
A Model for Delimited Information Release

Andrei Sabelfeld?1 and Andrew C. Myers2

1 Department of Computer Science, Chalmers University of Technology, 412 96
Gothenburg, Sweden, andrei@cs.chalmers.se

2 Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
andru@cs.cornell.edu

Abstract. Much work on security-typed languages lacks a satisfactory
account of intentional information release. In the context of confiden-
tiality, a typical security guarantee provided by security type systems
is noninterference, which allows no information flow from secret inputs
to public outputs. However, many intuitively secure programs do allow
some release, or declassification, of secret information (e.g., password
checking, information purchase, and spreadsheet computation). Nonin-
terference fails to recognize such programs as secure. In this respect,
many security type systems enforcing noninterference are impractical.
On the other side of the spectrum are type systems designed to accom-
modate some information leakage. However, there is often little or no
guarantee about what is actually being leaked. As a consequence, such
type systems are vulnerable to laundering attacks, which exploit declassi-
fication mechanisms to reveal more secret data than intended. To bridge
this gap, this paper introduces a new security property, delimited re-
lease, an end-to-end guarantee that declassification cannot be exploited
to construct laundering attacks. In addition, a security type system is
given that straightforwardly and provably enforces delimited release.

Keywords: Computer security, confidentiality, information flow, nonin-
terference, security-type systems, security policies, declassification.

1 Introduction

A long-standing problem in computer security is how to verifiably protect the
confidentiality of sensitive information in practical computing systems. One of
the most vexing difficulties is that realistic computing systems do release some
confidential information as part of their intended function. The challenge is how
to differentiate between proper and improper release of confidential information.

For example, it is possible to learn a small amount of information about
a user’s password by attempting to log in; the attacker likely learns that the
password is not the one guessed. How can this secure system be distinguished
from an insecure system that directly reports the entire password to the attacker?
This paper proposes delimited release, a new definition of security that helps
make the distinction.
? This work was partly done while the author was at Cornell University.

To protect confidentiality within a computing system, it is important to
control how information flows so that sensitive information is not transmitted
inappropriately to system outputs. One way to control these flows is to asso-
ciate a security level with information in the system, and to prevent higher-level
(more confidential) information from affecting lower-level (less confidential) in-
formation. Recently there has been much work embodying this approach in a
language-based setting [37], where the system to be validated is a program and
the security levels are types in that program [47, 19, 27, 2, 42, 45, 4, 38, 33, 39, 51,
5, 34]. A program written in this sort of security-typed language is considered
secure only if it is well-typed, which rules out, for example, assignments from
high-level variables to low-level variables.

This kind of static checking tends to be very restrictive, preventing practical
programming. Typically these languages are intended to enforce some version of
the noninterference [16] security property, which prevents low-level information
from depending on high-level information. Yet many practical programs, such as
the password checker mentioned above, do release information. Another example
is aggregating data from a large database (such as an employee database) to com-
pute a less confidential result (such as the average salary). And sometimes confi-
dential information is released as part of a transaction or agreed-upon protocol,
such as when information is purchased. All of these programs violate noninter-
ference and would be rejected by the type systems of most current security-typed
languages.

Assuming that the confidentiality of data is expressed as a security level,
some additional mechanism is needed in order to express programs in which
there is an intentional release of information. Some security-typed languages
(e.g., [27, 33, 13]) have therefore added a declassification mechanism that coerces
the security level of information downwards. Declassification serves as an escape
hatch from the rigid restrictions of security type systems, but it (intentionally)
violates noninterference.

A question that has not been addressed satisfactorily by earlier work is what
security guarantees can be offered in the presence of declassification. Delimited
release is such a guarantee. Like noninterference, it has the attractive property
that it defines security in terms of the program semantics rather than in terms
of non-standard mechanisms. Thus, it controls the end-to-end [40] behavior of
the program: it is an extensional security property [26].

In the rest of the paper, we present an imperative language (Section 2),
formally define delimited release security (Section 3), give a security type system
that provably enforces delimited release (Section 4), discuss a password-checking
example (Section 5), sketch related work (Section 6), and conclude (Section 7).

2 A security-typed language

To illustrate the security model, we consider a simple sequential language, con-
sisting of expressions and commands. The language is similar to several other

⊥
�

��

@
@@

�
��

@
@@

>

low

high

Fig. 1. A general security lattice L and the lattice LLH

security-typed imperative languages (e.g., [47, 4]), and its semantics are largely
standard (cf. [48]).

The language syntax is defined by the following grammar:

e ::= val | v | e1 op e2 | declassify(e, `)

c ::= skip | v := e | c1; c2 | if e then c1 else c2 | while e do c

where val ranges over values Val = {false, true, 0, 1, . . . }, v ranges over variables
Var , op ranges over arithmetic and boolean operations on expressions, and `
ranges over security levels.

We assume that the security levels of data are elements of a security lattice
L. The ordering specifies the relationship between different security levels. If
`1 v `2 then information at level `1 is also visible at level `2. However, if `1 6v `2
then information at level `1 is invisible at level `2. The join operation (t) of L
is useful, for example, for computing an upper bound on the security level of an
expression that combines sub-expressions at different security levels. An example
is the security lattice LLH with two elements high and low representing high and
low confidentiality levels, respectively, with the ordering low v high. A general
security lattice L with a top element > and bottom element ⊥ is depicted in
Figure 1, along with the lattice LLH .

