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Abstract.
Security-typed languages enforce secrecy or integrity policies by type-checking.

This paper investigates continuation-passing style (CPS) as a means of proving
that such languages enforce noninterference and as a first step towards understand-
ing their compilation. We present a low-level, secure calculus with higher-order,
imperative features and linear continuations.

Linear continuations impose a stack discipline on the control flow of programs.
This additional structure in the type system lets us establish a strong information-
flow security property called noninterference. We prove that our CPS target language
enjoys the noninterference property and we show how to translate secure high-level
programs to this low-level language. This noninterference proof is the first of its kind
for a language with higher-order functions and state.

1. Introduction

Language-based mechanisms for enforcing secrecy or integrity policies
are attractive because, unlike ordinary access control, static informa-
tion flow can enforce end-to-end policies. These policies require that
data be protected despite being manipulated by programs with ac-
cess to various information channels. For example, such a policy might
prohibit a personal finance program from transmitting credit card infor-
mation over the Internet even though the program needs Internet access
to download stock market reports. To prevent the finance program
from illicitly transmitting the private information (perhaps cleverly
encoded), the compiler checks that the information flows in the program
are admissible.
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There has been much recent work on formulating Denning’s original
lattice model of information-flow control [15, 16] in terms of type sys-
tems for static program verification [1, 22, 29, 30, 35–37, 40, 42]. The
desired security property is noninterference [20], which states that high-
security data is not observable by low-security computation. Continuing
the example from above, the high-security data is the credit card in-
formation and a low-security computation might be the downloading
of stock market reports. Noninterference says that the information
transmitted to the insecure network cannot depend on the credit card
data—hence, the program cannot improperly transmit the confidential
information.

The problem of secure information flow has been well studied in
the context of simple imperative languages. Nevertheless, secure infor-
mation flow in the context of higher-order languages with imperative
features is not well understood. Furthermore, all previous work has
considered information flow properties in the source language. However,
source-level analysis is not enough: Compiler transformations (or bugs!)
may introduce new security holes. One appealing option is to verify the
output of the compiler, for instance via typed assembly language [26]
or proof-carrying code [31].

This paper proposes the use of continuation-passing style (CPS)
translations [14, 18, 38] as a means of studying noninterference in
imperative, higher-order languages. This approach has two benefits.
First, CPS expresses higher-order programs in a form that is amenable
to proving noninterference results. Our proof of security can be seen as
a generalization of previous work by Smith and Volpano [40]. Second,
CPS is useful for representing low-level programs [4, 26], which opens
up the possibility of verifying the security of compiler output.

We observe in the next section that a naive approach to providing
security types for an imperative CPS language yields a system that is
too conservative: many secure programs (in the noninterference sense)
are rejected. To rectify this problem, we introduce linear continuations,
which allow information flow control in the CPS target language to
be made more precise. Our secure CPS language makes explicit the
“folk-theorem” present in the CPS literature that “one continuation
is enough,” a feature of CPS translation that has only recently begun
to be studied [13, 34, 12, 5]. The stack ordering property of linear
continuations is crucial to the noninterference argument.

As with previous noninterference results for call-by-value languages
[22, 29], the theorem holds only for programs that halt regardless of
high-security data. Consequently, termination channels can arise, but
because they leak at most one bit per run on average, we consider
them acceptable. There are other channels not captured by this notion
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of noninterference: high-security data can alter the running time of
the program or change its memory consumption. Noninterference holds
despite these apparent information leaks because the language itself
provides no means for observing these resources (for instance, access
to the system clock). Recent work attempts to address such covert
channels [3].

The next section shows why a naive type system for secure infor-
mation flow is too restrictive for CPS and motivates the use of linear
continuations. Section 3 presents the target language, its operational se-
mantics, and the novel features of its type system. The noninterference
theorem is discussed in Section 4 (proofs of the interesting lemmas
are given in Appendix A), and Section 5 demonstrates the viability of
this language as a low-level calculus by showing how to CPS translate
higher-order, imperative programs. We conclude with some discussion
and related work in Section 6.

2. CPS and Security

Type systems for secrecy or integrity are concerned with tracking de-
pendencies in programs [1]. One difficulty is implicit flows, which arise
from the control flow of the program. Consider the code fragment A in
Figure 1.1 There is an implicit flow between the value stored in x and
the value stored in a, because examining the contents of a after the
program has run gives information about the value in x. There is no
information flow between x and b, however. This code is secure even
when x and a are high-security variables and b is low-security. (In this
paper, high security means “high secrecy” or “low integrity.” Dually,
low security means “low secrecy” or “high integrity.”)

A programmer using a type system for enforcing information flow
policies might assign x the type boolH (high-security boolean) and b the
type intL (low-security integer). If a were given the type intH , program
fragment A would type check, but if a were given a low-security type
A would not type check due to the implicit flow from x to a. Security-
typed languages deal with these implicit flows by associating a security
annotation with the program counter (which we will usually indicate
by pc). In example A, the program counter at the point before the
if statement might be labeled with L to indicate that it does not
depend on high-security data. Within the branches of the conditional,
however, the program counter depends on the value of x, and hence the

1 We have chosen to give the examples in an imperative pseudo-code in which
continuations can be introduced explicitly (as in k = (λ〈〉. halt)) and invoked (as
in k 〈〉). The actual syntax of the secure CPS language is given in Section 3.1.
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(A) if x then { a := 1; } else { a := 2; }

b := 3; halt;

(B) let k = (λ〈〉. b := 3; halt) in

if x then { a := 1; k 〈〉; } else { a := 2; k 〈〉; }

(C) let k = (λ〈〉. b := 3; halt) in

if x then { a := 1; k 〈〉; } else { a := 2; halt; }

(D) letlin k = (λ〈〉. b := 3; halt) in

if x then { a := 1; k 〈〉; } else { a := 2; k 〈〉; }

(E) letlin k0 = (λ〈〉. halt) in

letlin k1 = (λk. b := 1; k 〈〉) in

letlin k2 = (λk. b := 2; k 〈〉) in

if x then { letlin k = (λ〈〉. k1 k0) in k2 k }

else { letlin k = (λ〈〉. k2 k0) in k1 k }

Figure 1. Examples of information flow in CPS

pc must be H—the security label of x. Values (such as the constants 1
and 2 of the example) pick up the security annotation of the program
counter, and consequently when a has type intL the assignment y := 1
is illegal—the (implicitly) high-security value 1 is being assigned to a
low-security memory location.

Fragment B illustrates the problem with CPS translation. It shows
the code from A after control transfer has been made explicit. The
variable k is bound to the continuation of the if, and the jump is
indicated by the application k 〈〉. Because the invocation of k has been
lifted into the branches of the conditional, a naive type system for
information flow will conservatively require that the body of k not write
to low-security memory locations: the value of x would apparently be
observable by low-security code. Program B is rejected because k writes
to a low-security variable, b.

However, this code is secure; there is no information flow between
x and b in B because the continuation k is invoked in both branches.
On the other hand, as example C shows, if k is not used in one of the
branches, then information about x can be learned by observing b. Lin-
ear type systems [2, 19, 43, 44] can express exactly the constraint that
k is used in both branches. By making k’s linearity explicit, the type
system can use the additional information to recover the precision of
source program analysis. Fragment D illustrates our simple approach; in
addition to a normal let construct, we include letlin for introducing
linear continuations. The program D certifies as secure even when b is
a low-security variable, whereas C does not.
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Although linearity allows for more precise reasoning about informa-
tion flow, linearity alone is insufficient for security in the presence of
first-class continuations. In example E, continuations k0, k1, and k2
are all linear, but there is an implicit flow from x to b because b lets
us observe the order in which k1 and k2 are invoked. It is thus neces-
sary to regulate the ordering of linear continuations. The type system
presented in Section 3.4 requires that exactly one linear continuation
be available at any point—thus eliminating the possibility of writing
code like example E. We show in Section 4 that these constraints are
sufficient to prove a noninterference result.

