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As distributed systems become more federated and cross-domain, we are forced

to rethink some of our core abstractions. We need heterogeneous systems with rig-

orous consistency and self-authentication guarantees, despite a complex landscape

of security and failure tolerance assumptions. I have designed, built, and evalu-

ated heterogeneous distributed algorithms with broad applications from medical

privacy to blockchains.

This dissertation examines three novel building blocks for this vision.

First, I show that serializable transactions cannot always be securely scheduled

when data has different levels of confidentiality. I have identified a useful subset

of transactions that can always be securely scheduled, and built a system to check

and execute them.

Second, I present Charlotte, a heterogeneous system that supports compos-

able Authenticated Distributed Data Structures (like Git, PKIs, or Bitcoin). I

show that Charlotte produces significant performance improvements compared to

a single, universally trusted blockchain.

Finally, I develop a rigorous generalization of the consensus problem, and

present the first distributed consensus which tolerates heterogeneous failures, het-

erogeneous participants, and heterogeneous observers. With this consensus, cross-

domain systems can maintain ADDSs, or schedule transactions, without the ex-

pensive overhead that comes from tolerating the sum of everyone’s fears.
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CHAPTER 1

INTRODUCTION

Distributed Systems have become an integral part of not only modern computing,

but modern life. Every day, billions of people each execute dozens of transactions

involving massive, geodistributed datastores including those run by Google [39],

Facebook [24], and Amazon [45]. These systems promise to keep data available,

consistent, and secure.

However, they don’t always succeed. Distributed systems crash when individual

components fail, and the rest of the system fails to compensate. They are incon-

sistent when different users see different values, or different orders of events. They

leak data when it is sent to unauthorized parties, or taint it when unauthorized

parties insert malicious values.

1.1 Ideal Distributed Systems

Abstractly, distributed systems deal with some set of participants (sometimes

called “nodes,” “processors,” or “processes”), usually computers, which execute

computation and send messages to each other over the network. Observers are

abstract entities that observe messages in the system and make demands about

system properties. Observers define the requirements on the system: how many

failures it needs to tolerate, and what tasks it must perform under what circum-

stances. Participants are merely components of the system, although some entities

(such as people) can be both observers and participants. Not all systems always

satisfy all observers. There are some traditional assumptions about this setting.

For instance, we usually assume that once a message is sent, it will eventually
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arrive [81]. Often we assume there is no way to tell how long a message will take,

and so detecting when a participant has failed is difficult [33].

I believe a Distributed System should be like a well-run kitchen. Cooks and

tools are participants, and they pass messages in the form of ingredients in various

stages of preparation. Diners are observers: they demand that tasks be done, and

have opinions about the results in terms of availability and food safety. I believe

in three core principles that apply to both kitchen organization and distributed

system design: least ordering, fault tolerance, and heterogeneity.

1.1.1 Least Ordering

Participants should not be forced to do tasks in any particular order, unless some-

thing inherent to those tasks requires it. This is an old concept in the database

community [19], and a good rule of thumb for a kitchen as well.

For example, suppose a naive cook has a recipe for a meal involving the steps:

• Bake the bread

• Simmer the soup

• Chop the salad

A linear approach would be to put the bread in the oven until it’s done, and

afterwards simmer the soup until it’s done, and afterward chop the salad. However,

such an approach takes unnecessarily long, and doesn’t allow for other scheduling

constraints (such as trying to finish multiple foods at mealtime).
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On the other hand, an experienced cook can put the bread in the oven, and

while it’s baking, set the soup to simmer, and while it’s simmering, chop the salad.

These tasks are not inherently ordered, and so a well-run kitchen can do them

however is most efficient.

As another example, imagine a distributed system for a bank. If Alice trans-

fers money to Bob, and Carol transfers money to Dave, there is no reason for

the two transfers to be ordered: they can even be handled by totally separate

participants. On the other hand, if Eve tries to send all her money to Fred and

also to Gloria, it matters which transaction happens first: that controls who gets

the money.

1.1.2 Fault Tolerance

Some participants are going to fail, and a distributed system should complete tasks

anyway. For example, suppose a naive cook goes to chop a salad, and the knife

is dull. In distributed systems terms, this is a crash failure: something stopped

working. Without any failure tolerance, the naive cook cannot complete the salad.

On the other hand, a well-run kitchen should have multiple knives. An experienced

cook can use a back-up knife, and complete the salad.

As another example, consider data storage. If data is stored on one machine, it

is lost when that machine fails. However, if it is backed up onto multiple machines,

it can remain available so long as one of them still works.
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1.1.3 Heterogeneity

Most modern distributed system design is focused on homogeneous systems, with

respect to participants, failures, and observers. However, some of the most success-

ful distributed systems, including the internet itself, are extremely heterogeneous.

Participants

Not all participants have the same privileges and capabilities. A distributed system

should respect these differences. Most traditional distributed system or algorithm

designs, such as paxos [83, 84], PBFT [30], Chord [141], Bittorrent [37], or even

Bitcoin [106] simply assume some collection of undifferentiated participants. Some

systems, including Fabric [90] and DStar [155], recognize that different participants

have different abilities and restrictions.

For example, there are messages which should flow to some participants, but

not others. In a kitchen we can imagine soup pots and ovens as participants, but

there are ingredients, such as broth, that should flow into the soup pot, but not

into the oven.

As another example, most kitchens are willing to tolerate more knife failures

than oven failures. Perhaps because ovens are more expensive than knives, they

are willing to stop making certain dishes if a small number of ovens fail, but many

knives would have to fail before the menu would change.

In distributed systems, participants are often heterogeneous for security rea-

sons: some machines might not be trusted to know some data, or to influence some

data. For example, a hospital might allow some employees’ computers to access
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patients’ addresses, but not their HIV status. In chapter 2, we dig into examples

where security in a heterogeneous system can be deceptively difficult to guarantee.

Participants can also be heterogeneous for failure-tolerance reasons. Suppose

an application is designed to tolerate the failure of one hosting provider. It should

be available whenever one of Google or Amazon or Microsoft fail, and it’s us-

ing multiple computers in each. For this application, 6 Google machines failing

is crucially different than 3 Google machines and 3 Microsoft machines failing.

In chapter 4, we develop an expressive framework for detailing nuanced failure

tolerance policies.

Failures

Not all failures are the same. Distributed Systems should be as specific as possible

in defining their failure tolerances, especially if that means tolerating a mix of

different types of failures.

For example, there is a critical difference between an oven that has crashed

(stopped working), and one that is byzantine (it behaves arbitrarily). A cook will

be unable to put a lasagna in a crashed oven, and so it will never arrive at the

customer. A byzantine oven, however, might accept the lasagna, but undercook

it, and make the customer ill.

There are a number of failure types in distributed systems literature [120, 86,

59, 5, 87], but most systems only consider one. It is popular, for example, to

describe a system as tolerating at most f byzantine failures out of n participants.

It doesn’t matter which of the n participants fail, and no other failure types are

considered. Systems which do consider multiple failure types are said to have a
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mixed failure model [134]. In chapter 4, we describe a consensus algorithm that

embraces and extends a mixed failure model.

Observers

Not all principals observing a distributed system make the same assumptions. A

distributed system should take this into account, and provide guarantees that are

specific to each observer. Most traditional distributed systems, including virtually

all databases, are built on some universal set of assumptions about failure toler-

ances, capabilities, and requirements. A few, such as Stellar [96] and Cobalt [94],

directly embrace the notion that not everyone will have the same expectations.

For example, we can consider diners the observers of a kitchen. One diner

might prefer an overcooked lasagna (in technical terms, a safety failure) to one

that never arrives (a liveness failure). Another diner might prefer that the lasagna

never arrive.

Another example occurs when multiple parties try to collaborate on a data

structure. If two banks, for instance, are trying to agree on a common ledger of

financial transfers, bankers at one bank might have a different idea about which

computers are trustworthy than bankers at the other bank. In chapter 3, we

discuss cross-domain data structures and how to express their integrity properties.

In chapter 4, we explain how to achieve consensus among heterogeneous observers.
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1.1.4 Building With These Ideals

In my research, I have tried to adapt existing systems, and build new ones in line

with these ideals. Existing systems which fail to embrace least ordering, failure

tolerance, or heterogeneity often pay a price in performance or security.

1.2 Security

1.2.1 Information Flow Control (IFC)

Distributed systems are perpetually at risk of sending data to unauthorized parties,

or allowing unauthorized actors undue influence. This is especially true when

participants are heterogeneous, and not all participants can be trusted with all

data.

Information Flow Control (IFC) is a set of techniques for ensuring systems

do not leak information (confidentiality) [46] or allow unauthorized influence (in-

tegrity) [22, 118]. IFC enforcement guaranties non-interference: the idea that an

unauthorized party should not be able to distinguish two executions of a program,

so long as the inputs they’re authorized to see are the same.

1.2.2 Failure Tolerance

Security can also include fault-tolerance: avoiding system failures when partic-

ipants fail. This is especially evident for applications like power grids, where

malicious participants causing a blackout are a real-world security concern.
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Lantian Zheng demonstrated that the same IFC techniques could apply to avail-

ability as well, allowing data labels to specify the conditions under which the data

must remain available [158, 157, 159]. In this unified view, each data label specified

its own failure tolerance conditions in terms of Confidentiality, Availability, and

Integrity, a traditional “triad” for expressing information security. In fact, with

Fabric-style labels featuring policy owners, it is possible to address the security re-

quirements of each datum for each observer. My work on Observer Graphs (§ 4.3)

grows directly from this material and attempts to express nuances that Lantian’s

labels could not. For example, our labels can describe situations in which several

groups of observers disagree with each other on the value of a datum, but within

each group, observers agree on the value.

1.3 Transactions

In a distributed setting, it is extremely difficult for programmers to account for

the possibility of many programs running at the same time. Each transaction is

an execution of a distributed program, generally thought of as running concur-

rently with other transactions. A transaction might, for instance, subtract from

the balance of one bank account, and add to the balance of another, on another

participant.

While a dizzying array of scheduling options are available [143, 107, 125, 17,

146, 92, 79, 41, 6, 14, 102], serializability remains the gold standard. Serializable

transactions1 behave as though nothing else is running on the system at the time.

1similar to ACID or Strongly Consistent transactions
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For any allowed system behavior, there is a serial order of transactions which would

produce the same behavior (if they ran fast enough) [107, 125].

Achieving serializability, however, can be deceptively tricky. All participants

involved in a transaction have to engage in some kind of scheduling protocol to

ensure events are ordered consistently. By far the most popular scheduling protocol

is 2 Phase Commit (2PC) [19], but as I show in chapter 2, 2PC can leak information

in heterogeneous systems, even if each transaction itself is secure. In fact, it

is impossible to securely serialize arbitrary secure transactions. I do, however,

identify a class of securely serializable transactions, and develop a protocol, Staged

Commit, to securely serialize them. We modified the Fabric [90] compiler and

runtime to use Staged Commit.

1.4 Consensus

Unfortunately, neither 2PC nor Staged Commit are as failure-tolerant as we might

like. When some participants can crash, the protocol may never complete, and

transactions will not be scheduled.

Consensus, in a nutshell, is the problem of getting observers to agree on a

value (such as the order of transactions), despite the possibility that some portion

of the participants may fail (e.g. crash or behave maliciously). Unfortunately, it is

impossible to guarantee that any protocol for achieving consensus will terminate

(finishe) without assuming more of the network than simply “any message sent is

eventually delivered” [54]. The most famous solution is Paxos [83, 84, 83, 145],

which assumes the network is semi-synchronous : there is some bound, possibly

unknown, on the time between when a message is sent and when it’s delivered.
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Practical Byzantine Fault Tolerance, the most famous consensus algorithm toler-

ating byzantine failures, relies on a similar assumption [30]. Some other consensus

protocols rely on random number generation to provide a probabilistic termination

guarantee instead [103, 3].

Consensus has other known limitations. For example, when participants are ho-

mogeneous, there must be greater than 2f participants to tolerate f crash failures,

and greater than 3f to tolerate byzantine failures [86]. In chapter 4, I generalize

these limitations to the heterogeneous setting: wherein participants, observers, and

failures are all heterogeneous. In § 4.8, I explore scenarios in which protocols that

take heterogeneity into account can subvert the limit of homogeneous protocols,

avoiding the costs associated with unnecessary participants.

1.5 Blockchains

Recently, blockchains have stirred up a great deal of interest in serializing transac-

tions using large-scale consensus with diverse participants. A blockchain is a data

structure wherein each datum, or block, refers to the previous using a collision-

resistant hash, and no two blocks in the chain can refer to the same predecessor.

They are traditionally used as an append-only log or ledger, and require a consen-

sus mechanism to ensure only one element is appended in each entry. Such a ledger

can be used to keep track of money, as in a Cryptocurrency [106], or even the state

transitions of an arbitrary state machine, such as a “smart contract” [121, 56].

Most chains use a single, homogeneous consensus protocol to sequentially add

transactions to an ever-growing ledger [106, 56]. While these blockchains are built

to be failure-tolerant, they largely fail to embrace least ordering and heterogeneity.
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1.5.1 Least Ordering

Blockchain transactions tend to be serialized, not merely serializable. The differ-

ence is subtle but important.

• serializable transactions behave as though they were the only transaction

running at the time. The resulting execution must be equivalent to an exe-

cution with all transactions run in some serial order. The system can optimize

runtime and resource usage by running independent transactions in parallel,

while preserving equivalence to a serial order. Many existing systems take

advantage of this optimization, including Postgres [111], MySQL [117], and

.NET [1].

• serialized transactions each actually are the only transaction executing at

the time. The resulting execution actually has all transactions run in some

serial order. The system can’t optimize anything: the schedule of execution

is linear, and totally decided by consensus.

As a result, existing blockchain architectures are woefully slow: their speed is

equivalent to a few transactions per second, while traditional architectures can

run thousands per second [40].

Several current efforts aim to build blockchains without total serialization using

sharding [77, 93, 152, 43, 25, 140, 57, 150], but at best these projects ask “what is

the most ordering we can keep,” instead of “what is the least ordering we need?”

To address this fundamental failure to embrace the Least Ordering principle, I

developed Charlotte (chapter 3), a framework for Authenticated Distributed Data

Structures (such as blockchains), in which blocks are unordered by default, and

ordering mechanisms can be added when necessary.
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1.5.2 Heterogeneity

Most blockchain projects, even the sharded ones, rely on a single homogeneous

consensus mechanism. They hope to gather sufficiently many participants that

that mechanism will be sufficiently trustworthy for all applications. This has two

substantial drawbacks.

First, despite tolerating many failures, these consensus mechanisms do not sat-

isfy everyone. For instance, banks usually demand that their data be consistent so

long as their computers are working, even if all other computers in the world are

not. No homogeneous consensus algorithm will satisfy multiple banks simultane-

ously.

Second, these consensus algorithms are incredibly expensive. This is part of

why blockchain architectures are so slow. Bitcoin-style “Proof-of-Work,” in partic-

ular, uses an enormous amount of energy, more than several moderate size coun-

tries [44].

These shortcomings arise because blockchains have failed to embrace hetero-

geneity. Rather than developing a single integrity mechanism trustworthy enough

for all applications, each application can use its own integrity mechanism. Since

most applications are specific to some organization (or individual), these mech-

anisms can be much faster. Even transactions involving multiple applications

need only satisfy the integrity requirements of the applications involved, rather

than the whole world. Charlotte (chapter 3) allows for these composable applica-

tions, and defines integrity and availability properties in a formal and composable

way. Heterogeneous Consensus (chapter 4) can serve as an integrity mechanism
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for Charlotte applications, allowing them to tailor their fault tolerance to specific

observers.

1.6 Roadmap

In this dissertation, I discuss building distributed systems with serializable trans-

actions. To address the shortcomings of existing distributed systems, and embrace

least ordering, fault tolerance, and heterogeneity, I present three related projects:

Safe Serializable Secure Scheduling, Charlotte, and Heterogeneous Consensus.

1.6.1 Safe Serializable Secure Scheduling

In chapter 2, I discover security problems with existing transaction scheduling

techniques (2PC) in a setting with heterogeneous participants. Scheduling pro-

tocols are supposed to impose only necessary ordering between transactions, in

keeping with the least ordering principle, but unfortunately, when different partic-

ipants are permitted to know different data, the scheduling protocol itself can leak

information.

I show that no protocol can schedule all possible sets of safe transactions se-

curely. I also develop a new subset of transactions, relaxed monotonic transactions,

which my new protocol, Staged Commit can schedule. We implemented and tested

our Staged Commit protocol in the Fabric system [90], and present the results

in § 2.8. These results were published at CCS 2016 [128].
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1.6.2 Authenticated Distributed Data Structures

In chapter 3, I address the shortcomings in modern blockchains while preserving

prized properties like self-authenticating data, and provable commits. Charlotte is

a framework for Authenticated Distributed Data Structures (ADDSs) (including

blockchains) that embraces least ordering, fault tolerance, and heterogeneity.

Charlotte allows data structures to compose, and provides a formal model for

reasoning about availability properties of data structures and their compositions.

I demonstrate how existing ADDSs can be replicated within the Charlotte frame-

work, including Git, Bitcoin, and Timestamping, with minimal overhead. I also

show that, with Least Ordering, the actual transactions in the Bitcoin payment

history could be committed about 70 times faster.

1.6.3 Heterogeneous Consensus

In chapter 4, I design Heterogeneous Consensus, the first consensus algorithm that

can be tailored for heterogeneous participants, observers, and failures. I demon-

strate the resources this can save in a variety of scenarios, when compared to a

homogeneous consensus algorithm. Heterogeneous Consensus can be fitted into

Charlotte to create blockchains and other data structures with rich, composable

integrity properties. As an example, I demonstrate blockchains using Heteroge-

neous Consensus and Charlotte.
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CHAPTER 2

SAFE SERIALIZABLE SECURE SCHEDULING

Transactions and the Trade-off Between Security and Consistency

Synopsis

Modern applications often operate on data in multiple administrative domains. In

this federated setting, heterogeneous participants may not fully trust each other.

These distributed applications use transactions as a core mechanism for ensuring

reliability and consistency with persistent data. However, the coordination mech-

anisms needed for transactions can both leak confidential information and allow

unauthorized influence. To return to our kitchen analogy (§ 1.1.3), we’re seeking

to prevent the equivalent of broth flowing into the oven, when it should only be

allowed to flow to the soup pot.

By implementing a simple attack, we show these side channels can be exploited.

However, our focus is on preventing such attacks. We explore secure scheduling

of atomic, serializable transactions in a setting with heterogeneous trust. While

we prove that no protocol can guarantee security and liveness in all settings, we

establish conditions for sets of transactions that can safely complete under se-

cure scheduling. Based on these conditions, we introduce staged commit , a secure

scheduling protocol for federated transactions. This protocol avoids insecure in-

formation channels by dividing transactions into distinct stages. We implement a

compiler that statically checks code to ensure it meets our conditions, and a system

that schedules these transactions using the staged commit protocol. Experiments

on this implementation demonstrate that realistic federated transactions can be

scheduled securely, atomically, and efficiently.
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This chapter is based on work published at CCS 2016 [128].

2.1 Introduction

Many modern applications are distributed, operating over data from heteroge-

neous domains. Distributed protocols are used by applications to coordinate across

physically separate locations, especially to maintain data consistency. However,

distributed protocols can leak confidential information unless carefully designed

otherwise.

Distributed applications are often structured in terms of transactions , which

are atomic groups of operations (§1.3). For example, when ordering a book online,

one or more transactions occur to ensure that the same book is not sold twice,

and to ensure that the sale of a book and payment transfer happen atomically.

Transactions are ubiquitous in modern distributed systems. Implementations in-

clude Google’s Spanner [39], Postgres [111], and Microsoft’s Azure Storage [27].

Common middleware such as Enterprise Java Beans [101] and Microsoft .NET [1]

also support transactions.

Many such transactions are distributed, involving multiple heterogeneous par-

ticipants (vendors, banks, etc.) (§ 1.1.3). Crucially, these participants may not be

equally trusted with all data. Standards such as X/Open XA [2] aim specifically

to facilitate transactions that span multiple systems, but none address information

leaks inherent to transaction scheduling.

Distributed transaction implementations are often based on the two-phase com-

mit protocol (2PC) [52]. We show that 2PC can create unintentional channels
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through which private information may be leaked, and trusted information may

be manipulated. We expect our results apply to other protocols as well.

There is a fundamental tension between providing strong consistency guaran-

tees in an application and respecting the security requirements of the application’s

trust domains. This work deepens the understanding of this trade-off and demon-

strates that providing both strong consistency and security guarantees, while not

always possible, is not a lost cause.

Concretely, we make the following contributions in this chapter:

• We describe abort channels , a new kind of side channel through which con-

fidential information can be leaked in transactional systems (§ 2.2).

• We demonstrate exploitation of abort channels on a distributed system

(§ 2.2.3).

• We define an abstract model of distributed systems, transactions, and infor-

mation flow security (§2.3), and introduce relaxed observational determinism,

a noninterference-based security model for distributed systems (§ 2.3.7).

• We establish that within this model, it is not possible for any protocol to

securely serialize all sets of transactions, even if the transactions are individ-

ually secure (§ 2.4).

• We introduce and prove a sufficient condition for ensuring serializable trans-

actions can be securely scheduled (§ 2.5).

• We define the staged commit protocol, a novel secure scheduling protocol for

transactions meeting this condition (§ 2.6).
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• We implement our novel protocol in the Fabric system [91], and extend the

Fabric language and compiler to statically ensure transactions will be securely

scheduled (§ 2.7).

• We evaluate the expressiveness of the new static checking discipline and the

runtime overhead of the staged commit protocol (§ 2.8).

We discuss related work further in § 2.9, and conclude in § 2.10.

2.2 Abort Channels

Two transactions working with the same data can conflict if at least one of them

is writing to the data. Typically, this means that one (or both) of the transactions

has failed and must be aborted . In many transaction protocols, including 2PC, a

participant1 involved in both transactions can abort a failed transaction by sending

an abort message to all other participants in the failed transaction [52]. These abort

messages can create unintended abort channels , through which private information

can be leaked, and trusted information can be manipulated.

An abort message can convey secret information if a participant aborts a trans-

action otherwise likely to be scheduled, because another participant in the same

transaction might deduce something about the aborting participant. For example,

that other participant might deduce that the abort is likely caused by the presence

of another—possibly secret—conflicting transaction.

Conspirators might deliberately use abort channels to covertly transfer infor-

mation within a system otherwise believed to be secure. Although abort channels

1Transaction participants are often processes or network nodes.
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communicate at most one bit per (attempted) transaction, they could be used as

a high-bandwidth covert channel for exfiltration of sensitive information. Current

transactional systems can schedule over 100 million transactions per second, even

at modest system sizes [50]. It is difficult to know if abort channels are already

being exploited in real systems, but large-scale, multi-user transactional systems

such as Spanner [39] or Azure Storage [27] are in principle vulnerable.

Abort messages also affect the integrity of transaction scheduling. An abort

typically causes a transaction not to be scheduled. Even if the system simply retries

the transaction until it is scheduled, this still permits a participant to control the

ordering of transactions, even if it has no authority to affect them. For example,

a participant might gain some advantage by ensuring that its own transactions

always happen after a competitor’s.

Transactions can also create channels that leak information based on timing or

termination [11, 20]. We treat timing and termination channels as outside the scope

of this work, to be handled by mechanisms such as timing channel mitigation [78,

10, 15]. Abort channels differ from these previously identified channels in that

information leaks via the existence of explicit messages, with no reliance on timing

other than their ordering. Timing mitigation does not control abort channels.

2.2.1 Rainforest Example

A simple example illustrates how transaction aborts create a channel that can

leak information. Consider a web-store application for the fictional on-line retailer

Rainforest, illustrated in Fig. 2.1. Rainforest’s business operates on data from sup-

pliers, customers, and banks. Rainforest wants to ensure that it takes money from
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Figure 2.1: Rainforest example. Gloria and Fred each buy an Outel chip via
Rainforest’s store. Gloria’s transaction is in red, dashed arrows; Fred’s is in blue,
solid arrows.

customers only if the items ordered have been shipped from the suppliers. As a re-

sult, Rainforest implements purchasing using serializable transactions. Customers

expect that their activities do not influence each other, and that their financial

information is not leaked to suppliers. These expectations might be backed by

law.

In Fig. 2.1, Gloria and Fred are both making purchases on Rainforest at roughly

the same time. They each purchase an Outel chip, and pay using their accounts

at CountriBank. If Rainforest uses 2PC to perform both of these transactions, it

is possible for Gloria’s computer to receive an abort when Outel tries to schedule

her transaction and Fred’s. The abort leaks information about Fred’s purchase at

Outel to Gloria. Alternatively, if Gloria is simultaneously using her bank account

in an unrelated purchase, scheduling conflicts at the bank might leak to Outel,

which could thereby learn of Gloria’s unrelated purchase.

These concerns are about confidentiality, but transactions may also create in-

tegrity concerns. The bank might choose to abort transactions to affect the order
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Figure 2.2: The events of the transactions in Fig. 2.1. Gloria’s transaction con-
sists of r0, r1, r2, r3, r4, and r5. Bob’s consists of b0, b1, b2, b3, b4, and b5.
Happens-before (_) relationships are arrows. The shaded blocks around events
indicate locations, and are labeled with participants from Fig. 2.1.

in which Outel sells chips. Rainforest and Outel may not want the bank to have

this power.

2.2.2 Hospital Example

As a second, running example, we use two small programs with an abort channel.

Suppose Patsy is a trusted hospital employee, running the code in Fig. 2.3a to col-

lect the addresses of HIV-positive patients in order to send treatment reminders.

Patsy runs her transaction on her own computer, which she fully controls, but

it interacts with a trusted hospital database on another machine. Patsy starts

a transaction for each patient p, where transaction blocks are indicated by the

keyword atomic. If p does not have HIV, the transaction finishes immediately.

Fig. 2.3c shows the resulting transaction in solid blue. (Events in the transac-

tion are represented as ovals; arrows represent dependencies between transaction

events.) Otherwise, if the patient has HIV, Patsy’s transaction reads the patient’s

address and prints it (the blue transaction in Fig. 2.3c, including dashed events).
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Suppose Mallory is another employee at the same hospital, but is not trusted

to know each patient’s HIV status. Mallory is, however, trusted with patient ad-

dresses. Like Patsy, Mallory’s code runs on her own computer, which she fully

controls, but interacts with the trusted hospital database on another machine.

She runs the code in Fig. 2.3b to update each patient’s address in a separate

transaction, resulting in the red transaction in Fig. 2.3c. When Mallory updates

the address of an HIV-positive patient, her transaction might conflict with one of

Patsy’s, and Mallory would observe an abort. Thus Mallory can learn which pa-

tients are HIV-positive by updating each patient’s address while Patsy is checking

the patients’ HIV statuses. Each time one of Mallory’s transactions aborts, private

information leaks: that patient has HIV.

One solution to this problem is to change Patsy’s transaction: instead of read-

ing the address only if the patient is HIV positive, Patsy reads every patient’s

address. This illustrates a core goal of our work: identifying which programs

can be scheduled securely. In Fig. 2.4a, lines 3 and 4 of Patsy’s code have been

switched. As Fig. 2.4c shows, both possible transactions read the patient’s address.

Since Mallory cannot distinguish which of Patsy’s transactions has run, she cannot

learn which patients have HIV.

2.2.3 Attack Demonstration

Using code resembling Fig. 2.3, we implemented the attack described in our hos-

pital example (§ 2.2.2) using the Fabric distributed system [9, 91]. We ran nodes

representing Patsy and Mallory, and a storage node for the patient records.
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1 atomic {
2 h = p.hasHiv;
3 if (h) {
4 x = p.address;
5 print(x);
6 }
7 }

(a) Patsy’s code

Patsy start

Read HIV

Read address

Print address

Mallory start

Update address
?

High Security (H)

Low Security (L)

(c) Resulting transactions

1 atomic {
2 p.address+="␣";
3 }

(b) Mallory’s code

Figure 2.3: Insecure hospital scenario. Patsy runs a program (2.3a) for each
patient p. If p has HIV (which is private information), she prints out p’s address
for her records. The resulting transaction takes one of two forms. Both begin with
the event Patsy start. If p is HIV negative, the transaction ends with Read HIV.
Otherwise, it includes the blue events with dashed outlines. Meanwhile, Mallory
updates the p’s (less secret) address (2.3b), resulting in the transaction with red,
solid-bordered events. This conflicts with Patsy’s transaction, requiring the system
to order the update and the read, exactly when p has HIV (“?” in 2.3c).

1 atomic {
2 〈h = p.hasHiv‖
3 x = p.address〉;
4 if (h) {
5 print(x);
6 }
7 }

(a) Patsy’s code

Patsy start

Read HIV

Read address

Print address

Mallory start

Update address
?

High Security (H)

Low Security (L)

(c) Resulting transactions

1 atomic {
2 p.address+="␣";
3 }

(b) Mallory’s code

Figure 2.4: Secure hospital scenario. A secure version of Fig. 2.3, in which lines 3
and 4 of Patsy’s code (2.3a) are switched, and the resulting lines 2 and 3 can be run
in parallel (〈 ‖ 〉). Thus the transaction reads p’s address regardless of whether p
has HIV, and so Mallory cannot distinguish which form Patsy’s transaction takes.

To improve the likelihood of Mallory conflicting with Patsy (and thereby re-

ceiving an abort), we had Patsy loop roughly once a second, continually reading

the address of a single patient after verifying their HIV-positive status. Meanwhile,

Mallory attempted to update the patient’s address with approximately the same

frequency as Patsy’s transaction.
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Like many other distributed transaction systems, Fabric uses two-phase com-

mit. Mallory’s window of opportunity for receiving an abort exists between the two

phases of Patsy’s commit, which ordinarily involves a network round trip. How-

ever, both nodes were run on a single computer. To model a cloud-based server,

we simulated a 100 ms network delay between Patsy and the storage node.

Getting this to work was challenging, because Fabric caches its objects opti-

mistically. When Mallory updates the patient’s address, it would invalidate Patsy’s

cached copy, causing Patsy’s next transaction to abort and retry. Furthermore,

Fabric implements an exponential back-off algorithm for retrying aborted transac-

tions. As a result, we had to carefully tune the transaction frequencies to prevent

Mallory from starving out Patsy.