The security environment Γ : Var → L describes the type of each program
variable as a security level. The security lattice and security environment to-
gether constitute a security policy, which specifies that information flow from a
variable v1 to a variable v2 is allowed only if Γ (v1) v Γ (v2). For simplicity, we
assume a fixed Γ in the upcoming formal definitions.

The only language expression that is not standard is declassify(e, `), a con-
struct for declassifying the security level of the expression e to the level ` ∈ L.
We require that declassify expressions are not nested. At the semantic level,
declassify(e, `) is equivalent to e regardless `. The intention is that declassifi-
cation is used for controlling the security level of information without affecting
the execution of the program.

The semantics are defined in terms of transitions between configurations.
A configuration 〈M, c〉 consists of a memory M (which is a finite mapping
M : Var → Val from variables to values) and a command (or expression) c. If c
is a command (resp. expression) then we sometimes refer to 〈M, c〉 as command
configuration (resp. expression configuration). A transition from configuration

〈M1, c1〉 to configuration 〈M2, c2〉 is denoted by 〈M1, c1〉 −→ 〈M2, c2〉. A tran-
sition from configuration 〈M, c〉 to a terminating configuration with memory
M ′ is denoted by 〈M, c〉 −→ M ′. As usual, −→ ∗ is the reflexive and transi-
tive closure of −→. Configuration 〈M, c〉 terminates in M ′ if 〈M, c〉 −→ ∗M ′,
which is denoted by 〈M, c〉 ⇓ M ′ or, simply, 〈M, c〉 ⇓ when M ′ is unimportant.
We assume that operations used in expressions are total, and, hence, expression
configurations always terminate (denoted by 〈M, e〉 ⇓ val).

3 A delimiting model for confidentiality

The usual way of defining confidentiality is as noninterference [16], a security
property stating that inputs of high confidentiality do not affect outputs of lower
confidentiality. Various definitions of noninterference have been used by much
recent work on language-based security (e.g., [47, 2, 19, 42, 45, 4, 38, 33, 39, 51, 5,
34]). However, noninterference cannot characterize the security of a program
that is designed to release some confidential information as part of its proper
functioning. We propose a new confidentiality characterization that delimits in-
formation release and precludes laundering attacks.

3.1 Noninterference

Noninterference is defined as follows for programs written in the language of Sec-
tion 2: if two input memories are indistinguishable for an attacker at a security
level ` then the behavior of the program on these memories is also indistinguish-
able at `. Formally, two memories M1 and M2 are indistinguishable M1 =` M2

at level ` if ∀v. Γ (v) v ` =⇒ M1(v) = M2(v) (we assume a fixed Γ ; hence the
notation M1 =` M2 is not parameterized by security environments). The behav-
ior of two program configurations 〈M1, c1〉 and 〈M2, c2〉 is indistinguishable at `
(written 〈M1, c1〉 ≈` 〈M2, c2〉) if whenever 〈M1, c1〉 ⇓ M ′

1 and 〈M2, c2〉 ⇓ M ′
2 for

some M ′
1 and M ′

2 then M ′
1 =` M ′

2. The behavior of two expression configura-
tions 〈M1, e1〉 and 〈M2, e2〉 is indistinguishable (written 〈M1, e1〉 ≈ 〈M2, e2〉) if
〈M1, e1〉 ⇓ val and 〈M2, e2〉 ⇓ val for some val . We are now ready to formulate
the noninterference security condition.

Definition 1 (Noninterference) Command c satisfies noninterference if for
all security levels ` we have

∀M1,M2.M1 =` M2 =⇒ 〈M1, c〉 ≈` 〈M2, c〉

While noninterference is a useful dependency-based security specification, it is
over-restrictive for programs with declassification. For example, suppose we need
to intentionally release the parity of a secret variable h in such a way that no
other information about h is leaked. The program performing such a release is
below:

l := declassify(parity(h), low) (Par)

where Γ (h) = high and Γ (l) = low under the lattice LLH . In the above sense,
this program is intuitively secure. However, noninterference flatly rejects the
program because l does depend on h.

3.2 Escape hatches and delimited release

In the example above, we want to express the requirement that only explicitly de-
classified data but no further information is released. Therefore, the specification
of security must be relative to the expressions that appear under declassify
operators. These expressions can be viewed as a part of the security policy,
specifying the “escape hatches” for information release. To make this security
policy explicit, one could require all escape hatch expressions to be declared in
a separate interface. Because this is unimportant for the technical development,
we omit this requirement. The new security specification delimits information
release by only allowing release through escape hatch expressions:

Definition 2 (Delimited release) Suppose the command c contains within
it exactly n declassify expressions declassify(e1, `1), . . . , declassify(en, `n).
Command c is secure if for all security levels ` we have

∀M1,M2. (M1 =` M2 & ∀i ∈ {i | `i v `} . 〈M1, ei〉 ≈ 〈M2, ei〉) =⇒
〈M1, c〉 ≈` 〈M2, c〉

Intuitively, this definition says that for all `,M1 and M2 so that M1 =` M2, if
there is an information leak through one of the escape hatches e1, . . . , en observ-
able at level `, i.e., ∃i ∈ {i | `i v `} . 〈M1, ei〉 6≈ 〈M2, ei〉, then this leak is allowed,
i.e., no further conditions are imposed. However, if the difference between M1 and
M2 is invisible at ` through all escape hatches, i.e., ∀i ∈ {i | `i v `} . 〈M1, ei〉 ≈
〈M2, ei〉, then this difference must be invisible at ` through the entire execution
of c, i.e., 〈M1, c〉 ≈` 〈M2, c〉.