It is simpler to make information flow analysis precise for the source
language because the structure of the language limits control flow. For
example, it is known that both branches of a conditional return to a
common merge point. This knowledge can be exploited to obtain less
conservative analysis of implicit flows, but the standard CPS trans-
formation loses this information by unifying all forms of control to
a single mechanism. In our approach, the target language still has a
single underlying control transfer mechanism (examples B and D execute
exactly the same code), but the type system statically distinguishes
between different kinds of continuations, allowing information flow to
be analyzed with the same precision as the source.

2.1. Linear Continuations

Before diving into the formal definition of the secure CPS language,
it is helpful to have some intuition about what a linear continuation
is. Ordinary continuations represent a possible future computation of a
program. As such, how they are manipulated encapsulates the control
flow aspects of a piece of code. Powerful language constructs such as
call/cc expose the continuations to the programmer in a first-class
way, allowing the user to manipulate the control flow of the program
directly. However, such use of continuations is far from the common
case. As observed by Berdine et al. [5], many control-flow constructs
use continuations linearly (exactly once). This linearity arises from
the restrictions of the source language: functions return exactly once,
merge-points of conditional statements are reachable in exactly one way
from each branch, etc. The fact that call/cc and other nonstandard
control-flow operators discard or duplicate continuations is part of what
makes them difficult to reason about.
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Combining linearity with an ordering2 on continuations restricts
their manipulation even further. In fact, ordered linear continuations
essentially enforce a stack discipline on control [34]. Introducing a linear
continuation is analogous to pushing an activation record onto a stack;
invoking a linear continuation corresponds to popping that activation
record. Because many constructs (function call/return, nested blocks,
and merge-points of conditionals) of high-level structured programs
can be implemented via a stack of activation records, ordered linear
continuations are a natural fit to describing their control flow behavior.

Using ordered linear continuations in a type system divorces the
description of the stack-like control constructs of a programming lan-
guage from its syntax (block structure). This separation is essential
for preserving control-flow information across compilation steps such
as CPS transformation, because the syntactic structure of the program
is altered. The main insight is that we can push information implicitly
found in the structure of a program into explicit descriptions (the types)
of the program.

3. The Secure CPS Calculus

The target of our secure CPS translation is a call-by-value, impera-
tive language similar to those found in the work on Typed Assembly
Language [8, 26], although its type system is inspired by previous
language-based security research [22, 29, 42]. This section describes the
secure CPS language, its operational behavior, and its static semantics.

3.1. Syntax

The syntax for the secure CPS language is given in Figure 2.
Following standard practice in information-flow systems, we gener-

alize high- and low-security labels into a lattice, L, of possible security
annotations. Elements of L are ranged over by meta-variables ` and
pc. We reserve the meta-variable pc to suggest that the security label
corresponds to information learned by observing the program counter.
The v symbol denotes the lattice ordering. The lattice join and meet
operations are given by t and u, respectively, and the least and greatest
elements are written ⊥ and >.

2 The ordering in the type system presented here is trivial because exactly one
continuation is allowed in the context. It is possible to generalize these results to
account for multiple continuations in the context [46].
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Security Labels `, pc ∈ L
Base Types τ ::= int | 1 | σ ref | [pc](σ, κ)→ 0

Security Types σ ::= τ`

Linear Types κ ::= σ → 0

Base Values bv ::= n | 〈〉 | Lσ | λ[pc]f(x :σ, y :κ). e
Values v ::= x | bv`

Linear Values lv ::= y | λ〈pc〉(x :σ). e
Primitives prim ::= v | v ⊕ v | deref(v)

Expressions e ::= let x = prim in e
| let x = refσ

` v in e
| set v := v in e
| letlin y = lv in e
| if0 v then e else e
| goto v v lv
| lgoto lv v

Figure 2. Syntax for the secure CPS language

Types fall into two main syntactic classes: security types, σ, and
linear types, κ. Security types are the types of ordinary values and
consist of a base-type component, τ , annotated with a security label, `.
Base types include integers, unit, and references. Continuation types,
written [pc](σ, κ) → 0, indicate a security level and the types of their
arguments. The notation 0 represents the “void” type, indicating that
a continuation never returns a value.

Corresponding to these types, base values, bv, include integers, n, a
unit value, 〈〉, type-annotated memory locations, Lσ, and continuations,
λ[pc]f(x :σ, y :κ). e. All computation occurs over secure values, v, which
are base values annotated with a security label. Variables, x, range
over values. We adopt the notation label(τ`) = ` and label(bv`) = ` for
obtaining the label of a type or closed value, and extend the join (and
meet) operation to security types: τ` t `′ = τ(`t`′).

As an example, the value 3⊥ represents a low-security integer (one
of type int⊥) that is observable by any computation. On the other
hand, the value 4> represents a (very) high-security integer that should
be observable only by computations with top-security clearance. The
operational semantics will ensure that labels are propagated correctly.
For instance we have 3⊥ + 4> = 7>, because low-security computation
should be prevented from observing the sum—it contains information
about the high-security value 4>.
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References contain two security annotations. For example, the type
int> ref⊥ represents the type of low-security pointers to high-security
integers, which is distinct from int⊥ ref>, the type of high-security
pointers to low-security integers. The data returned by a dereference
operation is protected by the join of the two labels. Thus, integers
obtained through pointers of either of these two reference types will
receive a security label of >.

An ordinary continuation λ[pc]f(x :σ, y :κ). e is a piece of code (the
expression e) that accepts a nonlinear argument of type σ and a linear
argument of type κ. Continuations may recursively invoke themselves
using the name f , which is bound in e. The notation [pc] indicates
that this continuation may be called only from a context in which the
program counter carries information of security at most pc. To avoid
unsafe implicit flows, the body of the continuation may create effects
observable only by principals able to read data with label pc.

A linear value, lv, is either a variable (ranged over by y), or a linear
continuation, which contains a code expression e parameterized by a
nonlinear argument just as for ordinary continuations. Linear continu-
ations may not be recursive, but they may be invoked from any calling
context; hence linear types do not require any pc annotation. The syn-
tax 〈pc〉 serves to distinguish linear continuation values from nonlinear
ones. As for ordinary continuations, the label pc restricts the continua-
tion’s effects, but unlike ordinary continuations, the pc is constrained by
their introduction contexts (as opposed to their elimination contexts).
Intuitively, linear continuations capture the security context in which
they are created and, when invoked, restore the program counter label
to the one captured.

The primitive operations include binary arithmetic, ⊕, dereference,
and a means of copying secure values. Primitive operations are side-
effect free. Program expressions consist of a sequence of let bindings for
primitive operations, reference creation, and imperative updates (via
set). The letlin construct introduces a linear continuation. Straight-
line code sequences are terminated by conditional statements, nonlocal
transfers of control via goto (for ordinary continuations) or lgoto (for
linear continuations).

We use a special linear variable haltσ of type σ → 0 to represent
the initial continuation. It corresponds to the bottom of the control
stack. Thus, well-formed programs terminate with statements of the
form lgoto haltσ v, where v is the final result of the program.
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3.2. Operational Semantics

The operational semantics (Figure 3) is given by a transition relation
between machine configurations of the form 〈M, pc, e〉. The notation
e{v/x} indicates capture-avoiding substitution of value v for variable
x in expression e.

Memories, M , are finite partial maps from typed locations to closed
values. The notation M [Lσ ← v] denotes the memory obtained from M
by updating the location Lσ to contain the value v, which is of type σ.
A memory is well-formed if it is closed under the dereference operation
and each value stored in the memory has the correct type. We use ∅ to
denote the empty memory, and we write Loc(e) for the set of location
names occurring in e.

