik. The object-oriented database system
manifesto. In Proc. International Conference on Deductive Object Oriented
Databases, pages 223–240, Kyoto, Japan, December 1989.

[5] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Net-
work objects. In Proc. 14th ACM Symposium on Operating System Principles
(SOSP), pages 217–230, Asheville, NC, USA, December 1993.

[6] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object
structure in the Emerald system. In Proc. 1st ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA), pages
78–86, Portland, OR, USA, September 1986.

[7] Chavdar Botev, Hubert Chao, Theodore Chao, Yim Cheng, Raymond
Doyle, Sergey Grankin, Jon Guarino, Saikat Guha, Pei-Chen Lee, Dan
Perry, Christopher Re, Ilya Rifkin, Tingyan Yuan, Dora Abdullah, Kathy
Carpenter, David Gries, Dexter Kozen, Andrew Myers, David Schwartz,
and Jayavel Shanmugasundaram. Supporting workflow in a course man-
agement system. In Proc. 36th ACM Technical Symposium on Computer Sci-
ence Education (SIGCSE), pages 262–266, St. Louis, MO, USA, February
2005.

[8] Paul Butterworth, Allen Otis, and Jacob Stein. The GemStone object
database management system. Communications of the ACM, 34(10):64–77,
October 1991.

191

[9] Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. The OO7 bench-
mark. In Proc. ACM SIGMOD 1993 International Conference on Management
of Data, pages 12–21, Washington, DC, USA, May 1993.

[10] Miguel Castro, Atul Adya, Barbara Liskov, and Andrew C. Myers. HAC:
Hybrid adaptive caching for distributed storage systems. In Proc. 16th
ACM Symposium on Operating System Principles (SOSP), pages 102–115, St.
Malo, France, October 1997.

[11] K. Mani Chandy, Jayadev Misra, and Laura M. Haas. Distributed deadlock
detection. ACM Transactions on Computer Systems, 1(2):144–156, May 1983.

[12] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian
Zheng, and Xin Zheng. Secure web applications via automatic partitioning.
In Proc. 21st ACM Symposium on Operating System Principles (SOSP), pages
31–44, Stevenson, WA, USA, October 2007.

[13] Stephen Chong and Andrew C. Myers. Decentralized robustness. In Proc.
19th IEEE Computer Security Foundations Workshop (CSFW), pages 242–253,
Venice, Italy, July 2006.

[14] Stephen Chong, K. Vikram, and Andrew C. Myers. SIF: Enforcing confi-
dentiality and integrity in web applications. In Proc. 16th USENIX Security
Symposium, pages 1–16, Boston, MA, USA, August 2007.

[15] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged infor-
mation flow for JavaScript. In Proc. ACM SIGPLAN 2009 Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 50–62, Dublin,
Ireland, June 2009.

[16] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: To-
ward a secure voting system. In Proc. IEEE 2008 Symposium on Security and
Privacy, pages 354–368, Oakland, CA, USA, May 2008.

[17] E. F. Codd. Extending the database relational model to capture more mean-
ing. ACM Transactions on Database Systems (TODS), 4(4):397–434, December
1979.

[18] Common Criteria for Information Technology Security Evaluation: Part 1:
Introduction and general model, July 2009. CCMB-2009-07-001, Version
3.1, Revision 3. Available from http://www.commoncriteriaportal.org/.

192

http://www.commoncriteriaportal.org/

[19] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web
programming without tiers. In Proc. 5th International Symposium on For-
mal Methods for Components and Objects, pages 266–296, Amsterdam, The
Netherlands, November 2006. Available from http://groups.inf.ed.ac.

uk/links/.

[20] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica. Wide-area cooperative storage with CFS. In Proc. 18th ACM Sym-
posium on Operating System Principles (SOSP), pages 202–215, Banff, AB,
Canada, October 2001.

[21] Hugh C. Davis. Referential integrity of links in open hypermedia systems.
In Proc. 9th ACM Conference on Hypertext and Hypermedia, pages 207–216,
Pittsburgh, PA, USA, June 1998.

[22] Mark Day, Barbara Liskov, Umesh Maheshwari, and Andrew C. Myers.
References to remote mobile objects in Thor. ACM Letters on Programming
Languages and Systems, 2(1–4):115–126, March–December 1993.

[23] Linda G. DeMichiel, L. Ümit Yalçinalp, and Sanjeev Krishnan. Enterprise
JavaBeans Specification, Version 2.0. Sun Microsystems, Palo Alto, CA, USA,
August 2001.

[24] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley,
Reading, MA, USA, June 1982. ISBN 978-0201101508.

[25] Dorothy E. Denning and Peter J. Denning. Certification of programs for
secure information flow. Communications of the ACM, 20(7):504–513, July
1977.