One way of interpreting the delimited release definition is that a given pro-
gram is secure as long as updates to variables that are later declassified occur
in a way that does not increase the information visible by the attacker through
the escape hatches. If no variables used in declassification are updated before
the actual declassification, delimited release reduces to noninterference. This
observation leads to a simple way of automatically enforcing delimited release,
reported in Section 4.

It is instructive to compare delimited release to noninterference. Clearly,
noninterference is stronger than delimited release:

Proposition 1 If program c satisfies noninterference then c is secure.

Furthermore, for a program without declassify primitives the two security
properties coincide.

Proposition 2 If declassify primitives do not occur in a secure program c
then c satisfies noninterference.

3.3 Examples

The security provided by delimited release can be understood from some simple
examples: averaging salaries, an electronic wallet, and password checking.

Example 1 (Average salary). Suppose variables h1, . . . , hn store the salaries of n
employees. The average salary computation is intended to intentionally release
the average but no other information about h1, . . . , hn to a public variable avg :

avg := declassify((h1 + · · ·+ hn)/n, low) (Avg)

We assume lattice LLH so that ∀i. Γ (hi) = high and Γ (avg) = low . Clearly
the program does not satisfy noninterference as there is a dependency from
h1, . . . , hn to avg . However, the nature of information flow from high to low is
limited. Although the low-level observer learns the average of the secret inputs,
it is not possible to learn more information about them. For example, swapping
the values of hi and hj is not visible at the low level. Allowing these limited
flows, the program is accepted as secure by the delimited release definition.

On the other hand, consider a laundering attack on program Avg that leaks
the salary of employee i to avg .

h1 := hi; . . . hn := hi;
avg := declassify((h1 + · · ·+ hn)/n, low) (Avg-Attack)

This program does not satisfy delimited release. To see this, take i = 1, M1(h1) =
M2(h2) = 2, M2(h1) = M1(h2) = 3, and M1(v) = M2(v) = 0 for all variables v
different from h1 and h2. For ` = low we have M1 =` M2 and 〈M1, (h1 + · · · +
hn)/n〉 ≈ 〈M2, (h1+· · ·+hn)/n〉 because both expression configurations evaluate
to 5/n. But 〈M1,Avg-Attack〉 6≈` 〈M2,Avg-Attack〉 because the final value of
the public variable avg is 2 and 3, respectively, which violates Definition 2.
Therefore, the laundering attack is rejected as insecure.

Example 2 (Electronic wallet). Consider an electronic shopping scenario. Sup-
pose h stores the (secret) amount of money in a customer’s electronic wallet,
l stores the (public) amount of money spent during the current session, and k
stores the cost of the item to be purchased. The following code fragment checks
if the amount of money in the wallet is sufficient and, if so, transfers the amount
k of money from the customer’s wallet to the spent-so-far variable l:

if declassify(h ≥ k, low) then (h := h− k; l := l + k) else skip (Wallet)

We assume lattice LLH so that Γ (h) = high and Γ (k) = Γ (l) = low . As with
program Avg, this program fails to satisfy noninterference but does satisfy de-
limited release. Below is an attack that abuses the declassification primitive and

leaks3 the secret variable h bit-by-bit to l (assuming h is an n-bit integer):

l := 0;
while (n ≥ 0) do

k := 2n−1;
if declassify(h ≥ k, low)
then (h := h− k; l := l + k) else skip;

n := n− 1

(Wallet-Attack)

where Γ (n) = low . This is a laundering attack whose effect is magnified by the
loop. It is not difficult to see that the attack is indeed rejected by the delimited
release model.

3.4 Features and extensions

An interesting feature of the delimited release is that it forces the programmer to
be explicit about what information is being released. This is because the security
policy, in the form of expressions under declassify, is simply a part of program
text. For example, consider the following program:

h := parity(h);
if declassify(h = 1, low) then (l := 1; h := 1) else (l := 0; h := 0)

where Γ (h) = high and Γ (l) = low under the lattice LLH . According to the
security policy h = 1, whether or not the initial value of h was 1 is the information
intended for declassification. Instead, however, the low-level observer learns the
parity of the initial value of h. This is a laundering attack, which is rejected by
the delimited release model. To produce a semantically equivalent secure version
of the program above, the programmer may rewrite it to the following program:

if declassify(parity(h), low) then (l := 1; h := 1) else (l := 0; h := 0)

This is indeed a secure program according to Definition 2. That the parity of h is
subject to intentional information release is now more evident from the security
policy parity(h).

The desire to automate the above transformation leads to extensions based
on security ordering for programs. A program c2 is at least as secure as a program
c1 (written c1 vsec c2) if for all security levels ` ∈ L and memories M1 and M2 we
have whenever M1 =` M2 and 〈M1, c1〉 ≈` 〈M2, c1〉 then 〈M1, c2〉 ≈` 〈M2, c2〉.
The intuition is that c2 leaks no more secret information than c1, hence the
security ordering. It is straightforward to see that security ordering vsec is a
preorder (reflexive and transitive). In the partial order, formed by equivalence
classes of vsec , programs satisfying noninterference belong to the top-security
class (in the sense that the other programs are strictly less secure). A decidable

3 Furthermore, this attack compromises the integrity of the customer’s wallet variable.
However, this is orthogonal to the confidentiality issues dealt with in this paper.

approximation of this security ordering for driving security-enhancing program
transformation is an attractive direction for future work.