We ran this experiment for 90 minutes. During this time, Mallory received an

abort roughly once for every 20 transactions Patsy attempted. As a result, approx-

imately every 20 seconds, Mallory learned that a patient had HIV. In principle,

many such attacks could be run in parallel, so this should be seen as a minimal,

rather than a maximal, rate of information leakage for this setup.

As described later, our modified Fabric compiler (§2.7) correctly rejects Patsy’s

code. We amended Patsy’s code to reflect Fig. 2.4, and our implementation of

the staged commit protocol (§ 2.6) was able to schedule the transactions without

leaking information. Mallory was no more or less likely to receive aborts regardless

of whether the patient had HIV.
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2.3 System Model

We introduce a formal, abstract system model that serves as our framework for

developing protocols and proving their security properties. Despite its simplicity,

the model captures the necessary features of distributed transaction systems and

protocols. As part of this model, we define what it means for transactions to be

serializable and what it means for a protocol to serialize transactions both correctly

and securely.

2.3.1 State and Events

Similarly to Lamport [81], we define a system state to include a finite set of events ,

representing a history of the system up to a moment in time. An event (denoted e)

is an atomic native action that takes place at a location, which can be thought of as

a physical computer on the network. Some events may represent read operations

(“the variable x had the value 3”), or write operations (“2 was written into the

variable y”). In Figures 2.3 and 2.4, for example, events are represented as ovals,

and correspond to lines of code.

Also part of the system state is a causal ordering on events. Like Lamport’s

causality [81], the ordering describes when one event e1 causes another event e2. In

this case, we say e1 happens before e2, written as e1_e2. This relationship would

hold if, for example, e1 is the sending of a message, and e2 its receipt. The ordering

(_) is a strict partial order: irreflexive, asymmetric, and transitive. Therefore,

e1_e2 and e2_e3 together imply e1_e3.

25



The arrows in Figures 2.2 to 2.4 show happens-before relationships for the

transactions involved.

2.3.2 Information Flow Lattice

We extend Lamport’s model by assigning to each event e a security label , written

`(e), which defines the confidentiality and integrity requirements of the event.

Events are the most fine-grained unit of information in our model, so there is

no distinction between the confidentiality of an event’s occurrence and that of its

contents . Labels in our model are similar to high and low event sets [116, 35].

In Figures 2.3 and 2.4, two security labels, High and Low (H and L for short), are

represented by the events’ positions relative to the dashed line.

For generality, we assume that labels are drawn from a lattice [46], depicted in

Fig. 2.5. Information is only permitted to flow upward in the lattice. We write

“`(e1) is below `(e2)” as `(e1)v`(e2), meaning it is secure for the information in e1

to flow to e2.

For instance, in Fig. 2.3, information should not flow from any events labeled

H to any labeled L. Intuitively, we don’t want secret information to determine

any non-secret events, because unauthorized parties might learn something secret.

However, information can flow in the reverse direction: reading the patient’s ad-

dress (labeled L) can affect Patsy’s printout (labeled H): L v H.

The join (t) of two labels represents their least upper bound: `1v(`1t`2) and

`2v(`1t`2). The meet (u) of two labels represents their greatest lower bound:

(`1u`2)v`1 and (`1u`2)v`2.
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Like events, each location has a label, representing a limit on events with which

that location can be trusted. No event should have more integrity than its location.

Similarly, no event should be too secret for its location to know. Thus, in Fig. 2.5,

only events to the left of a location’s label (i.e., region C in the figure) may take

place at that location.

For example, consider Gloria’s payment event at CountriBank in the Rainforest

example Fig. 2.1. This event (r5 in Fig. 2.2) represents money moving from Gloria’s

account to Outel’s. The label ` of r5 should not have any more integrity than

CountriBank itself, since the bank controls r5. Likewise, the bank knows about

r5, so ` cannot be more confidential than the CountriBank’s label. This would put

` to the left of the label representing CountriBank in the lattice of Fig. 2.5.

Our prototype implementation of secure transactions is built using the Fabric

system [91], so the lattice used in the implementation is based on the Decentralized

Label Model (DLM) [105]. However, the results of this dissertation are independent

of the lattice used.

2.3.3 Conflicts

Two events in different transactions may conflict . This is a property inherent to

some pairs of events. Intuitively, conflicting events are events that must be ordered

for data to be consistent. For example, if e1 represents reading variable x, and e2

represents writing x, then they conflict, and furthermore, the value read and the

value written establish an ordering between the events. Likewise, if two events

both write variable x, they conflict, and the system must decide their ordering

because it affects future reads of x.
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Figure 2.5: Security lattice: The dot represents a label in the lattice, and the
dashed lines divide the lattice into four quadrants relative to this label. If the label
represents an event, then only events with labels in quadrant B may influence this
event, and this event may only influence events with labels in quadrant A. If the
label represents a location, then only events with labels in quadrant C may occur
at that location.

In our hospital example (Figures 2.3 and 2.4), the events Read address and

Update address conflict. Specifically, the value read will change depending on

whether it is read before or after the update. Thus for any such pair of events,

there is a happens-before (_) ordering between them, in one direction or the other.

We assume that conflicting events have the same label. This assumption is

intuitive in the case of events that are reads and writes to the same variable (that

is, storage location). Read and write operations in separate transactions could

have occurred in either order, so the happens-before relationship between the read

and write events cannot be predicted in advance.

Our notion of conflict is meant to describe direct interaction between transac-

tions. Hence, we also assume any conflicting events happen at the same location.
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r0
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r2

b0

b1
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p

Figure 2.6: An example system state. The events r0, r1, and r2 form transaction
R, and the events b0,b1, and b2 form transaction B. Event p is not part of
either transaction. It may be an input, such as a network delay event, or part of a
protocol used to schedule the transactions. In this state, r1_p _b1, which means
that r1 happens before b1, and so the transactions are ordered: R_B.

2.3.4 Serializability and Secure Information Flow

Traditionally a transaction is modeled as a set of reads and writes to different

objects [107]. We take a more abstract view, and model a transaction as a set of

events that arise from running a piece of code. Each transaction features a start

event , representing the decision to execute the transaction’s code. Start events, by

definition, happen before all others in the transaction. Multiple possible transac-

tions can feature the same start event: the complete behavior of the transaction’s

code is not always determined when it starts executing, and may depend on past

system events.

Fig. 2.4c shows two possible transactions, in blue, that can result from run-

ning the secure version of Patsy’s code. They share the three events in solid blue,

including the start event (Patsy start); one transaction contains a fourth event,

Print address. The figure also shows in red the transaction resulting from Mal-

lory’s code. Fig. 2.6 is a more abstract example, in which r0 is the start event of

transaction R, and b0 is the start event of transaction B.
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In order to discuss what it means to serialize transactions, we need a notion

of the order in which transactions happen. We obtain this ordering by lifting the

happens-before relation on events to a happens-before (_) relation for transac-

tions. We say that transaction T2 directly depends on T1, written T1 ≺ T2, if an

event in T1 happens before an event in T2:

T1 ≺ T2 ≡ T1 6= T2 ∧ ∃e1 ∈ T1, e2 ∈ T2 . e1_e2

The happens-before relation on transactions (_) is the transitive closure of this di-

rect dependence relation ≺. Thus, in Fig. 2.6, the ordering R_B holds. Likewise,

Fig. 2.7 is a system state featuring the transactions from our hospital example

(Fig. 2.4), in which Patsy_Mallory holds.

Def. 1 (Serializability). Transactions are serializable exactly when happens-before

is a strict partial order on transactions.

Any total order consistent with this strict partial order would then respect the

happens-before ordering (_) of events. Such a total ordering would represent a

serial order of transactions.

Def. 2 (Secure Information Flow). A transaction is information-flow secure

if happens-before (_) relationships between transaction events—and therefore

causality—are consistent with permitted information flow:

e1_e2 =⇒ `(e1)v`(e2)

This definition represents traditional information flow control within each trans-

action. Intuitively, each transaction itself cannot cause a security breach (although

this definition says nothing about the protocol scheduling them). In our hospital

example, Patsy’s transaction in Fig. 2.3c is not information-flow secure, since Read
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High Security

Low Security

Patsy start

Read address

Read HIV

Print address

Mallory start

Update address

Patsy acquires lock

Patsy releases lock

Mallory acquires lock

Mallory releases lock

Figure 2.7: A possible system state after running transactions from Fig. 2.4c, as-
suming the patient has HIV, and an exclusive lock is used to order the transactions.
(Events prior to everything in both transactions are not shown.) Because Patsy
acquires the lock first, the transactions are ordered Patsy_Mallory. While each
transaction is information-flow secure (a property of events within a transaction),
when Patsy releases the lock after her transaction, a high security event happens
before a low security one. We discuss secure scheduling protocols in § 2.6.

HIV happens before Read address, and yet the label of Read HIV, H, does not flow

to the label of Read address, L. However, in the modified, secure version (Fig. 2.4c),

there are no such insecure happens-before relationships, so Patsy’s transaction is

secure.

2.3.5 Network and Timing

Although this model abstracts over networks and messaging, we consider a message

to comprise both a send event and a receive event . We assume asynchronous
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Figure 2.8: Two equivalent full executions for the system state from Fig. 2.6.
Each begins with a start state (the empty set for full executions), followed by a
sequence of events, each of which corresponds to the resulting system state.

messaging: no guarantees can be made about network delay. Perhaps because this

popular assumption is so daunting, many security researchers ignore timing-based

attacks. There are methods for mitigating leakage via timing channels [78, 10, 15]

but in this work we too ignore timing.

To model nondeterministic message delay, we introduce a network delay event

for each message receipt event, with the same label and location. The network

delay event may occur at any time after the message send event. It must happen

before (_) the corresponding receipt event. In Fig. 2.6, event r1 could represent

sending a message, event p could be the corresponding network delay event, which

is not part of any transaction, and event b1 could be the message receipt event.

Fig. 2.6 does not require p to be a network delay event. It could be any event that

is not part of either transaction. For example, it might be part of some scheduling

protocol.

2.3.6 Executions, Protocols, and Inputs

An execution is a start state paired with a totally ordered sequence of events that

occur after the start state. This sequence must be consistent with happens-before
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(_). Recall that a system state is a set of events (§ 2.3.1). Each event in the

sequence therefore corresponds to a system state containing all the events in the

start state, and all events up to and including this event in the sequence. Viewing

an execution as a sequence of system states, an event is scheduled if it is in a state,

and once it is scheduled, it will be scheduled in all later states. Two executions

are equivalent if their start states are equal, and their sequences contain the same

set of events, so they finish with equal system states (same set of events, same

_). A full execution represents the entire lifetime of the system, so its start state

contains no events.

For example, Fig. 2.8 illustrates two equivalent full executions ending in the

system state from Fig. 2.6.

A transaction scheduling protocol determines the order in which each location

schedules the events of transactions. Given a set of possible transactions, a loca-

tion, and a set of events representing a system state at that location, a protocol

decides which event is scheduled next by the location:

protocol : set 〈Transactions〉 × Location× State→ event

Protocols can schedule an event from a started (but unfinished) transaction,

or other events used by the protocol itself. In order to schedule transaction events

in ways that satisfy certain constraints, like serializability, protocols may have

to schedule additional events, which are not part of any transaction. These can

include message send and receipt events. For example, in Fig. 2.7, the locking

events are not part of any transaction, but are scheduled by the protocol in order

to ensure serializability.
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Certain kinds of events are not scheduled by protocols, because they are not

under the control of the system. Events representing external inputs, including the

start events of transactions, can happen at any time: they are fundamentally non-

deterministic. We also treat the receive times of messages as external inputs. Each

message receive event is the deterministic result of its send event and of a non-

deterministic network delay event featuring the same security label as the receive

event. We refer to start and network delay events collectively as nondeterministic

input events (NIEs).

Protocols do not output NIEs. Instead, an NIE may appear at any point in

an execution, and any prior events in the execution can happen before (_) the

NIE. Recall that an execution features a sequence of events, each of which can be

seen as a system state featuring all events up to that point. An execution E is

consistent with a protocol p if every event in the sequence is either an NIE, or the

result of p applied to the previous state at the event’s location. We sometimes say

p results in E to mean “E is consistent with p.”

As an example, assume all events in Fig. 2.6 have the same location L, and no

messages are involved. Start events r0 and b0 are NIEs. Every other event has

been scheduled by a protocol. Fig. 2.8 shows two different executions, which may

be using different protocols, determining which events to schedule in each state.

We can see that in the top execution of Fig. 2.8, the protocol maps:

{R,B, . . .}, L, {r0} 7→ r1

{R,B, . . .}, L, {r0, r1} 7→ r2

{R,B, . . .}, L, {r0, r1, r2,b0} 7→ p

{R,B, . . .}, L, {r0, r1, r2,b0,p} 7→ b1

{R,B, . . .}, L, {r0, r1, r2,b0,p,b1} 7→ b2
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The protocol in the bottom execution of Fig. 2.8 maps:

{R,B, . . .}, L, {r0,b0} 7→ r1

{R,B, . . .}, L, {r0,b0, r1} 7→ p

{R,B, . . .}, L, {r0,b0, r1,p} 7→ b1

{R,B, . . .}, L, {r0,b0, r1,p,b1} 7→ b2

{R,B, . . .}, L, {r0,b0, r1,p,b1,b2} 7→ r2

Ultimately, a protocol must determine the ordering of transactions. If the exact

set of start events to be scheduled (as opposed to start events possible) were always

known in advance, scheduling would be trivial. A protocol should not require one

transaction to run before another a priori : start events from any subset of

possible transactions may be scheduled at any time. No protocol should

result in a system state in which such a start event cannot be scheduled, or an

incomplete transaction can never finish.

2.3.7 Semantic Security Properties

Consider an observer who can only “see” events at some security level ` or below.

If two states S1 and S2 are indistinguishable to the observer, then after a program

runs, noninterference requires that the resulting executions remain indistinguish-

able to the observer. Secret values, which the observer cannot see, may differ in

S1 and S2, and may result in different states at the end of the executions, but the

observer should not be able to see these differences.
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Possibilistic Noninterference

David Sutherland’s hyperproperty Generalized Noninterference2 [142] generalizes

Goguen and Meseguer’s noninterference [61]. His model features “possible execu-

tion sequences”, much like our executions , each of which is a sequence of system

states. For a given observer, some information is low observable, meaning the

observer may learn it. Other information is high, meaning it’s too secret for the

observer to know. His model also features some events, called “signals,” represent-

ing inputs , which can be either low or high. Possibilistic Noninterference, then,

requires that for any given execution E1, it must be possible to change the high

inputs of E1 to those of any other valid execution E2, and create a valid, possible

execution E3 without changing any low events:

∀E1, E2.∃E3.
High inputs(E3) =High inputs(E2)∧

Low events(E3) = Low events(E1)

In a sense, an observer can’t make any observations that change the possible set

of high inputs, but might be able to infer which are probable. This is recognized

as a fairly weak form of noninterference in nondeterministic systems. [35]

In our hospital example, as illustrated in Fig. 2.4, the system determines which

of Patsy’s transactions will run based upon whether p.hasHiv is true. We can

treat this condition to be a high-security event that happens before all reads of

p.hasHiv. If we classify this past high-security event as input, and all low-security

events as low-observable for Mallory, then we must ensure that when Patsy’s code

runs, the set of possible low-security events that result is the same regardless of

whether p.hasHiv. Patsy’s possible transactions in Fig. 2.4 ensure possibilistic

2McCullough coins the term “Generalized Noninterference” [98], and Clarkson and Schneider
define hyperproperties [35].
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noninterference, while her transactions in Fig. 2.3 do not, since whether or not

Read address occurs depends on p.hasHiv.

Relaxed Observational Determinism

Semantic conditions for information security are typically based on some variant

of noninterference [61, 118]. These variants are often distinguished by their ap-

proaches to nondeterminism. However, many of these semantic security conditions

fail under refinement : if some nondeterministic choices are fixed, security is vio-

lated [153]. However, low-security observational determinism [116, 153] is a strong

property that is secure under refinement: intuitively, if an observer with label `

cannot distinguish states S and S ′, that observer must not be able to distinguish

any execution E beginning with S from any execution E ′ beginning with S ′:

(S ≈` S ′)⇒ E ≈` E ′

This property is too strong because it rules out two sources of nondeterminism that

we want to allow: first, the ability of any transaction to start at any time, and

second, network delays. Therefore, we relax observational determinism to permit

certain nondeterminism. We only require that executions be indistinguishable to

the observer if their NIEs are indistinguishable to the observer:

(S ≈` S ′ ∧ NIE(E) ≈` NIE(E ′))⇒ E ≈` E ′

We call this relaxed property relaxed observational determinism. It might ap-

pear to be equivalent to observational determinism, but with the NIEs encoded in

the start states. This is not the case. If NIEs were encoded in the start states,

protocols would be able to read which transactions will start and when messages

will arrive in the future. Therefore relaxed observational determinism captures
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something that observational determinism does not: unknowable but “allowed”

nondeterminism at any point in an execution.

By deliberately classifying start events and network delays as input, we al-

low certain kinds of information leaks that observational determinism would not.

Specifically, a malicious network could leak information by manipulating the or-

der or timing of message delivery. However, such a network could by definition

communicate information to its co-conspirators anyway. Information can also be

leaked through the order or timing of start events. This problem is beyond the

scope of this work.

Conditioning the premise of the security condition on the indistinguishability of

information that is allowed to be released is an idea that has been used earlier [119],

but not in this way, to our knowledge.

In our hospital example, as illustrated in Fig. 2.4, the system determines which

of Patsy’s transactions (the one with the dashed events, or the one without the

dashed events) will run based on whether p.hasHiv is true. We can consider

p.hasHiv’s value to be a high-security event that happens before all reads of

p.hasHiv. If we classify this past high-security event as input, and all low-security

events as low-observable for Mallory, then we must ensure that when Patsy’s code

runs, the low-security projections of resulting executions are always the same, re-

gardless of whether p.hasHiv. Patsy’s possible transactions in Fig. 2.4 allow for

observational determinism, while her transactions in Fig. 2.3 do not, since whether

or not Read address occurs depends on p.hasHiv. Whether or not the system

actually maintains observational determinism, however, depends on the protocol

scheduling the events.
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Def. 3 (Protocol Security). A protocol is considered secure if the set of resulting

executions satisfies relaxed observational determinism for any allowed sets of in-

formation-flow secure transactions and any possible NIEs.

2.4 Impossibility

One of our contributions is to show that even in the absence of timing channels,

there is a fundamental conflict between secure noninterference and serializability.

Previous results showing such a conflict, for example the work of Smith et al. [135]

consider only confidentiality and show only that timing channels are unavoidable.

Theorem 1 (Impossibility). No secure protocol3 can serialize all possible sets of

information-flow secure transactions.4

We assume protocols cannot simply introduce an arbitrarily trusted third party;

a protocol must be able to run using only the set of locations that have events being

scheduled.

Proof. (by counterexample) Consider the counterexample shown in Fig. 2.9. Alice

and Bob are both cloud computing providers who keep strict logs of the order in

which various jobs start and stop. Highly trusted (possibly government) auditors

may review these logs, and check for consistency, to ensure cloud providers are

honest and fair. As competitors, Alice and Bob do not want each other to gain

3barring unforeseen cryptographic capabilities (§ 2.4.1)
4In fact, what we prove is stronger. Our proof holds for even possibilistic security condi-

tions [98], which are weaker than relaxed observational determinism (see technical report [129]).
No protocol whose resulting traces satisfy even this weaker condition can serialize all sets of
information-flow secure transactions.
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Figure 2.9: Transactions that cannot be securely serialized. Dave’s transaction
includes r0, r1, r2, and r3. Carol’s includes b0, b1, b2, and b3. Cloud providers
Alice and Bob must decide how to order their events. Alice and Bob may not influ-
ence each other, and Carol and Dave may not influence each other, as represented
by the wall. For these transactions to be serializable, Alice’s ordering of r2 and b2

must agree with Bob’s ordering of r3 and b3.

any information about their services, and do not trust each other to affect their

own services.

Carol and Dave are presently running jobs on Alice’s cloud. Both Carol and

Dave would like to stop their jobs on Alice’s cloud, and start new ones on Bob’s

cloud. Each wants to do this atomically, effectively maintaining exactly one run-

ning job at all times. Carol and Dave consider their jobs to be somewhat confi-

dential; they do not want each other to know about them. Unlike the example

from Fig. 2.1, Dave and Carol’s transactions do not go through a third party like

Rainforest. For the transactions to be serializable, Alice’s ordering of the old jobs

stopping must agree with Bob’s ordering of the new jobs starting.

These transactions feature at least 8 events:
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r0: Dave sends a message to Alice

r1: Dave sends a message to Bob

r2: Alice receives a message from Dave, ending a job.

r3: Bob receives a message from Dave, beginning a job.

b0: Carol sends a message to Alice

b1: Carol sends a message to Bob

b2: Alice receives a message from Carol, ending a job.

b3: Bob receives a message from Carol, beginning a job.

No events at Alice’s location should influence events at Bob’s location, and vice-

versa. No events at Carol’s location should influence events at Dave’s location, and

vice-versa.

Alice and Bob must each finish with ordered logs including job beginnings and

endings. This means they must assign a happens-before (_) relation to their

events above. For these transactions to be serializable, Alice’s ordering of r2 and

b2 must agree with Bob’s ordering of r3 and b3.

Lemma 1. These transactions are information-flow secure.

The two transactions in Fig. 2.9 are information-flow secure (Def. 2).

Proof. The only happens-before relationships within transactions are for the send-

ing and receipt of messages, explicitly carrying information readable to the recipi-

ent. All four are consistent with permitted information flows.

Lemma 2. No protocol can securely serialize these transactions. Specifically, no

protocol accepting these transactions can preserve possibilistic noninterference.
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Figure 2.10: An intermediate state of an execution featuring the transactions
from Fig. 2.9.

Proof. In any system with an asynchronous network, it is possible to reach a state

in which Carol’s message to Alice has arrived, but not her message to Bob, and

Dave’s message to Bob has arrived, but not his message to Alice. In other words,

events r2 and b3 have not yet occurred. Fig. 2.10 illustrates this situation. In this

state, neither Alice nor Bob can know whether one or both transactions have begun.

It is impossible for either to communicate this information to the other without

violating possibilistic noninterference. Specifically, any protocol that relayed such

information from one cloud provider to the other would allow the recipient to

distinguish the order of message delivery to the other cloud provider. That ordering

is considered secret input, and so this would be a security violation. All executions

with identical start states, and identical inputs visible to Alice, but differently

ordered network delay events at Bob, which are inputs invisible to Alice, would

become distinguishable to Alice. Even possibilistic noninterference would therefore

be violated (§ 2.3.7).
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Additionally, we have assumed that a protocol must be able to schedule any

subset of the allowed transactions’ start events. Therefore valid executions exist

in which, say, only Carol’s transaction runs, so Alice receives only information

about Carol’s transaction, and commits Carol’s transaction first. Therefore a

valid execution must exist in which Alice commits Carol’s transaction first, before

receiving any further input from Dave or Bob, and likewise, Bob commits Dave’s

transaction first, without further input from Carol or Alice. Thus any protocol

satisfying possibilistic noninterference can schedule inconsistently: the transactions

cannot be securely serialized.

Thus, with this scenario as a counterexample, no secure protocol can serialize

all possible sets of information-flow secure transactions.

2.4.1 Cryptography

This essentially information-theoretic argument does not account for the possibility

that some protocol could produce computationally indistinguishable traces that are

low-distinguishable with sufficient computational power (e.g., to break encryption).

However, we are unaware of any cryptographic protocols that would permit Alice

and Bob to learn a consistent order in which to schedule events without learning

each other’s confidential information.
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2.5 Analysis

Although secure scheduling is impossible in general, many sets of transactions can

be scheduled securely. We therefore investigate which conditions are sufficient for

secure scheduling, and what protocols can function securely under these conditions.

2.5.1 Monotonicity

A relatively simple condition suffices to guarantee schedulability, while preserving

relaxed observational determinism:

Def. 4 (Monotonicity). A transaction is monotonic if it is information-flow secure

and its events are totally ordered by happens-before (_).

Theorem 2 (Monotonicity ⇒ Schedulability).

A protocol exists that can serialize any set of monotonic transactions and preserve

relaxed observational determinism.

Proof. Monotonicity requires that each event must be allowed to influence all future

events in the transaction. A simple, pessimistic transaction protocol can schedule

such transactions securely. In order to define this protocol, we need a notion of

locks within our model.

Locks. In distributed systems, a lock is an abstract token, that only one entity

at a time can posses. Locks are used, for instance, to ensure two different programs

don’t try to use the same resource, even physical machinery, at the same time [132].

In our system model, a lock consists of an infinite set of events for each allowed

transaction. A transaction acquires a lock by scheduling any event from this set.
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It releases a lock by scheduling another event from this set. Thus, in a system

state S, a transaction T holds a lock if S contains an odd number of events from

the lock’s set corresponding to T . No correct protocol should result in a state

in which multiple transactions hold the same lock. All pairs of events in a lock

conflict, so scheduled events that are part of the same lock must be totally ordered

by happens-before (_). All events in a lock share a location, which is considered

to be the location of the lock itself. Likewise, all events in a lock share a label,

which is considered to be the label of the lock itself.

A critical property for transaction scheduling is deadlock freedom [52, 132],

which requires that a protocol can eventually schedule all events from any trans-

action whose start event has been scheduled. A system enters deadlock when it

reaches a state after which this is not the case. For example, deadlock happens if a

protocol requires two transactions each to wait until the other completes: both will

wait forever. If all transactions are finite sets of events (i.e., all transactions can ter-

minate), then deadlock freedom guarantees that a system with a finite set of start

events eventually terminates, a liveness property. Deadlock freedom is essential to

distributed or parallel scheduling, but notoriously difficult to get right [132].

We now describe a deadlock-free protocol that can securely serialize any set of

monotonic transactions, and preserve relaxed observational determinism:

• Each event in each transaction has a corresponding lock, except start events.

• Any events that have the same label share a lock, and this lock shares a

location with at least one of the events. Conflicting events are assumed to

share a label (§ 2.3.4).

• A transaction must hold an event’s lock to schedule that event.
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• A transaction acquires locks in sequence, scheduling events as it goes. Since

all events are ordered according to a global security lattice, all transactions

that acquire the same locks do so in the same order. Therefore they do not

deadlock.

• If a lock is already held, the transaction waits for it to be released.

• When all events are scheduled, the transaction commits, releasing locks in

reverse order. Any messages sent as part of the transaction would thus

receive a reply, indicating only that the message had been received, and all

its repercussions committed. We call these replies commit messages.

• For each location, the protocol rotates between all uncommitted transactions,

scheduling any intermediate events (such as lock acquisitions) until it either

can schedule one event in the transaction or can make no progress, and then

rotates to the next transaction.

Security Intuition. Acquiring locks shared by multiple events on different lo-

cations requires a commit protocol between those locations. However, this does

not leak information because all locations involved are explicitly allowed to ob-

serve and influence all events involved. Therefore several known commit protocols

will do, including 2PC. Since the only messages sent as part of the protocol are

commit messages, and each recipient knows it will receive a commit message by

virtue of sending a message in the protocol, no information (other than timing) is

transferred by the scheduling mechanism itself.

Relaxed observational determinism. This protocol, implemented with

monotonic transactions, satisfies relaxed observational determinism, our slightly

relaxed version of observational determinism (§ 2.3.7). We consider an event ob-

servable to an observer with label ` if the label of the event flows to `. For any
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two executions beginning with equivalent states (for some observer `),

E0[0] ≈` E1[0]

If the executions E0 and E1 have the same `-observable inputs, which is to say

transaction start events and network delay events, then the protocol requires E0

and E1 to be indistinguishable to `. The observer of label ` can only observe a prefix

of each transaction being scheduled in a round-robin fashion, and commit messages

for each arriving sometime thereafter. Arrival time of these commit messages is

considered an input, and so all events visible in E0 and E1 are deterministic results

of the events visible in the start states, and the NIEs. Each distinct state in an

execution, as observed at `, will be deterministically predicted by prior states and

inputs. Thus relaxed observational determinism is preserved.

Serializability. Transactions consist of totally ordered series of events. Let e1

be the first event in T1 conflicting with any event in T2. Let e2 be the event in T2

with which e1 conflicts. Suppose they are scheduled such that e1_e2. Therefore

all events in T2 after and including e2 cannot be scheduled until T1 commits and

releases its locks. No event in T2 scheduled before e2 can conflict with an event in T1

after e1, by monotonicity, or before e1, by the definition of e1. Thus all conflicting

events in T2 are scheduled after all events in T1, so no event in T1 can happen after

an event in T2. Therefore, this pessimistic protocol ensures serializability.

Liveness. This scheduling system cannot result in deadlock, since all transac-

tions acquire locks in strictly increasing order on the lattice, so any set of transac-

tions that acquire the same locks must do so in the same order.

Therefore, monotonicity is sufficient to guarantee secure schedulability.
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2.5.2 Relaxed Monotonicity

Monotonicity, while relatively easy to understand, is not the weakest condition

we know to be sufficient for secure schedulability. It can be substantially relaxed.

In order to explain our weaker condition, relaxed monotonicity , we first need to

introduce a concept we call visibility :

Def. 5 (Visible-To). An event e in transaction T is visible to a location L if and

only if it happens at L, or if there exists another event e′ ∈ T at L, such that e_e′.

Def. 6 (Relaxed Monotonicity). A transaction T satisfies relaxed monotonicity

if it is information-flow secure and for each location L, all events in T visible to

L happen before all events in T not visible to L.

In § 2.6, we demonstrate that relaxed monotonicity guarantees schedulability.

Specifically, we present a staged commit protocol, and prove that it schedules

any set of transactions satisfying relaxed monotonicity, while preserving relaxed

observational determinism (Thm. 4).

2.5.3 Requirements for Secure Atomicity

Monotonicity and relaxed monotonicity are sufficient conditions for a set of transac-

tions to be securely schedulable. Some sets of transactions meet neither condition,

but can be securely serialized by some protocol. For example, any set of transac-

tions that each happen entirely at one location can be securely serialized if each

location schedules each transaction completely before beginning the next. We now

describe a relatively simple condition that is necessary for any set of transactions

to be securely scheduled.
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Decision Events and Conflicting Events

In order to understand this necessary condition, we first describe decision events

and conflicting events .