The label pc in a machine configuration represents the security level
of information that could be learned by observing the location of the
program counter. Instructions executed with a program-counter label
of pc are restricted so that they update only memory locations with
labels more secure than pc. For example, [E3 ] shows that it is valid to
store a value to a memory location of type σ only if the security label
of the data joined with the security labels of the program counter and
the reference itself is lower than label(σ), the security clearance needed
to read the data stored at that location. Rules [E5 ] and [E6 ] show how
the program-counter label changes after branching on data of security
level `. Observing which branch is taken reveals information about the
condition variable, and so the program counter must have the higher
security label pc t `.

As shown in rules [P1 ] through [P3 ], computed values are stamped
with the pc label. The notation [[⊕]] denotes the semantic counterpart
to the syntactic operation ⊕. Checks like the one on [E3 ] prevent illegal
information flows via direct means such as assignment. We shall show
in Section 4 that, for well-typed programs, all illegal information flows
are ruled out.

Operationally, the rules for goto and lgoto are very similar—each
causes control to be transferred to the target continuation. They differ
in their treatment of the program-counter label, as seen in rules [E7 ]
and [E8 ]. Ordinary continuations stamp the pc label with program
counter label and annotation of the target continuation, preventing
implicit flows. Linear continuations instead cause the program-counter
label to be restored (potentially, lowered) to that of the context in which
they were declared. In accordance with the label-stamping intuition,
both goto and lgoto stamp the pc label of the calling context into the
value passed to the continuation.
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[P1 ] 〈M, pc, bv`〉 ⇓ bv`tpc

[P2 ] 〈M, pc, n` ⊕ n′`′〉 ⇓ (n[[⊕]]n′)`t`′tpc

[P3 ]
M(Lσ) = bv`′ Lσ ∈ dom(M)
〈M, pc, deref(Lσ

` )〉 ⇓ bv`t`′tpc

[E1 ]
〈M, pc, prim〉 ⇓ v

〈M, pc, let x = prim in e〉 7−→ 〈M, pc, e{v/x}〉

[E2 ]

` t pc v label(σ) Lσ 6∈ dom(M)

〈M, pc, let x = refσ
`′ bv` in e〉

7−→ 〈M [Lσ ← bv`tpc], pc, e{Lσ
`′tpc/x}〉

[E3 ]
` t `′ t pc v label(σ) Lσ ∈ dom(M)

〈M, pc, set Lσ
` := bv`′ in e〉

7−→ 〈M [Lσ ← bv`t`′tpc], pc, e〉

[E4 ] 〈M, pc, letlin y = lv in e〉 7−→ 〈M, pc, e{lv/y}〉

[E5 ] 〈M, pc, if0 0` then e1 else e2〉 7−→ 〈M, pc t `, e1〉

[E6 ] 〈M, pc, if0 n` then e1 else e2〉 7−→ 〈M, pc t `, e2〉 (n 6= 0)

[E7 ]
v = (λ[pc′]f(x :σ, y :κ). e)`

〈M, pc, goto v bv`′ lv〉
7−→ 〈M, pc t pc′ t `, e{v/f}{bv`′tpc/x}{lv/y}〉

[E8 ] 〈M, pc, lgoto (λ〈pc′〉(x :σ). e) bv`〉 7−→ 〈M, pc′, e{bv`tpc/x}〉

Figure 3. Expression evaluation

As mentioned above, well-formed programs contain a free linear
continuation variable haltσ. Consequently the “stuck” term

lgoto haltσ v

represents a valid terminal state.

3.3. An Example Evaluation

This section gives a concrete example of the operational semantics.
Consider the evaluation shown in Figure 4. It shows the program

fragment (D) from Figure 1 of the introduction using the syntax of
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〈M, ⊥, letlin k = kimpl in
if0 0> then set a := 1⊥ in lgoto k 〈〉

else set a := 2⊥ in lgoto k 〈〉 〉
(1) 7−→ 〈M, ⊥, if0 0> then set a := 1⊥ in lgoto kimpl 〈〉

else set a := 2⊥ in lgoto kimpl 〈〉〉
(2) 7−→ 〈M, >, set a := 1⊥ in lgoto kimpl 〈〉 〉
(3) 7−→ 〈M ′, >, lgoto kimpl 〈〉 〉
(4) 7−→ 〈M ′, ⊥, set b := 3⊥ in lgoto halt1⊥ 〈〉 〉
(5) 7−→ 〈M ′′, ⊥, lgoto halt1⊥ 〈〉 〉

Where

M = {a 7→ 0>, b 7→ 0⊥}
M ′ = {a 7→ 1>, b 7→ 0⊥}
M ′′ = {a 7→ 1>, b 7→ 3⊥}

a : int> ref⊥
b : int⊥ ref⊥

kimpl = λ〈⊥〉(x :1⊥). set b := 3⊥ in lgoto halt1⊥ 〈〉

Figure 4. Example program evaluation

our secure CPS language. In this instance, the condition variable is the
high-security value 0>, and the program-counter label is initially ⊥, the
lowest security label. The memory, M , initially maps the high-security
location a to the value 0> and the low-security location b to the value
0⊥. (This information is summarized in the figure.)

Step (1) is a transition via [E4 ] that introduces the linear continua-
tion, kimpl and binds it to the variable k. As indicated by the notation
〈⊥〉 in kimpl’s definition, when invoked, kimpl will set the pc label back
to ⊥. In step (2), the program transitions via rule [E5 ], testing the
condition variable. In this case, because 0> is high-security, the program
counter label increases to > = ⊥ t >, and the program takes the first
branch. Next, step (3) is a transition by rule [E3 ], which updates the
contents of memory location a. The new value stored is high-security,
because, instantiating [E3 ], we have: ` = ⊥, `′ = ⊥, pc = > and
`′ t ` t pc = ⊥ t ⊥ t > = >. This assignment succeeds because a
is a location that stores high-security data; if a were a location of type
int⊥ ref⊥, the check `′ t ` t pc v label(int⊥) = ⊥ would fail—however,
the type system presented in the next section statically rules out such
behavior, making such dynamic checks unnecessary.

The fourth step is the linear invocation, via rule [E8 ]. As promised,
kimpl resets the program counter label to ⊥, and in addition, we sub-
stitute the actual arguments for the formal parameters in the body of

lincont.tex; 30/09/2003; 9:43; p.11



12

the continuation. The last transition is another instance of rule [E3 ],
this time updating the contents of b with the low-security value 3⊥.

How would this program differ if an ordinary continuation were used
instead of kimpl? The crucial difference would appear in step (4), where
instead of rule [E8 ], we would be forced to use rule [E7 ]. Note that [E7 ]
increases the pc label of the continuation to be higher than the one in
the machine configuration. In this case, because the calling context
has pc = >, the body of the continuation would be forced to > as
well. It is not possible to write a value to the low-security location b
in such circumstances, and hence we cannot write this program using
an ordinary continuation in place of kimpl without forcing b to be a
high-security location.

3.4. Static Semantics

The type system for the secure CPS language enforces the linearity
and ordering constraints on continuations and guarantees that security
labels on values are respected. Together, these restrictions rule out
illegal information flows and impose enough structure on the language
for us to prove a noninterference property.

As in other mixed linear–nonlinear type systems [41], the type con-
text is split into an ordinary, nonlinear section and a linear section. Γ is
a finite partial map from nonlinear variables to security types; it admits
the usual weakening and exchange rules (which we omit). The linear
part of the context consists of a single linear variable and its type, y :κ.
This variable must be used exactly once and so cannot be discarded.
The two parts of the context are separated by ‖ in the judgments to
make them more distinct (as in Γ ‖ y :κ). We use • to denote an empty
nonlinear context.

Figures 5 through 9 show the rules for type-checking. The judgment
form Γ ` v : σ says that ordinary value v has security type σ in context
Γ. Linear values may mention linear variables and so have judgments
of the form Γ ‖ y :κ ` lv : κ. Like values, primitive operations may not
contain linear variables, but the security of the value produced depends
on the program-counter. We thus use the judgment Γ [pc] ` prim : σ to
say that in context Γ where the program-counter label is bounded above
by pc, prim computes a value of type σ. Similarly, Γ ‖ y :κ [pc] ` e
means that expression e is type-safe and contains no illegal information
flows in the type context Γ ‖ y :κ, when the program-counter label is at
most pc.3 In the latter two forms, pc is a conservative approximation
to the security label of information affecting the program counter.