The delimited release model has some limitations in describing security poli-
cies for information release, because all of the declassified expressions are as-
sumed to be released. The model does not permit the expression of a security
policy in which information should be released only under certain conditions.
For example, consider a program that leaks either h1 or h2, but not both:

if l then l := declassify(h1, low) else l := declassify(h2, low)

where Γ (h1) = Γ (h2) = high and Γ (l) = low under the lattice LLH . This
program is secure according to Definition 2. Both h1 and h2 appear under
declassify, which, according to Definition 2, means that the program might
leak the values of both. The requirement that only one of the two variables is
released cannot be expressed using Definition 2. However, delimited release can
be enhanced with disjunctive policies for representing finer policies as, e.g., “ei-
ther h1 or h2 can be released but not both.” Moreover, delimited release can be
integrated with techniques based on who controls information release, such as
robust declassification [50, 49, 30]. This integration can help specify whether the
decision on which of h1 and h2 can be released may or may not be in the hands
of an attacker. A remark on the combination of delimited release and robust
declassification follows in Section 7.

4 A security type system for delimited release

This section presents a type system that statically enforces security. The typing
rules are displayed in Figure 2. The general form of typing for an expression is
Γ ` e : `,D meaning that an expression e has type ` and effect D under an
environment Γ . Typing for commands has the form Γ, pc ` c : U ,D meaning
that a command c is typable with effects U and D under an environment Γ and
a program counter pc. Program counters range over security levels; they help
track information flow due to control flow. A program counter records a lower
bound on the security level of variables assigned in a given program. The type
system guarantees that if there is branching (as in if and while commands) on
data at level ` then the branches must be typable under a program counter at
least at `, preventing leaks via assignments in the branches.

Besides tracking information flow through assignments and control flow (in
the spirit of [11, 47]), the type system collects information about what variables
are used under declassification (which is recorded in the effect D of an expression
or a command) and what variables are updated by commands (which is recorded
in the effect U of a command). For example, the D effect of a declassify(e, `)
expression is the set of variables appearing in e, written as Vars(e). The key
restriction guaranteed by the type system is that variables used under declassifi-
cation may not be updated prior to declassification. This restriction is enforced
in the rules for the sequential composition and the while loop. The overall pro-
gramming discipline enforced by the type system ensures that typable programs
are secure, which is formalized by the following theorem.

Γ ` val : `, ∅

Γ (v) = `

Γ ` v : `, ∅

Γ ` e : `,D1 Γ ` e′ : `,D2

Γ ` e op e′ : `,D1 ∪D2

Γ ` e : `,D

Γ ` declassify(e, `′) : `′,Vars(e)

Γ ` e : `,D ` v `′

Γ ` e : `′,D

Γ, pc ` skip : ∅, ∅

Γ ` e : `,D ` t pc v Γ (v)

Γ, pc ` v := e : {v},D

Γ, pc ` c1 : U1,D1 Γ, pc ` c2 : U2,D2 U1 ∩D2 = ∅
Γ, pc ` c1; c2 : U1 ∪U2,D1 ∪D2

Γ ` e : `,D Γ, ` t pc ` c1 : U1,D1 Γ, ` t pc ` c2 : U2,D2

Γ, pc ` if e then c1 else c2 : U1 ∪U2,D ∪D1 ∪D2

Γ ` e : `,D Γ, ` t pc ` c : U1,D1 U1 ∩ (D ∪D1) = ∅
Γ, pc ` while e do c : U1,D ∪D1

Γ, pc ` c : U ,D pc′ v pc

Γ, pc′ ` c : U ,D

Fig. 2. Typing rules

Theorem 1. Γ, pc ` c : U ,D =⇒ c is secure.

A proof by induction on the typing derivation is sketched in the appendix.
Note that the type system is more restrictive than necessary to enforce the

security condition. For example, consider the program

h := parity(h); l := declassify(h, low)

where Γ (h) = high and Γ (l) = low under the lattice LLH . Although h is updated
prior to declassification, the entire program actually leaks only the parity of the
initial value of h, which is less information than the complete initial value of h
leaked by the declassifying assignment alone. Indeed, according to Definition 2
the program is secure; however, it is rejected by the type system. Devising a more
permissive type system for enforcing the delimited release security condition is
a worthwhile topic for future work.

5 A password-checking example

This section applies the delimited release model to password checking, illustrat-
ing how the type system gives security types to password-checking routines and
also prevents laundering attacks.

We consider UNIX-style password checking where the system database stores
the images (or the hashes) of password-salt pairs. Salt is a publicly readable
string stored in the database for each user id, as a protection against dictionary
attacks. For a successful login, the user is required to provide a query such that
the hash of the string and salt matches the image from the database.

Below are typed expressions/programs for computing the hash, matching
the user input to the password image from the database, and updating the
password. We use arrows in types for expressions to indicate that under the
types of the arguments on the left from the arrow, the type of the result is on the
right from the arrow. The expression hash(pwd , salt) concatenates the password
pwd with the salt salt and applies the one-way hash function buildHash to the
concatenation (the latter is denoted by ||). The result is declassified to the level
low .

Γ ` hash(pwd , salt) : `pwd × `salt → low
= declassify(buildHash(pwd ||salt), low)

The expression match(pwdImg , salt , query) checks if the password image pwdImg
is equal to the hash of the user query query with the salt salt .

