
Programming with Explicit Security Policies

Andrew C. Myers

Cornell University
andru@cs.cornell.edu

Abstract. Are computing systems trustworthy? To answer this, we need to know
three things: what the systems are supposed to do, what they are not supposed to
do, and what they actually do. All three are problematic. There is no expressive,
practical way to specify what systems must do and must not do. And if we had
a specification, it would likely be infeasible to show that existing computing sys-
tems satisfy it. The alternative is to design it in from the beginning: accompany
programs with explicit, machine-checked security policies, written by program-
mers as part of program development. Trustworthy systems must safeguard the
end-to-end confidentiality, integrity, and availability of information they manipu-
late. We currently lack both sufficiently expressive specifications for these infor-
mation security properties, and sufficiently accurate methods for checking them.
Fortunately there has been progress on both fronts. First, information security
policies can be made more expressive than simple noninterference or access con-
trol policies, by adding notions of ownership, declassification, robustness, and
erasure. Second, program analysis and transformation can be used to provide
strong, automated security assurance, yielding a kind of security by construction.
This is an overview of programming with explicit information security policies
with an outline of some future challenges.

1 The Need for Explicit Policies

Complex computing systems now automate and integrate a constantly widening sphere
of human activities. It is crucial for these systems to be trustworthy: both secure and
reliable in the face of failures and malicious attacks. Yet current standard practices in
software development offer weak assurance of both security and reliability. To be sure,
there has been progress on automatic enforcement of simple safety properties, notably
type safety. And this is valuable for protecting systems from code injection attacks
such as buffer overruns. But many, perhaps most serious security risks do not rely on
violating type safety. Often the exposed interface of a computing system can be used
in ways unexpected by the designers. Insiders may be able to misuse the system using
their privileges. Users can sometimes learn sensitive information when they should not
be able to. These serious vulnerabilities are difficult to identify, analyze, and prevent.

Unfortunately, current practices for software development and verification do not
seem to be on a trajectory that leads to trustworthy computing systems. Incremental
progress will not lead to this goal; a different approach is needed. We have been ex-
ploring a language-based approach to building secure, trustworthy systems, in which
programs are annotated with explicit, machine-checked information security policies
relating to properties such as the confidentiality and integrity of information. These



properties are both crucial to security and difficult to enforce. It is possible to write rel-
atively simpleinformation flowpolicies that usefully capture these aspects of security.
These explicit policy annotations then support automatic enforcement through program
analysis and transformation.

2 Limitations of Correctness

Of course, the idea of automatic verification has always been appealing—and somewhat
elusive. The classic approach of verifying that programs satisfy specifications can be a
powerful tool for producing reliable, correct software. However, as a way to show that
programs are secure, it has some weaknesses. First, there is the well-known problem
that the annotation burden is high. A second, less appreciated problem is that clas-
sic specifications with preconditions and postconditions are not enough to understand
whether a program is secure. Correctness assertions abstract program behavior; if the
abstraction leaves out security-relevant information, the actual program may contain se-
curity violations (especially, of confidentiality) invisible at the level of the abstraction.
Thus, it’s also important to understand not only what programs do but also what they
don’t do. Even if the program has no observable effect beyond what its specification
describes, the specification itself may allow the confidential information to be released.
A third problem is that correctness assertions don’t address the possible presence of
malicious users or code, which is particularly problematic for distributed systems.

3 End-to-End Information Security

If classic specification techniques are too heavyweight and yet not expressive enough,
what are the alternatives? One possibility is information flow policies, which constrain
how information moves through the system. For example, a policy that says some data
is confidential means that the system may not let that data flow into locations where it
might be viewed insecurely. This kind of policy implicitly controls the use of the data
without having to name all the possible destinations, so it can be lightweight yet com-
patible with abstraction. Furthermore, it applies to the system as a whole, unlike access
control policies, which mediate access to particular locations but do not control how
information propagates. One can think of information flow policies as an application of
the end-to-end principle to the problem of specifying computer security.

Information flow policies can express confidentiality and integrity properties of sys-
tems: confidentiality is about controlling where information flows to; integrity is about
controlling where information flows from. Integrity is also about whether information
is computed correctly, but even just an analysis of integrity as information flow is useful
for ensuring that untrustworthy information is not used to update trusted information.

Fundamentally, information flow is about dependency [ABHR99], which makes
sense because security cannot be understood without understanding how components
depend on one another. The approach to enforcing information flow that has received
the most attention is to analyze dependency at compile time using asecurity type sys-
tem[SM03]. The Jif programming language [Mye99], based on Java, is an example of
a language with a type system for information security.