Borrowing some terminology from Fischer, Lynch, and Paterson [54], for a pair

of transactions T1 and T2, any system state is either bivalent or univalent . A system

state is bivalent with respect to T1 and T2 if there exist two valid executions that

both include that state, but end with opposite orderings of T1 and T2. A system

state is univalent with respect to T1 and T2 otherwise: for one ordering of the

transactions, no valid execution ending with that ordering contains the state.

We can define a similar relationship for start events: for any pair of distinct start

events s1 and s2, a system state is bivalent with respect to those events if it features

in two valid executions, both of which have s1 and s2 in scheduled transactions, but

those transactions are in opposite order. A system state is univalent with respect

to s1 and s2 otherwise.

All full executions (i.e., those starting with an empty state) that order a pair

of transactions begin in a bivalent state with respect to their start events, before

either is scheduled. By our definition of serializability and transaction ordering,

once transactions are ordered, they cannot be un-ordered. Any execution that

orders the transactions therefore ends in a univalent state with respect to their

start events. Any such execution consists of a sequence of 0 or more bivalent

states followed by a sequence of univalent states. The event that is scheduled in

the first univalent state, in a sense, decides the ordering of the transactions. We

call it the decision event .
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We call any event in T1 or T2 that conflicts with an event in the other transaction

a conflicting event .

Lemma 3 (Decision Event _ Conflicting Events).

For any univalent state S with T1_T2, there exists a full execution E ending in S

featuring a decision event ed that happens before (_) all conflicting events in T1

and T2 (other than ed itself, if ed is a conflicting event).

Proof. Assume the contradiction. Then for any full execution E ′ ending in S,

an equivalent execution exists featuring a state in which a conflicting event ec is

scheduled, but the decision event of E ′ is not. Such an equivalent execution would

by definition have a different decision event, since ec’s presence in a state makes the

state univalent. By our assumption, this equivalent execution has conflicting events

that neither are, nor happen after, its decision event. This implies yet another

equivalent execution with yet another state featuring an even earlier conflicting

event but not the decision event, and so on. Since all states are finite sets, and

_is a strict partial order, this infinite descending chain is impossible. There must

exist an execution E ending with S with decision event ed that happens before all

conflicting events in T1 and T2.

We show that two fundamental system state properties are necessary for secure

scheduling:

Def. 7 (First-Precedes-Decision). State S satisfies First-Precedes-Decision if, for

any pair of transactions T1 and T2 in S with T1_T2, there is a full execution E

ending in S with a decision event ed that either is in T1, or happens after an event

in T1.
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Def. 8 (Decision-Precedes-Second). A state S satisfies Decision-Precedes-Second

if, for any pair of transactions T1 and T2 in S with T1_T2, there is a full execution

E ′ ending in S with a decision event e′d, such that no event in T2 happens before

e′d.

Therefore, for a protocol to be secure, it must ensure resulting system states

have these properties.

Theorem 3 (Necessary Condition). Any secure, deadlock-free protocol p must

ensure that all full executions consistent with p feature only states satisfying both

First-Precedes-Decision and Decision-Precedes-Second.

Proof. Given T1_T2, any execution E ′ ending in S features a decision event ed.

Decision events for the same pair of transactions in equivalent executions must

agree on ordering, by the definition of equivalent execution. If T1 does not contain

E’s decision event, ed, or any event that happens before ed, then there exists an

equivalent execution in which ed is scheduled before any events in T1 or T2. This

execution would imply the existence of a system state in which no event in either

transaction is scheduled, but it is impossible to schedule T2 before T1, regardless

of inputs after that state. If, after this state, the start event for T2 were scheduled,

but not the start event for T1, then T2 cannot be scheduled. This contradicts a

the deadlock-freedom requirement: no protocol should result in a system state in

which a supported transaction can never be scheduled.

Therefore some event in T1 either is or happens before ed for some full execution

E ending in S.

51



If T1 and T2 conflict, then e′d either is an event in T1 or happens before an event

in T1, by Lemma 3. If an event e2 ∈ T2 happens before e′d, then either e′d ∈ T1, and

e2_e′d ⇒ T2_T1

which is impossible, by the definition of happens-before, or

∃e1 ∈ T1.e′d_e1, and

e2_e′d_e1 ⇒ e2_e1 ⇒ T2_T1

which is also impossible, by the definition of happens-before.

If T1 and T2 do not conflict, then the only way T1_T2 implies that there exists

some chain

T1_T3_T4_ . . ._Tn_T2 such that and each transaction in the chain conflicts

with the next. Therefore, by the above proof, an equivalent execution exists in

which each transaction in the chain contains the decision event for ordering itself

and the following transaction, and no events in the following transaction are before

that decision event.

Therefore there exists some equivalent execution E ′ in which no event in T2

happens before the decision event e′d deciding the ordering between T1 and T2.

Although Thm. 3 may seem trivial, it represents some important conclusions:

No protocol can make any final ordering decision until at least one transaction

involved has begun. Furthermore, it is impossible for the later transaction to

determine the decision. Truly atomic transactions cannot include any kind of

two-way interaction or negotiation for scheduling.
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2.6 The Staged Commit Protocol

We now present the staged commit protocol (SC) and prove that it is secure, given

transactions satisfying relaxed monotonicity.

SC is a hybrid of traditional serialization protocols, such as 2PC, and the

simple pessimistic protocol described in the proof of Thm. 2. Compared to our

simple pessimistic protocol, it allows a broader variety of transactions to be sched-

uled (relaxed monotonicity vs. regular monotonicity), which in turn allows more

concurrency. A transaction is divided into stages , each of which can be securely

committed using a more traditional protocol. The stages themselves are executed

in a pessimistic sequence.

Each event scheduled is considered to be either precommitted or committed .

We express this in our model by the presence or absence of an “isCommitted”

event corresponding to every event in a transaction. Intuitively, a precommitted

event is part of some ongoing transaction, so no conflicting events that happen

after a precommitted event should be scheduled. A committed event, on the other

hand, is part of a completed transaction; conflicting events that happen after a

committed event can safely be scheduled. Once an event is precommitted, it can

never be un-scheduled. It can only change to being committed. Once an event is

committed, it can never change back to being precommitted.

• The events of each transaction are divided into stages. Each stage will be

scheduled using traditional 2PC, so aborts within a stage will be sent to all

locations involved in that stage.

To divide the events into stages, we establish equivalence classes of the events’

labels. Labels within each class are equivalent in the following sense: when
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events with equivalent labels are aborted, those aborts can securely flow to

the same set of locations. An event’s abort can always flow to the event’s own

location, so locations involved in a stage can securely ensure the atomicity

of the events in that stage. Since conflicting events have the same security

labels, they will be in the same equivalence class. We call these equivalence

classes conflict labels (cl).

• Each stage features events of the same conflict label, and is scheduled with

2PC. One location must coordinate the 2PC. All potential aborts in the stage

must flow to the coordinator, and some events on the coordinator must be

permitted to affect all events in the stage. Relaxed monotonicity implies that

at least one such location exists for each conflict label.

When a stage tries to schedule an event, but finds a precommitted conflicting

event, it aborts the entire stage. Because conflicting events have the same

label, these aborts cannot affect events on unpermitted locations.

When a stage’s 2PC completes, the events in the stage are scheduled, and

considered precommitted .

• Each transaction precommits its stages as they occur. To avoid deadlock,

we must ensure that whenever two transactions feature stages with equal

conflict labels, they precommit those stages in the same order. Therefore,

the staged commit protocol assumes an ordering of conflict labels. This can

be any arbitrary ordering, so long as (1) it totally orders the conflict labels

appearing in each transaction, and (2) all transactions agree on the ordering.

• When all stages are precommitted, all events in the transaction can be com-

mitted. Commit messages to this effect are sent between locations, back-

wards through the stages. Whenever an event in one stage triggers an event
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in the next, the locations involved can be sure a commit message will take

the reverse path. The only information conveyed is timing.

Because events in a precommitted stage cannot be un-scheduled or “rolled

back”, a participant that is involved only in an earlier stage is prevented from

gleaning any information about later stages. The participant will only learn, even-

tually, that it can commit.

Patsy’s transaction in Fig. 2.4c has at least two stages when the patient has

HIV:

1. Patsy begins the transaction (Patsy start), and reads the address (Read

Address). This stage will be atomically precommitted, and this precom-

mit process will determine the relative ordering of Patsy’s transaction and

Mallory’s, independent of more secret events.

2. Patsy finds that the patient has HIV (Read HIV), and prints the patient’s

address (Print address).

Theorem 4 (Security of SC). Any set of transactions satisfying relaxed mono-

tonicity are serialized by SC securely without deadlock.

Proof.

Security. SC preserves relaxed observational determinism. Intuitively, any infor-

mation flows that it adds are already included in the transaction.

SC adds no communication affecting security:

• Communication within each stage is strictly about events that all participants

can both observe.
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• For each pair of consecutive stages, at least one participant from the first

stage can notify a participant in the second stage securely, when it is time

for the second stage to begin. Relaxed monotonicity ensures the second stage

contains an event that happens after an event in the first stage, representing

a line of communication.

• Communication for commits can safely proceed in reverse order of stages.

Within each stage, each participant can securely forward a commit message

to all other participants. Between stages, commit messages can be sent back

along the same channels used to notify each stage the previous one had

precommitted. Each participant knows when it precommits exactly which

commit messages it will receive. The commit messages themselves do not

leak any information (other than timing) to their recipients.

Therefore SC adds no unauthorized information flows.

Specifically, for any given participant’s label `, events within a stage visible to

` are scheduled deterministically based only on information visible to `. Commit

messages (and affiliated events) for visible stages arrive eventually, at a time de-

termined by network delay events, which we consider input. Other stages’ events

are not observable to `.

Therefore, for any two executions beginning with states indistinguishable to `,

with NIEs visible to `, all scheduled events visible to ` would be indistinguishable.

Thus relaxed observational determinism is preserved.

Serializability. Any set of transactions with relaxed monotonicity scheduled

by SC will be serializable.

56



Lemma 4 (Precommitted Snapshot).

Any execution in which an event in a transaction is committed features a system

state in which all events in the transaction are precommitted.

Proof. Stages are totally ordered, and each waits until the final stage commits

before (_) any of its events commit. The final stage precommits before (_) it

commits, and so there is a system state in which all events in the transaction are

precommitted.

Let E be an execution where any two conflicting transactions T1 and T2 both

have at least one event that commits. Given Lemma 4, E must feature two states:

one in which all events in T1 are precommitted, and another in which all events of

T2 are precommitted. As T1 and T2 conflict, these states cannot be the identical.

(An event is never scheduled while a conflicting event is precommitted.)

One transaction must be scheduled before (_) the other. Without loss of gen-

erality, let it be T1. No equivalent execution can feature a state in which an event

in T2 is scheduled before an event in T1, as this would require a conflicting event

in T2 to be precommitted before its corresponding conflicting event in T1 is com-

mitted. The corresponding conflicting event in T1 must be precommitted before

any event in T1 commits, and we require that all events in q2 remain precommitted

until after an event in T1 commits.

Therefore, if T1_T2 then it is impossible for T2_T1. Thus SC guarantees a

strict partial order of transactions, and therefore serializability.

Deadlock Freedom.
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A deadlock can occur only if there is a cycle of dependencies among transac-

tions, in which transaction T1 depends on T2 if and only if T2 has precommitted

an event conflicting with an unscheduled event in T1.

Conflicting events share labels, and stages are defined by labels. All transac-

tions must therefore order the stages of conflicting pairs in the same way. One

event can only ever depend on an event in its own or in a prior stage. Stages are

precommitted in order, so no dependency cycle featuring events in different stages

is possible.

Each stage is precommitted atomically using 2PC. 2PC preserves deadlock

freedom, meaning no cycle featuring only events in the same stage is possible.

Therefore no cycles, and thus no deadlock, can exist with SC.

SC is secure, deadlock-free, and guarantees serializability when the transactions

have relaxed monotonicity.

The Importance of Optimism

SC specifies only a commit protocol. Actual computation (which generates the set

of events) for each transaction can be done in advance, optimistically. If one stage

precommits and the next is blocked by a conflicting transaction, optimistically

precomputed events would have to be rolled back . However, no precommitted

event need be rolled back. In fact, it would be insecure to do so. Thus SC allows

for partially optimistic transactions with partial rollback.

Our model requires only that a transaction be a set of events. In many cases,

however, it is not possible to know which transaction will run when a start event is
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scheduled. For example, a transaction might read a customer’s banking informa-

tion from a database and contact the appropriate bank. It would not be possible

to know which bank should have an event in the transaction beforehand. If a

system attempted to read the banking information prior to the transaction, then

serializability is lost: the customer might change banks in between the read and

the transaction, and so one might contact the wrong bank.

Optimism solves this problem: events are precomputed, and when an entire

stage is completed, that stage’s 2PC begins. This means that optimism is not just

an optimization; it is required for secure scheduling in cases where the transactions’

events are not known in advance.

2.7 Implementation

We extended the Fabric language and compiler to check that transactions can be

securely scheduled, and we extended the Fabric runtime system to use SC. Fabric

and IFDB [122] are the two open-source systems we are aware of that support

distributed transactions on persistent, labeled data with information flow control.

Of these, we chose Fabric for its static reasoning capabilities. IFDB checks labels

entirely dynamically, so it cannot tell if a transaction is schedulable until after it

has begun.

2.7.1 The Fabric Language

The Fabric language is designed for writing distributed programs using atomic

transactions that operate on persistent, Java-like objects [91]. It has types that la-
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bel each object field with information flow policies for confidentiality and integrity.

The compiler uses these labels to check that Fabric programs enforce a noninter-

ference property. However, like all modern systems built using 2PC, Fabric does

not require that transactions be securely scheduled according to the policies in the

program. Consequently, until now, abort channels have existed in Fabric.

We leverage these security labels and extend the compiler to additionally check

that transactions in a Fabric program are monotonic (§2.5). This implementation

prevents confidentiality breaches via abort channels. Preventing integrity breaches

would require further dynamic checks, which we leave to future work.

2.7.2 Checking Monotonicity

Our modification to the Fabric compiler enforces relaxed monotonicity (Def. 6).

Our evaluation (§2.8) shows that enforcing this condition does not exclude realistic

and desirable programs. Our changes to the Fabric compiler and related files

include 4.1k lines of code (out of roughly 59k lines).

Events and Conflict Labels in Fabric

The events in the system model (§ 2.3) are represented in our implementation by

read and writes on fields of persistent Fabric objects. The label of the field being

read or written corresponds to the event labels in our model.

SC (§ 2.6) divides events into stages based on conflict labels (cl). In our

implementation, we define the cl of an event e to correspond to the set of principals

authorized to read or write the field that is being accessed by e. If e is a write event,
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1 atomic { PC Possible conflictors
2 String{`} p = post.read(); ⊥ {Alice,Bob, Carol}
3 Comments{`′} c; ⊥ -
4 if (p.contains("fizz")) { ⊥ -
5 c.write("buzz"); ` {Alice, Carol}
6 if (p.contains("buzz")) { ⊥ -
7 c.write("fizz"); ` {Alice, Carol}
8 }
9 }

Figure 2.11: Carol’s program in our Blog example: Carol reads a post with label
`, and depending on what she reads, writes a comment with label `′. Label `
permits Alice, Bob, and Carol to read the post, while `′ keeps the Comments more
private and allows only Alice and Carol to view or edit.

this set contains exactly those principals that can perform a conflicting operation

(and thereby receive an abort); if e is a read event, the set is a conservative over-

approximation, since only the writers can conflict.

Fig. 2.11 presents a program in which Carol schedules two events within a single

transaction. First, she reads a blog post with security label `. Second, she writes

a comment (whose content depends on that of the post) with label `′. Since `

permits Alice, Bob, or Carol to read the post, the cl of the first event includes all

three principals. However, only Alice and Carol can read or write the comment,

so when Carol goes to write it, only Alice or another transaction acting on behalf

of Carol could cause conflicts. The cl of the write therefore includes only Alice

and Carol.

Program Counter Label

The program counter label (pc) [47] labels the program context. For any given

point in the code, the pc represents the join (least upper bound) of the labels of

events that determine whether or not execution reaches that point in the code.
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These events include those occurring in if-statement and loop conditionals. For

instance, in Fig. 2.11, whether line 5 runs depends on the value of p, which has

label `. Therefore, the fact that line 5 is executing is as secret as p, and the pc at

line 5 is `.

SC requires that when events with the same cl are aborted, those aborts can

securely flow to the same set of locations. When an event causes an abort, the

resulting abort messages carry information about the context in which the event

occurs. Therefore, we enforce the requirement by introducing a constraint on the

program context in which events may occur: the pc must flow to the principals in

the conflict label.

pc v cl (2.1)

Eliding the details of how Fabric’s labels are structured, in Fig. 2.11, ⊥ flows

to everything, and `, the label of the blog post, does flow to the conflict label,

indicating that both Alice and Carol can cause a conflict. Therefore, Eqn. (2.1)

holds on lines 2, 5, and 7.

Ordering Stages

Each stage consists of operations with the same cl. To ensure all transactions

precommit conflicting stages in the same order, we adopt a universal stage ordering:

principals(cli) ) principals(cli+1) (2.2)

The set of principals in each stage must be a strict superset of the principals in the

next one. This ensures that unrestricted information can be read in one stage and

sensitive information can be modified in a later stage in the same transaction. In

the hospital example (Fig. 2.4), Read HIV has a conflict label that only includes

62



trusted personnel, while Read address has a conflict label that includes more hos-

pital staff. As a result, our implementation requires that Read address be staged

before Read HIV in Patsy’s transaction.

In Fig. 2.11, our stage ordering means that the read on line 2, with a cl of

{Alice, Bob, Carol} belongs in an earlier stage than the write, which features a cl

of only {Alice, Carol}.

Method Annotations

To ensure modular program analysis and compilation, each method is analyzed

independently. Fabric is an object-oriented language with dynamic dispatch, so it

is not always possible to know in advance which method implementation a program

will execute. Therefore, the exact conflict labels for events within a method call

are not known at compile time. In order to ensure each atomic program can divide

into monotonic stages, we annotate each method with bounds on the conflict labels

of operations within the method. These annotations are the security analogue of

argument and return types for methods.

2.7.3 Implementing SC

We extended the Fabric runtime system to use SC instead of traditional 2PC,

modifying 2.4k lines of code out of a total of 24k lines of code in the original

implementation. Specifically, we changed Fabric’s 2PC-based transaction protocol

so that it leaves each stage prepared until all stages are ready, and then commits.
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Since Fabric labels can be dynamic, the compiler statically determines potential

stagepoints—points in the program that may begin a new stage—along with the

conflict labels of the stages immediately surrounding the potential stagepoint. If

the compiler cannot statically determine whether the conflict labels before and

after a stagepoint will be different, it inserts a dynamic equivalence check for the

two labels. At run time, if the two labels are not equivalent, then a stage is ending,

and the system precommits all operations made thus far. To precommit a stage, we

run the first (“prepare”) phase of 2PC. If there is an abort, the stage is re-executed

until it eventually precommits.

In Fig. 2.11, there is a potential stagepoint before lines 4 and 6, where the next

operation in each case will not include Bob as a possible conflictor. The conflict

labels surrounding the potential stagepoint are {Alice, Bob, Carol} (from reading

the post on line 2) and {Alice, Carol} (from writing the comment on either line

4 or 6). If another transaction caused the first stage to abort, then Carol’s code

would rerun up to line 4 or 6 until it could precommit, and then the remainder of

the transaction would run.

2.8 Evaluation

To evaluate our implementation, we built three example Fabric applications, and

tested them using our modified Fabric compiler:

• an implementation of the hospital example from section 2.2;

• a primitive blog application (from which Figure 2.11 was taken), in which

participants write and comment on posts with privacy policies; and
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• an implementation of the Rainforest example from section 2.2.

2.8.1 Hospital

We implemented the programs described in our hospital example (Figure 2.3).

In the implementation, Patsy’s code additionally appends the addresses of HIV-

positive patients to a secure log. In a third program, another trusted participant

reads the secure log.

With our changes, the compiler correctly rejects Patsy’s code. We amended

her code to reflect Figure 2.4. Of the 350 lines of code, we had to change a total

of 113 to satisfy relaxed monotonicity and compile. Of these 113 lines, 23 were

additional method annotations and the remaining 90 were the result of refactoring

the transaction that retrieves the addresses of HIV-positive patients. SC scheduled

the transactions without leaking information. The patient’s HIV status made

Mallory neither more nor less likely to receive aborts.

2.8.2 Blog

In our primitive blog application, a store holds API objects, each of which features

blog posts (represented as strings) with some security label, and comments with

another security label. These labels control who can view, edit, or add to the posts

and comments.

In one of our programs, the blog owner atomically reads a post and updates

its text to alternate between “fizz” and “buzz”. In another program, another user

comments on the first post (Figure 2.11). To keep this comment pertinent to the
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Table 2.1: Example policies for the Rainforest application.

Data item Readers Writers
Gloria’s account balance Bank, Gloria Bank
Item price (public) Outel
Inventory Outel Outel

content of the post, reading the post and adding the comment are done atomically.

Since posts and comments have different labels, this transaction has at least two

stages: one to read the post, and another to write the comment.

We were able to compile and run these programs with our modified system

with relatively few changes. Of the 352 lines of code, we had to change a total of

50, primarily by adding annotations to method signatures (section 2.7.2).

2.8.3 Rainforest

We implemented the Rainforest example from subsection 2.2.1. In our code, two

nodes within Rainforest act with Rainforest’s authority. They perform transactions

representing the orders of Gloria and Fred from Figure 2.1. Each transaction

updates inventory data stored at one location, and banking data stored at another.

Table 2.1 gives examples of the policies for price, inventory, and banking data.

While attempting to modify this code to work with SC, we discovered that the

staging order chosen in section 2.7.2 makes it impossible to provide the atomicity of

the original application while both meeting its security requirements and ensuring

deadlock freedom.

To illustrate, suppose Gloria is purchasing an item from Outel. To ensure she

is charged the correct price, the event that updates the inventory must share a
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transaction with the one that debits Gloria’s bank account. The conflict label

for the inventory event corresponds to {Outel}, whereas the conflict label for the

debit event corresponds to {Bank, Gloria}. Since neither is a subset of the other,

the compiler cannot put them in the same transaction.

These difficulties in porting the Rainforest application arise because Fabric is

designed to be an open system, and so an a priori choice of staging order must

be chosen. If the application were written as part of a closed system, deadlock

freedom can be achieved by picking a staging order that works for this particular

application (e.g., {Outel} before {Bank, Gloria}), but it might be difficult to

extend the system with future applications.

2.8.4 Overhead

The staged commit protocol adds two main sources of overhead compared to tradi-

tional 2PC. First, each stage involves a round trip to prepare the data manipulated

during the stage, leading to overhead that scales with the number of stages and

with network latency. Second, as described in subsection 2.7.3, dynamic labels

result in potential stagepoints, which must be resolved using run-time checks. The

number of checks performed depends on how well the compiler’s static analysis

predicts potential stagepoints.

We measured this overhead in our implementation on an Intel Core i7-2600

machine with 16 GiB of memory, using the transactions in our examples. The

post and comment transactions in the blog example were each run continually for

15 minutes, and Patsy’s transaction in the hospital example was run continually

for 1 hour.
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Table 2.2: Performance overhead of SC. Reported times are per-transaction aver-
ages, across three 5-minute runs of the blog application and three 20-minute runs
of the hospital application. Relative standard error of all measurements is less
than 2%.

Example Program
SC 2PC

# stages Dyn. checks Total time Total time
Hospital patsy 3 0.45 ms 9.17 ms 6.38 ms

Blog
post 2 0.11 ms 1.03 ms 1.01 ms
comment 3 0.29 ms 1.30 ms 1.01 ms

Table 2.2 gives the overall execution times for both the original system and

the modified system. For the modified system, it also shows the number of stages

for each transaction and the average time spent in dynamic checks for resolving

potential stagepoints. The comment transaction in our experiments has one more

stage than as described in Figure 2.11, because in all transactions, there is an

initial stage performed to obtain the principals involved in the application.

By running the nodes on a single machine and using in-memory data storage,

we maximize the fraction of the transaction run time occupied by dynamic checks.

Nevertheless, this fraction remains small. While the effective low latency of com-

munication between nodes reduces the overhead due to communication round-trips

for staging precommits, we report the number of stages, from which this overhead

can be calculated for arbitrary latency.

2.9 Related work

Various goals for atomic transactions, such as serializability [107] and ACID [65],

have long been proposed and widely studied, and are still an active research
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topic [114, 76, 135, 91, 13, 31]. While much of the recent interest has been fo-

cused on performance [50, 88, 148, 4, 156, 151], we focus on security.

Information leaks in commonly used transaction scheduling protocols have been

known for at least two decades [135, 12]. Kang and Keefe [76] explore transaction

processing in databases with multiple security levels. Their work focuses on a

simpler setting with a global, trusted transaction manager. They assume each

transaction has a single security level, and can only “read down” and “write up.”

Smith et al. [135] show that strong atomicity, isolation, and consistency guaran-

tees are not possible for all transactions in a generalized multilevel secure database.

They propose weaker guarantees and give three different protocols that meet var-

ious weaker guarantees. Their Low-Ready-Wait 2PL protocol is similar to SC,

and provides only what the authors call ACIS−–correctness. Specifically, “aborted

operations at a higher level may prevent all lower level operations from begin-

ning” [135, p37]. Although our implementation is conservative and would not

allow such a thing, the theory behind SC could allow a later stage with less trust-

worthy participants to hold up earlier, precommitted stages indefinitely.

Duggan and Wu [51] observe that aborts in high-security subtransactions can

leak information to low-security parent transactions. Their model of a single,

centralized multilevel secure database with strictly ordered security levels is more

restrictive than our distributed model and security lattice. Our abort channels

generalize their observation. They arrive at a different solution, building a theory

of secure nested transactions.

Cohen, van der Meyden, and Zuck observe abort-based information leakage

in the context of transactional memory [36]. They show how scheduling proto-
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cols with “lazy invalidation conflict” and “lazily aggressive arbitration” [124] can

schedule transactions securely. Their model assumes each transaction runs at a

single security level, on a single processor. Relaxed monotonicity generalizes these

constraints, allowing transactions to be distributed, and run at multiple security

levels.

Atluri, Jajodia, and George [11] describe a number of known protocols requiring

weaker guarantees or a single trusted coordinator. Our work instead focuses on

securely serializing transactions in a fully decentralized setting. Our analysis is

also the first in this vein to consider liveness: SC can guarantee deadlock freedom

of transactions with relaxed monotonicity.

In this work, we build on a body of research that uses lattice-based information

flow labels and language-based information flow methods [46, 48, 118]. Relatively

little work has studied information flow in transactional systems. Our implemen-

tation is built on Fabric [91, 9], a distributed programming system that controls

information flow over persistent objects. The only other information-flow-sensitive

database implementation appears to be IFDB [122], which also does not account

for abort channels.

2.10 Discussion

There is a fundamental trade-off between strong consistency guarantees and strong

security properties in decentralized systems with heterogeneous participants. We

investigate the secure scheduling of transactions, a ubiquitous building block of

modern large-scale applications. Abort channels offer a stark example of an unex-

plored security flaw: existing transaction scheduling mechanisms can leak confiden-
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tial information, or allow unauthorized influences of trusted data. While some sets

of transactions are impossible to serialize securely, we demonstrate the viability of

secure scheduling.

We present relaxed monotonicity, a simple condition under which secure

scheduling is always possible. Our staged commit protocol can securely sched-

ule any set of transactions with relaxed monotonicity, even in an open system.

To demonstrate the practical applicability of this protocol, we adapted the Fabric

compiler to check transactional programs for conditions that allow secure schedul-

ing. These checks are effective: the compiler identifies an intrinsic security flaw in

one program, and accepts other, secure transactions with minimal adaptations.

This work sheds light on the fundamentals of secure transactions, and builds to-

ward a future that embraces heterogeneous components while preserving security.

However, there is more work to be done to understand the pragmatic implications.

We have identified separate necessary and sufficient conditions for secure schedul-

ing, but there remains space between them to explore. Ultimately, abort channels

are just one instance of the general problem of information leakage in distributed

systems. Similar channels may exist in other distributed settings, and we expect

it to be fruitful to explore other protocols through the lens of information flow

analysis.
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CHAPTER 3

CHARLOTTE

A Framework for Composable Authenticated Distributed Data Structures

Synopsis

We present Charlotte, a framework for composable, authenticated distributed data

structures that embraces least ordering, fault tolerance, and heterogeneity. Char-

lotte data is stored in blocks that reference each other by hash. Together, all

Charlotte blocks form a directed acyclic graph, the blockweb; all observers and

applications use subgraphs of the blockweb for their own data structures. Unlike

prior systems, Charlotte data structures are composable: applications and data

structures can operate fully independently when possible, and share blocks when

desired. To support this composability, we define a language-independent format

for Charlotte blocks and a network API for Charlotte servers.

An authenticated distributed data structure guarantees that data is immutable

and self-authenticating: data referenced will be unchanged when it is retrieved.

Charlotte extends these guarantees by allowing applications to plug in their own

mechanisms for ensuring availability and integrity of data structures. Unlike most

traditional distributed systems, including distributed databases, blockchains, and

distributed hash tables, Charlotte supports heterogeneous trust: different observers

may have their own beliefs about who might fail, and how. Despite heterogeneity

of trust, Charlotte presents each observer with a consistent, available view of data.

We demonstrate the flexibility of Charlotte by implementing a variety of in-

tegrity mechanisms, including consensus and proof of work. We study the power of
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disentangling availability and integrity mechanisms by building a variety of appli-

cations. The results from these examples suggest that developers can use Charlotte

to build flexible, fast, composable applications with strong guarantees.

3.1 Introduction

A variety of distributed systems obtain data integrity assurance by building dis-

tributed data structures in which data blocks are referenced using collision-resistant

hashes [112], allowing easy verification that the correct data has been retrieved via

a reference. We call these Authenticated Distributed Data Structures (ADDSs). A

particularly interesting example of an ADDS is a blockchain, but there are other

examples, such as distributed hash tables as in CFS [42], distributed version control

systems like Git [144], and file distribution systems like BitTorrent [37]. However,

an ADDS does not automatically possess all properties needed by blockchains and

other applications. An ADDS might fail to ensure availability, because a reference

to data does not guarantee it can be retrieved. It might even fail to ensure integrity,

because an ADDS might be extended in inconsistent, contradictory ways—for ex-

ample, multiple new blocks could claim to be the 7th in some blockchain.

Therefore, an ADDS commonly incorporates additional mechanisms to en-

sure availability and integrity in the presence of malicious adversaries. Some

systems rely on gossip and incentive schemes to ensure availability, and consen-

sus or proof-of-work schemes to ensure integrity. Blockchains like Bitcoin [106]

and Ethereum [56] lose integrity if the adversary controls a majority of the hash

power, while Chord loses availability if an adversary controls enough consecutive

nodes [141].
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Figure 3.1: Blocks are rep-
resented as rectangles. Ref-
erences from one block to
another are shown as circles.
The pale blue blocks form a
tree, whereas the darker red
blocks form a chain. The
rightmost red block refer-
ences a blue block, so to-
gether the union of the red
and blue blocks forms a
larger tree. The black block
also references a red block.

Importantly, all past ADDS systems lack composability : an application cannot

use multiple ADDSs in a uniform way and obtain a composition of their guarantees.

ADDSs from different systems cannot intersect (share blocks) or even reference

each other. Lack of composability makes it difficult for applications to atomically

commit information to multiple ADDSs. For instance, if blockchain ADDSs were

composable, we could atomically commit a single block to two cryptocurrency

blockchains, instead of requiring trusted clearinghouses.

A core reason for this lack of composability is that each system has its own set

of failure assumptions. A user of Bitcoin or Ethereum, for example, must assume

that at least half the hashpower is honest.1 There is no mechanism for observers

or applications to choose their own assumptions.

We address these limitations with Charlotte, a decentralized framework for

composable ADDS with well-defined availability and integrity properties. To-

gether, these ADDSs form the blockweb, an authenticated directed acyclic graph

(DAG) [95] of all Charlotte data, which is divided into blocks that reference each

1 There is some evidence that users need even stronger assumptions [53].
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other by hash. Charlotte distills ADDSs down to their essentials, allowing it to

serve as a common framework for building a wide variety of ADDSs in a compos-

able manner, as illustrated by Fig. 3.1.

Within the blockweb, different applications can construct any acyclic data

structure from blocks, including chains, trees, polytrees, multitrees, and skiplists.

Charlotte embraces the Least Ordering principle (§ 1.1.1). Whereas blockchains

enforce a total ordering on all data, the blockweb requires ordering only when

one block references another. Unnecessary ordering is an enormous drain on per-

formance; indeed, it arguably consumes almost all of traditional blockchains’ re-

sources. Charlotte applications can create an ordering on blocks, but blocks are

by default only partially ordered.

In Charlotte, each server stores whichever blocks it wishes. Most servers will

want blocks relevant to applications they’re running, but some may provide storage

or ordering as a service for sufficiently trusting clients.

Charlotte heterogeneous observers can set their own (application-specific) fail-

ure assumptions. The failure assumptions of an observer effectively filter the block-

web down to blocks forming an ADDS that remains available and consistent under

all tolerable failures and adversarial attacks. An observer whose failure assump-

tions are correct can, given the assumptions of a different correct observer, calculate

the subgraph of the blockweb they share.

A key novelty of Charlotte is its generality; it is not application-specific. Unlike

other systems that build DAGs of blocks, Charlotte does not implement a cryp-

tocurrency [110, 89, 115, 136, 137], require a universal “smart contract” language

for all applications [66, 147, 73], have any distinguished “main chain” [109, 150],
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or try to enforce the same integrity requirements across all ADDSs in the sys-

tem [77, 93, 152, 43, 25].

Instead, Charlotte distills ADDSs down their essentials, allowing it to serve

as a more general ADDS framework, in which each application can construct an

ADDS based on its own trust assumptions and guarantees, yet all of these het-

erogeneous ADDSs are part of the same blockweb. Indeed, existing block-DAG

systems can be recreated within Charlotte, gaining a degree of composability. We

have implemented example applications to demonstrate that Charlotte is flexible

enough to simultaneously support a variety of applications, including Git-like dis-

tributed version control, timestamping, and blockchains based variously on agree-

ment, consensus, and proof-of-work. The shared framework even supports adding

shared blocks on multiple chains.

Contributions

• Our mathematical model for ADDSs (§3.3) gives a general way to character-

ize ADDSs with diverse properties in terms of observers, a novel characteri-

zation of different failure tolerances for different participants, and a general

way to compose ADDSs and their properties.

• Charlotte provides an extensible type system for blocks, and a standard API

for communicating them (§ 3.4).

• Example applications show the benefits of using the Charlotte model (§3.5).

• We generalize blockchains in the Charlotte model, including a technique for

separating availability and integrity duties onto separate services and a gen-

eral model of linearizable transactions on distributed objects (§ 3.6).
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• We have implemented a prototype of Charlotte along with proof-of-concept

implementations of various applications that demonstrate its expressiveness

and ability to compose ADDSs (§ 3.7).

• Performance measurements show that Charlotte’s performance overheads are

reasonable (§ 3.8).

• Our consensus-blockchain implementation uses Heterogeneous Consensus,

and is evaluated in § 4.9.1.

• Analysis of real usage data shows that Charlotte’s added concurrency offers

a large speed advantage over traditional blockchain techniques (§ 3.6.5).

3.2 Overview

3.2.1 Blocks

In Charlotte, blocks are the smallest unit of data, so clients don’t fetch “block

headers,” or other partial blocks [56]. Therefore, Charlotte applications ideally

use small blocks. For instance, to build something like Ethereum in Charlotte,

it would be sensible to create the Merkle tree [99] structure found within each

Ethereum block out of many small Charlotte blocks. This makes it easier to

divide up storage duties and to fetch and reference specific data.

3.2.2 Attestations

Some blocks are attestations : they prove that an ADDS satisfies properties beyond

those inherent to a DAG of immutable blocks. For instance, if a server signs

78



an attestation stating that it will store and make available a specific block, it

means the block will be available as long as that server functions correctly. Such

an attestation functions as a kind of proof premised on the trustworthiness of

the signing server. Attestations about the same blocks naturally compose: all

properties of all attestations hold when all conditions are met.

All attestation types are pluggable: Charlotte servers can define their own sub-

types, which prove nothing to observers who do not understand them. Charlotte

is extremely flexible: application-defined attestation types can represent different

consensus mechanisms (from Paxos to Nakamoto), different ADDS types, and dif-

ferent availability strategies. Although attestations can express a wide variety of

properties about an ADDS, we divide them into two subtypes: availability attes-

tations and integrity attestations.

3.2.3 Availability Attestations

Availability attestations prove that blocks will be available under certain condi-

tions. One example of an availability attestation would be a signed statement

from a server promising that a given block will be available as long as the signing

server is functioning correctly. We call servers that issue availability attestations

Wilbur servers.2 Attestations may make more complex promises. For example,

proofs of retrievability [23] might be used as availability attestations. Availability

attestations are not limited to promises to store forever: they might specify any

conditions, including time limits or other conditions under which the block is no

longer needed. Availability attestations generalize features found in many existing

distributed data systems:

2after the Charlotte’s Web character whose objective is to stay alive.
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• In BitTorrent, a seeder tells a tracker that it can provide certain files to

leechers.

• Many databases inform clients that their transaction has been recorded by a

specified set of replicas.

• In existing blockchains, clients wait for responses from many full nodes, to

be sure their transaction is “available.”

3.2.4 Integrity Attestations

An ADDS often requires some kind of permission to add a block to its state. For

example, a blockchain typically requires that some set of servers (“miners”) decide

that a particular block uniquely occupies a given height in the chain. Integrity

attestations determine which blocks belong in which ADDSs. For instance, servers

maintaining a blockchain might issue an integrity attestation stating that a given

block belongs on the chain at a specific height; the server promises not to issue any

integrity attestation indicating that a different block belongs on the chain at that

height. Timestamps are another integrity attestation type: they define an ADDS

consisting of all blocks a specific server claims existed before a specific time. We

call servers that issue integrity attestations Fern servers.3

Fern servers generalize ordering or consensus services. In blockchain terminol-

ogy [106], they correspond to “miners,” which select the blocks belonging on the

chain.

3after the Charlotte’s Web character who decides which piglets belong.
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New
Block

1. client constructs new block and sends to Wilburs

2. Wilburs return Availability Attestations

3. client sends
Availability Attestations
in request to Ferns

4. Ferns return Integrity Attestations

5. Client completes reference to new block

Figure 3.2: Life of a block. A client mints a new block, and wants to add it to an
ADDS. The block, as drawn, includes two references to other blocks. The client
acquires availability attestations from Wilbur servers, and integrity attestations
from Fern servers. Then it can create a reference (drawn as a circle) to the block,
so anyone observing the reference knows the block is in the ADDS.

3.2.5 Life of a Block

Fig. 3.2 illustrates one possible process for adding a new block to an ADDS. A

client first mints a block, including data and references to other blocks. To ensure

the block remains available, the client sends it to Wilbur servers, which store it

and return availability attestations, demonstrating the availability of the block.

The client then submits a reference to the block to a collection of Fern servers,

which maintain the integrity of the ADDS. Since Fern servers may not want to

permanently add a block to their ADDS if that block is going to become unavail-

able, the client may also send availability attestations. Fern servers return integrity
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attestations, that, in effect, demonstrate the integrity of the statement “this block

is in this ADDS.”

The client includes all of these attestations in references to the block, so that

whenever an observer sees a reference to the block, they know how available it is,

and what ADDSs it belongs to. Over time, more attestations may be issued, so a

block can become more available or join more ADDSs, with greater integrity.

Charlotte is flexible: applications can optimize this process by co-locating ser-

vices, forwarding attestations directly between servers, etc.

3.2.6 Observers

We characterize an observer in a distributed system as an entity with a set of

assumptions concerning the possible ways that the system can fail. Note that

failure types include both Crash and Byzantine [82]. Given a set of assumptions

about who can fail and how, and the desired integrity properties of each ADDS,

each observer may choose to ignore any portions of the blockweb that lack adequate

attestations. What remains is the observer’s view of the ADDS: the set of blocks

it believes are available and part of the state of the ADDS.

Each observer’s view of an ADDS is guaranteed to remain available and to

uphold any integrity properties the observer has chosen so long as the observer’s

failure assumptions hold. Further, portions of the blockweb that feature attesta-

tions satisfying two observers are guaranteed to remain in both observers’ views,

once both have observed all the relevant blocks. Of course, in practice, servers

take time to download relevant blocks, and in an asynchronous system there is no

bound on the time this may take.
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3.2.7 Example Applications

Blockchains

Charlotte can easily represent blockchains—not only linear chains, but also more

intricate sharded or DAG-based structures [95]. Existing blockchain systems al-

ready effectively provide integrity and availability attestations, phrased as proofs

of work, proofs of stake, etc. Charlotte makes these proofs more explicit, without

limiting the attestation types an application can use. As a result, multiple chains

can share a block, if attestations required for each all refer to the same block. By

providing a framework in which applications can interact, but without prescrib-

ing a rigid data structure, Charlotte allows far more concurrency than monolithic

chains like Ethereum that totally order all blocks into a single chain [56]. This

flexibility is a natural realization of the database community’s decades-old ideal of

imposing a “least ordering” [18].

Distributed Version Control

Charlotte is also a natural framework for applications like Git [144]. Each Git com-

mit is a block referencing zero or more parent commits. A commit with multiple

parents is a merge, and a commit with no parents is a root. Each Git server stores

and makes some commit blocks available, and can communicate this fact with

availability attestations. A Git server can also maintain branches, which associate

a branch name (a string) with a chain of commits. When a server announces that

it is making a new commit the head of a branch, it issues an integrity attestation

stating that the commit is part of the branch.
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Figure 3.3: A blockchain
ADDS with branches of
length < 3. All of the blocks
are present in the blockweb.
The red dotted oval and the
blue solid oval represent two
possible alternative states of
the ADDS.

Public-Key Infrastructure

Public Key Infrastructure (PKI) systems are almost always ADDSs. Key endorse-

ments are essentially integrity attestations, defining ADDSs such as the certificate

trees used to secure HTTPS [70] and the web of trust used to secure PGP [28].

Keys and certificates can be retrieved by hash from dedicated storage servers such

as PGP’s keyservers [67, 69, 127], corresponding to Wilbur servers. PKIs such as

ClaimChain [80] already attest to and rely upon data structure properties, e.g.,

total ordering in chains.

3.3 Modeling ADDSs Formally

Different, possibly overlapping, portions of the blockweb represent ADDSs of in-

terest to individual applications. We now explore Charlotte’s unique ability to

allow different ADDSs to interoperate.

As a running example, consider a simple ADDS R representing a single, write-

once slot managed by one server. It can either be empty, or occupied by one

unchanging block.
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3.3.1 States

A state is a set of blocks, and an ADDS is a set of possible states. For instance, the

Bitcoin blockchain is an ADDS. Every block (other than the origin) in every state

features a proof-of-work. A Bitcoin state can have an arbitrarily long main chain,

and shorter branches. The Bitcoin ADDS consists of all such possible states.

In our single-slot example, each state of R is either empty, or features exactly

two blocks: the block occupying the slot, along with an integrity attestation signed

by the server, referencing that block. We call an integrity attestation in such a

state ix, where x is the other block in the state.

3.3.2 Observers and Adversaries

Observers represent principals who use the system. An observer receives blocks

from servers and in so doing learns about the current and future states of ADDSs in

the system. Observers may correspond (but are not limited) to servers, clients, or

even people. Formally, an observer is an agent that observes an ordered sequence

of blocks from the blockweb. On an asynchronous network, different observers may

see different blocks in different orders.

Observers define their own failure assumptions, such as who they believe might

crash or lie. These assumptions, combined with evidence, in the form of blocks

they have observed so far, induce an observer’s belief : what they think is true

about the blockweb now and what is (still) possible in the future.

The failure-tolerance properties of any distributed system are relative to as-

sumptions about possible failures, including actions taken by adversaries. Char-
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Figure 3.4: An observer holds a belief, which is a set of universes. Here we’ve
drawn some universes as hexagons. Each universe U shown contains blocks in
exist(U), with blocks in avail(U) filled in.

lotte makes these assumptions explicit for each observer. An observer who makes

incorrect assumptions may not observe the properties they expect of some ADDSs.

For instance, if more servers are Byzantine than the observer thought possible,

data they believed would remain available might not. Alternatively, data struc-

tures might lose integrity, such as when two different blocks both appear to occupy

the same height on a chain.

We characterize a belief α as a set of possible universes. This set bounds the

believed powers of the adversary: the observer assumes this set includes all possible

universes that might occur under the influence of the adversary. Fig. 3.4 illustrates

an observer holding a belief, and some of the universes in that belief.

Each observer has an initial belief : the belief it holds before it observes any

blocks. For example, an observer who trusts one Fern server to maintain the

single-slot ADDS R does not have any universes in its initial belief in which that

server has issued two integrity attestations for different blocks. This belief encodes
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the observer’s assumption that the server’s failure isn’t tolerable. The observer

in Fig. 3.4 has such a belief: no universe features two integrity attestations for R

(shown as green squares labeled ix or iy).

In a traditional failure-tolerant system, an observer usually assumes that no

more than f participants will fail in some specific way (e.g., crash failures or

Byzantine failures). We model such an observer’s initial belief as the set of all

universes in which no more than f participants exhibit failure behaviors (in the

form of blocks issued).

3.3.3 Formalizing Universes

We propose a general model for universes that places few limits on the details or

assumptions universes can encode. Our model of a universe U has the following

components, which suffice for all examples in the paper.

1. A set of blocks that can exist, written exist(U). These are the blocks that

either have already been observed or ever can be observed by any observer.

2. A strict partial order Uv on exist(U). Every observer is assumed to

observe blocks in an order consistent with the universal partial order Uv .

3. The set of blocks that are available, written avail(U). These are the blocks

that can be retrieved from some server. Any available block must also exist:

avail(U) ⊆ exist(U).
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The set exist(U) constrains the blocks any observer will observe. It does not

model time: an observer’s initial belief contains universes representing all possible

futures, with all blocks that are possible in each.

Since we are modeling asynchronous systems, the model does not explicitly

include the time when blocks are observed, but the ordering Uv constrains the

times at which different observers can observe blocks, implicitly capturing a tem-

poral ordering on blocks. This ordering is useful for blockchains like Bitcoin, where

observers traditionally do not believe in any universe U unless there is a main chain

in which each block b is ordered (by Uv ) before any equal-height block with which

b does not share an ancestor fewer than security parameter k (usually 6) blocks

away. Further, the main chain must forever outpace any other branch. In Fig. 3.3,

this belief (with k = 3) implies that if a Bitcoin observer believes in a universe

U in which both blocks s and c exist, they must be ordered by Uv . If Bitcoin’s

security assumptions are correct, any two observers must see s and c in the same

order.

We make the simplifying assumption in each of our example applications that

the only availability of interest is permanent: we want to characterize whether

blocks will forever be available. Hence, the set avail(U) increases over time. We

leave more nuanced availability policies to future work.

3.3.4 Updating Beliefs

As an observer observes blocks being created by Charlotte programs, it updates its

beliefs by whittling down the set of universes it considers possible. For instance,

if an observer with belief α observes a block b, clearly b can exist, so the observer
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refines its belief. It creates a new belief α′, filtering out universes in which b is

impossible:

α′ =

{
U b ∈ exist(U) ∧ U ∈ α

}
If the observer in Fig. 3.4 were to observe ix, it would update its belief, retaining

only universes U with ix ∈ U . Of the universes shown, only the leftmost three

would remain.

An observer also refines its belief by observation order: If an observer with

belief α observes blocks B in total order <B, then its new belief is:

Possible(α,B,<B) ,

U
∀b′ Uv b. b′ ∈ B ∧ b′ <B b

∧B ⊆ exist(U)

∧U ∈ α


An observer making no assumptions believes in all possible universes. It can

only eliminate universes inconsistent with its observations: those in which blocks

it has observed are impossible, or the order in which it has observed the blocks

is impossible. However, most interesting observers have other assumptions. For

example, the observer in Fig. 3.4 trusts that only one integrity attestation for

ADDS R will be issued, so if it observes ix and removes all universes U without

ix ∈ exist(U), then no universes with iy will remain.

As another example, when a Git observer observes a valid integrity attestation

for a block b, it can eliminate all universes with valid integrity attestations for

blocks that are not descendants or ancestors of b.
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3.3.5 Observer Calculations

An observer with belief α knows a set of blocks B are available if they’re made

available in all possible universes:

∀U ∈ α. B ⊆ avail(U)

For example, the observer in Fig. 3.4 trusts availability attestations ax and ay

(the orange squares): it does not believe in any universe where such attestations

reference an unavailable block.

Likewise, an observer with belief α knows a state S of an ADDS D is incon-

trovertible if no conflicting state S ′ can exist in any possible universe. Two states

conflict if they cannot be merged to form a valid state: observing one precludes

ever observing the other:

∀U ∈ α, S ′ ∈ D. (S ∪ S ′ ∈ D) ∨ (S ′ 6⊆ exist(U))

For example, the observer in Fig. 3.4 trusts that only one integrity attestation for

ADDS R will be issued. It does not believe in any universes with both ix and iy

(shown as green squares). Therefore, if it observes ix, it knows the state {ix, x} is

incontrovertible: no conflicting state (such as {iy, y}) exists in any universe in its

belief.

The state of ADDS D that an observer with belief α sees as available and

incontrovertible is therefore:

View(α,D) ,

⋃
S

∀U ∈ α, S ′ ∈ D. (S ′ ⊆ S) ∨ (S ′ 6⊆ exist(U))

∧ ∀U ∈ α. S ⊆ avail(U)

∧ S ∈ D
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We call this the observer’s view of the ADDS: Charlotte’s natural notion of the

“current state.” So long as an observer’s assumptions are correct, new observa-

tions can only cause its view to grow. For example, if the observer in Fig. 3.4

observes both ax and ix, then it believes the state {ix, x} ∈ R is available and

incontrovertible. Its view of the single-slot ADDS R features x occupying the slot,

and so long as its assumptions are correct, this will never change.

As another example, suppose a blockchain uses a simple agreement algorithm:

a quorum of servers must attest to a block being at a specific height. States

consist of a chain of blocks, each with integrity attestations from a quorum. An

observer’s view will not include any blocks lacking sufficient attestations. The

observer assumes that no two blocks with the same height both get a quorum of

attestations, so the chain it has viewed must be a prefix of the chain in any future

view.

One observer can calculate what another observer’s view of an ADDS would

be, if they see the same observations. When two observers communicate, they can

share blocks they’ve observed. Because new observations can only cause a view to

grow, this allows one observer to know (at least part of) another observer’s view

when they communicate. This what we mean when we say views in Charlotte

are consistent: two observers can know what the other views in the same data

structure, and so the state of a data structure can be, in a sense, global.
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3.3.6 Composability

Recall that a state is a set of blocks, and an ADDS is a set of states (§ 3.3.1).

ADDSs in Charlotte have two natural notions of composition: union (]) and

intersection (
]

).

Union

Intuitively, the union of two ADDSs D and D′ is all the data in either ADDS. As

states are sets of blocks (§3.3.1), their union is simply the traditional union of sets.

Thus, the union ADDS is composed of unions of states:

D ]D′ ,
{
S ∪ S ′ S ∈ D ∧ S ′ ∈ D′

}
As a result, given an observer’s failure assumptions, its view of the union of two

ADDS is simply the union of its views of the ADDSs:

Theorem 5.

∀α,D.View(α,D ]D′) = View(α,D) ∪ View(α,D′)

Proof. Follows from the definitions of View and ].

For example, a Git branch (§3.2.7) is a ADDS maintained by one server. A Git

repository is the union of many branches with the same root, on the same server.

Each branch ADDS has properties, such as linearity, not necessarily shared by the

repository as a whole. However, the properties of all the ADDSs in a union can

be combined to create properties that hold of the whole. For example, one server

makes available all the blocks in all the branches of a repository. That means that
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the repository remains available so long as the server is correct. See § 3.3.5 for

more details.

Intersection

Intuitively, the intersection of two ADDSs D and D′ is all the data that is in both

D and D′. As states are sets of blocks (§ 3.3.1), their intersection is simply the

traditional intersection of states. Thus, the intersection of ADDSs is composed of

the intersections of states:

D
]
D′ ,

{
S ∩ S ′ S ∈ D ∧ S ′ ∈ D′

}
As a result, given an observer’s failure assumptions, its view of the intersection of

two ADDS is simply the intersection of its views of the ADDSs:

Theorem 6.

∀α,D.View(α,D
]
D′) = View(α,D) ∩ View(α,D′)

Proof. Follows from the definitions of View and
]

.

For example, consider two blockchains, each serving as a ledger for a different

crypto-currency. The blocks that are part of both chains represent transactions

atomically committed to both ledgers. These are the natural place to put cross-

chain transactions : trades involving both crypto-currencies. Thus, the intersection

of the two blockchains is the sequence of cross-chain transactions.

The intersection ADDS shares the properties of all intersected ADDSs. In our

blockchain example, the cross-chain blocks remain totally ordered by the blockweb

so long as either component blockchain remains totally ordered by the blockweb
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(a traditional integrity property of blockchains). Furthermore, cross-chain blocks

remain available so long as the blocks of either component blockchain remain avail-

able. See § 3.3.5 for more details.

3.3.7 Availability Attestation Semantics

Observers use availability attestations to determine which blocks they consider suf-

ficiently available to be in ADDSs they care about (§ 3.2.3). Formally, availability

attestations guarantee some blocks are available in some universes. To describe

the guarantees offered by an availability attestation x, we give it an interpreta-

tion JxK that is a belief : that is, a set of universes in which x’s guarantees are

inviolate (§ 3.3.2).

For instance, consider the availability attestation subtype τAliceProvides . Attesta-

tions of this type are blocks of the form aliceProvides(b) (where b is another block).

Intuitively, each value states that Alice (a Wilbur server) promises to make the

specified block b available forever. Thus, all universes U in which aliceProvides(b)

exists also have b available:

JaliceProvides(b)K ,
{
U aliceProvides(b) ∈ exist(U) ⇒ b ∈ avail(U)

}

Defining attestations this way makes it easy to define observers’ beliefs based on

which attestations, attestation types, or even participants they trust. For instance,

if an observer trusts all attestations with type τ , we define that observer’s belief:

α =
⋂
x:τ

JxK
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This provides a straightforward definition for what it means to believe in a type;

it means trusting all attestations of that type.

JτK ,
⋂
x:τ

JxK

We can also define beliefs that trust only combinations of attestations. For

example, if an observer believes a block will be available only if it has observed

appropriate attestations of both type τ and type σ, we define that belief α as

α = JτK ∩ JσK.

Likewise, a more trusting observer who believes a block is available if it has

observed appropriate attestations of type τ or type σ would believe α = JτK∪ JσK.

In this way, we can even build up quorums of attestations or attestation types

(e.g., (Jτ1K ∩ Jτ2K) ∪ (Jτ2K ∩ Jτ3K) ∪ (Jτ1K ∩ Jτ3K)).

There are some restrictions on the semantics of an availability attestation type.

Attestations must be monotonic: adding more attestations never proves weaker

statements:

∀U, V,W ∈ JτK. exist(U)∪ exist(V ) ⊆ exist(W ) ⇒

avail(U)∪ avail(V )⊆ avail(W )

3.3.8 Integrity Attestation Semantics

Integrity attestations (§ 3.2.4) are issued by Fern servers (§ 3.4.2), and represent

proofs guaranteeing the non-existence of other integrity attestations, under certain

circumstances. While this definition may seem counter-intuitive, it generalizes the

notion of conflict or exclusivity in ADDSs. For example, in our single-slot ADDS

R, all the integrity attestations found in any state of R are mutually exclusive.
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Since each (non-empty) state of R contains an integrity attestation, the existence

of one attestation disproves all conflicting states, which puts the attestation, and

the block it references, in the view of any observer with an appropriate belief.

Formally, an integrity attestation guarantee some other blocks will not exist in

some universes.

Thus, we represent every attestation’s meaning as a set of universes, essentially

a belief (§3.3.2) in that attestation. To describe integrity attestations’ guarantees,

we have a static semantics where attestations are identified with beliefs, sets of

universes in which the integrity attestation’s guarantees are inviolate (§ 3.3.2).

For example, consider τBobCommits , a subtype of integrity attestation with values

that are blocks of the form bobCommits(b), which intuitively indicates that Bob (a

Fern server) promises never to commit to any block other than b. These integrity

attestations are much like the ones used in our single-slot ADDS R.

Thus, all universes U in which bobCommits(b) ∈ exist(U) don’t feature

bobCommits(c) for any c 6= b:

JbobCommits(b)K ,
{
U ∀c 6= b . bobCommits(c) 6∈ exist(U)

}
Defining attestations this way makes it easy to define observers’ beliefs based on

which attestations, attestation types, or even participants they trust. For instance,

if an observer trusts all attestations with type τ , we define that observer’s belief:

α =
⋂
x:τ

JxK

This provides a straightforward definition for what it means to believe in a type;

it means trusting all attestations of that type.

JτK ,
⋂
x:τ

JxK
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We can also define beliefs that trust only combinations of attestations. For

instance, an observer who believes b is committed only after receiving an attestation

of type τ and an attestation of type σ would believe α = JτK ∪ JσK. Likewise, a

more trusting observer who believes b is committed after receiving an attestation

of either type τ or σ would believe α = JτK ∩ JσK.

It is also possible to combine integrity and availability attestations to define a

belief. An observer who trusts attestations of x to commit blocks, and attestations

of y to ensure their availability would believe: γ = JxK ∩ JyK. In this way, we can

even define quorums of trusted attestations or attestation types.

The definition of Possible(JτK, B,<B) (from § 3.3.2) guarantees integrity at-

testation semantics are monotonic: adding more attestations never proves weaker

statements:

C ⊆ B ⇒ Possible(τ, B,<B) ⊆ Possible(τ, C,<B)

3.3.9 Implementation Limitations of Attestations

Since programmers can define their own subtypes of integrity or availability at-

testations, nothing prevents them from encoding availability guarantees in an in-

tegrity attestation, or violating the availability attestation monotonicity require-

ment (§ 3.3.7). Programmers who violate the system assumptions naturally lose

guarantees.

In our implementation, the only operational distinction between an availability

attestation and an integrity attestation is in the Reference object. When one

block references another, it can also reference relevant integrity and availability
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1 message AnyWithReference {
2 google.protobuf.Any any;
3 Reference typeBlock;}
4 message Hash {
5 oneof hashalgorithm_oneof
6 { AnyWithReference any;
7 bytes sha3; }}//technically unnecessary
8 message Reference {
9 Hash hash;

10 repeated Hash availabilityAttestations;
11 repeated Reference integrityAttestations;}
12 message Block {
13 oneof blocktype_oneof
14 { AnyWithReference any;
15 string protobuf; }}

Figure 3.5: Core Types of Charlotte: this (slightly simplified) proto3 code de-
scribes how blocks, references to blocks, and generic data are safely marshaled and
unmarshaled in Charlotte.

attestations. However, whereas an included reference to an integrity attestation is

itself a Reference object, an included reference to an availability attestation carries

only a Hash. This is because an integrity attestation might need an availability

attestations to describe where to obtain the integrity attestation. However, the

same is not true of an availability attestation: it is pointless to send availability

attestation b just to describe where to fetch availability attestation a, since it is

just as easy to send availability attestation a in the first place.

3.4 Charlotte API

Charlotte is a set of protocols by which clients, Fern servers, and Wilbur

servers interact. Different servers can run different implementations of these

protocols. Our implementation of Charlotte (§ 3.7) uses gRPC [64], a popular

language-independent network service specification language, based on Protocol
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Buffers [113]. Hence, we use Protocol Buffer (protobuf) syntax to describe the

Charlotte protocols.

Fig. 3.5 presents the core types used by Charlotte protocols, using Protocol

Buffer syntax.4 Charlotte is built around these core types:

• Block: can contain any protobuf [113] data type, or the block itself can be a

protobuf type definition. Attestation is a subtype of Block. It can contain

any protobuf [113] data type, and the block itself can be a protobuf type

definition.

• Hash: represents the hash of a block.

• Reference: is used by one block to reference another; it contains the Hash

of the referenced block, along with zero or more references to attestations

(§ 3.2.2).

• AnyWithReference: Anyone can add their own subtypes of Block, Hash,

or Attestation, which any server can safely marshal and unmarshal. It

contains a reference to the block where the type description can be found (as

proto3 [113] source code), and marshaled data.5

In practice, we provide some useful example subtypes of Hash (e.g., sha3) and

Block (e.g., Attestation).

In our API, all Charlotte servers must implement the SendBlocks RPC

(Fig. 3.6), which takes in a stream of blocks and can return a stream of responses

4 For simplicity, our specifications omit the indices of the various fields. The actual
source code is also slightly more complicated for extensibility (https://github.com/isheff/
charlotte-public ).

5 The proto3 Any type itself features a URL string meant to reference the type definition, but
Charlotte uses a block reference because it is self-verifying.
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1 message SendBlocksResponse {
2 string errorMessage;}
3 service CharlotteNode {
4 rpc SendBlocks(stream Block)
5 returns (stream SendBlocksResponse) {}}

Figure 3.6: All Charlotte servers implement the CharlotteNode service.

1 message AvailabilityPolicy {
2 oneof availabilitypolicytype_oneof {
3 AnyWithReference any; }
4 }
5 message RequestAttestationResponse {
6 string errorMessage;
7 Reference reference;
8 }
9 service Wilbur {

10 rpc RequestAvailabilityAttestation(
11 AvailabilityPolicy)
12 returns (RequestAttestationResponse){}
13 }

Figure 3.7: Wilbur Service Specification.

that may contain error messages. We define subtypes of attestation for Availability

and Integrity, and show how to construct and observer from quorums of types they

trust (§ 3.3.7 and § 3.3.8).

3.4.1 Wilbur

Wilbur servers host blocks, providing availability.

In blockchain terminology [106], Wilbur servers correspond to “full nodes,”

which store blocks on the chain. In more traditional data store terminology, Wilbur

servers are key–value stores for immutable data. The Charlotte framework is in-

tended to be used for building both kinds of systems.
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1 message IntegrityPolicy {
2 oneof integritypolicytype_oneof
3 { AnyWithReference any; }
4 }
5 service Fern {
6 rpc RequestIntegrityAttestation(
7 IntegrityPolicy)
8 returns (RequestAttestationResponse){}
9 }

Figure 3.8: Fern Service Specification.

In our API, Wilbur servers are Charlotte servers that include the

RequestAvailabilityAttestation RPC (Fig. 3.7), which accepts a description

of the desired attestation, and returns either an error message, or a reference to a

relevant availability attestation.

3.4.2 Fern

Fern servers issue integrity attestations, which define the set of blocks in a given

ADDS. Among other things, integrity attestations can be proofs-of-work, or records

demonstrating some kind of consensus has been reached. One simple type of in-

tegrity attestation, found in our prototype, is a signed pledge not to attest to

any other block as belonging in a specific slot in an ADDS. Fern servers general-

ize ordering or consensus services. In blockchain terminology [106], Fern servers

correspond to “miners,” which select the blocks belonging on the chain.

In our API, Fern servers are Charlotte servers that include the

RequestIntegrityAttestation RPC (Fig. 3.8), which accepts a description of

the desired attestation, and returns either an error message or a reference to a

relevant integrity attestation.
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Figure 3.9: Block a references block b, and that reference carries attestations.
Block a also references a type description block, for unmarshaling data in a. In
general, when sending block a to a server or client, the sender should be sure the
recipient has received all the blocks in the dashed purple rectangle, so the recipient
can fully understand block a and the properties of its references.

3.4.3 Practices for Additional Properties

In order to understand a reference object within a block (how available the refer-

enced block is, and data structures it’s in), an observer reads attestations referenced

within the reference object.6 For example, without the content of the availability

attestations, it’s not clear where to look to retrieve the referenced block. As a rule

of thumb, before one server sends a block to another, it should ensure the recipient

has any attestations or type blocks referenced within that block. This ensures the

recipient can, in a sense, fully understand the blocks they receive. In Fig. 3.9,

for instance, when sending block a, the sender should be sure the recipient has

received everything in the dashed rectangle. Our example applications follow this

practice. It is possible, however, that for some applications, servers may be certain

the recipient doesn’t care about some attestations or type blocks, and therefore

might leave those out.

6 We considered making references contain full copies of attestations, but this made blocks
large, and since many blocks may reference the same block (and attestations), blocks were full
of redundant information.
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When servers follow this practice, it’s useful for availability attestations to

attest to groups of blocks likely to be requested together. In Fig. 3.9, for instance,

and availability attestation that attests to everything in the dashed rectangle would

be more useful than just attesting to block a. Our example applications’ availability

attestations are generally designed this way.

Availability failures can cause available states of ADDSs to become discon-

nected subgraphs (if the blocks that connect them are forgotten). To build an

ADDS that will always remain connected, availability attestations that attest to

a block should also attest to the availability attestations referenced within that

block. Furthermore, whenever a block x references a block y, and block y refer-

ences block z, if y isn’t at least as available as z, then x should reference z as

well. (Here, “isn’t at least as available” means that the availability attestations in

references to z guarantee z will be available in some universe where the availability

attestations in references to y do not guarantee y will be available.)

3.5 Use Cases

In addition to the examples mentioned earlier (§ 3.2.7), Charlotte is well-suited to

a wide variety of applications.

3.5.1 Verifiable Storage

Our Wilbur specification provides a common framework for verifiable storage. Be-

cause ADDS references include hashes, it is always possible to check that data
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1 message WilburQueryInput {
2 oneof wilburquery_oneof {
3 Reference reference = 1;
4 Block fillInTheBlank = 2; }}
5 message WilburQueryResponse {
6 string errorMessage = 1;
7 repeated Block block = 2; }
8

9 service WilburQuery {
10 rpc WilburQuery(WilburQueryInput)
11 returns (WilburQueryResponse) {}}

Figure 3.10: WilburQuery Specification.

retrieved was the data referenced. Furthermore, availability attestations (§ 3.3.7)

are a natural framework for proofs of retrievability [23].

Queries

In addition to SendBlocks and RequestAvailabilityAttestation, Wilbur servers

may offer other interfaces. Application designers may wish to implement query

systems for retrieving relevant blocks. We created one such example interface, the

WilburQuery RPC (Fig. 3.10). Given a Hash as input, WilburQuery returns the

block with that hash. If the server does not know of such a block, our example

implementation waits until one arrives.

WilburQuery also provides a kind of fill-in-the-blank match: If sent a block

with some fields missing, WilburQuery returns the all stored blocks that match the

input block in the provided fields. For example, we might query for all blocks with

a field marking them as a member of a certain ADDS.
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3.5.2 Timestamping

Timestamps are a subtype of integrity attestation. We implemented a Signed

Timestamp type, wherein the signer promises that they have seen specific hashes

before a specific time. Our timestamping Fern servers can use batching : they

wait for a specific (configurable) number of new requests to arrive before issuing a

Timestamp block referencing all of them. In fact, since hash-based references rep-

resent a happens-before relationship [81], timestamps are transitive: if timestamp

a references timestamp b, and b references c, then a effectively timestamps c as

well.

We recommend that batch Timestamp blocks themselves should be submitted

to other Timestamping Fern servers. This allows the tangled web of Timestamp

blocks to very quickly stamp any block with exponentially many timestamps, mak-

ing them very high-integrity.

3.5.3 Conflict-Free Replicated Data Types

Charlotte, and ADDSs in general, work well with CRDTs, especially Operation-

Based Commutative Replicated Data Types (CmRDTs) [126]. CmRDTs are repli-

cated objects maintained by a group of servers. Whenever a new operation orig-

inates at any server, all known operations on that object on that server are said

to happen before it. Then the operation asynchronously propagates to all other

servers. Thus, the set of operations known to any particular server are only par-

tially ordered. The state of a CmRDT object is a deterministic function of a set of

known operations (and their partial order). For example, a CmRDT implementa-
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tion of an insert-only Set might feature the insert operation, and its state would

be the set of all arguments to known insert operations.

In Charlotte, CmRDT operations can naturally be expressed as blocks, with

happens-before relationships expressed as references. Since references are by hash,

it is impossible for an adversary to insert a cycle into the graph of operations. The

states of a CmRDT can be formally expressed as all possible sets of operations

with all possible partial orderings.

Aside from whatever credentials one needs to authorize an operation, CmRDTs

do not need integrity attestations. Observers need only consider the graph of

known, valid operation blocks with known ancestry. They may, of course, choose

to filter out blocks they consider insufficiently available. Availability attestations

are still useful.

The blockweb as a whole is a CmRDT: Its state is the DAG of all blocks, and

every block is an operation adding itself to the state. Other than the blockweb

itself, however, we have not implemented any interesting CRDTs yet.

3.5.4 Composition

Charlotte ADDSs are easy to compose (§ 3.3.6). At the most basic level, blocks

in one ADDS can reference blocks in another. For instance, a Timestamp server

might maintain a chain of timestamp blocks, which reference any other blocks

people want timestamped (Git commits, payments, documents, etc.). A Git-style

repository might reference earlier commits in another repository (either because

one is a fork of the other, or one has merged in code from another) without having

to copy all of the data onto both servers. This would resemble Git’s submodule sys-
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tem [32]. A blockchain could reference a Git commit as a smart contract, instead

of hosting a separate copy of the code [56]. A single block of data, stored on some

highly available servers, could be referenced from a variety of torrent-style file-

sharing applications, git-style repositories, and blockchains, without unnecessary

duplication.

At a high level, composability allows us to build high-integrity ADDSs out of

low-integrity ones (§3.3.6). For instance, the blocks that appear in the intersection

of two chains form a chain that can only fork if both component chains fork. Users

may want to put especially important blocks on many different chains, the way

they want many different witnesses for important legal transactions.

Likewise, we can build low-integrity ADDSs out of higher integrity

ones (§ 3.3.6). If a set of blockchains each manage independent tokens, and some-

times share blocks (for atomic trades of tokens), then together all the chains form

a DAG. If any chain in the DAG is corrupted, then the supply of that token may

not be conserved: the DAG as a whole is lower integrity than any one chain. This

makes it possible to talk about the “integrity of the marketplace” as distinct from

the integrity of any one token.

3.5.5 Entanglement

Some attestations, such as timestamps §3.5.2, and proofs of work §3.6.2, implicitly

lend integrity to everything in a block’s ancestry. When many ADDSs reference

each other’s blocks, these recursive attestations can make some forms of fraud very

difficult. For example, if many applications regularly reference past timestamps,

and many applications request timestamps from a variety of servers, it quickly
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becomes difficult to falsely claim a block did not happen before a given time, when

doing so would involve hiding evidence embedded in many different applications.

3.6 Blockchains as ADDSs

Charlotte is an ideal framework for building new blockchains and related appli-

cations (§ 3.2.7). In the simplest sense, a blockchain is any path through the

blockweb. However, most existing blockchain applications are considerably more

complicated.

Like all ADDSs, a blockchain needs integrity and availability. Here, integrity

means that an observer’s view (§ 3.3.2) always features a main chain, in which no

two blocks ever have the same height. Availability means that once an observer

observes a main chain block at a height, that block remains available for download

indefinitely.

3.6.1 Separating Availability and Integrity

With few exceptions [97], existing blockchain systems require that all integrity

servers (e.g., miners, and consensus nodes) store all the blockchain data. This is

fundamentally inefficient. For example, a traditional byzantine consensus system

tolerating f failures needs > 3f participants, while a storage system tolerating f

failures needs only > f participants. If blockchain systems separated storage and

consensus duties, they would be able to store about 3 times as much as they do,

with the same failure assumptions.
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Charlotte makes it easy to separate availability from integrity. Wilbur servers

store blocks, and provide availability attestations (§ 3.4.1). References to those

blocks carry those attestations, proving the block referenced is available. Fern

servers need only issue integrity attestations for each block on the chain, rather

than storing it themselves.

For example, if one were to build something like Ethereum in Charlotte, what

Ethereum calls block headers would themselves be integrity attestations, and the

Merkle root in each would instead be a reference (or collection of references) to

blocks stored on Wilbur servers. This makes it natural to search and retrieve block

headers and portions of state, without splitting apart blocks, or downloading the

whole chain.

3.6.2 Integrity Mechanisms

Different blockchains have used a variety of mechanisms to maintain the integrity

of the chain [106, 96, 26]. To demonstrate the flexibility of Charlotte, we have

implemented a few example mechanisms in small-scale experiments.

Nakamoto (Proof-or-Work)

We can represent a Bitcoin/ Ethereum style blockchain as an ADDS D whose

states are trees of proof-of-work blocks. An observer with security parameter k

(say, 6) believes only in universes with a main chain that grows faster than any

side chains differing by k or more blocks. More precisely, if a universe U includes

a state S of such a blockchain D featuring a fork of k or more blocks, one side of
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the fork must be the main chain. All main chain blocks k or higher above the root

of the fork must be observed before
(
Uv )

all other blocks in S of equal height.

Agreement

Some blockchain applications only require agreement: they lose liveness if two

potentially valid blocks are proposed for the same height [115, 89, 136]. For in-

stance, if a chain represents a single bank account, and potentially valid blocks

represent transactions signed by the account holder, then honest account holders

should never sign two transactions unordered by the blockweb.

Agreement servers are simple to implement. When a server attests to a block, it

promises never to attest to any conflicting block. For a given server, an agreement

attestation type τ does not feature any universes where two conflicting blocks both

have an attestation from the server. Observers can construct quorums of trusted

servers, as in §3.3.8. A block appears in an observer’s view when the observer has

observed enough attestations: committing a conflicting block would require too

many parties to break their promises.

3.6.3 Blocks on Multiple Chains

In general, nothing prevents a single block from being part of multiple chains.

It simply requires the integrity attestations for each chain. For example, if one

blockchain represents records of events that have happened to a specific vehicle

(crashes, repairs, . . . ), and another represents repairs a specific vendor has per-

formed, it makes sense to append the record of a specific repair to both chains.

The record (a block) could reference the previous blocks on each chain, and the
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next blocks on each would in turn reference it. Each chain’s integrity mechanism

would have to attest to the block, and references to the block could carry both

sets of attestations to let readers know it is in both ADDSs.

Atomicity

Sometimes, such block appends need atomicity. For example, suppose one

blockchain represents the cryptocurrency RedCoin, and another represents the

cryptocurrency BlueCoin. Alice wants to give Bob one RedCoin in exchange for

one BlueCoin. This represents two transactions: one on each chain. Crucially,

either both happen, or neither do. Otherwise, it’s possible that Alice will give

Bob a RedCoin, and get nothing in return. We want to commit both transactions

together, atomically.

Meet

To atomically commit one block to multiple ADDSs, we require a single integrity

attestation which represents a commitment to all of them. We call the type of

this integrity attestation the meet (u) of the types of the integrity attestations for

the ADDSs involved. If an attestation of type τr commits a block to RedCoin,

and an attestation of type τb commits a block to BlueCoin, then an attestation

of type τruτb commits a block to both. In a sense, τruτb is a subtype of τr or τb,

since an attestation of the meet type can be used wherever an attestation of either

supertype can. In our types-as-observers semantics (§ 3.3.7), we define meet as

u , ∩. The assumptions made by the meet type encapsulate all the assumptions

made by its component types.
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Not all pairs of integrity attestation types have a meet. Later, in chapter 4, we

define a consensus algorithm with a natural meet operation (§ 4.9.2).

3.6.4 Linearizable Transactions on Objects

It can be useful to model state as a collection of stateful objects, each of which

has some availability and integrity constraints [114]. We can model objects as a

chain of blocks, defined by availability and integrity attestations upholding these

constraints. For instance, if an object must be consistent and available so long as 3

of a specific 4 servers are correct, each block should have “store forever” availability

attestations from 2 servers, and integrity attestations from 3 stating that they’ll

never attest to any other block in that slot.

Each block represents a state change for each of the objects represented by

chains of which the block is a part. In other words, the blocks are atomic (or ACID)

transactions in the database sense [65]. A collection transactions is guaranteed to

have a consistent, serial order so long as the chains maintained for each of the

objects they touch are consistent. For a given observer, the transactions involving

objects which that observer assumes to be linearizable have a serial order so long

as that observer’s assumptions are correct. Furthermore, two correct observers can

never see two transactions oppositely ordered.

This gives programmers a natural model for atomic transactions across object-

chains with different integrity and availability mechanisms, which would be useful

for applications from banking to supply chain tracking. Transactions can involve

any set of objects, so long as their integrity mechanisms have a meet operation for

atomic commitment (§ 3.6.3).
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Banking

We can imagine bank accounts as a linearizable objects, with state changes being

deposits and withdrawals to and from other bank accounts, signed by appropriate

parties. We can model this in Charlotte. Each bank maintains some integrity

mechanism (Fern servers) to ensure accounts’ state changes are totally ordered,

which prevents double-spending. Likewise, each bank maintains some Availability

mechanism (Wilbur servers), ensuring transactions relevant to their customers’

accounts aren’t forgotten. Each transaction is thus a block shared by two chains,

and must be committed atomically onto both chains.

When considering how “trustworthy” the money in an account is, what matters

is the integrity of the ADDS featuring the full ancestry of all transactions in the

account. To ensure the trustworthiness of their accounts, banks may issue their

own integrity attestations for all transactions in the causal past of transactions

involving that bank. This requires checking that ancestry for any inconsistencies

with anything to which the bank has already attested. This ensures any observers

trusting the bank’s attestations have consistent view (§3.3.2), but cannot guarantee

that observers trusting different banks have the same view.

An “attest to the complete history” approach is analogous to auditing the full

finances of everyone with whom you do business for every transaction. In reality,

much of the time, banks effectively trust each other’s attestations. This allows

much faster transaction times with weaker guarantees.
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Table 3.1: Theoretical advantages of Charlotte-style parallelization in the Bitcoin
payment network

Unaltered 2 Accounts

linearized
longest chain 6,953,512 24,129,215

time 3.72 years 12.91 years

parallelized
longest chain 110,787 244,163

time 21.63 days 47.68 days

Supply Chain Tracking

Much like bank accounts, we can imagine each good in a supply chain as a lin-

earizable object. Transactions may involve decreasing / destroying some goods to

increase / create others. For example, a transaction might feature destroying 10

kg from a case of grapes to add 9 kg to a vat of juice, and 1 kg to a bin of compost.

As with banking, each good is only as “trustworthy” as the ADDS featuring its

complete ancestry, and audits / attesting to past transactions can increase this

trustworthiness.

3.6.5 Application to Payment Graphs

The Charlotte framework makes it easy to imagine parallelized blockchain-based

payments, with each account as a stateful object, represented by a chain (§ 3.6.4).

As the Bitcoin payment network is a popular example of blockchain-based finance,

we consider the theoretical advantages offered by parallelization in a Charlotte-

style approach.

Bitcoin does not keep track of money in terms of accounts. Instead, each trans-

action divides all its money into a number of outputs, called Unspent Transaction

Outputs, or UTXOs, each of which specify the conditions under which they can
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be spent (e.g., a signature matching this public key). Each transaction specifies

a set of input UTXOs as well, from which it gets the money, and it provides for

each a proof that it is authorized to spend the money (e.g., a digital signature).

Each UTXO is completely drained when it is spent, and cannot be reused. Thus,

Bitcoin transactions form a graph, with transactions as vertices and UTXOs as

directed edges [106].

In our Charlotte banking model, each bank account is a chain, so a transfer

between two accounts is simply a block on two chains (§ 3.6.4). Therefore, if two

sets of financial transactions don’t interact, they can operate entirely in parallel.

The speed of the system is limited by the speed of its slowest chain. If appending

a transaction to its chains takes constant time, the speed limit is simply the length

of the longest chain.

Blocks 1 through 200,000 of Bitcoin contain 6,953,512 transactions. The longest

chain through this graph has length 110,787, so in principle, Charlotte needs time

for only 110,787 rounds of consensus to accommodate the entire payment graph.

Although Bitcoin batches several transactions per block, it required 200,000 rounds

of consensus to do the same, taking a total of 3.72 years. Thus, even with a

similarly slow consensus mechanism, a parallelized Charlotte approach, even with

no batching, would require only 21.63 days. Of course, Charlotte bank accounts

can specify Fern servers with whatever consensus mechanism they like. This could

be a much faster system, such as PBFT [30].

In Bitcoin, it improves anonymity and performance to combine many small

transfers of money into big ones, with many inputs and many outputs. In the real

financial system of the USA, however, all monetary transfers are from one account

to another. They are all exactly two-chain transactions. We can simulate this lim-
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itation by refactoring each transaction as a DAG of transactions with logarithmic

depth (Appendix A.1).

With this construction, a Charlotte banking system might use more than one

transaction per Bitcoin transaction. The longest chain through this new transac-

tion graph has length 244,163; so, in principle, Charlotte can process the entire

graph in only this many rounds of consensus. Thus, even with a consensus mech-

anism as slow as that of Bitcoin, Charlotte would still require only 47.68 days, a

speedup of 28.

3.7 Implementation

Our full Charlotte spec, with all example types and APIs, is 298 lines of gRPC

(mainly protobuf) [64]. We implemented proof-of-concept servers in 3833 lines

of Java [63] (excluding comments and import statements), with a further 1133

lines of unit tests. We also wrote 1149 additional lines of Java setting up various

experiments. This code inclues our Charlotte experiments with Heterogeneous

Consensus, detailed in §4.9.1. Our code is availble on Github at https://github.

com/isheff/charlotte-public.

3.7.1 Wilbur servers

By default, our example Wilbur servers store all blocks received in memory for-

ever. They are not meant to be optimal, but they are usable for proof-of-concept

applications. The only type of availability attestation we have implemented is one

in which the Wilbur servers promise to store the block indefinitely. This attesta-
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1 message PublicKey {
2 message EllipticCurveP256 {
3 bytes byteString;}
4 oneof keyalgorithm_oneof {
5 AnyWithReference any;
6 EllipticCurveP256 ellipticCurveP256;}}
7 message CryptoId {
8 oneof idtype_oneof {
9 AnyWithReference any;

10 PublicKey publicKey;
11 Hash hash;}}
12 message Signature {
13 message SHA256WithECDSA {
14 bytes byteString;}
15 CryptoId cryptoId;
16 oneof signaturealgorithm_oneof {
17 AnyWithReference any;
18 SHA256WithECDSA sha256WithEcdsa;}}

Figure 3.11: Signature Specification. We include Any types for extensibility,
as well as default built-in types, like Sha256WithECDSA. Note that the message
keyword defines a type in the local scope.

tion proves that the block is available as long as the Wilbur server is functioning

correctly.

Our Wilbur servers can be configured with a list of known peers, to whom they

will relay any blocks they receive and any attestations they create. This is easy to

override: servers can be made to relay blocks to any collection of peers.

We also implemented the WilburQuery service of § 3.5.1. Our Wilbur servers

can do fill-in-the-blank pattern matching on all implemented block types. The

Wilbur Query service imposes no overhead on other services.
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1 message SignedGitSimCommit {
2 message GitSimCommit {
3 message GitSimParents {
4 message GitSimParent {
5 Reference parentCommit;
6 bytes diff;}
7 repeated GitSimParent parent;}
8 string comment;
9 Hash hash;

10 oneof commit_oneof {
11 bytes initialCommit;
12 GitSimParents parents;}}
13 GitSimCommit commit;
14 Signature signature;}
15

16 message Block {
17 oneof blocktype_oneof {
18 AnyWithReference any;
19 string protobuf;
20 SignedGitSimCommit signedGitSimCommit;}}
21

22 message IntegrityAttestation {
23 message GitSimBranch {
24 google.protobuf.Timestamp timestamp;
25 string branchName;
26 Reference commit;}
27 message SignedGitSimBranch {
28 GitSimBranch gitSimBranch;
29 Signature signature;}
30 oneof integrityattestationtype_oneof {
31 AnyWithReference any;
32 SignedGitSimBranch signedGitSimBranch;}}

Figure 3.12: Git Simulation integrity attestation Specification. We include Any
types for extensibility, and provide types like SignedGitSimBranch as options.
Note that the message keyword defines a type in the local scope, and that the
Signature type is defined in the full Charlotte spec (https://github.com/isheff/
charlotte-public ).
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3.7.2 Version Control

We implemented a simulation of Git [144]. Our servers are not fully-functional

version control software, as they do not implement file-diffs and associated checks,

which are irrelevant for the purpose of demonstrating the Charlotte framework.

The types for our version control ADDS are described in Fig. 3.12. We created

a block subtype, SignedGitCommit, representing a specific state of the files tracked.

Each block features a signature, comment, hash of the state. It can be an initial

commit, in which case it has no parents, but does include bytes representing the

full contents of the files being tracked. Alternatively, it can have some number of

parent commits, each with a reference and a file diff.

A Version Control Fern server tracks the current commit it associates with each

branch (strings). They issue integrity attestations that declare which commits

they’ve put on which branches. A correct Fern server should never issue two such

attestations for the same branch, unless the commits they reference are ordered by

the blockweb. In other words, each new commit on a branch should follow from

the earlier commit on that branch; it cannot be an arbitrary jump to some other

files. Our example servers enforce this invariant (https://github.com/isheff/

charlotte-public ).

Fern servers can have other reasons to reject a request to put a commit on a

branch. Perhaps they accept only commits signed by certain keys. When a client

issues a request, they can include attestation references. A Fern server can demand

that clients prove a commit is, for instance, stored on certain Wilbur servers before

it agrees to put it on a branch. The Wilbur servers need not even be aware of the

Git data types.
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1 message IntegrityAttestation {
2 message TimestampedReferences {
3 google.protobuf.Timestamp timestamp;
4 repeated Reference block;}
5 message SignedTimestampedReferences {
6 TimestampedReferences timestampedReferences;
7 Signature signature;}
8 oneof integrityattestationtype_oneof {
9 AnyWithReference any;

10 SignedTimestampedReferences sigTimeRefs;}}

Figure 3.13: Timestamping integrity attestation Specification. We include Any
types for extensibility, and provide SignedTimestampedReferences as an option.
Note that the message keyword defines a type in the local scope, and that the
Signature type is defined in the full Charlotte spec (https://github.com/isheff/
charlotte-public ).

Our version control implementation can use the same Wilbur servers as any

other application. In fact, separating out the storage duties of Wilbur from the

branch-maintaining duties of Fern allows our Charlotte-Git system to divide up

storage duties of large repositories, much like git-lfs [60].

3.7.3 Timestamping

Timestamps are a subtype of integrity attestation. Each Timestamp includes a

collection of references to earlier blocks, the current clock time [72], and a crypto-

graphic signature.

Our Timestamping Fern servers timestamp any references requested, using the

native OS clock. By default, they issue a timestamp immediately for any request,

and do not need to actually receive the blocks referenced. Because references

contain hashes, the request itself guarantees the block’s existence before that time.
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Our Timestamping Fern servers also implement batching. Every 100 (config-

urable at startup) timestamps, the Fern server issues a new timestamp, referencing

the blocks it has timestamped since the last batch. Each server then submits its

batch timestamp to other Fern servers (configurable at startup) for timestamp-

ing. Since timestamps are transitive (if a timestamps b, and b references c, then

a also timestamps c), blocks are very quickly timestamped by large numbers of

Fern servers. This allows applications to quickly gather very strong timestamp

integrity.

3.7.4 Blockchains

In principle, any path through the blockweb is a blockchain (§ 3.6). We imple-

mented Fern servers using three very different integrity mechanisms (§ 3.6.2). We

used some of these servers to demonstrate the advantages of separating integrity

and availability mechanisms (§ 3.6.1), and blockchain composition: we put blocks

on multiple chains (§ 3.6.3).

Agreement

Our Agreement Fern servers keep track of each a blockchain as a root block, and

a set of slots. Each slot has a number representing distance from the root of the

chain.

Our Agreement Fern servers use the SignedChainSlot subtype of integrity

attestation (Fig. 3.14). It features a cryptographic signature, and references to a

chain’s root, a slot number, and the block in that slot. This serves as a format for

both requests and attestations. Each request is simply an IntegrityAttestation
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1 message IntegrityAttestation {
2 message ChainSlot {
3 Reference block;
4 Reference root;
5 uint64 slot;
6 Reference parent;}
7 message SignedChainSlot {
8 ChainSlot chainSlot;
9 Signature signature;}

10 oneof integrityattestationtype_oneof {
11 AnyWithReference any;
12 SignedChainSlot signedChainSlot;}}
13 message IntegrityPolicy {
14 oneof integritypolicytype_oneof
15 { AnyWithReference any;
16 IntegrityAttestation fillInTheBlank;}}

Figure 3.14: Agreement integrity attestation Specification. We include Any
types for extensibility, and provide SignedChainSlot as an option. Note
that the message keyword defines a type in the local scope, and that the
Signature type is defined in the full Charlotte spec (https://github.com/isheff/
charlotte-public ).

with some fields (like the cryptographic signature) missing. While it is possible to

encode this in the IntegrityPolicy’s any field, we provide the fillInTheBlank

option as a convenience.

The Agreement Fern servers are configured with parameters describing which

requests they can accept, in terms of requirements on the reference to the proposed

block and its parent. Once a correct Agreement Fern server has attested that a

block is in a slot, it will never attest that a different block is in that slot. For

instance, to configure a blockchain using quorums of 3 Agreement Fern to approve

each block, we require that each request’s parent Reference include 3 appropriate

integrity attestations.

Our Agreement Fern servers make it easy to separate integrity and Availability

duties (§ 3.6.1). To ensure that a block is available before committing it to the
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1 message IntegrityAttestation {
2 message NakamotoIntegrityInfo {
3 Reference block;
4 Reference parent;}
5 message NakamotoIntegrity {
6 NakamotoIntegrityInfo info;
7 uint64 nonce;}
8 oneof integrityattestationtype_oneof {
9 AnyWithReference any;

10 NakamotoIntegrity nakamotoIntegrity;}}

Figure 3.15: Nakamoto integrity attestation Specification. We include Any types
for extensibility, and provide NakamotoIntegrity as an option. Note that the
message keyword defines a type in the local scope (https://github.com/isheff/
charlotte-public ).

chain, we require a block Reference to include specific availability attestations

from Wilbur servers.

Nakamoto

Nakamoto, or Proof of Work Consensus is the integrity mechanism securing Bit-

coin [106]. We model it formally in § 3.6.2. In Bitcoin, miners create proofs of

work, which are stored by full nodes. With the Simplified Payment Verification

(SPV)protocol, clients submit a transaction, and retrieve the block headers (proofs

of work and Merkle roots) of each block in the chain from full nodes [106]. Each

client can use these to verify that its transaction is in the chain (has integrity).

We implement miners as Fern servers, which produce integrity attestations

bearing proofs of work, taking the place of block headers. Wilbur servers take the

place of full nodes, and store blocks, including integrity attestations. For simplicity,

our implementation assumes one transaction per block, so clients generate blocks,
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and request attestations. When a client receives an integrity attestation (Fig. 3.15),

it can retrieve the full chain from Wilbur servers.

With SPV, Clients traditionally try to collect block headers until they see their

transactions buried “sufficiently deep” in the chain. For simplicity, our Fern servers

delay responding to the client at all until the client’s block has reached a specified

(configurable) depth. Regardless, clients can collect integrity attestations from

Wilbur servers until they’re satisfied.

Our implementation of Nakamoto consensus offers a more precise availability

guarantee than Bitcoin does. Nakamoto Fern servers demand availability attes-

tations with any blocks submitted, ensuring that before a block is added to the

chain, it meets a (configurable) availability requirement.

3.8 Evaluation

To evaluate the performance of Charlotte, we ran instances of each example appli-

cation. Except as specified, experiments were run on a local cluster using virtual

machines with Intel E5-2690 2.9 GHz CPUs, configured as follows:

• Clients: 4 physical cores, 16 GB RAM

• Wilbur servers: 1 physical core, 8 GB RAM

• Fern servers: 1 physical core, 4 GB RAM

To emulate wide area communication, we introduced 100 milliseconds artificial

communication latency between VMs.
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Figure 3.16: Mean block delay of Nakamoto on Charlotte, with bars showing
standard error. Difficulty is represented in log2 of the number of hashes expected
to mine a new block.

3.8.1 Blockchains

Since blockchains are an obvious application of Charlotte, we evaluated the per-

formance, scalability, and compositionality of various blockchain implementations.

Nakamoto

To compare performance of our Nakamoto implementation to Bitcoin’s, we used

multiple (n = 10, 20, 30, 40) Charlotte nodes and measured the mean delay (across

100 consecutive blocks) until a client received an integrity attestation for a block

with fixed security parameter k = 1. All clients and servers had one physical core,

and 4 GB RAM. Fig. 3.16 shows the results of our tests with various difficulty

values (expected number of hashes to mine a block).

When difficulty is low, the delay for an integrity attestation is dominated by the

communication overhead (200 ms). When, more realistically, the difficulty is high,

delay is dominated by the cost of mining. Fig. 3.16 shows that latency increases

with difficulty and decreases with the inverse of the number of Charlotte servers
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(total computational power). Charlotte indeed scales suitably for blockchain im-

plementations.

In fact, Bitcoin has about 2 × 1011 times the hash power [44], and 1014 times

the difficulty as we had in our experiment, and it achieves an average block latency

of 10 min. With compute power scaled appropriately, our implementation would

achieve comparable performance: about 5 minutes per block.

Agreement

To evaluate the bandwidth advantages of separating integrity and availability ser-

vices, we built Agreement Chains (§ 3.7.4) tolerating 1–5 Byzantine failures, both

with and without Wilbur servers. To tolerate f Byzantine failures, a chain needs

3f + 1 Fern servers, and, if it relies on Wilbur servers for availability, f + 1 Wilbur

servers. We tested the latency and bandwidth of our chains, with some experi-

ments using 10 byte blocks, and some using 1 MB blocks. In each experiment,

a single client appends 1000 blocks to a chain, with the first 500 excluded from

measurements to avoid warm-up effects. Each experiment ran three times.

In the simple case, without Wilbur servers, all Fern servers receive all blocks.

This resembles the traditional blockchain strategy [106]. The theoretical minimum

latency is 2 round trips from the client to the Fern servers, or 200 ms.

We also built chains that separate the Fern servers’ integrity duties from Wilbur

servers’ availability duties. In these chains, Fern servers would not attest to any

reference unless it included f +1 different Wilbur servers’ availability attestations.
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Figure 3.17: Time to commit blocks in Agreement chains with various numbers
of servers. The shaded zones cover the middle percentile of blocks, so the top of the
lightest zone represents the 99th (slowest) percentile, and the bottom represents
the 1st (fastest) percentile. The distribution for the megabyte-block, no-wilbur-
server experiment is in Fig. 3.18.

Latency Fig. 3.17 and Fig. 3.18 show the median latency to commit a block

for each of our Agreement chain experiments. Theoretical minimum latency is 4

message sends (round trip from the client to the Wilbur servers, and then from the

client to the Fern servers), or 400 ms. For chains with small blocks, latency remains

close to the 200 ms and 400 ms minimums. For chains with 1 megabyte blocks,

experimental setup has significant slowdowns, likely due to bandwidth limitations.

Bandwidth Separating availability and integrity concerns (§3.6.1) has clear ben-

efits in terms of bandwidth. Because it sends large blocks to just f + 1 Wilbur

servers instead of 3f + 1 Fern servers, our client uses much less bandwidth in

the large-block experiments with Wilbur servers than without them (Fig. 3.19).
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Figure 3.18: Time to commit blocks in Agreement chains with various numbers
of servers. The distribution for the megabyte-block, no-wilbur-server experiment
is shown.

In theory, committing a block with Wilbur servers requires bandwidth for f + 1

blocks, and without Wilbur servers requires 3f + 1 blocks. The overhead inherent

in the additional communication with Wilbur servers and the attestations issued

is small compared to the savings.

3.8.2 Timestamping

To evaluate performance, compositionality, and entanglement (§3.5.5) with a non-

blockchain application, we ran experiments with varying numbers of Timestamping

Fern servers (§ 3.7.3). All client and server VMs had 4 GB RAM. For each ex-
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Figure 3.19: Total bandwidth used by a client appending 1500 blocks to
Agreement-based chains.

periment, a single client requested timestamps for a total of 100,000 blocks. For

each block, it requested a timestamp from one server, rotating through the Fern

servers.

For each 100 timestamps a Fern server issued, it would create a new block ref-

erencing those 100 timestamps, and request that all other Fern servers timestamp

this block. Since timestamps are transitive (if c is a timestamp referencing b, and

b references a, then c also timestamps a), every block was soon timestamped by

all Fern servers.

To explore Charlotte’s compositionality, we also composed our (1- or 2-failure-

tolerant) Agreement chains with our Timestamping Fern servers. We saw no statis-

tically significant change in chain performance: the overhead of Timestamping was
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Figure 3.20: Mean time for a block to be timestamped by x Fern servers, in
experiments featuring 4, 8, 12, and 16 total Fern servers.

unmeasurably small. Each block was timestamped quickly by directly requested

Timestamping servers, but entanglement (§ 3.8.2) was limited by the chain rate.

We also calculated the time it took blocks to accrue different Fern servers’

timestamps. As Fig. 3.20 shows, the Fern servers quickly timestamp each request.

Blocks get 1 timestamp very close to the 100 ms network latency minimum. There

is a delay between 1 and 2 timestamps because it takes a little while for the Fern

servers to collect 100 timestamps and to create their own block. After that, blocks

accrue timestamps very quickly, since each Fern Server requests timestamps from

all other Fern servers. These experiments suggest that entanglement (§ 3.5.5) can

be a fast, efficient, and compositional way to lend integrity to large ADDSs.

Not all blocks took exactly the same amount of time to accrue the same number

of timestamps. Fig. 3.21 shows the distribution of times for blocks in the experi-

ment with 16 Fern Servers. The scale is the same as in Fig. 3.20. In general, each
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Figure 3.21: Time for a block to be timestamped by x Fern Servers, in an
experiment featuring a total of 16 Fern Servers. Shaded zones cover the middle
percentile of blocks, so the top of the lightest zone represents the 99th (slowest)
percentile, and the bottom represents the 1st (fastest) percentile. Also shown are
mean and median block times (very similar).

data point (time for blocks to accrue x timestamps in an experiment with n Fern

Servers) was approximately Poisson distributed.

3.9 Related Work

3.9.1 Address by Hash

Many other distributed systems reference content by hash, forming ADDSs. Most

reference schemes, however, only work within a specific application. For instance,

git uses hashes to reference and request commits stored on a server [144]. Git-lfs

can track and request large files on separate servers with hash-based identifiers [60].

Similarly, PKI systems (§3.2.7) reference keys and certificates by hash, and main-

tain groups of availability servers [70, 67, 80]. Distributed Hash Tables, such as
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CFS [42] ultimately maintain Availability servers, and ensure integrity by refer-

encing data via Hash.

HTML pages can reference resources using the integrity field [149] to specify

a hash, and the src field to specify a server, like an availability attestation without

formal guarantees. Likewise, BitTorrent’s Torrent files [37] and Magnet URIs [38]

reference a file by hashes of various kinds, and can specify “acceptable sources”

from which to download the file. Charlotte’s references aim to be extensible in

terms of the hash algorithms used, and generic over all types of data. Uniquely,

Charlotte bundles references to data with references to attestations, which can

offer precise formal guarantees.

In concurrent work, Protocol Labs’ IPLD [74] is a multi-protocol format for

addressing arbitrary content by hash. Like Charlotte’s AnyWithReference (§ 3.4),

Multiformats [104] offers an extensible format for self-describing data including

protobufs [113]. Both IPLD and Multiformats are developed closely with IPFS [16],

a peer-to-peer file distribution system. IPLD references do not include attestation

references the way Charlotte references do, but future work could fruitfully combine

these technologies with Charlotte’s reference and block encoding formats.

3.9.2 BlockDAGs

Other projects have explored DAGs of blocks in a blockchain context. Many, such

as Iota [110], Nano (also known as RaiBlocks) [89], Avalanche [115], Spectre [136],

Phantom, and Ghostdag [137] are tailored to cryptocurrency. Each defines its own

currency, and they do not compose.
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Some projects, such as æternity [66], alephium [147], Qubic [73], and

Plasma [109] enable general-purpose computation on a BlockDAG by way of smart

contracts. However, they ultimately rely on a single global consensus mechanism

for the integrity of every application.

Sharded blockchains, including Omniledger [77], Elastico [93], Rapid-

Chain [152], RSCoin [43], and Ethereum 2.0 [25] are a form of BlockDAG. Most

still require that all applications have essentially the same trust assumptions.

Other sharded blockchain projects, such as Aion [140], Cosmos [57], and Polka-

dot [150], envision heterogeneous chains with inter-chain communication. Polka-

dot features a single Relay Chain trusted by all parachains (parallelizable chains),

although it does allow parachains to proxy for outside entities, including other

blockchains. Perhaps most similarly to our multi-chain transactions (§3.6.3), Aion

can use Bridges, consensus mechanisms trusted by multiple chains, to commit a

transaction to each.

All of these blockchain projects operate at a higher level of abstraction than

Charlotte. Charlotte is a generic format for communicating blocks, with a novel

attestation-based model for specifying availability and integrity properties. How-

ever, we believe any of these projects could benefit from building their imple-

mentations within the Charlotte framework. For example, where Cosmos’ Inter-

Blockchain Communication [57] and Aion’s Transwarp Conduits [68] require that

one chain be able to read and validate transaction commits from another, we

present a unified framework for the data they must request and interpret: integrity

attestations.
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3.9.3 Availability attestations

Although storage services are widely available [7, 62, 100], availability attesta-

tions (§3.3.7) make Wilbur servers unique. The only type of availability attestation

we have implemented is a simple promise to store a block indefinitely. However,

there is a great deal of work on reliable storage [49, 58] and proofs of retrievabil-

ity [75, 23, 131] that could be used to make a variety of availability attestation

subtypes that provide more availability with less trust.

3.9.4 Integrity attestations

Integrity attestations abstract over a variety of mechanisms lending integrity to

data provenance and ADDS properties. In some ways, attestations resemble the

labels of distributed information flow control systems [155, 91], and implement

a kind of endorsement [154] as additional attestations are minted for the same

block. In other ways, integrity attestations generalize ordering services for tra-

ditional distributed systems [71] or blockchains [139]. These services maintain a

specific property of a ADDS (ordering), much like our blockchain integrity attes-

tations. However, integrity attestations generalize over many possible properties:

timestamps, provenance, etc.

Future integrity attestation subtypes might take advantage of technologies like

authentication logic proofs and artifacts representing assurances of data prove-

nance [8, 133].
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3.10 Discussion

Charlotte offers a decentralized framework for composable Authenticated Dis-

tributed Data Structures with well-defined availability and integrity properties.

Together, these structures form the blockweb, a novel generalization of blockchains.

Charlotte addresses many of the shortcomings of existing ADDSs by enabling par-

allelism and composability. Charlotte is flexible enough to enable applications

patterned after any existing ADDS while offering rigorous guarantees through at-

testations that can be given precise semantics.

With Charlotte, heterogeneous observers can use heterogeneous applications

across heterogeneous participants with well-defined failure tolarances. By embrac-

ing Least Ordering and heterogeneity, these new applications will save time and

resources, and serve broader audiences.

135



CHAPTER 4

HETEROGENEOUS CONSENSUS

Synopsis

In distributed systems, a group of observers achieve consensus when, by observing

the output of some participants, they all arrive at the same value. Consensus is

crucial for ordering transactions in failure-tolerant systems. Traditional consensus

algorithms are homogeneous in three ways: all observers are created equal, all

participants are created equal, and all failures are created equal. We present the

first consensus algorithm to be heterogeneous in all three respects. Each observer

sets their own assumptions concerning differently trusted sets of participants, and

which mixed failures to tolerate. We express these assumptions in a novel observer

Graph, and demonstrate exactly when consensus is possible.

We present Heterogeneous Consensus : an extension of Byzantine Paxos. Het-

erogeneous Consensus can achieve consensus for any viable Observer Graph in

best-case three message sends. Heterogeneous Consensus is ideal for federated sys-

tems such as blockchains, in which parties make different trust assumptions. We

also present a proof-of-concept implementation, which uses Charlotte (chapter 3)

to construct composable blockchains with heterogeneous trust.
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4.1 Introduction

Consensus is a classic distributed systems problem in which observers1 (§ 1.1) try

to decide on the same value, based on the outputs of some set of participants,

some of whom may fail. It is a vital part of any fault-tolerant system maintaining

strongly consistent state, such as Datastores [39, 27] or Blockchains [106, 56, 40],

or indeed anything which orders transactions. Traditionally, consensus algorithms

have been homogeneous in three ways:

• All observers are created equal. All observers make the same assumptions,

and so system guarantees apply either to all observers, or none.

• All participants are created equal. Traditionally, systems tolerate at most

some number f of failed participants. However, it doesn’t matter which f

fail. One participant is “just as good as” another.

• All failures are created equal. Systems are traditionally designed to tolerate

either byzantine or crash failures. There is therefore no distinction between

different failure scenarios in which the same participants fail, but possibly in

different ways.

As a result, traditional consensus is ill-suited to federated systems, in which differ-

ent parties make different assumptions about who to trust, and when. We present

the first heterogeneous consensus algorithm, which makes none of these assump-

tions.

Heterogeneity allows participants to tailor a consensus protocol for the specific

requirements of observers, rather than trying to force everyone to agree when-

1 Lamport calls them learners[84].
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ever any pair demand to agree. This can save time and resources, or even make

consensus possible where it was not before (§ 4.8).

We go on to implement this algorithm in Fern servers using Charlotte (§3.4.2).

With this implementation, we can build composable blockchains with heteroge-

neous trust, allowing application-specific chains to order only the blocks they

need (§ 4.9.1).

4.2 Consensus

Intuitively, the purpose of any consensus is for all the observers to decide on one

and only one value, and for them all to decide on the same value. Consensus is

distinct from agreement [108] in that when multiple different values are proposed,

agreement algorithms may get stuck, and observers may never decide.

Here, we use round to refer to a specific execution: the actions of a specific set

of participants during some specific timeframe. Protocol refers to the instructions

correct participants follow in a round, and algorithm refers to the mathemati-

cal construct used to create a protocol for a specific set of participants. In any

consensus, a round begins when participants propose candidate values. After re-

ceiving some messages from participants, each observer eventually decides on a

single value. For example, Alice, Bob, and Carol may want to use the Paxos

consensus algorithm [83] to decide what to eat for lunch. They agree to follow a

protocol, specified by the Paxos algorithm, for their specific set of participants and

failure tolerances. Then they execute the protocol, completing a round of consen-

sus. The same participants could run another round with the same protocol, if

they want to decide on, say, what to eat for supper.
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Traditionally, consensus is expressed in terms of 4 formal properties: Non-

Triviality, Integrity, Agreement, and Termination.

4.2.1 Non-Triviality

Intuitively, a consensus protocol shouldn’t allow observers to simply always decide

some pre-determined value. For a round of consensus to be non-trivial, no correct

any value unless that value has been proposed. A consensus protocol is non-trivial

if all possible executions result in non-trivial rounds of consensus. Non-triviality

is the same in heterogeneous and homogeneous settings.

Our Heterogeneous Consensus algorithm ensures non-triviality: observers do

not decide a value unless they have verified that a participant has signed a proposal

for that value.

4.2.2 Integrity

Intuitively, a consensus protocol shouldn’t allow the same observer to decide dif-

ferent things. An observer in a round of consensus has integrity if it decides at

most one distinct value. A homogeneous consensus protocol has integrity if, when-

ever its failure assumptions are correct, all possible executions result in rounds of

consensus in which all observers have integrity.

Generalizing integrity from the homogeneous setting into a heterogeneous one

is deceptively difficult. For example, in our prior work on Heterogeneous Fast

Consensus, we distinguish between “gurus,” observers whose failure assumptions

are correct, and “chumps,” who hold incorrect assumptions [130]. Similarly, Stellar
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calls them “intact” and “befouled,” respectively [96]. A Heterogeneous Consensus

protocol is specified in terms of the exact (and possibly different) conditions under

which each observer is guaranteed integrity (§ 4.3).

4.2.3 Termination

Intuitively, the round of consensus eventually ends, and every observer eventually

decides. We can think of an observer as terminating or finishing when it decides. A

homogeneous consensus protocol has termination if, whenever its failure assump-

tions are correct, all possible rounds result in all correct observers deciding after

finite time. Various protocols measure “finite time” differently, and rely on differ-

ent assumptions to guarantee (sometimes probabilistic) termination [54, 84, 103].

Like integrity, generalizing termination from the homogeneous setting into a

heterogeneous one can be difficult. In prior work, such as Stellar [96], observers

that maintain integrity also decide. Our failure assumptions can be more nuanced,

and so we distinguish between which servers are guaranteed integrity, and which

are guaranteed termination.

4.2.4 Agreement

Intuitively, all observers should decide the same value. In a round of consensus, two

observers agree if at least one of them never decides, or if they have both decided

the same value. A homogeneous consensus protocol has Agreement if, whenever

its failure assumptions are correct, all possible executions eventually result in all

pairs of correct observers agreeing.
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Our generalization of Agreement from the homogeneous setting to a heteroge-

neous one is the key insight that makes our conception of Heterogeneous Consensus

possible. For a given Heterogeneous Consensus protocol instance, we calculate the

precise conditions under which each pair of observers must agree. This generalizes

not only the homogeneous approach, but also the “intact nodes” concept from

Stellar [96], and “linked nodes” from Cobalt [94].

4.3 The Observer Graph

We characterize observers’ failure assumptions with a novel construct called an

observer graph. In an observer graph, vertices are observers, and each pair of

observers is connected by an edge, labeled with the conditions under which those

observers must agree (§ 4.2.4). This generalizes Stellar’s “slices” [96] and Cobalt’s

“essential sets” [94].

4.3.1 Universes

We specify these conditions as a set of universes. Each universe features a distinct

set of failures. In particular, we model each universe as a pair, featuring the set of

participants which are safe (act only as specified by the protocol), and the set of

participants which are live (eventually send messages). The complements of these

sets are the byzantine [82] and crash [87] failures, respectively, in each universe.

Note that we assume byzantine participants can also fail to send any messages, so

all byzantine failures are also crash failures.
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Thus each edge in an observer graph is labeled with a set of universes, each

of which is a pair of sets of participants. Thus for observers a and b, the set of

universes in which they want to agree is written:

a−b

We illustrate example values for observer graph edge labels in Fig. 4.2. If two

observers don’t require agreement under any conditions, then the label on the

edge between them is simply the empty set.

We also define a specific universe, REALITY, representing the set of partic-

ipants that are actually safe (non-byzantine), and the set that are actually live

(non-crashed).

Assumptions We assume that a byzantine participant can choose not to send

any messages, so if the universe 〈s, `〉 is in a−b (where s is a set of safe participants,

and ` is a set of live participants), then 〈s, s ∩ `〉 must be as well:

Def. 9.

〈s, `〉 ∈ a−b⇒ 〈s, s ∩ `〉 ∈ a−b

Furthermore, we also assume that a strict subset of failures is always tolerated:

Def. 10. Subset of failures property:

∀x, y.〈s, `〉 ∈ a−b⇒ 〈s ∪ x, ` ∪ y〉 ∈ a−b

4.3.2 Example

For example, consider a situation in which observers might agree that they want

to tolerate 1 byzantine failure out of 4 participants, but disagree about who the 4
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Figure 4.1: Observer Graph Example Scenario: Here, we draw one the blue
participant as a solid blue circle, the red participant as a hollow red circle, and the
black participants as black circles.

relevant participants are. Suppose there are 4 observers: 2 red and 2 blue, as well

as 5 participants: 1 red, 1 blue, and 3 black. The participants are illustrated in

Fig. 4.1.

The red observers want to agree if there is at most 1 byzantine failure amongst

the red and black participants, even if the blue participant has failed. Likewise,

the blue observers want to agree if there is at most 1 byzantine failure amongst

the blue and black participants, even if the red participant has failed. The red

observers and blue observers acknowledge that they may disagree with each other

if a black participant fails, but otherwise they want to agree. Thus we draw the

observer graph in Fig. 4.2.

4.3.3 Undirected

Agreement is also undirected: It makes no sense for a to agree with b when b

disagrees with a. Put another way, if a agrees with b, then b agrees with a. Edges

in the observer graph are likewise undirected:

a−b = b−a
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Figure 4.2: Example Observer Graph: Observers are drawn as eyes, with darker
blue observers on the left, and lighter, outlined red observers on the right. For each
pair of observers a and b, we show the value a−b as a label on the edge between
them. In each universe shown within a label, byzantine failures are marked with
a demonic face. All the edges except the rightmost and leftmost share the same
label, in the middle.

4.3.4 Transitivity

Among observers with integrity (§ 4.2.2), agreement (§ 4.2.4) is transitive: if a

agrees with b and b agrees with c, then a agrees with c. As a result, a and c must

agree whenever both the conditions a−b and b−c are met. When observers’ require-

ments reflect this assumption, we call the resulting observer graph condensed.

4.3.5 Condensed Observer Graph (COG)

A Condensed Observer Graph (COG) represents all the conditions under which

each pair of observers must actually agree, after transitivity is taken into account.

As a result of the transitive property of agreement, for any observer graph G

featuring principals a, b, and c, we can create a new observer graph G′, in which
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a−c is replaced by:

a−c ∪ (a−b ∩ b−c)

Starting with observer graph G, and applying this operation repeatedly results

in a Condensed Observer Graph (COG): an observer graph in which this operation

doesn’t change anything when applied to any pair of adjacent edges.2 Equivalently,

an observer graph G is condensed iff:

Def. 11. Condensed

∀a, b, c. a−c ⊇ (a−b ∩ b−c)

Given Def. 10, we can formulate an equivalent expression in terms of safe and

live sets:

Lemma 5.

(a−c ⊇ (a−b ∩ b−c))⇔ (〈s, `〉 ∈ a−b ∧ 〈s′, `′〉 ∈ b−c⇒ 〈s ∪ s′, ` ∪ `′〉 ∈ a−c)

Proof. First, we show:

(a−c ⊇ (a−b ∩ b−c))⇒ (〈s, `〉 ∈ a−b ∧ 〈s′, `′〉 ∈ b−c⇒ 〈s ∪ s′, ` ∪ `′〉 ∈ a−c)

Given (a−c = a−c ∪ (a−b ∩ b−c)) ∧ 〈s, `〉 ∈ a−b ∧ 〈s′, `′〉 ∈ b−c, by Def. 10:

〈s ∪ s′, ` ∪ `′〉 ∈ a−b

∧ 〈s ∪ s′, ` ∪ `′〉 ∈ b−c

Therefore, since a−c ⊇ (a−b ∩ b−c):

〈s ∪ s′, ` ∪ `′〉 ∈ a−c

2 With the Floyd-Warshall algorithm [55], this can be done in O
(
|G|3

)
time.
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Second, we show

(a−c ⊇ (a−b ∩ b−c))⇐ (〈s, `〉 ∈ a−b ∧ 〈s′, `′〉 ∈ b−c⇒ 〈s ∪ s′, ` ∪ `′〉 ∈ a−c)

For any 〈s, `〉 ∈ a−b ∩ b−c, it certainly holds that

〈s, `〉 ∈ a−b

∧ 〈s, `〉 ∈ b−c

Given 〈s, `〉 ∈ a−b∧〈s′, `′〉 ∈ b−c⇒ 〈s ∪ s′, ` ∪ `′〉 ∈ a−c, it follows that a−b∩b−c ⊇

a−c.

Self-Edges

With a COG, we can define when an observer a will agree with itself (have In-

tegrity § 4.2.2) simply as a−a. As one might expect, an observer must agree with

itself if it’s going to agree with anyone else:

Lemma 6.

a−b ⊆ a−a

Proof. follows from the definition of Condensed (Def. 11), and the fact that the

COG is undirected (§ 4.3.3)

4.4 Byzantine Paxos Variant

Heterogeneous Consensus is built on a traditional (meaning homogeneous, as op-

posed to heterogeneous) byzantine Paxos variant [85]. This protocol is conceptu-
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ally much simpler than the popular Practical Byzantine Fault Tolerance [29]. In

Lamport’s terminology, our variant uses a simulated leader.

4.4.1 Assumptions and Definitions

• Participants are servers which both send and receive messages as part of

the protocol. These are equivalent to Lamport’s acceptors [85].

• Clients are machines that propose potential values for consensus. These are

similar to Lamport’s proposers [85].

• Observers receive messages from the participants. Observers decide on

values. These are Lamport’s learners [85].

• Participants can send messages to each other over the network, and digital

signatures make messages unforgeable.

• Messages can reference other messages by collision-resistant hash: if one

message contains a hash of another, it uniquely identifies the message it is

referencing [112].

• Safe participants act only as specified by the protocol.

• Live participants eventually send messages.

• Correct participants are safe and live.

• Faulty participants are not correct.

• Any message from one correct participant to another correct participant

eventually arrives.

• We use Q to designate a set of quorums, each of which is a set of partici-

pants.
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• Agreement (§ 4.2.4) is only guaranteed so long as all pairs of quorums have

at least one correct participant in their intersection.

• Termination (§ 4.2.3) is guaranteed only so long as at least one quorum is

correct, and under specific network conditions (see Def. 31.

Our Consensus protocols are designed to satisfy the objectives laid out in § 4.2.

4.4.2 The Algorithm

Our byzantine Paxos variant can be thought of as taking place in stages, which are

identified by ballots, to borrow Lamport’s terminology [83]. Ballots can be thought

of as natural numbers, and generally increase with time. We’ll go over how ballot

numbers are generated later.

We assume all correct participants echo all messages to all other correct partic-

ipants. This ensures that if one correct participant receives a message, all correct

participants receive that message.

Finally, we assume all participants ignore all messages for any ballot except

the highest they’ve seen. It may be possible to optimize an implementation with

additional messages pertaining to outdated ballots, but these are not strictly nec-

essary for correctness. For instance, a participant might inform a proposer that

their proposal has been ignored because of its ballot number, and the proposer

might then know to try again later.
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For Ballot b

The actions in each ballot are broken down into three phases, traditionally called

Phase 1a, Phase 1b, and Phase 2a [84]. Each has a corresponding subtype of

message.

1a: A client proposes a value v by creating a new ballot number b, and sending a

1a message containing v and b to all participants.

1b: Upon receiving a 1a message, a participant sends a 1b message, which contains

the 1a, and the 2a message with the highest ballot number that the participant

has ever seen (if any). In homogeneous byzantine Paxos, a 1b, only the highest

ballot 2a message matters, so the 1b message need not include any others.

We say that a 1b has value v′ if it contains a 2a with value v′, or it contains

no 2a, and references a 1a which contains v′.

We say that a 1b has ballot b if it contains a 1a which contains b.

2a: If a participant receives 1b messages all with ballot b and value v′, signed by a

quorum of participants, it generates a 2a message, referencing all the 1b messages

with b and v′, which is said to have value v′. This is equivalent to Lamport’s

accepting a value [85]. It then sends the 2a message to all observers.

If an observer receives 2a messages all with ballot b and value v′, signed by a

quorum of participants, it decides value v′.
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Multiple Ballots

It is possible for a ballot to fail : after some number of ballots, it may be the case

that all messages have arrived, the protocol above doesn’t require any participant

to send any further messages, and yet no observer has yet decided. For this reason,

it is necessary to start a new ballot when it is clear an old one isn’t going well.

One way to handle this is to leave the responsibility at the clients: if a client

proposes a ballot, and observers don’t decide for a while, then the client should

propose again. Randomized exponential backoff can be used to allow clients to

adapt to the unknown delay in a semi-synchronous network without flooding the

system.

Another technique is to have participants propose after a ballot has failed: If

a participant assembles a quorum of 1b messages in ballot b, and they do not all

feature the same value, and it hasn’t seen any higher ballot, then it proposes a new

ballot, using one of the values from one of the 1b messages it has seen. Likewise,

2a messages could be sent to participants, so that if a participant assembles a

quorum of 2a messages in ballot b, and they do not all feature the same value, and

it hasn’t seen any higher ballot, it proposes a new ballot, using one of the values

from one of the 2a messages it has seen.
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4.5 Heterogeneous Consensus

Heterogeneous Consensus3 is a consensus algorithm (§ 4.2) based on Leslie Lam-

port’s byzantine-fault-tolerant [82] variant of Paxos [83, 84] as described in § 4.4.

4.5.1 Heterogeneity

Most consensus protocols are homogeneous in 3 ways:

• Homogeneous failures : Protocols tend to tolerate either crash [87] or byzan-

tine [82] failures. Traditional protocol and algorithm descriptors include

“byzantine-fault-tolerant” and “crash-fault-tolerant.”

• Homogeneous participants : Usually, protocols aren’t specified in terms of

which participants can fail, just how many. For instance, we often say that

a protocol tolerates f failures out of n participants. Any f ; all participants

are the same.

• Homogeneous observers : Like most consensus protocols, our byzantine Paxos

variant (§4.4) assumes a set of quorums, Q, which is universal, and provides

no guarantees if failures violate certain assumptions about those quorums.

For instance, it assumes that there will always be a correct participant in the

intersection of any two quorums.

Heterogeneous Consensus is different in 3 ways:

3 Heterogeneous Consensus is a different algorithm from an earlier project with a similar
name, Heterogeneous Fast Consenus [130], which solves the related fast consensus [138] problem:
it tolerates fewer failures, but has faster best-case decision latency than regular consensus.
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• Heterogeneous failures : A homogeneous protocol which can tolerate 2 byzan-

tine failures can tolerate 1 byzantine and 1 crash. Some protocols, how-

ever, are able to tolerate 1 byzantine and one crash, but not 2 byzantine.

Such a protocol has a mixed failure model [134]: it is neither a homo-

geneous byzantine-fault-tolerant protocol, nor a homogeneous crash-fault-

tolerant protocol.

• Heterogeneous participants : We might imagine a system in which we expect

that either Alice and Bob fail, or Carol fails, but not Alice and Carol.

That would not be homogeneous.

• Heterogeneous observers : We might imagine a world in which different ob-

servers have different opinions about what failures are possible. They might

have different quorums, and different assumptions. Some observers might

assume incorrectly, while others might assume correctly.

4.5.2 Assumptions and Definitions

Most of our assumptions are the same as in the homogeneous case (§ 4.4.1). In

order to make this section (§ 4.5) a complete description, we repeat them here:

• Participants are servers which both send and receive messages as part of

the protocol. These are equivalent to Lamport’s acceptors [85].

• Clients are machines which propose potential values for consensus. These

are similar to Lamport’s proposers [85].

• Observers receive messages from the participants. Observers decide on

values. These are Lamport’s learners [85].
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• Participants can send messages to each other over the network, and digital

signatures make messages unforgeable.

• Messages can reference other messages by collision-resistant hash: if one

message contains a hash of another, it uniquely identifies the message it is

referencing [112].

• Safe participants act only as specified by the protocol.

• Live participants eventually send messages.

• Correct participants are safe and live.

• Faulty participants are not correct.

• Any message from one correct participant to another correct participant

eventually arrives.

We make two additional assumptions in the Heterogeneous case, which are not in

the homogeneous one:

• Each observer a has a set of quorumsQa, each of which is a set of participants.

• The quorums are valid for the Condensed Observer Graph (§ 4.3.5).

4.5.3 Valid Quorums

The notion of quorums being valid for a COG replaces the homogeneous assump-

tion that every pair of quorums have a non-byzantine intersection. We assume that

each observer a has a set of quorums Qa, each of which is a set of participants.

However, not all choices of quorums are compatible for all COGs (§ 4.3.5). Recall

that in the homogeneous case, we assumed:
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• Agreement (§ 4.2.4) is only guaranteed so long as all pairs of quorums have

at least one correct participant in their intersection.

• Termination (§4.2.3) is only guaranteed so long as all participants in at least

one quorum are correct, and under specific network conditions (Def. 31).

There are similar requirements for the heterogeneous case. Recall that REALITY

is a specific universe representing the set of participants that are actually safe and

the set that are actually live (§ 4.3.1).

Liveness Requirement

All universes in which an observer a wants to agree with itself (or any other ob-

server, by Lemma 6) feature at least one live quorum. We say an observer is live

if one of its quorums is live:

Def. 12.

Live(x) , 〈 , `〉 = REALITY ∧ ` ∈ Qa

Under certain network conditions (Def. 31), live observers will eventually de-

cide.

Safety Requirement

In all universes in which observers a and b want to agree, all of their live quorums

must intersect on at least on safe participant.
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Def. 13. 

〈s, `〉 ∈ a−b

∧ qa ∈ Qa

∧ qb ∈ Qb

∧ qa ⊆ `

∧ qb ⊆ `


⇒ qa ∩ qb ∩ s 6= ∅

Picking Good Quorums

Given a COG, a safe choice of quorums would be any live set from any edge to

which the observer connects:

Qa =

{
` 〈s, `〉 ∈ a−b ∈ COG

}

4.5.4 Heterogeneous Objectives

Intuitively, the purpose of any consensus is still for all the observers to decide on

one and only one value, and for them all to decide on the same value. However, we

now face the challenge of redefining our objectives, given that the real universe,

which is to say the set of failures that actually happen, may not be in all the edges

of the COG: not all observers may end up agreeing.

Entangled

We say two observers are entangled if their failure assumptions correctly antici-

pated the set of failures that actually happen:

155



Def. 14.

Entangled(a, b) , REALITY ∈ a−b

Entangled observers are guaranteed agreement (§ 4.2.4).

Correct

We say an observer is correct if it is live and entangled with itself.

Def. 15.

Correct(a) , Live(a) ∧ Entangled(a, a)

The formal requirements of Heterogeneous Consensus are as follows (differences

from heterogeneous consensus are in blue):

• Termination: Every correct observer decides some value (§ 4.2.3).

• Non-Triviality: No observer can decide on any value unless that value has

been proposed (§ 4.2.1).

• Integrity: Every correct observer decides at most one value (§ 4.2.2).

• Agreement: If 2 entangled observers each decide, they decide the same

value.

4.5.5 Key Idea

Conceptually, within each round of Heterogeneous Consensus, we run a round of

byzantine Paxos for each observer, but allow 2a data from other instances in 1b

messages. The 2a from other instances means that each instance won’t decide
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contrary to the other ones, unless there are byzantine failures which would allow

the relevant observers to disagree. For efficiency, our instances share most of their

messages. In fact, when all edges in the COG are the same, all messages are shared

by all instances: Heterogeneous Consensus reduces to byzantine Paxos.

Intuitively, 1b messages represent an attempt to gather a quorum of partici-

pants who have either never seen a value before, or can show that no different value

can already have been decided. By including 2a messages from other observers’

rounds, we require that, before any observer can gather a quorum, it must show

that the participants in that quorum show that no different value can already have

been decided by any observer. There is an important exception: if a participant

can be proven to have violated the protocol (a byzantine failure), then it may mean

two observers do not have to agree, and they can ignore each other’s 2as.

At a slightly more detailed level, each participant keeps track of 2a messages it

has formed for each observer, and considers an old 2a Buried (Def. 27) only if it can

be sure a quorum of participants have seen a different 2a with a higher ballot. Each

1b message, then, is only valid (Def. 30) if all the sender’s unburied 2a messages

have the same value as the 1b message. There is one crucial exception: byzantine

participants can be caught (Def. 24) disobeying the protocol, and demonstrate that

observers are definitely not entangled (Def. 14), in which case 2as for one observer

will not affect 1b messages for the other.

There are a couple of other differences, which make Heterogeneous Consensus

easier to analyze:

• All messages have the same ballot and value as the “most recent” 1a message.

• All messages (transitively) reference all prior messages.
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• Participants can only form a 2a message if they sent one of the 1b messages

that goes into it.

4.5.6 Messaging

Participants send messages to each other. We assume a message between cor-

rect participants sent eventually arrives. Correct participants echo all messages

sent and received to all other participants, ensuring that if one correct participant

receives a message, all correct participants eventually receive it. When safe partic-

ipants receive a message, they and send any resulting messages (specified by the

protocol) atomically: they do not receive more messages between sending results to

various other participants. In addition, when safe participants receive a message,

and they’ve already received a message with a higher ballot number, they retain

the message (reference it in future messages), but do not act on it.

Each message x contains some kind of cryptographic signature allowing anyone

to identify the signer, or signator, written Sig(x)

Def. 16.

Sig(x : message) , the participant that signed x

We can define Sig over sets, to mean the set of signators of the messages:

Def. 17.

Sig(x : set) ,

{
Sig(m) m ∈ x

}

Furthermore, each message x carries references to 0 or more other messages,

x.refs. These references are by hash, ensuring no cycles in the reference graph, and
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that it’s possible to know exactly when one message references another [112]. Cor-

rect participants delay receipt of any message until they have received all messages

it references. This ensures they receive, for example, a 1a for a given ballot before

receiving any 1bs for that ballot. Whenever a correct participant sends a message,

it includes in that message’s references the most recent message it has sent, and

any messages it received since sending it.

Each message also has a unique identifier, and an identifiable type: 1a, 1b, or

2a.

1a

A 1a message x has 2 type-specific fields:

• x.value is a proposed value. We assume these are valid (invalid values must

be ignored).

• x.ballot is a natural number specific to this proposal.

We assume that:

Def. 18.

x.ballot = y.ballot⇒ x = y

This can be accomplished by including signature information in the least sig-

nificant, say, 256 bits of the ballot number.
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1b

A 1b message has no type-specific fields. A correct participant sends a 1b message

when it receives a 1a message with a ballot number higher than any ballot number

of any message it has ever received.

2a

A 2a message x has one type-specific field:

• x.obs identifies a specific observer.

4.5.7 Decisions

An observer decides when it has observed a set of 2a messages with the same

ballot, sent by a quorum of participants. We call such a set a decision.

Def. 19.

Decisiona(qa) , Sig(qa) ∈ Qa ∧ ∀{x, y} ⊆ qa. b(x) = b(y) ∧ (x.obs = a) ∧ (x : 2a)

Although decisions are not messages, applications might send decisions in other

messages as a kind of “proof of consensus.” This is exactly how the Heterogeneous

Consensus Integrity Attestations work in Charlotte (§ 4.9.1)
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4.5.8 Machinery

In order to describe the Heterogeneous Consensus protocol, we require some math-

ematical machinery.

Transitive References

Each message x carries with it some set of references x.refs to prior messages. We

define Tran(x) to be the transitive closure of these references, so all the messages

in the “causal past” of x.

Def. 20.

Tran(x) , {x} ∪
⋃

m∈x.refs

Tran(m)

Get1a

It is useful to refer to the 1a that started the ballot of a message. For a 1a this is

itself, and for any other message it is simply the highest ballot number 1a in its

transitive references.

Def. 21.

Get1a(x : 1a) , x

Get1a(x : 1b or 2a) , Get1a(Tran(x)− {x})

Get1a(x : set) , Get1a(m)
m ∈ x

∧ ∀z ∈ x. b(Get1a(z)) ≤ b(Get1a(m))
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Ballot Numbers

The ballot number of a 1a is listed in a field of the message, and the ballot number

of anything else is the highest ballot number among the messages it references.

Def. 22.

b(x) = Get1a(x).ballot

Value

Likewise, the value of a 1a is listed in a field of the message, and the value number of

anything else is the value of the highest ballot 1a among the messages it references.

Def. 23.

V(x) = Get1a(x).value

Caught

Some behavior can create proof that a participant is byzantine. We say that a

participant p is Caught in a message x if the transitive references of the messages

include evidence such as two messages, m and m′, both signed by p, in which

neither is featured in the other’s transitive references (correct participants reference

all prior messages).

Def. 24.

Caught(x) ,


Sig(m)

{m,m′} ⊆ Tran(x)

∧ Sig(m) = Sig(m′)

∧ m 6∈ Tran(m′)

∧ m′ 6∈ Tran(m)
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4.5.9 Connected

When some participants are proven to be byzantine, it is clear that some observers

are not connected in the COG, meaning there are no universes in the edge between

them in which no “safe” participants are proven byzantine. It is clear that discon-

nected observers may not agree, and so messages which are “for” a specific observer

(2a) will have some implications only for observers that are still connected.

Def. 25.

Cona(x) ,

 b
〈s, 〉 ∈ a−b ∈ COG

∧ s ∩ Caught(x) = ∅


Quorums in Messages

Messages of type 2a reference quorums of messages with the same value and ballot.

Note that the definition of these quorums depends on the definition of valid, which

we define later (Def. 30).

A 2a’s quorums are formed from valid 1b messages with the same ballot and

value. However, the validity of a 1b depends on the observer.

Def. 26.

q(x : 2a) ,


m

m : 1b

∧ validx.obs(m)

∧ m ∈ Tran(x)

∧ b(m) = b(x)
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Buried

A 2a can become irrelevant if, after a time, an entire quorum have seen 2as with

different values and higher ballot numbers. We call such a 2a Buried (in the context

of some later message):

Def. 27.

Buried(x : 2a, y) ,



Sig(m)

m ∈ Tran(y)

∧ z : 2a

∧ {x, z} ⊆ Tran(m)

∧ z.obs = x.obs

∧ V(z) 6= V(x)

∧ b(z) > b(x)



∈ Qx.obs

Well-Formedness

No 2a should have an invalid quorum upon creation. Furthermore, no participant

should create a 2a unless it sent one of the 1bs in the 2a.

Similarly, no 1b should reference any other message with the same ballot num-

ber besides a 1a (correct participants make 1bs as soon as they receive a 1a).

Participants should ignore messages that are not well formed.

Def. 28.

∀x : 1b, y. (y ∈ Tran(x)) ∧ (x 6= y 6= Get1a(x)) ⇒ (b(y) 6= b(x))

∧ ∀x : 2a. q(x) ∈ Qx.obs ∧ Sig(x) ∈ Sig(q(x))
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Connected 2as

Entangled observers must agree, but observers that are not connected (as of any

message) are not entangled, so they need not agree. A 1b message includes a 2a

message, in a sense, to demonstrate that some observer may have decided some

value. For observer a, it can be useful to find the set of 2a messages from the same

sender as a message x (and sent earlier) which are still unburied, and for observers

connected to a. The 1b should not be used to make any new 2a messages for

observer a that have values different from these 2a messages.

Def. 29.

Con2asa(x) ,


m

m : 2a

∧ m ∈ Tran(x)

∧ Sig(m) = Sig(x)

∧ m.obs ∈ Cona(x)

∧ ¬Buried(m,x)


Valid 1bs

Participants send a 1b message whenever they receive a 1a message with a higher

ballot number than they’ve yet seen. However, this does not mean that the 1b’s

value (which is the same as the 1a’s) will agree with that of 2as the participant

has already sent. We call a 1b message valid (with respect to an observer) when

its value agrees with that of unburied 2as the participant has sent.

Def. 30.

valida(x : 1b) , ∀m ∈ Con2asa(x). V(x) = V(m)
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4.5.10 The Heterogeneous Consensus Protocol

Like our byzantine Paxos variant (§4.4), Heterogeneous Consensus can be thought

of as taking place in steps, which are called (or identified by) ballots, to borrow

Lamport’s terminology [83]. Ballots can be thought of as natural numbers, and

generally increase with time (§ 4.5.10.

Differences from the homogeneous protocol (§ 4.4) are in blue.

For Ballot b

The actions in each ballot are broken down into three phases, traditionally called

1a, 1b, and 2a [84].

1a: A client proposes a value v by creating a new ballot number b, and sending a

1a message containing v and b to all participants.

1b: Upon receiving a 1a, a participant sends a 1b, which references all messages

it has ever received (transitively).

2b: If a participant receives a 1b message m, and has never received a message

with a higher ballot number, it creates a 2a m′ for each observer, and if m′ is

well-formed (Def. 28), and if m ∈ q(m′.obs), it sends m′ to all participants.

If an observer a receives 2a messages for observer a all with ballot b and value

v′, signed by one of observer a’s quorums of participants, then observer a decides

value v′.
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Multiple Ballots

Just as in the homogeneous case, it is possible for a ballot to fail : after some

number of ballots, it may be the case that all the participants are done, and no

one has yet decided. For this reason, it is necessary to start a new ballot when it

is clear an old one isn’t going well.

One way to handle this is to leave the responsibility at the clients: if a client

proposes a ballot, and observers don’t decide for a while, then the client should

propose again. Randomized exponential backoff can be used to allow clients to

adapt to the unknown delay in a semi-synchronous network without flooding the

system.

Another way is to have participants propose after a ballot has failed: when

sufficiently many 1b messages for a given ballot are collected, but they are all

invalid, a participant could send a new 1a. There are subtleties to ensuring liveness,

which we discuss in § 4.6.7.

Ballot Numbers

There are well-established schemes for ensuring a unique ballot number for each

proposal, and making these generally increase over time. In our implementation,

ballot numbers are lexicographically ordered pairs featuring the current time, and

the client signature of the hash of the value for that ballot. The latter ensures no

two 1as with the same ballot have different values. The former ensures that ballot

numbers generally increase with time.
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To prevent clients from entering artificially high ballot numbers (which could

be undesirable), each participant delays the receipt of any received message un-

til its own clock exceeds the message’s ballot number’s time. If all clocks are

synchronized, the “best” a client can do (in some sense) is to use the correct time.

4.6 Correctness

4.6.1 Useful Lemmas

First, we build up some useful facts about Heterogeneous Consensus.

For example, any two messages with the same ballot have the same 1a, and

thus the same value.

Lemma 7.

b(x) = b(y)⇒ Get1a(x) = Get1a(y) ∧ V(x) = V(y)

Proof. Follows from the ballot assumption (Def. 18), and the definition of Get1A

(Def. 21) and V (Defnition Def. 23).

Con() and Caught()

No correct participant can be caught in any message.

Lemma 8.

p is correct ⇒ p 6∈ Caught(x)
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Proof. By the definitions of correct behavior, the unforgeability of signatures, and

the definition of Caught (Def. 24).

Strictly later messages always catch a superset of participants compared to

earlier messages.

Lemma 9.

m ∈ Tran(x)⇒ Caught(m) ⊆ Caught(x)

Proof. Follows from the definition of Caught (Def. 24) and Tran (Def. 20).

As a result, strictly later messages connect subsets of observers. In a sense,

once observers are disconnected, they can’t reconnect: the failures have already

occurred.

Lemma 10.

m ∈ Tran(x)⇒ Cona(x) ⊆ Cona(m)

Proof. Follows from the definition of Con (Def. 25) and Lemma 9.

Con() is actually a partial equivalence relation. That means, as of some message

x, if a is connected to b, then b is connected to the same set of observers as a.

Lemma 11.

b ∈ Cona(x)⇒ Conb(x) = Cona(x)

Proof. Follows from the definition of COG and Con (Def. 25).

Furthermore, as of message x, if a is connected to b, then b is connected to a.
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Lemma 12.

a ∈ Conb(x)⇒ b ∈ Cona(x)

Proof. By the definition of Con (Def. 25),

∃〈s, `〉 ∈ b−a ∈ COG ∧ s ∩ Caught(x) = ∅

COG is undirected, so a−b = b−a.

⇒ 〈s, `〉 ∈ a−b ∈ COG

⇒ b ∈ Cona(x)

As a result, if an observer is connected to anyone, it must be connected to itself.

Lemma 13.

Cona(x) 6= ∅ ⇒ a ∈ Cona(x)

Proof. By Lemma 12 and Lemma 11.

If a message x references two quorums’ messages, and the observers for those

quorums are still connected as of x, then there must be an uncaught participant

who signed at least one message in each.

Lemma 14.

Sig(qa) ∈ Qa

∧ Sig(qb) ∈ Qb

∧ qa ∪ qb ⊆ Tran(x)

∧ b ∈ Cona(x)


⇒ ∃ma ∈ qa,mb ∈ qb, p 6∈ Caught(x). Sig(ma) = Sig(mb) = p
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Proof. By the definition of Con (Def. 25):

∃〈s, 〉 ∈ a−b ∈ COG ∧ s ∩ Caught(x) = ∅

Therefore, by the definition of COG and quorum properties:

Sig(qa) ∩ Sig(qb) ∩ s 6= ∅

∴ ∃p ∈ Sig(qa) ∩ Sig(qb) ∩ s

p ∈ Sig(qa)⇒ ∃ma ∈ qa.Sig(ma) = p

p ∈ Sig(qb)⇒ ∃mv ∈ qb.Sig(mb) = p

p ∈ s⇒ p 6∈ Caught(x)

4.6.2 1bs and 2as

The set of 2as connected to a given message is relative to the observer. However,

connected observers will get the same set of 2as.

Lemma 15.

a ∈ Conb(x)⇒ Con2asa(x) = Con2asb(x)

Proof. By Lemma 11:

Cona(x) = Conb(x)

So, noting that Buried(x, y) is independent of the observer (Def. 27), by the defi-

nition of Con2as (Def. 29):

Con2asa(x) = Con2asb(x)

171



It follows that if two observers are connected, a 1b that is valid for one of them

will be valid for the other as well:

Lemma 16.

a ∈ Conb(x)⇒ valida(x) = validb(x)

Proof. Follows from Lemma 15, and the definition of valid (Def. 30).

4.6.3 Entangled Observers

If two observers are entangled, then for all messages that are actually sent, they

are connected.

Lemma 17.

Entangled(a, b)⇒ a ∈ Conb(x)

Proof. By the definition of Entangled (Def. 14):

REALITY = 〈s, `〉 ∈ a−b

Here s represents the set of correct participants (Definition of REALITY). There-

fore, by Lemma 8:

s ∩ Caught(x) = ∅

So by the definition of Con (Def. 25):

a ∈ Conb(x)

Entanglement is not really ordered.
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Lemma 18.

Entangled(a, b)⇒ Entangled(b, a)

Proof. By the definition of entangled (Def. 14):

REALITY ∈ a−b

COG is undirected, so a−b = b−a. Therefore:

REALITY ∈ b−a

And so:

Entangled(b, a)

Entanglement is also transitive. If a and b are entangled, and b and c are

entangled, then so are a and c.

Lemma 19.

Entangled(a, b) ∧ Entangled(b, c)⇒ Entangled(a, c)

Proof. Let 〈s, `〉 = REALITY. By the definition of entangled (Def. 14):

〈s, `〉 ∈ a−b

∧ 〈s, `〉 ∈ b−c

By the definition of condensed (Def. 11):

〈s ∪ x, ` ∪ `〉 ∈ a−c

∴ 〈s, `〉 ∈ a−c
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And so by the definition of entangled (Def. 14):

Entangled(a, c)

It follows that if an observer is entangled to anyone, it must also be entangled

with itself.

Lemma 20.

Entangled(a, b)⇒ Entangled(a, a)

Proof. By Lemma 18:

Entangled(b, a)

And so by Lemma 19:

Entangled(a, a)

If an observer observes a quorum of 2as with the same ballot, then any 2as for

an entangled observer with a higher ballot must have the same value.

Lemma 21. 

Entangled(a, b)

∧ Decisiona(qa)

∧ w : 2a

∧ w.obs = b

∧ b(w) > b(qa)


⇒ V(qa) = V(w)

Proof. As ballot numbers are natural numbers, we can prove this by induction

on b(w).
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Base Case: for b(w) ≤ b(qa), Lemma 21 trivially holds.

Induction: Assume Lemma 21 holds for all values of w < w′. We now show that

it holds for w′.

By well-formedness (Def. 28),

q(w′) ∈ Qb

By Lemma 17:

b ∈ Cona(w
′)

By Lemma 14,

∃ma ∈ qa,mw ∈ q(w′), p 6∈ Caught(w′).Sig(ma) = Sig(mb) = p

By the definition of Well-formed (Def. 28):

∀(r : 2a) ∈ Tran(mw).b(r) < b(mw)

By the definition of q (Def. 26), mw is valid. By Lemma 17, b ∈ Cona(w
′), and so

by the definition of valid (Def. 30), either ma ∈ Con2asb(mw), in which case:

V(ma) = V(qa) = V(w′) = V(mw)

or Buried(ma,mw). However, by the definition of buried (Def. 27):

∃(r : 2a) ∈ Tran(mw).r.obs = a ∧ (b(r) > b(ma)) ∧ (V(r) 6= V(ma))

By Lemma 20, Entangled(a, a), so by our induction hypothesis, no such r exists.

Therefore, ma is not buried, so:

V(qa) = V(w′)
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It follows that if an observer is entangled with anyone, and observes a quorum

of 2as with the same ballot, then none of those 2as can ever be buried.

Lemma 22.

Entangled(a, b) ∧ Decisiona(qa) ∧ x ∈ qa ⇒ ¬Buried(x,w)

Proof. By the definition of Buried (Def. 27), there would have to exist a 2a for the

same observer with a different value and a greater ballot number than b(qa). By

Lemma 20, a is entangled with itself, so by Lemma 21, no such 2a exists.

4.6.4 Non-Triviality

No observer can decide on any value unless that value has been proposed (§4.2.1).

Theorem 7.

Decisiona(qa)⇒ ∃x : 1a.V(x) = V(qa)

Proof. By the definition of Get1A for Decisions (Def. 21),

Get1a(qa) : 1a ∧ V(Get1a(qa)) = V(qa)

4.6.5 Agreement

If two entangled observers (a and b) each decide, they decide the same

value (§ 4.2.4).
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Theorem 8.

Entangled(a, b) ∧ Decisiona(qa) ∧ Decisionb(qb)⇒ V(qa) = V(qb)

Proof. If b(qa) = b(qb), then by the ballot assumption (Def. 18, and definition of

V (Def. 23): V(qa) = V(qb).

Otherwise, without loss of generality, assume b(qa) < b(qb). By the definition

of decision (Def. 19):

∃m : 2a ∈ qb.V(m) = V(qb)

By Lemma 21:

V(m) = V(qb) = V(qa)

4.6.6 Integrity

An observer that is entangled with itself decides at most one value.

Theorem 9.

Entangled(a, a) ∧ Decisiona(qa) ∧ Decisiona(qb)⇒ V(qa) = V(qb)

Proof. Follows directly from Agreement (Theorem Thm. 8).

4.6.7 Termination

Consensus eventually terminates.
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Network Assumption

Heterogeneous Consensus, and indeed our byzantine Paxos variant, rely on a very

specific network assumption to guarantee termination. However, it is possible to

use artificial delays to reduce other network assumptions to this one (§ 4.6.7).

Def. 31. We assume:

• Eventually, there will be 13 consecutive periods of any duration, with no time

in between, numbered 0 through 12, such that any message sent before one

period begins is delivered before it ends.

• If a correct participant sends a message in between receiving two messages

(m and m′), and m is delivered in some period n, then the message is sent

in period n.

• No 1as will be delivered during any of the 13 periods except three: x , y, and

z.

• x is delivered to a correct participant in period 0.

• y is delivered to a correct participant in period 4.

• z is delivered to a correct participant in period 9.

• V(y) = V(z) = the value of the highest ballot 2a known to any correct par-

ticipant at the end of period 3.

• b(x) < b(y) < b(z).

• b(x) is greater than any ballot number of any message delivered before period

0.

These assumptions are only necessary for termination, not any safety property.
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Proof

Theorem 10. After period 12, if a is Correct (Def. 15), ∃qa.Decisiona(qa)

Proof. Periods 0-3 are sufficient for all correct participants to send 1bs (and 2as)

in response to any 1a delivered prior to period 0.

By the end of period 1, x will be delivered to all correct participants. They

will therefore cease generating 2as for any ballot number < b(x).

By the end of period 3, all correct participants will have received all 1bs and

2as generated by correct participants with ≤ b(x). This means that any correct

participant’s prior 2a is received by all correct participants. If there are no prior

2as, there will now be 2as with value V(x).

By the end of period 5, y will be delivered to all correct participants. They

will then send 1bs to each other.

By the end of period 8, all 2as generated by correct participants with values

6= V(y) will be buried.

By the end of period 10, z is delivered to all correct participants. All correct

participants must respond with valid 1bs.

By the end of period 11, all correct participants receive a quorum (there is a

correct quorum, by the definition of Correct) of valid 1bs, and so produce 2as.

By the end of period 12, a quorum of 2as with ballot b(z) have been delivered.

These form qa.
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Introducing Artificial Delays in a Semi-Synchronous Network

A Semi-Synchronous network is one in which there exists some (possibly unknown)

constant duration ∆ such that all messages sent arrive within ∆. If the set of

proposers is finite (it could be limited to the set of participants in any observer’s

quorum), then each can be assigned specific times they are allowed to propose.

For example, if proposals include a timestamp, and all correct participants delay

receipt of a 1a until after that time, there could be a limited set of timestamps

each proposer is allowed to use.

These allowed times can be allocated in turns: each participant gets a span

of time during which they can propose, and no one else can, and these turns are

allocated in a round-robin fashion. If turns get exponentially longer with time

(from some pre-determined start time), then for any finite maximum message

delay ∆, and any finite maximum clock skew ∆′, the network assumption will

eventually be met during the turn of some correct participant, with a turn of

duration > 13(∆ + ∆′). The correct participant need only propose once, wait a

third of its turn, and then propose twice more, using the value of its highest known

2a.

4.7 Repeated Consensus

In maintaining, for instance, an ordered log, it is useful for observers to decide on

the value which goes in each slot, traditionally starting at slot 0, then 1, etc. In

general, one might want to prohibit filling a slot before a previous slot has been

filled. With homogeneous observers, one might say that 1a messages should be
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ignored unless they can show that consensus for the previous slot was reached.

For instance, a participant might ignore a 1a for slot n unless it references 2a

messages signed by a quorum of participants which share a ballot and a value

identified as belonging in slot n − 1. In other words, a participant can demand

proof of consensus for slot n− 1 before filling slot n (for n 6= 0).

Heterogeneous observers makes this concept more difficult. What if the pre-

vious slot has been filled for one observer, but not for another? What if they

are filled with different values for different observers? We describe a few possible

solutions:

4.7.1 Allow slots to be filled in any order.

Each consensus protocol for each slot is fully independent. This is easier to imple-

ment, technically correct, and probably acceptable for some applications.

4.7.2 A 1a for slot s is a 1a for slot s− 1.

Suppose each 1a for slot s > 0 is required to reference a 1a for slot s− 1. Further-

more, each correct participant delays receipt of each 1a until it has received and

acted on the 1as referenced. Other than that, we treat all slots independently.

No slot could be filled for any observer without consensus at least having begun

for all prior slots. This does not guarantee, however, that consensus has yet finished

for all prior slots. However, given termination (§ 4.2.3), it will finish, and so all

prior slots will be filled.
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This does not guarantee that the value decided in slot s references the value

decided in slot s− 1.

4.7.3 Keep track of proof of consensus per observer.

A client could put all known proofs for slot s − 1 in each 1a for slot s, and

participants only consider those observers in the 2a phase for the ballot that 1a

begins. This pushes the duty of tracking proofs of consensus onto the client.

Later 1a messages might feature more observers, thus enabling more observers

to achieve consensus for slot s.

This is compatible with the 1a for slot s references a 1a for slot s − 1 solu-

tion (§ 4.7.2).

4.8 Examples

In §4.5.1, we contrast Heterogeneous Consensus with traditional consensus in three

ways:

• Heterogeneous failures

• Heterogeneous participants

• Heterogeneous observers

We illustrate the advantages of heterogeneity through examples with all eight com-

binations of Heterogeneous or Homogeneous failures, participants, and observers.
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Figure 4.3: Fully Homogeneous Example: participants are shown as black circles,
and a quorum is shown as a shaded region.

4.8.1 Fully Homogeneous

Consider a traditional byzantine-tolerant consensus protocol (such as the one de-

scribed in § 4.4), with 4 participants, tolerating any 1 byzantine failure. Quorums

(for any observer) consist of any 3 participants. We illustrate this traditional

scenario in Fig. 4.3.

4.8.2 Heterogeneous Failures

Heterogeneous Consensus can express protocols wherein observers and participants

are homogeneous, but mixed failures [134] are allowed. For instance, consider a

protocol with 6 participants, tolerating at most 1 byzantine failure, and 1 addi-

tional crash failure. Quorums (for any observer) consist of any 4 participants. We

illustrate this scenario in Fig. 4.4.

Note that in order to tolerate 2 total failures, a homogeneous byzantine-fault-

tolerant consensus protocol would need at least 7 participants. Heterogeneity

spares the expense (in latency and resources) of an unnecessary additional par-

ticipant.
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Figure 4.4: Heterogeneous Failures Example: participants are shown as circles,
and a quorum is shown as a shaded region.

Figure 4.5: Heterogeneous Participants Example: Here, we draw one group of
participants as solid blue circles, and the other as hollow red circles. A quorum is
shown as a shaded region.

4.8.3 Heterogeneous Participants

Heterogeneous Consensus can express protocols wherein observers and failures are

homogeneous, but not all participants are the same. For instance, consider a

protocol with 6 participants, divided into two groups of 3. We tolerate up to 2

byzantine failures, but only so long as all failures are in one group. This makes

the participants heterogeneous: it matters which two participants fail. Quorums

(for any observer) consist of 3 participants from one group, and one participant

from the other. This scenario is illustrated in Fig. 4.5.

Note that in order to tolerate 2 total failures, a homogeneous byzantine-fault-

tolerant consensus protocol would need at least 7 participants. Heterogeneity

spares the expense (in latency and resources) of an unnecessary additional partici-
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Figure 4.6: Heterogeneous Failures and Participants Example: Here, we draw
one group of participants as solid blue circles, and the other as hollow red circles.
A quorum is shown as a shaded region.

pant. It is possible to express this kind of heterogeneity with quorums in byzantine

Paxos [85].

4.8.4 Heterogeneous Failures and Participants

Heterogeneous Consensus can express protocols wherein observers are homoge-

neous, but with mixed failures, heterogeneous participants. For instance, consider

a protocol with 8 participants, divided into two groups of 4. We tolerate up to 2

byzantine failures, and 1 additional crash failure, but only so long as all byzantine

failures are in one group, and at most 2 failures occur in the same group. This

makes the participants heterogeneous: it matters which participants fail. Quorums

(for any observer) consist of 3 participants from one group, and 2 participants from

the other. We illustrate this example in Fig. 4.6.

Note that in order to tolerate 3 total failures, a homogeneous byzantine-fault-

tolerant consensus protocol would need at least 10 participants. Heterogeneity

spares the expense (in latency and resources) of 2 unnecessary additional partici-

pants.
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To address a similar situation with homogeneous failures, we’d need still need

10 participants (to tolerate 2 byzantine failures in one group, and 1 in the other).

To tolerate 2 byzantine failures and one crash failure (so heterogeneous failures)

with homogeneous participants, we’d need 9 total participants. The additional

detail of heterogeneous participants spares the expense (in latency and resources)

of 2 unnecessary additional participants, as opposed to just heterogeneous failures.

4.8.5 Heterogeneous Observers

Heterogeneous Consensus can express protocols wherein observers have different

failure assumptions, but each assumes participants and failures are homogeneous.

This is the sort of scenario the original Ripple consensus protocol [123] tried to

address, although it lacks liveness [34].

Participant Disagreement

We discussed a participant disagreement example in § 4.3.2, and we expand upon

it here.

Suppose observers agree that they want to tolerate 1 byzantine failure out of

4 participants, but disagree about who the 4 relevant participants are. Suppose

there are 4 observers: 2 red and 2 blue, as well as 5 participants: 1 red, 1 blue,

and 3 black. The participants are illustrated in Fig. 4.7.

The red observers want to agree if there is at most 1 byzantine failure amongst

the red and black participants, even if the blue participant has failed. Likewise,

the blue observers want to agree if there is at most 1 byzantine failure amongst
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Figure 4.7: Membership Disagreement Example: Here, we draw one the blue
participant as a solid blue circle, the red participant as a hollow red circle, and the
black participants as black circles.

Figure 4.8: Membership Disagreement Observer Graph: Observers are drawn as
eyes, with darker blue observers on the left, and lighter, outlined red observers on
the right. Note that the edges are labeled with sets of different universes in which
the pair of observers want to agree. In each universe shown, byzantine failures
are marked with a demonic face. All the edges except the rightmost and leftmost
share the same label, in the middle.

the blue and black participants, even if the red participant has failed. The red

observers and blue observers acknowledge that they may disagree with each other

if a black participant fails, but otherwise they want to agree. Thus we draw the

observer graph (§ 4.3) in, Fig. 4.8.

For the red observers, quorums are any 3 red or black participants, while for the

blue observers, quorums are any 3 blue or black participants. Quorums are shown

in Fig. 4.9. Note that in order to tolerate 2 total failures, a homogeneous byzantine-
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Figure 4.9: Membership Disagreement Quorums: A quorum for the blue ob-
servers is shown in the light solid blue region, and a quorum for the red observers
is shown as a striped red region.

fault-tolerant consensus protocol would need at least 7 participants. Heterogeneity

spares the expense of 2 unnecessary additional participants.

Failure Disagreement

Alternatively, observers might disagree about the types of failures they expect.

Even if each observer expects homogeneous failures, observers’ expectations may

differ.

For example, consider a protocol with 5 participants. Two observers, called

blue, want to agree so long as there isn’t more than one failure, even if that failure

is byzantine. Another two observers, called red, want to agree so long as there

are no more than 2 crash failures, but accept that they may disagree if there is

a byzantine failure. The red observers and the blue observers want to agree if

there is no more than 1 crash failure, but accept that they may disagree if there

is a byzantine failure or more than 1 crash failure. Thus we draw the observer

graph (§ 4.3), in Fig. 4.10.

For the red observers, quorums are any 3 participants, while for the blue ob-

servers, quorums are any 4 participants. Quorums are illustrated in Fig. 4.11.
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Figure 4.10: Failure Disagreement Observer Graph Observers are shown as eyes,
with darker blue observers on the left, and lighter, outlined red observers on the
right. Note that the edges between each pair of observers are labeled with the set
of failures they want to tolerate. Crash (safe, but not live) failures are denoted
with a skull, and byzantine failures with a devil. All edges except the rightmost
and leftmost share a central label.

Figure 4.11: Failure Disagreement Example: A quorum for the blue observers is
shown in the light solid blue region, and a quorum for the red observers is shown
as a striped red region.

Note that in order to tolerate 2 total failures, a homogeneous byzantine-fault-

tolerant consensus protocol would need at least 7 participants. Heterogeneity

spares the expense (in latency and resources) of 2 unnecessary additional par-

ticipants.

4.8.6 Heterogeneous Observers and Failures

Heterogeneous Consensus can express protocols wherein observers have different

failure assumptions, and failures are heterogeneous, but participants are homoge-
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Figure 4.12: Heterogeneous Observers and Failures Observer Graph: Observers
are drawn as eyes, with darker blue observers on the left, and lighter, outlined red
observers on the right. Note that the edges between each pair of observers are
labeled with the set of failures they want to tolerate. Crash failures are denoted
with a skull, and byzantine failures with a devil. All edges except the rightmost
and leftmost share a central label.

Figure 4.13: Heterogeneous Observers and Failures Example: A quorum for the
blue observers is shown in the light solid blue region, and a quorum for the red
observers is shown as a striped red region.

neous. Consider a protocol with 12 participants, and 4 observers. Two observers,

called blue, want to agree so long as there isn’t aren’t more than 3 byzantine fail-

ures, and 1 additional crash failure. Another two observers, called red, want to

agree so long as there are no more than 1 byzantine failure, and 4 additional crash

failures. The red observers and the blue observers want to agree if there is no

more than 1 byzantine and 3 additional crash failures. They accept that they may

disagree otherwise. Thus we draw the observer graph (§ 4.3) in Fig. 4.12.

For the red observers, quorums are any 7 participants, while for the blue ob-

servers, quorums are any 8 participants. Example quorums are shown in Fig. 4.13.
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Note that in order to tolerate 5 total failures, a homogeneous byzantine-fault-

tolerant consensus protocol would need at least 16 participants. Heterogeneity

spares the expense (in latency and resources) of 4 unnecessary additional partici-

pants.

To simultaneously tolerate all observers’ worst fears, (3 byzantine and 2 addi-

tional crash failures), we’d need 14 participants. The additional detail of heteroge-

neous participants spares the expense (in latency and resources) of 2 unnecessary

additional participants, as opposed to just heterogeneous failures.

4.8.7 Heterogeneous Observers and Participants

Heterogeneous Consensus can express protocols wherein observers have different

failure assumptions, and participants are heterogeneous, but failures are homoge-

neous. Consider a protocol with 8 participants, and 4 observers. The participants

are divided into two groups of 4: blue and red.

All observers want to agree whenever at most 1 participant is byzantine. Two

observers, called blue, also want to agree with each other whenever at most 1 blue

and 2 red participants are byzantine. Two observers, called red, also want to agree

with each other whenever at most 1 red and 2 blue participants are byzantine.

Any 3 blue and 2 red participants form a quorum for the blue observers, and

any 2 blue and 3 red participants form a quorum for the red observers. Example

quorums are illustrated in Fig. 4.14.

In order to tolerate all the universes any observer believes possible, a consensus

with homogeneous observers would need at least one more participant. Taking
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Figure 4.14: Heterogeneous Observers and Participants Example: Here, we draw
one group as solid blue circles, and the other as hollow red circles. A quorum for
the blue observers is shown in the light solid blue region, and a quorum for the red
observers is shown as a striped red region.

Heterogeneous observers into account spares the expense of that unnecessary par-

ticipant.

Since a single observer can tolerate 3 total failures, a protocol with homoge-

neous participants would require at least 10 participants. Heterogeneity spares the

expense of 2 unnecessary additional participants.

4.8.8 Heterogeneous Observers, Failures and Participants

Heterogeneous Consensus can express protocols wherein observers have different

failure assumptions, and failures are homogeneous, and so are participants. Con-

sider a protocol with 9 participants, and 4 observers. The participants are divided

into 3 groups of 3: blue, black, and red.

All observers want to agree when at most 1 blue, 1 black, and 1 red participant

have crashed. 2 observers, called blue, want to agree with each other whenever

at most 1 blue participant has crashed, 1 black participant is byzantine, and all
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Figure 4.15: Heterogeneous Observers, Participants, and Failures Example: Here,
we draw one group as solid blue circles, and the other as hollow red circles. A
quorum for the blue observers is shown in the light solid blue region, and a quorum
for the red observers is shown as a striped red region.

the red participants are byzantine. 2 observers, called red, want to agree with

each other whenever at most 1 red participant has crashed, 1 black participant is

byzantine, and all the blue participants are byzantine.

Any 2 blue and 2 black participants form a quorum for the blue observers, and

any 2 red and 2 black participants form a quorum for the red observers. Example

quorums are illustrated in § 4.8.8.

For a fully homogeneous consensus to tolerate 4 byzantine failures would re-

quire 13 participants, so heterogeneity spares the cost of 4 additional unnecessary

participants.

4.9 Implementation

4.9.1 Charlotte

Since Heterogeneous Consensus is designed for cross-domain applications where dif-

ferent parties have different trust assumptions, it is well-suited for blockchain appli-
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cations. With the Charlotte framework (chapter 3), we built Fern Servers (§3.4.2)

that acted as participants, and a subtype of integrity attestation (§3.3.8) featuring

decision sets (Def. 19), as a “proof of consensus” for a given observer.

4.9.2 Meet

Recall that a meet Integrity Attestation is a subtype of two other types of Integrity

Attestation (§3.6.3). If an attestation of type α proves a block belongs in one data

structure, and an attestation of type β proves a block belongs in another data

structure, then an attestation of type αuβ proves the block belongs in both. Not

all types of integrity attestation have a natural meet.

Heterogeneous Consensus, however, provides an expressive language for ob-

servers to specify meet types: the observer graph (§4.3). If one group of observers

care about one data structure, and another group cares about another, then when

they want to commit a block to both, they need to specify the edges between the

two groups: the conditions under which they want the commit to be atomic.

To preserve maximum safety (but not maximum liveness), the quorum neces-

sary for an protocol with the meet type is the union of one quorum from each

component type. In other words, to make an observer decide with an integrity

attestation of type τruτb, you need all the participants it would take to make an

attestation of type τr and all the participants it would take to make an attestation

of type τb. With this construction, we can atomically commit a single block onto

multiple Heterogeneous Consensus chains.

To preserve maximum liveness, observers should simply not demand to agree

between the two groups. Each will commit blocks independently, and they will
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likely not agree (it’s not very safe). With this construction, Heterogeneous Con-

sensus neatly describes independent consensus protocols as a single protocol.

4.9.3 Charlotte Representation

We implemented a prototype of Heterogeneous Consensus as a Fern service. In-

tegrity attestations are specific to each observer’s assumptions. We use Charlotte

blocks as messages in the consensus protocol itself, so attestations can reference

messages demonstrating that consensus was achieved.

In our implementation, there is a separate light client that does not participate

in the consensus: it merely request an integrity attestation from a Fern server,

which acts as the client in the consensus protocol. Including receiving a request

from and sending an attestation to the light client, the process has a minimum

latency of 5 messages.

In our implementation, quorums representing trust configurations are encoded

as blocks. Each Heterogeneous Consensus blockchain includes a reference to such a

block in its root, ensuring everyone agrees on the configuration. To append a block

to the chain, a client requests an integrity attestation for some observer, specifying

proposed block and height. To propose one block be appended to multiple chains, a

client can request an integrity attestation that is the maximum safety meet (§3.6.3)

of the integrity attestations needed for both chains. The Fern servers then run a

round of consensus in which each quorum includes one quorum of the consensus

necessary for each chain.

For the purposes of demonstrating the Charlotte framework, our experiments

with Heterogeneous Consensus are symmetric: all observers want to agree under
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the same conditions. For instance, observers might trust 4 Fern servers to maintain

a chain, expecting no more than one of them to be byzantine. This is the only way

one can compare Heterogeneous Consensus with existing implementations.

4.9.4 Evaluation

In order to evaluate the feasibility of consensus-based blockchains, and multi-chain

blocks in Charlotte, we built several chains with Heterogeneous Consensus, and ran

5 types of experiments. With our artificial network latency of 100ms per message

send, the theoretical lower bound on consensus latency is 500 ms, and maximum

throughput per chain is 2 blocks/second. Each experiment recorded the latency

light clients experience in appending their own blocks to the chain, as well as

system-wide throughput. All experiments used single-core VMs with 8 GB RAM,

except as noted.

Single Chain

In these experiments, a client appends 2000 successive blocks to one chain. Mean

latency is 527 ms for a chain with 4 Fern servers and 538ms for 7 Fern servers.

Since the best possible latency is 500 ms, these results are promising. Overheads

include cryptographic signatures, verification, and garbage collection.

Parallel

As the darker green lines in Fig. 4.16 show, independent Heterogeneous Consensus

chains have independent performance. In these experiments, we simultaneously
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Figure 4.16: Heterogeneous Consensus Multichain and Parallel experiments. In
Parallel experiments, each chain operates independently (and has its own client).
In Multichain experiments, one client tries to append all blocks to all chains.
Optimal latency is 500 ms.

ran 1–4 independent chains, each with 4 or 7 Fern servers. In each experiment, a

client appends 2000 successive blocks to one chain. There is no noticeable latency

difference between a single chain and many chains running together. Throughput

scales with the number of chains (and inversely to latency). This scalability is

the fundamental advantage of a blockweb over forcing everything onto one central

blockchain.

Multichain shared blocks

Shared (joint) blocks facilitate inter-chain interaction (§ 3.6.3). In these experi-

ments, a single client appends 1000 shared blocks to 2–4 chains, each with 4 or 7

Fern servers. As the yellow lines in Fig. 4.16 show, latency scales roughly linearly

with the number of chains.
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Figure 4.17: Throughput of Heterogeneous Consensus under contention. 2–36
clients try to append 2000 blocks to just one chain. Optimal throughput is 2
blocks/sec.

Contention

In these experiments, all clients simultaneously contend to append 2000 unique

blocks to the same chain. We measured the blocks that were actually accepted

into slots 500–1500 of the chain. We used 2–36 clients, and chains with 4 or 7 Fern

servers, configured with 2 GB RAM. Like Byzantized Paxos [85], Heterogeneous

Consensus can get stuck under contention and occasionally requires a dynamic

timeout to automatically trigger a new round. Chain throughput is shown in

Fig. 4.17. Our chains, on average, achieved 1.88 blocks/sec throughput for 4

Fern servers and 1.85 blocks/sec for 7, not far from the 2 blocks/sec optimum.

Throughput does not decrease much with the number of clients.
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Figure 4.18: Throughput of Heterogeneous Consensus mixed-workload experi-
ment (4 Fern servers).

4.9.5 Mixed

These experiments attempt to simulate a more realistic scenario by including all 3

types of workload. 2–5 clients contend to append blocks onto either 2 or 7 chains,

each with 4 Fern servers. On each block, a client tries to append a shared block

to two random chains with probability 10% and otherwise tries appending to a

random single chain. The results are in Fig. 4.18. Throughput can be over 2.0

blocks/sec because multiple clients can append blocks to different chains in par-

allel. Mean throughput is 1.8 blocks/sec and 2.7 blocks/sec for 2 and 7 chains

respectively, which is expected because the 2-chain configuration has more con-

tention.

Heterogeneous Consensus scales horizontally with multiple chains running in

parallel. Furthermore, throughput does not decrease much with more clients in-

volved.
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This gives us ability to make progress even with lots of clients connecting to

the same chain concurrently. We also notice that, the number of Ferns servers

play major roles for the latency performance. With a small group of Fern servers,

Heterogeneous Consensus can almost reach 500 ms, which is the best we can get.

Although the latency increases linearly with respect to the number of Ferns, for

some applications, it is possible to break down big shared blocks into a set of

small shared blocks. For example, in § 3.6.5, we discuss how to break a k-chain

transaction into a log k-depth graph whose nodes are small two-chain transactions.

By following the same strategy, the latency would be reduced to t × log k, where

t is the average latency for completing a 2-chain block. Since our Heterogeneous

Consensus implementation is just a prototype, we believe that with further efforts

in optimization, average latency performance can be improved.

4.10 Future Work

We have generalized what it means to have Non-Triviality, Integrity, Agreement

and Termination in a heterogeneous setting, and designed and implemented a

consensus algorithm that meets these properties with minimum theoretical latency.

However, Heterogeneous Consensus is far from perfect. Here are a few ways it can

almost certainly improved, without altering its core concepts.

4.10.1 Network Assumption and Termination

While Paxos and PBFT are semi-synchronous consensus protocols [83, 30], recent

advances in cryptography have made fully asynchronous, probabilistically termi-
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nating consensus protocols viable [103, 3]. These have the advantage of never

needing to insert artificial delays in order to guarantee termination. It is possible

that Heterogeneous Consensus could be adapted to this setting, using a similar

“shared coin flip” mechanism, however it may require more interesting cryptogra-

phy to deal with non-uniform quorums.

Even in the semi-synchronous setting, there are almost certainly better tim-

ing strategies than those we present (§ 4.6.7). Optimizations like the leader/view

change used in pbft [30] or the batching used in BFT-SMart [21] could greatly

improve performance.

4.10.2 Bandwidth

If each message bounces off of each participant, and each message is sent to each

participant, and each phase features each participant sending a message, then

the communication overhead is O(n3) messages. While the Charlotte architecture

allows each message to avoid copying the proposed value, that can still be a lot of

overhead. A fairly naive optimization would be to allow participants not to bounce

all messages they receive, and instead request them only if the original sender didn’t

broadcast the message fast enough. This could reduce communication overhead to

O(n2), in the absence of Byzantine failures.

Using advanced cryptographic techniques, protocols like Hot-Stuff achieve con-

sensus in Q(n) bandwidth overhead. It may be possible to adapt Heterogeneous

Consensus with some of these optimizations.
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4.10.3 Programming

Implementations like BFT-SMart [21] have put a great deal of effort into optimiz-

ing their implementations, discovering better data structures and communication

protocols along the way. Our implementation is for from optimal. Better memory

layout, data structures, and even parallelism and concurrency control techniques

are certainly possible.

4.11 Related Work

Heterogeneous Consensus is based on Leslie Lamport’s byzantine-fault-tolerant

variant [85] of Paxos [83, 84]. Paxos is usually implemented as heterogeneous

in all three ways (§ 4.5.1). However, byzantine Paxos, as Lamport defined it, is

heterogeneous in at least 1 way:

• Heterogeneous participants : Paxos uses quorums. Not all participants need

be of equal worth, but in some sense, all quorums are.

Furthermore, as we’ve defined byzantine Paxos (§ 4.4), it is heterogeneous in an-

other way:

• Heterogeneous failures : byzantine paxos can have mixed failures [134] so long

as our assumptions about quorum intersections featuring a safe participant

and at least one quorum being live are met.

Ripple’s Cobalt protocol [94] (which addresses issues in Ripple’s earlier consen-

sus protocol [123]) heterogeneous observers:
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• Heterogeneous observers : Each observer specifies a set of participants they

partially trust, and it only works if those sets intersect enough.

Cobalt has homogeneous failures, and within “essential subsets” [94], participants

are homogeneous as well.

Stellar Consensus [96] is heterogeneous in two ways:

• Heterogeneous observers : Each observer specifies their “slices” [96], which

are sets of participants they partially trust.

• Heterogeneous participants : In a sense, each slice for each observer is equiv-

alent, but not participants individually.

Unlike Stellar, Heterogeneous Consensus has mixed (heterogeneous) failures. Fur-

thermore, we are unaware of any consensus protocol with heterogeneous observers

that matches Heterogeneous Consensus’ best-case latency. Heterogeneous Consen-

sus inherits byzantine Paxos’ 3-message-send best case latency, which is optimal

for a consensus tolerating
⌈
n
3

⌉
− 1 failures in the homogeneous byzantine case or⌈

n
2

⌉
− 1 failures in the homogeneous crash case.

We are not aware of any other consensus with heterogeneous observers and

mixed failures.

4.12 Discussion

Heterogeneous Consensus is the first consensus algorithm with heterogeneous par-

ticipants, failures, and observers. It facilitates a more nuanced approach that can
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save time and resources, or even make previously unachievable consensus possible.

This approach is well-suited to federated systems across heterogeneous trust do-

mains, such as blockchains. We use Charlotte to demonstrate working, composable

blockchains with well-defined integrity and availability properties, and minimal

overhead, using Heterogeneous Consensus. Heterogeneous Consensus is a useful

building block for systems that seek to embrace least ordering, fault tolerance, and

heterogeneity.
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CHAPTER 5

CONCLUSIONS

In this dissertation, I have discussed building distributed systems with serializable

transactions. To address the shortcomings of existing distributed systems, I em-

brace least ordering, fault tolerance, and heterogeneity in three related projects:

Safe Serializable Secure Scheduling, Charlotte, and Heterogeneous Consensus. To-

gether, these open new doors in system design for increased performance, flexibility,

and security.

5.1 Safe Serializable Secure Scheduling

Fabric [90] provides serializable transactions among heterogeneous participants.

However, existing scheduling protocols, while trying to preserve Least Ordering,

make heterogeneous assumptions. I prove that they can leak information when

different participants are trusted with different data, and in fact execute an at-

tack. I then go on to develop a novel category of relaxed monotonic transactions

which can be scheduled safely, and a protocol, staged commit, to schedule them.

We integrate this into Fabric’s compiler and runtime, and show that it imposes

minimal, although measurable, overhead.

This serves not only as a useful protocol for future systems, but as an example

of how trickly serialization can be, especially when heterogeneity is involved.
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5.2 Charlotte

Modern blockchain systems have taken a brute-force “order everything, tolerate as

many failures as possible” approach to transactions. This carries multiple short-

comings:

• Serializing all transactions, as opposed to just maintaining serializability,

abandons the Least Ordering principle: as a result they are tremendously

expensive and slow.

• In order to make applications compositional, blockchains force them all to

use the same chain. This ignores the heterogeneity of observers for different

applications, and instead tries to tolerate the sum of all their fears, which is

needlessly expensive.

In chapter 3, a framework for Composable Authenticated Distributed Data

Structures, I address these shortcomings while preserving prized properties like

self-authenticating data, and provable commits. With Charlotte, data structures

can reference each other, and even share blocks, while retaining verifiable for-

mal properties. I demonstrate how existing ADDSs can be replicated within the

Charlotte framework, including Git, Bitcoin, and Timestamping, with minimal

overhead. I also examine how, with Least Ordering, the actual transactions in the

Bitcoin payment history could be committed about 70 times faster.
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5.3 Heterogeneous Consensus

Unfortunately, Staged Commit loses liveness when participants crash. Charlotte

is built to allow a variety of integrity mechanisms to commit blocks (which can

represent transactions) to data structures.

To fully embrace heterogeneity, in chapter 4, I design Heterogeneous Consensus,

the first consensus algorithm that can be tailored for heterogeneous participants,

observers, and failures. I used the Charlotte framework to construct Heterogeneous

Consensus servers, which in turn plug in as an integrity mechanism for Charlotte

data structures. I created a rich model in which to express heterogeneous intergrity

properties: the Observer Graph. This in turn can be used to facilitate multi-

structure fault tolerant transaction commits using Heterogeneous Consensus and

Charlotte, embracing Least Ordering, Heterogeneity, and Failure Tolerance.

5.4 Future Work

Each of these projects have their own directions to expand in the future.

5.4.1 Safe Serializable Secure Scheduling

I don’t yet know if relaxed monotonicity is the largest set of transactions that can

be securely scheduled. There is room between our necessary condition, Thm. 3,

and our sufficient condition, relaxed monotonicity, to discover precisely what is

necessary and sufficient for transactions to be securely serializable. There is also

room for new, possibly more efficient transaction ordering algorithms.
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Our analysis also does not explicitly take availability labels into account. It

remains to be seen if this carries some hidden difficulties.

5.4.2 Charlotte

Charlotte formalizes integrity and availability properties, but what about confi-

dentiality properties? Can references specify the secrecy of a block’s existence,

and complete the “CIA Triad”? For example, we might imagine blocks carrying

statements of the form “references to this block must be at least this encrypted,”

and all references carrying proofs that they are appropriately encrypted. Advanced

cryptography may be necessary to check these proofs without decrypting anything,

if that is desirable.

There are hosts of Charlotte applications that remain unrealized. One avenue

that would help create them is to create a new programming model, and a language

to go with it, for applications built on ADDSs. For example, we can envision

objects (as in Object oriented language) as the unit of serializability, and maintain

a chain of transactions for each object. Each transaction, represented as a block,

must be in all the chains of all the objects it touches. This language would need

availability and integrity labels on data, and could enforce the same style of security

properties that Fabric does with Information Flow Control.
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5.4.3 Heterogeneous Consensus

Heterogeneous consensus can be improved with a myriad of optimizations for speed,

bandwidth, and improved termination guarantees, but these are best left to their

own section (§ 4.10).

Like 2 Phase Commit, Staged Commit is not live if a participant fails. While

Heterogeneous Consensus can order transactions in the presence of failures, it is

designed only around integrity and availability, and does not consider confiden-

tiality. Someday, the world may need a new scheduling protocol that considers all

three, and tolerates failures.

In addition to dealing with Confidentiality, Heterogeneous Consensus could be

adapted to take into account more types of failures, including rational agents [5]

and fail-stop [120]. This would require altering the nature of the Observer Graph

in order to detail even more possible failure scenarios.

5.4.4 Final Thoughts

Bringing Least Ordering, Fault Tolerance, and Heterogeneity to serialized transac-

tions remains a rich research area beyond these projects. New systems, languages,

and programming paradigms can gain efficiency and security by embracing these

ideals, and in doing so open the doors to hosts of new applications.
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APPENDIX A

CHARLOTTE APPENDICES

A.1 Bitcoin Transactions in Two Accounts or Fewer

In Bitcoin, it is advantageous to combine many small transfers of money into big

ones, with many inputs and many outputs. This improves anonymity and perfor-

mance. In the real financial system of the USA, however, all monetary transfers

are from one account to another. They are all exactly two chain transactions.

We can simulate this limitation by refactoring each Bitcoin UTXO as 2 UTXOs,

and each Bitcoin transaction as a DAG of transactions with depth:

dlog2(max(number of inputs, number of outputs))e

To do this, we create

n , 2d

chains, each of which is

d , dlog2(max(number of inputs, number of outputs))e

i0 i1 i2 i3

o0 o1 o2 o3
o0 o1 o2 o3

i0 i1 i2 i3

Figure A.1: Converting 4 inputs and 4 outputs to a graph of 2-account transac-
tions.
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long. We call these chains C0 through Cn. Original input UTXO i corresponds to

both inputs to the first transaction of chain i. Original output UTXO j corresponds

to one output of each of the last transactions from chains j and
(
j + 2d−1

)
mod n.

For 0 ≤ k < (d− 1), the outputs of the kth transaction in chain i, called Ci
k, go to

Ci
k+1, and:

C
(i+2j)mod n

k+1

The outputs of Ci
d go to the UTXOs corresponding with output i, and output(

i+ 2d−1
)
mod n. Each transaction divides its output values proportionately to the

sums of the final output values reachable from each of the transaction’s outputs.

Fig. A.1 is an example transformation from a 4-input, 4-output transaction to a

DAG of depth 2 using all 2-input, 2-output transactions.

211



BIBLIOGRAPHY

[1] Distributed transactions: .NET framework 4.6. https://msdn.microsoft.
com/en-us/library/ms254973%28v=vs.110%29.aspx. Accessed: 2015-11-13.

[2] XA standard. In Ling Liu and M. Tamer Özsu, editors, Encyclopedia of
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