Γ ` match(pwdImg , salt , query) : `pwdImg × `salt × `query → `pwdImg t low
= (pwdImg = hash(query , salt))

Notice that the expression is typable only if the security level of the result is no
less confidential than both the security level of pwdImg and low . The program

update(pwdImg , salt , oldPwd ,newPwd) updates the old password hash pwdImg
by querying the old password oldPwd , matching its hash to pwdImg and (if
matched) updating the hashed password with the hash of newPwd .

Γ, `pwdImg ` update(pwdImg , salt , oldPwd ,newPwd) (low v `pwdImg)
= if match(pwdImg , salt , oldPwd)

then pwdImg = hash(newPwd , salt)
else skip

Let us instantiate the typings above for the lattice LLH and show that they
capture the desired intuition.

– The honest user applying hash to a password and salt:
Γ ` hash(pwd , salt) : high × low → low .

– The attacker hashing a password with the honest user’s public salt:
Γ ` hash(pwd , salt) : low × low → low .

– The honest user matching a password:
Γ ` match(pwdImg , salt , query) : low × low × high → low .

– The attacker attempting to guess a password by matching it to a legitimate
password image and salt:
Γ ` match(pwdImg , salt , query) : low × low × low → low .

– The honest user modifying a password:
Γ, low ` update(pwdImg , salt , oldPwd ,newPwd) : low × low × high × high.

– The attacker attempting to modify the honest user’s password:
Γ, low ` update(pwdImg , salt , oldPwd ,newPwd) : low × low × low × low .

These are all typable and hence secure programs. The rationale for considering
these programs secure is that to succeed the attacker needs to guess the password,
which is unlikely given a large password space and little prior knowledge.

That the programs are typable guarantees that the password-checking mech-
anism is not vulnerable to laundering attacks. For example, consider an attack
that, similarly to Wallet-Attack, launders bit-by-bit the secret variable h to l
(assuming h is an n-bit integer) via the declassification mechanism that is built
in the hash expression.

l := 0;
while (n ≥ 0) do

k := 2n−1;
if hash(sign(h− k + 1), 0) = hash(1, 0)
then (h := h− k; l := l + k) else skip;

n := n− 1

where Γ (k) = Γ (l) = Γ (n) = low , Γ (h) = high and sign returns 1,−1 or 0 if the
argument is positive, negative, or 0, respectively. That this attack might indeed
leak h in a bit-by-bit fashion is easy to see because the inequality h ≥ k holds
if and only if the inequality h − k + 1 > 0 holds, which, for a sensible hashing
algorithm, is likely to be equivalent to hash(sign(h − k + 1), 0) = hash(1, 0).

Clearly, the program above is insecure according to Definition 2. Notice that
the program is rightfully rejected by the type system. This is because variable h
both occurs under declassification and is updated in the body of the loop.

Furthermore, observe that programs Avg and Wallet are typable whereas
attacks Avg-Attack and Wallet-Attack are rejected by the type system.

6 Related work

Policies for intentional information release have been an active area of research.
Cohen’s selective (in)dependence [8] security definition can be viewed as a pre-
cursor for our work. Cohen’s definition is based on partitioning the secret input
domain into subdomains requiring noninterference when secret variables are re-
stricted to each subdomain. For example, program Par, revealing the parity of h
to l, satisfies selective independence with respect to the partitioning of the do-
main of integers for h into odd and even numbers. However, the security policy of
specifying what can be leaked relies on a semantic specification of subdomains.
Recent incarnations of selective independence based on abstract variables [20],
equivalence relations [39], and abstract noninterference [14] also need to be spec-
ified at the semantic level. In contrast, our escape hatches facilitate a syntactic
way of specifying selective independence: two values are in the same subdomain
if and only if the results of evaluating the expression under each declassify
primitive on these two values are the same values. Moreover, the escape hatches
provide the flexibility to condition the release of information on public values (cf.
program Wallet), which cannot be represented by the original definition of selec-
tive independence. Finally, the syntactic escape-hatch policy mechanism leads
us to a security type system that enforces security, whereas there appears no au-
tomatic enforcement mechanisms for (any variation of) selective independence.

Further related work is grouped into categories of how information is released,
how much information is released, and relative to what information is released.
For a more detailed overview of this area we refer to a recent survey [37].

How? A common approach to relaxing noninterference to account for intentional
information release is based on intransitive noninterference [36, 32, 35, 24], which
originated from early work on conditional noninterference [16, 17]. Mantel and
Sands have recently addressed intransitive noninterference in a language-based
setting [25]. Intransitive flows in the context of declassification-sensitive unwind-
ing have been explored by Bossi et al. [6]. Intransitive noninterference accommo-
dates policies where information might flow intransitively, e.g., from level `1 to `2
and from `2 to `3 but not from `1 to `3 directly. The goal is that information may
only be declassified if it passes through a special declassifier security level. The
assurance provided by this approach is that portions of computation between
declassification actions are in a certain sense secure. However, no guarantees are
given for the entire computation. Myers and Liskov’s decentralized model [28,
29] offers security labels in which selective declassification [33] is permitted on
the basis of a static analysis of process authority and relationships between

principals. Security labels have additional structure that describes the entities
capable of performing declassification. While the above policies help express how
information is released, they fail to account for what has been released. In par-
ticular, neither intransitive noninterference nor selective declassification directly
prevents laundering attacks.