3 Because expressions represent continuations, and hence do not return, no
type is associated with judgments Γ ‖ y :κ [pc] ` e. Alternatively, we could write
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[TV1 ]
Γ ` n` : int`

[TV2 ]
Γ ` 〈〉` : 1`

[TV3 ]
Γ ` Lσ

` : σ ref`

[TV4 ]
Γ ` x : σ

Γ(x) = σ

[TV5 ]

f, x 6∈ dom(Γ)
σ′ = ([pc](σ, κ)→ 0)`

Γ, f :σ′, x :σ ‖ y :κ [pc] ` e

Γ ` (λ[pc]f(x :σ, y :κ). e)` : σ′

[TV6 ]
Γ ` v : σ ` σ ≤ σ′

Γ ` v : σ′

Figure 5. Value typing

The rules for checking ordinary values, [TV1 ]–[TV6 ] shown in Fig-
ure 5, are, for the most part, standard. A value cannot contain free
linear variables because discarding (or copying) the value would break
the linearity constraint on the variable. A continuation type contains
the pc label used to check its body (rule [TV5 ]).

The lattice ordering on security labels lifts to a subtyping relation-
ship on values (shown in Figure 6). Continuations exhibit the expected
contravariance (rule [S2 ]). References, are, as usual, invariant with
respect to the data being stored, but the security labels of the ref-
erences themselves obey the usual covariant subtyping. Consequently,
σ ref⊥ ≤ σ ref> for any σ, but it is never the case that σ ref` ≤ σ′ ref`′
when σ 6= σ′.

Linear values are checked using rules [TL1 ] and [TL2 ]. They may
safely mention free linear variables, but the variables must not be dis-
carded. Thus we may conclude that a linear variable is well-formed
exactly when it is the linear context (rule [TL1 ]). In a linear con-
tinuation (rule [TL3 ]), the linear context, y, is the top of the stack of
continuations yet to be invoked. Intuitively, this judgment says that the
continuation body e must exit via a lgoto to y. The code e may declare

Γ ‖ y :κ [pc] ` e : 0 to indicate that e does not return. But, as all expressions have
type 0, we simply omit the : 0.
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[S1 ] ` τ ≤ τ

[S2 ]
pc′ v pc ` σ′ ≤ σ

` [pc](σ, κ)→ 0 ≤ [pc′](σ′, κ)→ 0

[S3 ]
` τ ≤ τ ′ ` v `′

` τ` ≤ τ ′`′

[S4 ]
` σ ≤ σ′ ` σ′ ≤ σ′′

` σ ≤ σ′′

Figure 6. Value subtyping

[TL1 ]
Γ ‖ y :κ ` y : κ

[TL2 ]

x 6∈ dom(Γ)
Γ, x :σ ‖ y :κ [pc] ` e

Γ ‖ y :κ ` λ〈pc〉(x :σ). e : σ → 0

Figure 7. Linear value typing

its own internal linear continuations, but they must be consumed before
y can be used. For simplicity, we disallow subtyping on linear types.4

The rules for primitive operations (in Figure 8) require that the
calculated value have security label at least as restrictive as the cur-
rent pc, reflecting the “label stamping” behavior of the operational
semantics. Values read through deref (rule [TP3 ]) pick up the label
of the reference as well, which prevents illegal information flows due to
aliasing.

Figure 9 lists the rules for typechecking expressions. Primitive oper-
ations are introduced by a let expression as shown in [TE1 ]. The rules
for creating new references and doing reference update, rules [TE2 ] and
[TE3 ], require that the reference protect the security of the program
counter. In [TE2 ], the condition pc v ` t label(σ) says that any data
read through the reference may only be observed by contexts able to
observe the current program counter. The condition pc t ` v label(σ)
in [TE3 ] prevents explicit flows in a similar way.

4 It is possible to formulate a sound type system that admits subtyping for linear
types, and indeed we see hints of subtyping in rule [TE5 ].
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[TP1 ]
Γ ` v : σ pc v label(σ)

Γ [pc] ` v : σ

[TP2 ]
Γ ` v : int` Γ ` v′ : int` pc v `

Γ [pc] ` v ⊕ v′ : int`

[TP3 ]
Γ ` v : σ ref` pc v label(σ) t `

Γ [pc] ` deref(v) : σ t `

Figure 8. Primitive operation typing

Rule [TE4 ] illustrates how the conservative bound on the security
level of the program-counter is propagated: the label used to check the
branches is the label before the test, pc, joined with the label on the
data being tested, `. The rule for goto, [TE6 ], restricts the program-
counter label of the calling context, pc, joined with the label on the
continuation itself, `, to be less than the program-counter label under
which the body was checked, pc′. This prevents implicit information
flows from propagating into function bodies. Likewise, the values passed
to a continuation (linear or not) must pick up the calling context’s pc
(via the constraint pc v label(σ)) because they carry information about
the context in which the continuation was invoked.

The rules for letlin, [TE5 ], and lgoto, [TE7 ], manipulate the
linear context to enforce the ordering property on continuations. For
letlin, the linear variable y must be used in the body of the continu-
ation being declared. The body of the declaration, e, is checked under
the assumption that the new continuation, y′, is available. Collectively,
these manipulations amount to pushing the continuation y′ onto the
control stack. The rule for lgoto simply requires that the linear con-
tinuation being invoked consumes the linear continuation declared in
the context, corresponding to popping the control stack.

Linear continuations capture the pc (or a more restrictive label)
of the context in which they are introduced, as shown in rule [TE5 ].
Unlike the rule for goto, the rule for lgoto does not constrain the
program-counter label of the target continuation, because the linear
continuation restores the program-counter label to the one it captured.

Because linear continuations capture the pc of their introduction
context, we make the mild assumption that initial programs introduce
all linear continuation values (except variables) via letlin. This as-
sumption rules out trivially insecure programs; during execution this
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[TE1 ]

Γ [pc] ` prim : σ
Γ, x :σ ‖ y :κ [pc] ` e

Γ ‖ y :κ [pc] ` let x = prim in e

[TE2 ]

Γ ` v : σ pc v ` t label(σ)
Γ, x :σ ref` ‖ y :κ [pc] ` e

Γ ‖ y :κ [pc] ` let x = refσ
` v in e

[TE3 ]

Γ ` v : σ ref` Γ ‖ y :κ [pc] ` e
Γ ` v′ : σ pc t ` v label(σ)

Γ ‖ y :κ [pc] ` set v := v′ in e

[TE4 ]
Γ ` v : int` Γ ‖ y :κ [pc t `] ` ei

Γ ‖ y :κ [pc] ` if0 v then e1 else e2
(i ∈ {1, 2})

[TE5 ]

Γ ‖ y :κ ` λ〈pc′〉(x′ :σ′). e′ : σ′ → 0
pc v pc′ Γ ‖ y′ :σ′ → 0 [pc] ` e

Γ ‖ y :κ [pc] ` letlin y′ = λ〈pc′〉(x′ :σ′). e′ in e

[TE6 ]

Γ ` v : ([pc′](σ′, κ′)→ 0)`

Γ ` v′ : σ′ Γ ‖ y :κ ` lv : κ′

pc t ` v pc′ pc v label(σ′)

Γ ‖ y :κ [pc] ` goto v v′ lv

[TE7 ]

Γ ‖ y :κ ` lv : σ → 0
Γ ` v : σ

pc v label(σ)
Γ ‖ y :κ [pc] ` lgoto lv v

Figure 9. Expression typing

constraint is not required, and programs in the image of the CPS
translation of Section 5 satisfy this property.

This type system is sound with respect to the operational seman-
tics. The proof is, for the most part, standard, following the style of
Wright and Felleisen [45]. We simply state the lemmas necessary for
the discussion of the noninterference result of the next section.
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LEMMA 3.1 (Subject Reduction). If • ‖ y : κ [pc] ` e and M is a
well-formed memory such that Loc(e) ⊆ dom(M) and 〈M, pc, e〉 7−→
〈M ′, pc′, e′〉, then • ‖ y :κ [pc′] ` e′ and M ′ is a well-formed memory
such that Loc(e′) ⊆ dom(M ′).

LEMMA 3.2 (Progress).
If • ‖ y :κ [pc] ` e and M is well-formed and Loc(e) ⊆ dom(M), then
either e is of the form lgoto y v or there exist M ′, pc′, and e′ such
that 〈M, pc, e〉 7−→ 〈M ′, pc′, e′〉.

Note that these lemmas are proved for terms containing free occur-
rences of the linear variable. The Progress lemma treats the free linear
variable as the initial continuation that terminates the program when
invoked.

4. Noninterference

This section proves a noninterference result for the secure CPS lan-
guage, generalizing a previous result from Smith and Volpano [40]. The
approach is to use a preservation-style argument that shows a partic-
ular invariant related to low-security views of a well-typed program is
maintained by each computation step.

Informally, the noninterference result says that low-security com-
putations are not able to observe high-security data. Here, the term
“low-security” is relative to an arbitrary point, ζ, in the security lattice
L. Thus, ` is a low-security label whenever ` v ζ. Similarly, “high-
security” refers to those labels 6v ζ. The security level of a computation
is indicated by the label of the program counter under which the
computation is taking place. Thus, by “low-security computation”, we
mean a transition step in the operational semantics whose starting
configuration (the one before the step) contains a pc v ζ.

The proof shows that high-security data and computation can be
arbitrarily changed without affecting the value of any computed low-
security result. Furthermore, memory locations visible to low-security
observers (locations storing data labeled v ζ) are likewise unaffected
by high-security values. This characterization reduces noninterference
to the problem of showing that a given program e1 is equivalent (from
a low-security observer’s point of view) to any program e2 that differs
from e1 only in its high-security parts.

Key to the argument is a formal definition of “low-equivalence,” by
which we intend to capture the property that two programs’ executions
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are indistinguishable by an observer only able to see the low-security
portions of memory and machine state.

How do we show that configurations 〈M1, pc1, e1〉 and 〈M2, pc2, e2〉
behave identically from the low-security point of view? Clearly, the
memories M1 and M2 must agree on the values contained in low-
security locations. In addition, if pc1, pc2 v ζ, meaning that e1 and
e2 may perform actions (such as modifying a low-security memory lo-
cation) visible to low observers, the programs necessarily must perform
the same computation on low-security values. On the other hand, when
pc 6v ζ, the actions of e1 and e2 should be invisible to the low view.

This intuition guides the formal definition of low-equivalence, which
we write ≈ζ . The definition builds on standard alpha-equivalence (writ-
ten ≡α) as a base notion of equality. We use substitutions to factor out
the relevant high-security values and those linear continuations that
reset the program-counter label to be v ζ.

DEFINITION 4.1 (Substitutions).
For context Γ, let γ |= Γ mean that γ is a finite map from variables

to closed values such that dom(γ) = dom(Γ) and for every x ∈ dom(γ)
it is the case that • ` γ(x) : Γ(x).

Substitution application, written γ(e), indicates capture-avoiding
substitution of the value γ(x) for free occurrences of x in e, for each x
in the domain of γ.

To show ζ-equivalence between e1 and e2, we should find substitu-
tions γ1 and γ2 containing the relevant high-security data such that
e1 ≡α γ1(e) and e2 ≡α γ2(e)—both e1 and e2 look the same as e after
factoring out the high-security data.

The other important piece of the proof is that we can track the linear
continuations that restore the program counter to a label that is 6v ζ.
Here is where the stack ordering on linear continuations comes into
play: The operational semantics guarantees that the program-counter
label is monotonically increasing except when a linear continuation is
invoked. If e1 invokes a linear continuation that causes pc1 to fall below
ζ, e2 must follow suit and call an equivalent continuation; otherwise the
low-security observer may distinguish e1 from e2. The stack ordering
on linear continuations is exactly the property that forces e2 to invoke
the same low-security continuation as e1.

Note that only the low-security linear continuations are relevant to
the ζ-equivalence of two programs—the high-security linear continua-
tions in the programs may differ. Furthermore, our plan is to establish
an invariant with respect to the operational semantics. This means
we must be able to keep track of the relevant low-security continu-
ations as they are introduced and consumed by letlin and lgoto.
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There is a slight technical difficulty in doing so in the substitution-style
operational semantics we have presented: We want to maintain the
invariant that ζ-equivalent programs always have equivalent pending
low-security continuations. Statically, the linear variable in the context
names these continuations, but dynamically, these variables are sub-
stituted away, and so there is no way to name the “next” low-security
linear continuation.

To get around this problem, our approach is to introduce auxiliary
substitutions that map stacks of linear variables to low-security linear
continuations. The top of stack corresponds to the next low-security
linear continuation that will be invoked.

An alternative would be to use an operational semantics that manip-
ulates the stack of linear continuations directly and then define a notion
of ζ-equivalence on these more structured program configurations. Yet
another alternative, taken in the conference version of this paper [46],
is to allow multiple linear continuations variables in the linear context,
which has a natural correspondence with noncommutative linear logic.
All three approaches require essentially the same amount of book-
keeping needed for the noninterference proof. The difference is where
the bookkeeping gets done: The approach in this paper simplifies the
type system and operational semantics at the expense of complicating
the noninterference proof. The other two options push the additional
complexity into either the operational or static semantics, respectively.

DEFINITION 4.2 (Linear Continuation Stack). Let K be an ordered
list (a stack) of linear type variables y1 :κ1, . . . , yn :κn such that n ≥ 1.
We write Γ ` k |= K to indicate that k is a substitution that maps
each yi to a linear value such that Γ ‖ haltσ :σ → 0 ` k(y1) : κ1 and
Γ ‖ yi−1 :κi−1 ` k(yi) : κi for i ∈ {2 . . . n}. We write top(K) to indicate
the top of the stack, namely yn :κn.

Application of a stack substitution k to a term e is defined as:

k(e) = e{k(yn)/yn}{k(yn−1)/yn−1} . . . {k(y1)/y1}.

Note that the order of the substitutions is important because the con-
tinuation k(yn) may refer to the linear variable yn−1.

Two linear continuation stacks k1 and k2 are equivalent if they have
the same domain and map each variable to equivalent continuations. We
must also ensure that the stack contains all of the pending low-security
continuations.

DEFINITION 4.3 (letlin Invariant). A term satisfies the letlin in-
variant if every linear continuation expression λ〈pc〉(x :σ). e appearing
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in the term is either in the binding position of a letlin or satisfies
pc 6v ζ.

The idea behind the letlin invariant is that when k(e) is a closed
term such that e satisfies the letlin invariant, any invocation of a low-
security linear continuation in e must arise from the substitution k—in
other words, k contains any pending low-security linear continuations.

Extending these ideas to values, memories, and machine configura-
tions we obtain the definitions below:

DEFINITION 4.4 (ζ-Equivalence).

Γ ` γ1 ≈ζ γ2 If γ1, γ2 |= Γ and for every x ∈ dom(Γ) it is the
case that label(γi(x)) 6v ζ and γi(x) satisfies the
letlin invariant.

Γ ‖ K ` k1 ≈ζ k2 If Γ ` k1, k2 |= K and for every y ∈ dom(K) it
is the case that ki(y) ≡α λ〈pc〉(x :σ). e such that
pc v ζ and e satisfies the letlin invariant.

v1 ≈ζ v2 : σ If there exist Γ, γ1, and γ2 plus terms v′1 ≡α v′2
such that Γ ` γ1 ≈ζ γ2, and Γ ` v′i : σ and vi =
γi(v′i) and each v′i satisfies the letlin invariant.

M1 ≈ζ M2 If for all Lσ ∈ dom(M1) ∪ dom(M2), label(σ) v
ζ implies that Lσ ∈ dom(M1) ∩ dom(M2) and
M1(Lσ) ≈ζ M2(Lσ) : σ.

Finally, we can put all of these requirements together to define the
ζ-equivalence of two machine configurations, which also gives us the
invariant for the noninterference proof.

DEFINITION 4.5 (Noninterference Invariant).
The noninterference invariant is a predicate on machine configura-

tions, written Γ ‖ K ` 〈M1, pc1, e1〉 ≈ζ 〈M2, pc2, e2〉, that holds if
there exist substitutions γ1, γ2, k1, k2 and terms e′1 and e′2 such that the
following conditions are all met:

(i) e1 = γ1(k1(e′1)) and e2 = γ2(k2(e′2)).
(ii) Γ ‖ top(K) [pc1] ` e′1 and Γ ‖ top(K) [pc2] ` e′2
(iii) Either (a) pc1 = pc2 v ζ and e′1 ≡α e′2 or

(b) pc1 6v ζ and pc2 6v ζ.

(iv) Γ ` γ1 ≈ζ γ2 and Γ ‖ K ` k1 ≈ζ k2

(v) Loc(e1) ⊆ dom(M1) and Loc(e2) ⊆ dom(M2)
and M1 ≈ζ M2.

(vi) Both e′1 and e′2 satisfy the letlin invariant.
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The main technical work of the noninterference proof is a preserva-
tion argument showing that the Noninterference Invariant holds after
each transition. When the pc is low, equivalent configurations execute in
lock step (modulo high-security data). After the program branches on
high-security information (or jumps to a high-security continuation),
the two programs may temporarily get out of sync, but during that
time they may affect only high-security data. If the program counter
drops low again (via a linear continuation), both computations return
to lock-step execution.

We first show that ζ-equivalent configuration evaluate in lock step as
long as the program counter has low security. The proof of this lemma
is given in Appendix A.

LEMMA 4.1 (Low-pc Step). Suppose

− Γ ‖ K ` 〈M1, pc1, e1〉 ≈ζ 〈M2, pc2, e2〉

− pc1 v ζ and pc2 v ζ

− 〈M1, pc1, e1〉 7−→ 〈M ′
1, pc′1, e′1〉

then 〈M2, pc2, e2〉 7−→ 〈M ′
2, pc′2, e′2〉 and there exist Γ′ and K′ such

that Γ′ ‖ K′ ` 〈M ′
1, pc′1, e′1〉 ≈ζ 〈M ′

2, pc′2, e′2〉.

We use the stack ordering property of linear continuations, as made
explicit in the Progress Lemma, to prove that equivalent high-security
configurations eventually return to equivalent low-security configura-
tions. The proof is given in Appendix A.

LEMMA 4.2 (High-pc Step). Suppose

− Γ ‖ K ` 〈M1, pc1, e1〉 ≈ζ 〈M2, pc2, e2〉

− pc1 6v ζ and pc2 6v ζ

− 〈M1, pc1, e1〉 7−→ 〈M ′
1, pc′1, e′1〉

then either e2 diverges or 〈M2, pc2, e2〉 7−→∗ 〈M ′
2, pc′2, e′2〉 and there

exist Γ′ and K′ such that Γ′ ‖ K′ ` 〈M ′
1, pc′1, e′1〉 ≈ζ 〈M ′

2, pc′2, e2〉.

Finally, we use the above lemmas to prove noninterference. Assume
a program that computes a low-security integer has access to high-
security data. Arbitrarily changing the high-security data does not
affect the program’s result.
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THEOREM 4.1 (Noninterference). Suppose

− x :σ ‖ haltintζ : intζ → 0 [⊥] ` e for some initial program e.

− label(σ) 6v ζ

− • ` v1, v2 : σ

Then
〈∅, ⊥, e{v1/x}〉 7−→∗ 〈M1, ζ, haltintζ n`1〉

and
〈∅, ⊥, e{v2/x}〉 7−→∗ 〈M2, ζ, haltintζ m`2〉

implies that M1 ≈ζ M2 and n = m.
Proof. Let e1 be the term e{v1/x} and let e2 be the term e{v2/x}. It
is easy to verify that

x :σ ‖ haltintζ : intζ → 0 ` 〈∅, ⊥, e1〉 ≈ζ 〈∅, ⊥, e2〉

by letting γ1 = {x 7→ v1}, γ2 = {x 7→ v2}, and k1 = k2 = {haltintζ 7→
haltintζ . Induction on the length of the first expression’s evaluation
sequence, using the Low- and High-pc Step lemmas plus the fact that
the second evaluation sequence terminates, implies that

Γ ‖ K ` 〈M1, ζ, haltintζ n`1〉 ≈ζ 〈M2, ζ, haltintζ m`2〉

Clause (v) of the Noninterference Invariant implies that M1 ≈ζ M2.
Soundness implies that `1 v ζ and `2 v ζ. This means, because of
clause (iv), that neither n`1 nor m`2 are in the range of γ′i. Thus, the
integers present in the halt expressions do not arise from substitution.
Because ζ v ζ, clause (iii) implies that haltintζ n`1 ≡α haltintζ m`2 ,
from which we obtain n = m as desired. 2

5. Translation

This section presents a CPS translation for a secure, imperative, higher-
order language that includes only the features essential to demonstrat-
ing the translation. The grammar for this source language is given in
Figure 5.

The source type system is adapted from the SLam calculus [22] to
follow our “label stamping” operational semantics. Unlike the SLam
calculus, which also performs access control checks, the source lan-
guage type system is concerned only with secure information flow.
The judgment Γ `pc e : s shows that expression e has source type s
under type context Γ, assuming the program-counter label is bounded
above by pc. We omit a full account of this type system, and instead
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t ::= int | s ref | s
`−→ s

s ::= t`
bv ::= n | µf(x :s).e Integers and Recursive Functions
v ::= x | (bv)` Secure Values
e ::= v | (e e) Values and Function Application

| (ref e) Reference Creation
| ! e Dereference
| (e := e) Assignment
| if0 e then e else e Conditional

Figure 10. Source language grammar

focus on the interesting examples in the CPS translation. The left-hand
side of Figure 11 contains the typing judgments for some of the more
interesting source expressions.

Source types are like those of the target, except that instead of
continuations there are functions. Function types are labeled with their
latent effect, a lower bound on the security level of memory locations
that will be written to by that function. The type translation, following
previous work on typed CPS conversion [21], is given in terms of three
mutually recursive functions: (−)∗, for base types, (−)+ for security
types, and (−)− to linear continuation types:

int∗ = int (s ref)∗ = s+ ref (s1
`−→ s2)∗ = [`](s+

1 , s−2 )→ 0
t+` = (t∗)` s− = s+ → 0

Figure 11 shows the term translation as a type-directed map from
source typing derivations to target terms. For simplicity, we present
an un-optimizing CPS translation, although we expect that first-class
linear continuations will support more sophisticated translations, such
as tail-call optimization [14]. To obtain the full translation of a closed
term e of type s, we pass in the initial continuation variable instantiated
at the correct type:

[[∅ `` e : s]]halts+

As expected, linear continuations are introduced by the translation
at points that correspond (via the structure of the source program) to
pushing an activation record on to the stack, and lgotos are introduced
where pops occur. The linear variable y represents the current “top of
stack” continuation; invoking it will cause the activation stack to be
popped, after executing the body of the continuation y. Note that all
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[[Γ, x :s′ `pc x : s′ t pc]]y ⇒ lgoto y x[[
Γ, f :s, x :s1 `pc′ e : s2

Γ `pc (µf(x :s1). e)` : s′

]]
y ⇒

{
lgoto y (λ[pc′]f(x :s+

1 , y′ :s−2 ).
[[Γ, f :s, x :s1 `pc′ e : s2]]y′)`




Γ `pc e : s
Γ `pc e′ : s1

` v pc′ u label(s1)

Γ `pc (e e′) : s2


y ⇒



letlin k1 =
λ〈pc〉(f :s+).
letlin k2 =

λ〈pc〉(x :s+
1 ).

goto f x y
in [[Γ `pc e′ : s1]]k2

in [[Γ `pc e : s]]k1


Γ `pc e : int`
Γ `pc′ ei : s′

pc t ` v pc′

Γ `pc if0 e then
e1 else e2 : s′



y ⇒


letlin k1 =
λ〈pc〉(x : int+` ).
if0 x then [[Γ `pc′ e1 : s′]]y

else [[Γ `pc′ e2 : s′]]y
in [[Γ `pc e : int`]]k1




Γ `pc e : s′ ref`
Γ `pc e′ : s′

` v label(s′)

Γ `pc e := e′ : s′


y ⇒



letlin k1 =
λ〈pc〉(x1 : (s′ ref`)+).
letlin k2 =

λ〈pc〉(x2 :s′+).
set x1 := x2 in
lgoto y x2

in [[Γ `pc e′ : s′]]k2

in [[Γ `pc e : s′ ref`]]k1

Figure 11. CPS translation (Here s = (s1
pc′−→ s2)`, s′ = stpc, and the ki’s and yi’s

are fresh.)

of the implicit control flow of the source language is expressed by linear
continuations; ordinary continuations are used only to express source-
level functions, which, because they may be copied or never invoked,
are inherently nonlinear. However, the unique return continuation of a
function is represented by a linear continuation.

The basic lemma for establishing type correctness of the translation
is proved by induction on the typing derivation of the source term. This
result also shows that the CPS language is at least as precise as the
source.
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LEMMA 5.1 (Type Translation). If Γ `pc e : s then Γ+ ‖ y :s− [pc] `
[[Γ `pc e : s]]y.

While proving that this CPS translation is operationally correct is
beyond the scope of this paper, the translation is substantially identical
to other translations that have been shown to be correct. We expect
that the simulation techniques due to Plotkin [33] could be adapted to
prove similar correctness results for this transformation.

6. Related Work

The constraints imposed by linearity can be seen as a form of resource
management [19], in this case limiting the set of possible future compu-
tations. Linearity has been more widely used in the context of memory
consumption [2, 8, 43, 44]. Linear continuations have been studied in
terms of their category-theoretic semantics [17] and also as a computa-
tional interpretation of classical logic [6]. Polakow and Pfenning have
investigated the connections between ordered linear-logic, stack-based
abstract machines, and CPS [34]. Berdine et al. have studied a number
of situations in which continuations are used linearly [5].

Linearity also plays a role in security types for process calculi such as
the π-calculus [23, 24]. Because the usual translation of the λ-calculus
into the π-calculus can be seen as a form of CPS translation, it might be
enlightening to investigate the connections between security in process
calculi and low-level code.

CPS translation has been used to improve binding-time analyses [7,
11, 25]. In particular, Damian and Danvy showed that CPS translation
provably improves a binding-time analysis for the λ-calculus [9, 10].
Their approach, also proposed by Palsberg and Wand [32], is based
on CPS translation of flow information. These results suggest that
the connection between binding-time analysis and security [1] warrants
more investigation.

Muylaert-Filho and Burns studied CPS transformation as a means
of improving strictness analysis [28]. Sabry and Felleisen observed that
increased precision in some CPS data flow analyses is due to duplication
of analysis along different execution paths [39]. They also note that
some analyses “confuse continuations” when applied to CPS programs,
decreasing their precision. Our type system distinguishes linear from
nonlinear continuations to avoid confusing “calls” with “returns.”

Linear continuations appear to be a higher-order analog to post-
dominators in a control-flow graph. Algorithms for determining post-
dominators (see Muchnick’s text [27]) might yield inference techniques
for linear continuation types. Conversely, linear continuations might
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yield a type-theoretic basis for correctness proofs of optimizations based
on post-dominators.

Our system applies the technology of linear continuations to achieve
new results in the secure information flow domain. The ultimate goal
is to produce compilers that, in addition to transforming code, also
transform the accompanying security policies so that low-level code can
be verified. Beyond CPS conversion, compilers also use closure conver-
sion, hoisting, and various optimizations such as inlining or constant
propagation. These transformations may also affect information flows,
yet how to build type systems rich enough to express security policies
at such low levels is still an open question.

Understanding secure information flow in low-level programs is es-
sential to providing secrecy of private data. We have shown that explicit
ordering of continuations can improve the precision of security types,
providing a target language suitable for compilation of high-level secure
programs. Linear continuations provide the additional structure that is
sufficient to prove the strong security property of noninterference.
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Appendix

A. Proofs

This appendix proves the Low- and High-pc Step Lemmas from Sec-
tion 4. We make use of, but do not show, standard lemmas such as
Substitution.

LEMMA A.1 (Low-pc Step). Suppose

− Γ ‖ K ` 〈M1, pc1, e1〉 ≈ζ 〈M2, pc2, e2〉

− pc1 v ζ and pc2 v ζ

− 〈M1, pc1, e1〉 7−→ 〈M ′
1, pc′1, e′1〉

then 〈M2, pc2, e2〉 7−→ 〈M ′
2, pc′2, e′2〉 and there exist Γ′ and KK ′ such

that Γ′ ‖ K′ ` 〈M ′
1, pc′1, e′1〉 ≈ζ 〈M ′

2, pc′2, e′2〉.
Proof. Let e1 = γ1(k1(e′′1)) and e2 = γ2(k2(e′′2)) where the sub-

stitutions are as described by the conditions of the Noninterference
Invariant. Because pci v ζ, clause (iii) implies that e′′1 and e′′2 must be
α-equivalent expressions and pc1 = pc2 = pc. Hence the only differ-
ence in their behavior arises due to the substitutions or the different
memories. We proceed by cases on the transition step taken by the
first program. The main technique is to reason by cases on the security
level of the value used in the step—if it’s low-security, by α-equivalence,
both programs compute the same values, otherwise we extend the sub-
stitutions γ1 and γ2 to contain the high-security data. We show a few
representative cases in detail to give the flavor of the argument, the
remainder follow in a similar fashion.

[E1 ]

〈M, pc, prim〉 ⇓ v

〈M, pc, let x = prim in e〉 7−→ 〈M, pc, e{v/x}〉

In this case, e′′1 and e′′2 must be of the form let x = prim in e,
consequently e2 must also transition via rule [E1 ]. Because M1 =
M ′

1 and M2 = M ′
2, and the locations found in terms e′1 and e′2 are
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found in e1 and e2 respectively, condition (v) of the Noninterference
Invariant holds after the transition.

It suffices to find an e′ and γ′i such that e′1 = γ′1(k1(e′)) and
e′2 = γ′2(k2(e′)). If prim is a value, then take γ′i = γi and let
e′ = e{prim/x}. These choices satisfy the conditions. Otherwise,
prim is not a value. Consider the evaluation 〈M1, pc, γ1(prim)〉 ⇓
bv`. There are two cases.

If ` v ζ then prim cannot contain any free variables, for otherwise
condition (iv) would be violated—evaluation rules [P2 ] and [P3 ]
imply that the label of the resulting value be higher than the label
of any constituent, and all the values of γ1 have label higher than
ζ. Thus, γ1(prim) = prim = γ2(prim). 〈M2, pc, γ2(prim)〉 ⇓ bv′`′
and because M1 ≈ζ M2 we have bv` ≈ζ bv′`′ : σ. Thus, there exist
Γ′′, γ′′1 , γ′′2 and values v1 ≡α v2 such that Γ′′ ` γ′′1 ≈ζ γ′′2 and
bv` = γ′′1 (v1) and bv′`′ = γ′′2 (v2). Thus, we take γ′1 = γ1 ∪ γ′′1 ,
γ′2 = γ2 ∪ γ′′2 and e′′i = e{vi/x}. Conditions (iv), (v), and (vi) hold
trivially; conditions (i), (ii), and (iii) are easily verified based on
the operational semantics and the fact that pc1 = pc2 = pc.

If ` 6v ζ then 〈M2, pc, γ2(prim)〉 ⇓ bv′`′ where it is also the case
that `′ 6v ζ. (prim either contains a variable, which forces `′ to be
high, or prim contains a value explicitly labeled with a high-label.)
It follows that bv` ≈ζ bv′`′ : σ and so we take γ′1 = γ1{x 7→ bv`}
and γ′2 = γ2{x 7→ bv′`′}, and e′′i = e, which are easily seen to satisfy
the conditions.

[E2 ]

`′ t pc v label(σ) Lσ 6∈ dom(M)
〈M, pc, let x = refσ

` bv`′ in e〉
7−→ 〈M [Lσ ← bv`′tpc], pc, e{Lσ

`tpc/x}〉

In this case, e′′1 and e′′2 must be of the form let x = refσ
` v in

e where v = bv`′ . Note that γ1(v) ≈ζ γ2(v) : σ and so it fol-
lows that M ′

1 = M1[Lσ ← γ1(v) t pc] is ζ-equivalent to M ′
2 =

M2[Lσ ← γ2(v) t pc], satisfying invariant (v). Now if ` v ζ, we
simply take γ′i = γi, and note that e′1 = γ1(e{Lσ

`tpc/x}) and e′2 =
γ2(e{Lσ

`tpc/x}) satisfy the required invariants. Otherwise, ` 6v ζ,
and we leave K, and the ki’s unchanged and let Γ′ = Γ, x : σ ref`
take γ′i = γi ∪ {x 7→ Lσ

`tpc}.

[E4 ]

〈M, pc, letlin y′ = lv in e〉 7−→ 〈M, pc, e{lv/y′}〉
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If lv = haltσ, then the Noninterference Invariant holds trivially
after the transition. Otherwise, lv = λ〈pc′〉(x : σ). e′. In this case,
e′′1 and e′′2 are letlin y′ = λ〈pc′〉(x :σ). e′ in e. If pc′ v ζ, simply
take K′ = K, y′ :σ → 0 and choose k′i = ki∪{y′ 7→ λ〈pc′〉(x :σ). e′},
which satisfies invariant (iv) because k1 ≈ζ k2 and the terms e′′1
and e′′2 are well-typed. In the case that pc′ 6v ζ, we take k′i = ki

and choose each e′i to be e{λ〈pc′〉(x :σ). e′/y′} which again satisfies
invariant (iv) and the letlin-invariant, (vi). The remaining invari-
ants are easily seen to hold because the memories and ordinary
value substitutions do not change.

[E5 ]

〈M, pc, if0 0` then e′a else e′b〉 7−→ 〈M, pc t `, e′a〉

In this case, e′′1 and e′′2 must be of the form if0 v then ea else eb.
If v is not a variable, then by α-equivalence, e2 must also transition
via rule [E5 ]. Because M1 and M2 don’t change, it is easy to
establish that all of the invariants hold. When v is not a variable,
γ1(v) = 0` for ` 6v ζ. Similarly, γ2(v) = n`′ for `′ 6v ζ. We don’t
know whether the second program transitions via [E5 ] or [E6 ], but
in either case it is easy to establish that the resulting configura-
tions are ≈ζ . Clause (i) holds via the original substitutions; clause
(ii) follows from the fact that the configurations are well-typed;
clause (iii) holds because part (b) lets us relate any high-security
programs; clauses (iv) through (vi) are a simple consequence of
ζ-equivalence of e1 and e2.

[E7 ]

pc v pc′ v = (λ[pc′]f(x :σ, y :κ). e)`

〈M, pc, goto v v′ lv〉 7−→ 〈M, pc′ t `, e{v/f}{v′ t pc/x}{lv/y}〉

In this case, each e′′i = goto v v′ lv. It must be the case that γ1(v) =
(λ[pc′]f(x : σ, y : κ). e)`. If ` v ζ, then v = (λ[pc′]f(x : σ, y : κ). e′)`

where e′ = γ1(e) because, by invariant (iii), the continuation could
not be found in γ1. Note that γ1(v′) ≈ζ γ2(v′) : σ. There are
two sub-cases, depending on whether γ1(v′) has label v ζ. If so,
it suffices to take Γ′ = Γ, K′ = K, and leave the substitutions
unchanged, for we have e′i = γi(ki(e{v/f}{γi(v′) t pc/x}{lv/y})).
Otherwise, if the label of γ1(v′) 6v ζ, we take Γ′ = Γ, x : σ and
γ′i = γi{x 7→ γi(v′) t pc}. The necessary constraints are then met
by e′i = γ′i(ki(e{v/f}{lv/y})).
The other case is that ` 6v ζ, and hence the label of γ2(v) is also 6v
ζ. Thus, pc′1 = pct` 6v ζ and pc′2 6v ζ. The resulting configurations
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satisfy part (b) of clause (iii). The bodies of the continuations are
irrelevant, as long as the other invariants are satisfied, but this
follows if we build the new value substitutions as in the previous
paragraph

LEMMA A.2 (High-pc Step). Suppose

− Γ ‖ K ` 〈M1, pc1, e1〉 ≈ζ 〈M2, pc2, e2〉

− pc1 6v ζ and pc2 6v ζ

− 〈M1, pc1, e1〉 7−→ 〈M ′
1, pc′1, e′1〉

then either e2 diverges or 〈M2, pc2, e2〉 7−→∗ 〈M ′
2, pc′2, e′2〉 and there

exist Γ′ and K′ such that Γ′ ‖ K′ ` 〈M ′
1, pc′1, e′1〉 ≈ζ 〈M ′

2, pc′2, e2〉.
Proof. By cases on the transition step of the first configuration.

Because pc1 6v ζ and all rules except [E8 ] increase the program-counter
label, we may choose zero steps for e2 and still show that ≈ζ is pre-
served. Condition (iii) holds via part (b). The other invariants follow
because all values computed and memory locations written to must
have labels higher than pc1 (and hence 6v ζ). Thus, the only mem-
ory locations affected are high-security: M ′

1 ≈ζ M2 = M ′
2. Similarly,

[TE5 ] forces linear continuations introduced by e1 to have pc 6v ζ.
Substituting them in e1 maintains clause (v) of the invariant.

Now consider the case for [E8 ]. Let e1 = γ1(k1(e′′1)), then e′′1 =
lgoto lv v1 for some lv. If lv is not a variable, clause (vi) ensures that
the program counter in lv’s body is 6v ζ. Pick 0 steps for the second
configuration as above, and it easily follows that the resulting configura-
tions are ≈ζ under Γ and K. Otherwise, lv is the variable y. By assump-
tion, k1(y) = λ〈pc〉(x :σ). e, where pc v ζ. Assume e2 does not diverge.
By the Progress Lemma 〈M2, pc2, e2〉 7−→∗ 〈M ′

2, pc′2, lgoto k2(y) v2〉
(by assumption, it can’t diverge). Simple induction on the length of
this transition sequence shows that M2 ≈ζ M ′

2, because the program
counter may not becomev ζ. Thus, M ′

1 = M1 ≈ζ M2 ≈ζ M ′
2. By invari-

ant (iv), k2(y) ≡α k1(y). Furthermore, [TE7 ] requires that label(σ) 6v ζ.
Let Γ′ = Γ, x :σ, γ′1 = γ1{x 7→ γ1(v1)tpc1}, γ′2 = γ2{x 7→ γ2(v2)tpc2};
take k′1 and k′2 to be the restrictions of k1 and k2 to the domain of
the tail of K, which we choose for K′. Finally, let e′1 = γ′1(k

′
1(e)) and

e′2 = γ′2(k
′
2(e)). All of the necessary conditions are satisfied as is easily

verified via the operational semantics. 2
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