[26] Jack B. Dennis and Earl C. Van Horn. Programming semantics for multipro-
grammed computations. Communications of the ACM, 9(3):143–155, March
1966.

[27] Cédric Fournet, Guervan le Guernic, and Tamara Rezk. A security-
preserving compiler for distributed programs: From information-flow
policies to cryptographic mechanisms. In Proc. 17th ACM Conference on
Computer and Communications Security (CCS), pages 432–441, Chicago, IL,
USA, November 2009.

[28] Robert J. Fowler. Decentralized object finding using forwarding addresses.
Technical Report 85-12-1, University of Washington, Seattle, WA, USA, De-
cember 1985. Ph.D. thesis.

193

http://groups.inf.ed.ac.uk/links/
http://groups.inf.ed.ac.uk/links/

[29] Joseph A. Goguen and Jose Meseguer. Security policies and security mod-
els. In Proc. IEEE 1982 Symposium on Security and Privacy, pages 11–20,
Oakland, CA, USA, April 1982.

[30] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification, Second Edition. Addison-Wesley, Reading, MA, USA, June
2000. ISBN 978-0201310085.

[31] Jim Gray. Notes on data base operating systems. In Operating Systems: An
Advanced Course, pages 393–481, London, UK, 1978. Springer-Verlag. ISBN
3-540-08755-9.

[32] Todd M. Greanier. Flatten your objects: Discover the secrets of the Java
Serialization API. JavaWorld, July 2000. Available from http://www.

javaworld.com/javaworld/jw-07-2000/jw-0714-flatten.html.

[33] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Yves Lafon, Jean-Jacques
Moreau, Anish Karmarkar, and Henrik Frystyk Nielsen. SOAP version 1.2
part 1: Messaging framework (second edition). W3C recommendation,
W3C, Cambridge, MA, USA, April 2007. Available from http://www.w3.

org/TR/2007/REC-soap12-part1-20070427/.

[34] Health Insurance Portability and Privacy Act of 1996. US Public Law No.
104–191, 110 Stat. 1936.

[35] Maurice P. Herlihy and Jeannette M. Wing. Avalon: Language support for
reliable distributed systems. In Proc. 17th International Symposium on Fault-
Tolerant Computing, pages 89–94, Pittsburgh, PA, USA, July 1987.

[36] Boniface Hicks, Kiyan Ahmadizadeh, and Patrick McDaniel. Understand-
ing practical application development in security-typed languages. In 22nd
Annual Computer Security Applications Conference (ACSAC), pages 153–164,
Miami Beach, FL, USA, December 2006.

[37] Russell Housley, Tim Polk, Warwick Ford, and David Solo. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. Internet RFC-3280, April 2002.

[38] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-
grained mobility in the Emerald system. 6(1):109–133, February 1988.

[39] Frank Kappe. A scalable architecture for maintaining referential integrity

194

http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten.html
http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten.html
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

in distributed information systems. Journal of Universal Computer Science,
1(2):84–104, February 1995.

[40] Linda T. Kohn, Janet M. Corrigan, and Molla S. Donaldson, editors. To Err
is Human: Building a Safer Health System. The National Academies Press,
Washington, DC, USA, April 2000. ISBN 978-0309068376.

[41] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans
Kaashoek, Eddie Kohler, and Robert Morris. Information flow control for
standard OS abstractions. In Proc. 21st ACM Symposium on Operating System
Principles (SOSP), pages 321–334, Stevenson, WA, USA, October 2007.

[42] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-
erspoon, Westley Weimer, Chris Wells, and Ben Zhao. OceanStore: An
architecture for global-scale persistent storage. In Proc. 9th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 190–201, Cambridge, MA, USA, November 2000.

[43] Charles Lamb, Gordon Landis, Jack A. Orenstein, and Daniel Weinreb. The
ObjectStore database system. Communications of the ACM, 34(10):50–63, Oc-
tober 1991.

[44] Ben Liblit and Alexander Aiken. Type systems for distributed data struc-
tures. In Proc. 27th ACM Symposium on Principles of Programming Languages
(POPL), pages 199–213, Boston, MA, January 2000.

[45] Ben Liblit, Alexander Aiken, and Katherine A. Yelick. Type systems for
distributed data sharing. In Proc. 10th International Static Analysis Sympo-
sium, volume 2694 of LNCS, pages 273–294, San Diego, CA, USA, June 2003.
Springer-Verlag.

[46] Barbara Liskov, Atul Adya, Miguel Castro, Mark Day, Sanjay Ghemawat,
Robjert Gruber, Umesh Maheshwari, Andrew C. Myers, and Liuba Shrira.
Safe and efficient sharing of persistent objects in Thor. In Proc. ACM SIG-
MOD 1996 International Conference on Management of Data, pages 318–329,
Montréal, QC, Canada, June 1996.

[47] Barbara H. Liskov. The Argus language and system. In Distributed Systems:
Methods and Tools for Specification, volume 150 of Lecture Notes in Computer
Science, pages 343–430. Springer-Verlag Berlin, 1985.

195

[48] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C.
Myers. Fabric: A platform for secure distributed computation and storage.
In Proc. 22nd ACM Symposium on Operating System Principles (SOSP), pages
321–334, Big Sky, MT, USA, October 2009.

[49] John MacCormick, Nick Murph, Marc Najor, Chandramohan A. Thekkat,
and Lidong Zhou. Boxwood: Abstractions as the foundation for storage
infrastructure. In Proc. 6th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 105–120, San Francisco, CA, USA,
December 2004.

[50] Francis McCabe, David Booth, Christopher Ferris, David Orchard, Mike
Champion, Eric Newcomer, and Hugo Haas. Web services architecture.
W3C note, W3C, Cambridge, MA, USA, February 2004. Available from
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[51] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, Cambridge, MA, USA, February 1990. ISBN 978-0262631327.

[52] J. Eliot B. Moss. Design of the Mneme persistent object store. ACM Trans-
actions on Office Information Systems, 8(2):103–139, April 1990.

[53] Andrew C. Myers. JFlow: Practical mostly-static information flow con-
trol. In Proc. 26th ACM Symposium on Principles of Programming Languages
(POPL), pages 228–241, San Antonio, TX, USA, January 1999.

[54] Andrew C. Myers. Mostly-static decentralized information flow control.
Technical Report MIT/LCS/TR-783, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, January 1999. Ph.D. thesis.

[55] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decen-
tralized label model. ACM Transactions on Software Engineering and Method-
ology, 9(4):410–442, October 2000.

[56] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and
Nathaniel Nystrom. Jif 3.0: Java information flow. Software release, July
2006. Available from http://www.cs.cornell.edu/jif/.

[57] Daniel Myers, Jennifer Carlisle, James Cowling, and Barbara Liskov. Map-
JAX: Data structure abstractions for asynchronous web applications. In
Proc. 2007 USENIX Annual Technical Conference, pages 101–114, Santa Clara,
CA, USA, June 2007.

196

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.cs.cornell.edu/jif/

[58] George C. Necula and Peter Lee. The design and implementation of a cer-
tifying compiler. In Proc. ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation (PLDI), pages 333–344, Montréal, QC,
Canada, June 1998.

[59] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot:
An extensible compiler framework for Java. In Proc. 12th International Com-
piler Construction Conference, pages 138–152, Warsaw, Poland, April 2003.
LNCS 2622.

[60] Michael A. Olson, Keith Bostic, and Margo Seltzer. Berkeley DB. In Proc.
USENIX Annual Technical Conference, FREENIX Track, pages 183–192, Mon-
terey, CA, USA, June 1999.

[61] OMG. The Common Object Request Broker: Architecture and Specification, De-
cember 1991. OMG TC Document Number 91.12.1, Revision 1.1.

[62] Oracle Corporation. Java SE 7 Remote Method Invocation (RMI)-related
APIs & Developer Guides, 2011. Available from http://docs.oracle.com/

javase/7/docs/technotes/guides/rmi/.

[63] Krzysztof Ostrowski, Ken Birman, Danny Dolev, and Jong Hoon Ahnn.
Programming with live distributed objects. In Proc. 22nd European Con-
ference on Object-Oriented Programming (ECOOP), pages 463–489, Paphos,
Cyprus, July 2008.

[64] Venugopalan Ramasubramanian and Emin Gün Sirer. Beehive: O(1)
lookup performance for power-law query distributions in peer-to-peer
overlays. In Proc. 1st USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 99–112, San Francisco, CA, USA, March 2004.

[65] Sean Rhea, Brighten Dodfrey, Brad Karp, John Kubiatowicz, Sylvia Rat-
nasamy, Scott Shenker, Ion Stoica, and Harlan Yu. OpenDHT: A public
DHT service and its uses. In Proc. ACM SIGCOMM 2005 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communica-
tions, pages 73–84, Philadelphia, PA, USA, August 2005.

[66] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao,
and John Kubiatowicz. Pond: the OceanStore prototype. In Proc. 2nd
USENIX Conference on File and Storage Technologies (FAST), pages 1–14, San
Francisco, CA, USA, March 2003.

197

http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/

[67] James Riely and Matthew Hennessy. Trust and partial typing in open sys-
tems of mobile agents. In Proc. 26th ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 93–104, San Antonio, TX, USA, January
1999.

[68] Anthony I. T. Rowstron and Peter Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage utility. In
Proc. 18th ACM Symposium on Operating System Principles (SOSP), pages
188–201, Banff, AB, Canada, October 2001.

[69] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In IFIP/ACM In-
ternational Conference on Distributed Systems Platforms (Middleware), pages
329–350, Heidelberg, Germany, November 2001.

[70] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications, 21(1):5–19,
January 2003.

[71] Vijay A. Saraswat, Vivek Sarkar, and Christoph von Praun. X10: Concur-
rent programming for modern architectures. In Proc. 12th ACM Symposium
on Principles and Practice of Parallel Programming (PPoPP), page 271, San Jose,
CA, USA, March 2007.

[72] Manuel Serrano, Erick Gallesio, and Florian Loitsch. HOP, a language
for programming the Web 2.0. In Proc. 1st Dynamic Languages Symposium,
pages 975–985, Portland, OR, USA, October 2006.

[73] Liuba Shrira, Hong Tian, and Doug Terry. Exo-leasing: Escrow synchro-
nization for mobile clients of commodity storage servers. In Proc. 9th
ACM/IFIP/USENIX International Middleware Conference (Middleware), pages
42–61, Leuven, Belgium, December 2008.

[74] Chunqiang Tang, DeQing Chen, Sandhya Dwarjadas, and Michael L. Scott.
Integrating remote invocation and distributed shared state. In Proc. 18th
International Parallel and Distributed Processing Symposium (IPDPS), pages
30–39, Santa Fe, NM, USA, April 2004.

[75] Erik M. Volz. Personal communication, September 2011.

[76] Dan S. Wallach and Edward W. Felten. Understanding Java stack inspec-
tion. In Proc. IEEE 1998 Symposium on Security and Privacy, pages 52–63,
Oakland, CA, USA, May 1998.

198

[77] Fan Yang, Nitin Gupta, Nicholas Gerner, Xin Qi, Alan Demers, Johannes
Gehrke, and Jayavel Shanmugasundaram. A unified platform for data
driven web applications with automatic client-server partitioning. In Proc.
16th International World Wide Web Conference (WWW), pages 341–350, Banff,
AB, Canada, 2007.

[78] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. My-
ers. Secure program partitioning. ACM Transactions on Computer Systems,
20(3):283–328, August 2002.

[79] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. My-
ers. Secure program partitioning. ACM Transactions on Computer Systems,
20(3):283–328, August 2002.

[80] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing
distributed systems with information flow control. In Proc. 5th USENIX
Symposium on Networked Systems Design and Implementation (NSDI), pages
293–308, San Francisco, CA, USA, April 2008.

[81] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve Zdancewic.
Using replication and partitioning to build secure distributed systems. In
Proc. IEEE 2003 Symposium on Security and Privacy, pages 236–250, Berkeley,
CA, USA, May 2003.

199

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Example
	Contributions of this dissertation
	Secure federated computation and storage
	Referential security

	Dissertation outline

	Fabric: Secure Federated Computation and Storage
	System architecture overview
	Security and assumptions
	Storage nodes
	Worker nodes
	Dissemination nodes

	The Fabric language
	Principals
	Labels
	Object labels
	Tracking implicit flows
	Remote calls
	Transactions
	Java interoperability

	The Fabric runtime system
	Object model
	Object groups
	Dissemination and encryption
	Node authentication
	Authorization checks
	Transaction management and object locking
	Memory management
	The security cache
	Handling failures of optimism
	Object subscriptions

	Support for distributed computation
	Writer maps
	Distributed transaction management
	Hierarchical commit protocol

	Implementation
	Store
	Dissemination layer
	Memory management
	Unimplemented features

	Evaluation
	Course Management System
	Travel example
	Run-time overhead

	Related work

	Defining and Enforcing Referential Security
	Language model
	Modelling distributed computing as a language
	Objects and references

	Policies for persistent programming
	Persistence policies
	Characterizing the adversary
	Storage attacks and authority policies
	Integrity
	Integrity of dereferences and garbage collection
	Security properties

	Types for persistent programming
	Labels
	Example
	Modelling objects and references
	Modelling distributed systems

	Accidental persistence and storage attacks
	Syntax of *
	Example
	Operational semantics of *
	Subtyping in *
	Static semantics of *

	Ensuring referential integrity
	Persistence handler levels
	Example
	Operational semantics of persist
	Subtyping in persist
	Static semantics of persist

	The power of the adversary
	Results
	Well-formedness
	Completeness of [persist] evaluation
	Soundness of [persist] type system
	Limited adversary influence
	Storage attacks
	Referential security

	Related work
	Appendix
	Full syntax of persist
	Full small-step operational semantics for ordinary (non-adversarial) execution of persist
	Full subtyping rules for persist
	Full typing rules for persist

	Conclusion
	Securely sharing computation and storage
	Defining and enforcing referential security
	Future work

	Bibliography