How much? A quantitative approach to information flow gives bounds on how
much information may be released. For instance, this is useful for measuring
how much information about the password is revealed on a login attempt during
password checking. Based on Shannon’s information theory [41], early ideas of
quantitative security go back to Denning’s work [10] which, however, does not
provide automated tools for estimating the bandwidth. Clark et al. [7] propose
syntax-directed inference rules for computing estimates on information flow re-
sulted from if statements in an imperative language. Recent line of work by
Di Pierro et al. [12] suggests approximate noninterference, which can be thought
of as noninterference modulo probabilistically specified “noise” In a process-
algebra setting, Lowe’s quantitative definition of information flow [23] measures
the capacity of information flow channels. However, tracking the quantity of in-
formation through program construct appears to be a daunting task. To date,
there appears no static analysis with reasonably permissive rules for while loops.

Relative to what? In the rest of this section, we discuss models for information
release relative to the attacker’s power to observe and affect declassification. Vol-
pano and Smith [46] have proposed a type system that allows password-matching
operations and with the security assurance that (i) no well-typed program can
leak secrets in polynomial (in the length of the secret) time, and (ii) secret leaks
are only possible with a negligible probability. In subsequent work [44], Volpano
proves that leaking passwords in a system where passwords are stored as im-
ages of a one-way function is not easier than breaking the one-way function.
Both of these studies are, however, tailored to the password-checking scenario.
Abadi gives a type system [1] in which declassification is connected to uses of
encryption, for a calculus of cryptographic protocols, the spi calculus [3]. Secret
keys and their usage are hidden by the security definition, allowing the result
of encryption to be considered publicly visible. Sumii and Pierce [43] employ
relational parametricity techniques for reasoning about cryptographic protocols
involving encryption. Laud’s complexity-theoretic security definition [21, 22] is
also specific to declassification by encryption. This security definition ensures
that a polynomial-time (in the length of the secret) adversary in an imperative
language is not able to leak secrets by abusing the encryption-based declassifi-
cation mechanism.

The idea underlying Dam and Giambiagi’s admissibility [9, 15] is that the
implementation of a specification satisfies admissibility if there are no other
information flows than those described in a confidentiality policy of the specifi-
cation. The relativity of information release here is with respect to information
release in the specification.

Finally, Zdancewic and Myers have proposed a security condition called ro-
bust declassification [50], which captures the idea that an attacker may not learn
more information than intended. The key idea is that attacker-controlled com-
putation is not allowed to increase observations about secrets by causing misuse
of the declassification mechanism. Robust declassification ensures that an ac-
tive attacker (who can affect system behavior) cannot learn anything more than
a passive attacker (who may only observe the system’s behavior). Zdancewic
has proposed a type system [49] intended to enforce robust declassification. Re-
cently, Myers et al. [30] have generalized robust declassification as an enforceable
end-to-end security property and introduced qualified robustness that provides
untrusted code with a limited ability to affect information release.

7 Conclusion

We have presented a security model for intentional information release. Because
this model delimits information flow by explicit policies, we are able to capture
what information is released as opposed to how it is released. This approach en-
ables us to track laundering attacks that are often undetectable by other models
of information flow. Much work on information flow relies on compartmental-
ization (creating special security levels, or compartments, for data to restrict
information flow) to fence against laundering attacks. However, as we have seen
from the average-salary, electronic-wallet, and password-checking examples, com-
partmentalization is not a panacea. Our model can be viewed as another line of
defense that prevents attacks missed by compartmentalization.

The delimited release model is in some ways orthogonal to robust declassifi-
cation [50]; the former controls what may be declassified, and the latter ensures
that the attacker cannot control decisions about when it is declassified. A syn-
thesis of these security definitions in a language-based setting would further
improve assurance that information is being released properly. Delimited release
also opens up possibilities for using security-typed languages such as Jif [27, 31]
to write components of larger systems written in more conventional languages
such as Java [18]. Delimited release security could guarantee that security-critical
Jif code wrapped into Java programs would not disclose more information than
is released by the Jif code alone.

Acknowledgment Thanks are due to Fabio Martinelli, David Sands, Eijiro Sumii,
and Steve Zdancewic for helpful comments.

This research was supported by the Department of the Navy, Office of Naval
Research, ONR Grant N00014-01-1-0968. Any opinions, findings, conclusions, or
recommendations contained in this material are those of the authors and do not
necessarily reflect the views of the Office of Naval Research.

References

1. M. Abadi. Secrecy by typing in security protocols. J. ACM, 46(5):749–786, Septem-
ber 1999.

2. M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency.
In Proc. ACM Symp. on Principles of Programming Languages, pages 147–160,
January 1999.

3. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The Spi
calculus. Information and Computation, 148(1):1–70, January 1999.

4. J. Agat. Transforming out timing leaks. In Proc. ACM Symp. on Principles of
Programming Languages, pages 40–53, January 2000.

5. A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement
in a Java-like language. In Proc. IEEE Computer Security Foundations Workshop,
pages 253–267, June 2002.

6. A. Bossi, C. Piazza, and S. Rossi. Modelling downgrading in information flow
security. In Proc. IEEE Computer Security Foundations Workshop, June 2004. To
appear.

7. D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of confi-
dential data. In Proc. Quantitative Aspects of Programming Languages, volume 59
of ENTCS. Elsevier, 2002.

8. E. S. Cohen. Information transmission in sequential programs. In R. A. DeMillo,
D. P. Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations of Secure Com-
putation, pages 297–335. Academic Press, 1978.