The other appealing aspect of information flow policies is that they can be connected
to an underlying semantic security condition, noninterference. Noninterference says
roughly that the low-security behavior of a system does not change when high-security
inputs are changed. This condition (which has many variants) can be expressed in the
context of a programming language operational semantics [VSI96], making possible a
proof that a security type system constrains the behavior of the system.

4 Whole-System Security and Mutual Distrust

Many of the computing systems for which security is especially important are dis-
tributed systems serving many principals, typically distributed at least partly because
of security concerns. For example, consider a web shopping service. At the least, it
serves customers, who do not entirely trust the service, and the companies selling prod-
ucts, who do not trust the customers or each other. For this reason, the computational
resources in use when a customer is shopping are located variously on the customer’s
computer, on the web service provider, and on the seller’s computers. It is important
to recognize that these principals have their own individual security requirements; the
system as a whole must satisfy those requirements in order for them to participate.

To enforce information security for such a system, it is necessary to know the re-
quirements of each of the principals. The decentralized label model [ML00] is an in-
formation flow policy language that introduces a notion of information flow policies
owned by principals. For example, in the context of confidentiality, a policyp1 : p2

means that principalp1 owns the policy and trusts principalp2 to read the correspond-
ing information. More generally,p1 trustsp2 to enforce the relevant security property
on its behalf. This structure makes it possible to express a set of policies on behalf of
multiple principals while keeping track of who owns (and can relax) each policy.

For example, suppose we are implementing the game of Battleship with two players,
A andB. PlayerA wants to be able to read his own board but doesn’t wantB to read
it, so the confidentiality label is{A : A}. For integrity, both principals want to make
sure that the board is updated in accordance with the rules of the game, so the integrity
label has two owned policies:{A : A ∧ B, B : A ∧ B}, whereA ∧ B is a conjunctive
principal representing the fact that bothA andB must trust the updates toA’s board.

5 Security through Transformation

Secure distributed systems achieve security through a variety of mechanisms, including
partitioning code and data (as in the web shopping example), replication, encryption,
digital signatures, access control, and capabilities. Analyzing the security of a complex
system built in this fashion is currently infeasible.

Recently, we have proposed the use of automatic program transformation as a way
to solve this problem [ZZNM02]. Using the security policies in a non-distributed pro-
gram, the Jif/split compiler automatically partitions its code and data into a distributed
system that runs securely on a collection of host machines. The hosts may be trusted
to varying degrees by the participating principals; a partitioning is secure if policies of
each principal can be violated only by hosts it trusts. The transformation employs not



only partitioning, but also all of the distributed security mechanisms above to generate
distributed code for Jif programs. For example, given the labels above, Jif/split can split
the code of a Battleship program into a secure distributed system.

6 Conclusions and Future Challenges

The ability to provably enforce end-to-end security policies with lightweight, intuitive
annotations is appealing. Using policies to guide automatic transformation into a dis-
tributed system is even more powerful, giving a form of security by construction. How-
ever, research remains to be done before this approach can be put into widespread use.

Noninterference properties are too restrictive to describe the security of real-world
applications. Richer notions of information security are needed: quantitative informa-
tion flow, policies for limited information release, dynamic security policies [ZM04],
and downgrading policies [CM04]. End-to-end analyses are also needed for other secu-
rity properties, such as availability.

Checking information flow policies with a trusted compiler increases the size of the
trusted computed base; techniques for certifying compilation would help.

The power of the secure program transformation technique could be extended by
employing more of the tools that researchers on secure protocols have developed; secret
sharing and secure function computation are obvious examples.

Strong information security requires analysis of how programs use information.
Language techniques are powerful and necessary tools for solving this problem.

References

[ABHR99] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A core calculus
of dependency. InProc. 26th ACM Symp. on Principles of Programming Languages
(POPL), pages 147–160, San Antonio, TX, January 1999.

[CM04] Stephen Chong and Andrew C. Myers. Security policies for downgrading. InProc.
11th ACM Conference on Computer and Communications Security, pages 198–209,
October 2004.

[ML00] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized la-
bel model.ACM Transactions on Software Engineering and Methodology, 9(4):410–
442, October 2000.

[Mye99] Andrew C. Myers. JFlow: Practical mostly-static information flow control. InProc.
26th ACM Symp. on Principles of Programming Languages (POPL), pages 228–241,
San Antonio, TX, January 1999.

[SM03] Andrei Sabelfeld and Andrew Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure
flow analysis.Journal of Computer Security, 4(3):167–187, 1996.

[ZM04] Lantian Zheng and Andrew C. Myers. Dynamic security labels and noninterference.
In Proc. 2nd Workshop on Formal Aspects in Security and Trust, IFIP TC1 WG1.7.
Springer, August 2004.

[ZZNM02] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Se-
cure program partitioning.ACM Transactions on Computer Systems, 20(3):283–328,
August 2002.