9. M. Dam and P. Giambiagi. Confidentiality for mobile code: The case of a simple
payment protocol. In Proc. IEEE Computer Security Foundations Workshop, pages
233–244, July 2000.

10. D. E. Denning. Cryptography and Data Security. Addison-Wesley, Reading, MA,
1982.

11. D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Comm. of the ACM, 20(7):504–513, July 1977.

12. A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate non-interference. In Proc.
IEEE Computer Security Foundations Workshop, pages 1–17, June 2002.

13. D. Duggan. Cryptographic types. In Proc. IEEE Computer Security Foundations
Workshop, pages 238–252, June 2002.

14. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In Proc. ACM Symp. on Principles of
Programming Languages, pages 186–197, January 2004.

15. P. Giambiagi and M.Dam. On the secure implementation of security protocols.
In Proc. European Symp. on Programming, volume 2618 of LNCS, pages 144–158.
Springer-Verlag, April 2003.

16. J. A. Goguen and J. Meseguer. Security policies and security models. In Proc.
IEEE Symp. on Security and Privacy, pages 11–20, April 1982.

17. J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proc. IEEE
Symp. on Security and Privacy, pages 75–86, April 1984.

18. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, August 1996.

19. N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy and
integrity. In Proc. ACM Symp. on Principles of Programming Languages, pages
365–377, January 1998.

20. R. Joshi and K. R. M. Leino. A semantic approach to secure information flow.
Science of Computer Programming, 37(1–3):113–138, 2000.

21. P. Laud. Semantics and program analysis of computationally secure information
flow. In Proc. European Symp. on Programming, volume 2028 of LNCS, pages
77–91. Springer-Verlag, April 2001.

22. P. Laud. Handling encryption in an analysis for secure information flow. In Proc.
European Symp. on Programming, volume 2618 of LNCS, pages 159–173. Springer-
Verlag, April 2003.

23. G. Lowe. Quantifying information flow. In Proc. IEEE Computer Security Foun-
dations Workshop, pages 18–31, June 2002.

24. H. Mantel. Information flow control and applications—Bridging a gap. In Proc.
Formal Methods Europe, volume 2021 of LNCS, pages 153–172. Springer-Verlag,
March 2001.

25. H. Mantel and D. Sands. Controlled downgrading based on intransitive
(non)interference. Draft, July 2003.

26. J. McLean. The specification and modeling of computer security. Computer,
23(1):9–16, January 1990.

27. A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc.
ACM Symp. on Principles of Programming Languages, pages 228–241, January
1999.

28. A. C. Myers and B. Liskov. A decentralized model for information flow control. In
Proc. ACM Symp. on Operating System Principles, pages 129–142, October 1997.

29. A. C. Myers and B. Liskov. Complete, safe information flow with decentralized
labels. In Proc. IEEE Symp. on Security and Privacy, pages 186–197, May 1998.

30. A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. In
Proc. IEEE Computer Security Foundations Workshop, June 2004. To appear.

31. A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java infor-
mation flow. Software release. Located at http://www.cs.cornell.edu/jif, July
2001–2003.

32. S. Pinsky. Absorbing covers and intransitive non-interference. In Proc. IEEE
Symp. on Security and Privacy, pages 102–113, May 1995.

33. F. Pottier and S. Conchon. Information flow inference for free. In Proc. ACM In-
ternational Conference on Functional Programming, pages 46–57, September 2000.

34. F. Pottier and V. Simonet. Information flow inference for ML. In Proc. ACM
Symp. on Principles of Programming Languages, pages 319–330, January 2002.

35. A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterference? In Proc.
IEEE Computer Security Foundations Workshop, pages 228–238, June 1999.

36. J. M. Rushby. Noninterference, transitivity, and channel-control security policies.
Technical Report CSL-92-02, SRI International, 1992.

37. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J.
Selected Areas in Communications, 21(1):5–19, January 2003.

38. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded pro-
grams. In Proc. IEEE Computer Security Foundations Workshop, pages 200–214,
July 2000.

39. A. Sabelfeld and D. Sands. A per model of secure information flow in sequential
programs. Higher Order and Symbolic Computation, 14(1):59–91, March 2001.

40. J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.
ACM Transactions on Computer Systems, 2(4):277–288, November 1984.

41. C. E. Shannon and W. Weaver. The Mathematical Theory of Communication.
University of Illinois Press, 1963.

42. G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative
language. In Proc. ACM Symp. on Principles of Programming Languages, pages
355–364, January 1998.

43. E. Sumii and B. Pierce. Logical relations for encryption. In Proc. IEEE Computer
Security Foundations Workshop, pages 256–269, June 2001.

44. D. Volpano. Secure introduction of one-way functions. In Proc. IEEE Computer
Security Foundations Workshop, pages 246–254, July 2000.

45. D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language.
J. Computer Security, 7(2–3):231–253, November 1999.

46. D. Volpano and G. Smith. Verifying secrets and relative secrecy. In Proc. ACM
Symp. on Principles of Programming Languages, pages 268–276, January 2000.

47. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
J. Computer Security, 4(3):167–187, 1996.

48. G. Winskel. The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge, MA, 1993.

49. S. Zdancewic. A type system for robust declassification. In Proc. Mathematical
Foundations of Programming Semantics, ENTCS. Elsevier, March 2003.

50. S. Zdancewic and A. C. Myers. Robust declassification. In Proc. IEEE Computer
Security Foundations Workshop, pages 15–23, June 2001.

51. S. Zdancewic and A. C. Myers. Secure information flow and CPS. In Proc. European
Symp. on Programming, volume 2028 of LNCS, pages 46–61. Springer-Verlag, April
2001.

Appendix

This appendix presents a proof of Theorem 1.

Theorem 1. Γ, pc ` c : U ,D =⇒ c is secure.

Proof. We sketch a proof by induction on the typing derivation for c. With the
exception of the straightforward case for the subsumption rule (in the bottom
of Figure 2), the induction is on the structure of c. Suppose c contains exactly n
declassify expressions declassify(e1, `1), . . . , declassify(en, `n). Suppose that
for some security level ` and memories M1 and M2 where M1 =` M2, we have
∀i ∈ {i | `i v `} . 〈M1, ei〉 ≈ 〈M2, ei〉. We need to show 〈M1, c〉 ≈` 〈M2, c〉. We
assume that 〈M1, c〉 ⇓ M ′

1 and 〈M2, c〉 ⇓ M ′
2 for some M ′

1 and M ′
2 (the relation

is obvious if one of the configurations diverges). It remains to be shown that
M ′

1 =` M ′
2.

skip Straightforward, because M ′
1 = M1 =` M2 = M ′

2.
v := e Clearly, M ′

1 =` M1 =` M2 =` M ′
2 in case Γ (v) 6v `. In case Γ (v) v `,

the typing rule for assignments ensures that the security levels of variables
occurring in e—outside declassify primitives—are below `. Hence the val-
ues of these variables are the same in both M1 and M2. That the values of
expressions under declassify primitives are the same in both M1 and M2

is guaranteed by the assumption ∀i ∈ {i | `i v `} . 〈M1, ei〉 ≈ 〈M2, ei〉. (Note
that declassification to level `j for some j so that `j 6v ` is not allowed by
the typing rule for assignments.) To sum up, the values of variables outside
declassification primitives are the same in both M1 and M2 and so are the
values of expressions under declassify. Clearly, the application of op op-
erations to the subexpressions gives the same results for both M1 and M2.
Therefore, M ′

1 =` M ′
2.

c1; c2 By the typing rule for sequential composition, both c1 and c2 must be
typable. The set I = {i | `i v ` & declassify(ei, `i) occurs in c} can be
viewed as the union of I1 = {i | `i v ` & declassify(ei, `i) occurs in c1}
and I2 = {i | `i v ` & declassify(ei, `i) occurs in c2}. As 〈M1, c1; c2〉 ⇓
M ′

1 and 〈M2, c1; c2〉 ⇓ M ′
2 there are M ′′

1 and M ′′
2 so that 〈M1, c1〉 ⇓ M ′′

1

and 〈M2, c1〉 ⇓ M ′′
2 . Because I1 ⊆ I, we can apply the induction hypothesis

to c1. We receive M ′′
1 =` M ′′

2 . In order to show M ′
1 =` M ′

2 we would like
apply the induction hypothesis to c2. However, this requires that we demon-
strate ∀i ∈ I2. 〈M ′′

1 , ei〉 ≈ 〈M ′′
2 , ei〉, which is different from what we know

(∀i ∈ I2. 〈M1, ei〉 ≈ 〈M2, ei〉). But because the effect system ensures that no
variable used in {ei}i∈I2 is updated by c1, we infer that for any variable v
such that v occurs in {ei}i∈I2 we have M1(v) = M ′′

1 (v) and M2(v) = M ′′
2 (v).

This assures ∀i ∈ I2. 〈M ′′
1 , ei〉 ≈ 〈M ′′

2 , ei〉, and hence, by the induction hy-
pothesis, M ′

1 =` M ′
2.

if e then c1 else c2 Suppose Γ ` e : `′,D ′ for some `′ and D ′. In case `′ 6v `,
the pc-based mechanism of the type system ensures that only variables at or
above `′ may be assigned to in c1 and c2. Thus, there are no assignments to
variables at ` or below in either c1 or c2. Hence the memories M1 and M2 are
unaffected below ` throughout the execution, which results in M ′

1 =` M ′
2.

If `′ v `, then, because, ∀i ∈ {i | `i v `} . 〈M1, ei〉 ≈ 〈M2, ei〉, including
all occurrences of ei under declassify in e, we have 〈M1, e〉 ⇓ val and
〈M2, e〉 ⇓ val for some val . Hence, for both M1 and M2, the computation
will take the same branch, i.e., c1, if val = true, or c2 otherwise. That
M ′

1 =` M ′
2 follows by the application of the induction hypothesis to c1 or c2,

respectively.
while e do d Suppose Γ ` e : `′,D ′ for some `′ and D ′. Case `′ 6v ` is resolved

in the same fashion as for if. If `′ v `, then

∀i ∈ {i | `i v `} . 〈M1, ei〉 ≈ 〈M2, ei〉

which includes all occurrences of ei under declassify in e. Therefore, we
have 〈M1, e〉 ⇓ val and 〈M2, e〉 ⇓ val for some val . Hence, for both M1

and M2, either the computation proceeds with d, if val = true, or termi-
nates otherwise. Because the while loop terminates for both M1 and M2,
the computation can be represented as a sequential composition of a series
of d commands. This case reduces to consequently applying the sequential
composition case. Note that e keeps evaluating to the same value under both
M1 and M2 after each iteration (the effect system ensures that no variable
used under declassify is updated by d). Hence, when e becomes false, the
loop terminates after executing the same number of d commands for M1 and
M2. This implies M ′

1 =` M ′
2. �

