
Dynamic Security Labels and Noninterference

Lantian Zheng Andrew C. Myers

Computer Science Department

Cornell University

{zlt,andru}@cs.cornell.edu

Abstract

This paper explores information flow control in systems in which the security classes of data can vary
dynamically. Information flow policies provide the means to express strong security requirements for
data confidentiality and integrity. Recent work on security-typed programming languages has shown that
information flow can be analyzed statically, ensuring that programs will respect the restrictions placed
on data. However, real computing systems have security policies that vary dynamically and that cannot
be determined at the time of program analysis. For example, a file has associated access permissions
that cannot be known with certainty until it is opened. Although one security-typed programming lan-
guage has included support for dynamic security labels, there has been no examination of whether such
a mechanism can securely control information flow. In this paper, we present an expressive language-
based mechanism for securely manipulating dynamic security labels. The mechanism is presented both
in the context of a Java-like programming language and, more formally, in a core language based on
the typed lambda calculus. This core language is expressive enough to encode previous dynamic label
mechanisms; as importantly, any well-typed program is provably secure because it satisfies noninterfer-
ence.

1 Introduction
Information flow control protects information security by constraining how information is transmitted among
objects and users of various security classes. These security classes are expressed aslabelsassociated with
the information or its containers.Dynamic labels, labels that can be manipulated and checked at run time,
are vital for modeling real systems in which security policies may be changed dynamically. For example, it
is important to be able to change security settings on files and database records, and these changes should
affect how the information from these sources can be used.

However, manipulating labels dynamically makes it difficult to enforce a strong notion of information
security such asnoninterference[8] for several reasons. First, downgrading the label of an object may
convert sensitive data to public data, directly violating noninterference. Second, label changes can be used
to convey information covertly; some restriction has to be imposed to prevent such covert channels [28, 21].
Third, the usual way to control information flow in the presence of dynamic labels is mandatory access
control (MAC), which generally cannot preventimplicit flowsarising from the control flow paths not taken
at run time [4, 12].

Static information flow control techniques, such as those developed by Denning and Denning [5], are
able to analyze all control flow paths and prevent illegal implicit flows. Moreover, static information flow
analysis incurs little run-time overhead. Recently, static information flow analyses have been formalized in
security type systems(e.g., [26, 10, 32, 18, 3, 20]) that can provably enforce noninterference. Nevertheless,
in most security-typed languages, security labels are purely static type-level information that cannot be
accessed or tested at run time.

1

JFlow [14] and its successor, Jif [16] are the only security-typed languages supporting dynamic labels.
However, although the Jif type system is designed to control the new information channels that dynamic la-
bels create, it has not been proved to enforce secure information flow. Further, the dynamic label mechanism
in Jif has limitations that impair expressiveness and efficiency.

In this paper, we propose a new, expressive language-based mechanism for securely manipulating dy-
namic security labels. We show that the mechanism is useful in practice by incorporating it into Jif and
demonstrating that the resulting language, Jif-DX, is more expressive than Jif. Further, we study the sound-
ness of this mechanism by formalizing it in a core language based on the typed lambda calculus and proving
that any well-typed program of the core language is secure because it satisfies noninterference. This is the
first noninterference proof for a security-typed language in which general security labels can be manipulated
and tested dynamically.

While downgrading security classes [24, 15] is an important capability, it is useful to treat it as a separate
mechanism so that labels can be manipulated dynamically while preserving noninterference. However, the
Jif language does support a downgrading mechanismwithoutresorting to dynamic labels.

The remainder of this paper is organized as follows. Section 2 presents some background on lattice
label models and dynamic labeling. Section 3 introduces the static analysis framework for dynamic labels
and the Jif-DX language. Section 4 formalizes the static analysis of dynamic labels as the type system of
a core languageλDSec and proves the noninterference result. Section 5 covers related work, and Section 6
concludes.

2 Background
2.1 Security classes

We assume that security requirements for confidentiality or integrity are defined by associatingsecurity
classeswith users and with the resources that programs access. These security classes form a latticeL. We
write k v k′ to indicate that security classk′ is at least as restrictive as another security classk. In this
case it is safe to move information from security classk to k′, because restrictions on the use of the data are
preserved. To control data derived from sources with classesk andk′, the least restrictive security class that
is at least as restrictive as bothk andk′ is assigned. This is the least upper bound, or join, writtenk t k′.

2.2 Labels

Type systems for confidentiality or integrity are concerned with tracking information flows in programs.
Types are extended with securitylabelsthat denote security classes. A label` appearing in a program may
be simply a constant security classk, or a more complex expression that denotes a security class. The
notation`1 v `2 means that̀2 denotes a security class that is at least as restrictive as that denoted by`1.

Because a given security class may be denoted by different labels, the relationv generates a lattice
of equivalence classesof labels witht as thejoin (least upper bound) operator. Two labels`1 and`2 are
equivalent, writteǹ1 ≈ `2, if `1 v `2 and`2 v `1. The join of two labels,̀1t `2, denotes the security class
that is the join of the security classes that`1 and`2 denote. For example, ifx has label̀ x andy has label̀ y,
then the sumx+y is given the label̀x t `y.

2.3 Security type systems for information flow

Security type systems can be used to enforce security information flows statically. Information flows in
programs may be explicit flows such as assignments, or implicit flows [5] arising from the control flow of
the program. Consider an assignment statementx=y, which contains an information flow fromy to x. Then
the typing rule for the assignment statement requires that`y v `x, which means the security level ofy is
lower than the security level ofx, guaranteeing the information flow fromy to x is secure.

2

One advantage of static analysis is more precise control of implicit flows. Consider a simple conditional:

if b then x = true else x = false

After running this expression, the value ofx is equal tob, although there is no direct assignment fromb to
x. A standard technique to prevent illegal implicit flows is to introduce aprogram-counter label[4], written
pc, which indicates the security level of the information that can be learned by knowing the control flow
path taken thus far. The type system ensures that any effect of expressione has a label at least as restrictive
as itspc. In other words, expressione cannot generate any effects observable to users who should not know
the current program counter.

2.4 Dynamic labels in Jif

Jif [16] (previously known as JFlow [14]) is the only existing security-typed language that supports dy-
namic labels. Jif extends the Java language [9] with security labels that are based on thedecentralized label
model[15]. These labels may explicitly mention principals. For example, a value with typeint{Alice:Bob}
is an integer owned by principalAlice and readable byAlice andBob. Jif aims to provide a usable pro-
gramming model, in which the dynamic label mechanism plays an important role.

In Jif, security labels can be used as first-class values, so labels are not purely static type annotations. In
addition, variables of typelabel (label variables) may be used as a label for other values. Label variables
provide a straightforward way to represent dynamic labels. For example, supposex is a label variable.
Then*x refers to the label contained inx, and{*x} is a legitimate label in Jif ifx is declaredfinal so
that it cannot be assigned after initialization, and the meanings of labels do not change as variables are
assigned. Dynamic labels are treated as unknown butfixedlabels by the compiler, so they can be propagated
in static checking. For example, given any two labels`1 and `2 such that̀ 1 v `2, it is the case that
`1 t {*x} v `2 t {*x}.

Since dynamic labels are generally unknown at compile time, it may be impossible to decide statically
whether̀ 1 v `2 holds. In this case, the condition`1 v `2 can only be enforced by examining labels at run
time. For example, suppose a program tries to send an integer through a network channel that is created at
run time and has a dynamic label. The operation is safe only if the label of the channel is at least as high as
the label of the integer; this condition can only be tested at run time.

Jif provides theswitch label statement for run-time label tests. The following code shows how to
implement the above example using theswitch label statement:

(A) final label{} x;
Channel{*x} c;
int{Alice:} y;
switch label(y) {

case (int{*x} z) c.send(z);
else throw new UnsafeTransfer();

}

The label of channelc is a dynamic label{*x}. The label ofx is the bottom label{}, which means the
information aboutx is public. Theswitch label statement executes the first of the cases whose associated
label is at least as restrictive as that ofy. The value ofy is assigned to the corresponding variable (for
example,z). Thus thesend operation will be executed only if{Alice:} v {*x}, guaranteeing thatc is a
secure channel for sendingy.

Like labels, principals may also be used as first-class values at run time. The statementactsFor(p1,
p2)S executes the statementS if the principalp1 can act for the principalp2. This acts-for relationship
betweenp1 andp2 is equivalent to{p2:} v {p1:}. Thus theactsFor statement essentially implements a
run-time label examination.

3

3 Static analysis of dynamic labels
This section presents a general framework for static checking of dynamic labels. We propose the language
Jif-DX, which extends Jif with a more expressive dynamic label mechanism based on this framework.

3.1 Static checking framework for dynamic labels

Static checking of dynamic labels must rely on the information about dynamic labels available at com-
pile time. The insight behind the new static checking framework is to represent this information aslabel
constraintsof the form`1 v `2. For example, the constraint{Alice:} v {*x} indicates that the label
contained inx is at least as restrictive as{Alice:}. Then it is safe to assign a value of label{Alice:} to a
variable of label{*x}, even though the exact value ofx is unknown.

For a security-typed language, static information flow checking is an aspect of type checking, which
ensures that a well-typed expression does not generate illegal information flows. In general, if type-checking
an expressione involves dynamic labels, the compiler can reason more accurately about information flow by
exploiting the set of label constraints known to be satisfied whene is executed. Thus, tracking and using the
label constraints of each expression is the key to improving static checking of dynamic labels. Essentially,
a label constraint is a kind of type constraint, which has been used in bounded polymorphic types, type
inference and dependent type systems [23, 30].

We can classify label constraints into three categories: dynamic constraints, static constraints and im-
plicit constraints. This classification helps identifying various label constraints systematically and provides
hints for new dynamic label constructs.

• Dynamic label constraints
Dynamic label constraintsare constraints enforced by testing labels at run time. For example, consider
the switch label statement:switch label(e) {. . .case (T{`} y): S . . .}. If S is executed,
then`e v ` (`e represents the label ofe) must be satisfied, and thus, the constraint could be used in
type-checkingS. However, Jif does not make use of this constraint when statically checkingS.

• Static label constraints
Static label constraintsare constraints enforced statically by the compiler. For example, in Jif, an
actsFor constraint “p1 actsFor p2” may be specified in a method signature to prevent the method
from being called unless the compiler can determine that principalp1 acts forp2 at the call site [14].
This actsFor constraint is similar to a static label constraint{p2:} v {p1:}, though it has some
separate utility in Jif.

One advantage of static constraints is that no run-time cost is incurred because they are enforced
statically. Furthermore, not all the static constraints can be enforced dynamically because some labels
such asclass label parameters[14] have no run-time representations.

• Implicit label constraints
Implicit label constraintsare not explicitly specified in programs, but can be inferred from programs.
For example, consider the statement “final label lb = `”. It is clear that the constraint{*lb} ≈
` holds after the statement is executed. Implicit label constraints can be used to type-check call
expressions. In the following code, the type of expressiono.m({Alice:},10) is int{Alice:}
because of an implicit constraint{*lb} ≈ {Alice:} that arises from argument passing.

(B) interface I { int{*lb} m(label{} lb, int{*lb} x); }
I{} o; ...
int{Alice:} y = o.m({Alice:}, 10);

To enable the compiler to generate an implicit label constraint for every actual label argument, Jif
imposes a syntactic restriction on the method argument of typelabel: the actual label argument in

4

a call expression must be an expression that can be converted to a label without evaluation. This
restriction does not substantively affect expressiveness. For example, given an arbitrary expressione
of typelabel, the expressiono.m(e,10) can be rewritten as “final label t = e; o.m(t,10)”,
wheret can be converted to the label{*t}.

3.2 The Jif-DX language

The original Jif dynamic label mechanism appears to be sound but has several limitations. First, label
checking of the clauses of aswitch label statement does not fully exploit the label constraint enforced by
the run-time check. Second, Jif supports only one kind of static label constraint:actsFor constraints, which
give information about principals but are not as powerful as general label constraints. Third, in Jif only label
variables can be used as dynamic labels, but in practice other expressions may be useful in dynamic labels.

These limitations of Jif make it difficult or awkward to write some applications that need to manipulate
dynamic labels. Therefore, we propose the Jif-DX language, which extends Jif with a better dynamic label
mechanism, including the label-test statement, method and field label constraints, and more general label
expressions.

3.2.1 The label-test statement

Jif-DX provides the label-test statement, which is a more flexible way to implement run-time label checks
than theswitch label statement. The syntax of the label-test statement resembles a normalif statement,
except that the conditional expression must be a label constraint syntactically: “if (`1<=`2) S1 else
S2”. Intuitively, S1 is executed if̀ 1 v `2 is true at run time; otherwise,S2 is executed. Becausè1 v `2

must hold ifS1 is executed, this constraint can be assumed to hold when checkingS1 statically.
Both theswitch label statement and theactsFor statement in Jif can be encoded with the label-test

statement. For example, the statement “actsFor(p1, p2) S” is equivalent to “if ({p2:} <= {p1:}) S”.

3.2.2 Method label constraints

Jif-DX allows general label constraints to be specified in method signatures, whereas Jif only provides
actsFor constraints. The following example shows a use of a label constraint on a method:

(C) class Key[principal p] {
int{} encrypt(label{} lb, int{*lb} x) where {*lb} <= {p:} { ... }

}

The classKey[principal p] represents a key belonging to principalp. Theencrypt method takes in
a labellb and an integerx labeled with{*lb}, and attempts to encryptx with the key of principalp and
return the encrypted result as a public integer. This method should only encrypt the data owned by principal
p, because the result can be decrypted byp. This requirement is captured by the method label constraint
{*lb} v {p:}. The compiler ensures that the constraint is satisfied wherever this method is called.

Another way to write this code would be to insert a run-time check in the method body and make the
method throw an exception if{*lb} v {p:} is not satisfied at run time. This code would incur some
unnecessary run-time label checks, and the caller would have to handle the exception somehow. Indeed,
one advantage of the method label constraint is its ability to exploit information available at the caller side
to reduce the number of run-time checks. For example, in the following Jif-DX code the compiler can
determine that the method constraint is satisfied without a run-time check:

(D) Key[Alice]{} k;
int{Alice:Bob} x;
k.encrypt({Alice:Bob}, x);

5

3.2.3 Field label constraints

In Jif-DX, label constraints can also be specified on class fields of typelabel. The compiler ensures that
the field label constraints of a class are satisfied whenever a new instance of the class is created. All fields
appearing in a label constraint must be final, so field label constraints that are satisfied when an object is
created will hold for the lifetime of the object.

Like method label constraints, field label constraints can be used to reduce the number of run-time
label checks. For example, sending an integer through amultilevel communication channel[6] with label
` requires sending the exact label of the integer through the channel. The natural way to implement it is to
wrap the integer and its label in an object of theLabeled class and send the object through the channel.

(E) class Labeled {
public final label{`} lb;
public int{*lb} content;
public Labeled(label{`} x, int{*x} y) { lb = x; content = y; }

}

The label of fieldlb is `, ensuring thatlb itself can be sent through the channel. But the label of field
content is dynamic, and the constraint{*lb} v ` needs to hold for fieldcontent to be sent safely
through the channel. This constraint can be enforced by a run-time label check, but it can also be enforced
statically by specifying a field label constraint{*lb} v `, as in theUBLabeled (“UB” stands for upper
bound) class. Sending aUBLabeled object through a channel with label` is always safe.

(F) class UBLabeled {
public final label{`} lb where {*lb} <= `;
public int{*lb} content;
public UBLabeled(label{`} x, int{*x} y) where {*x} <= ` {

lb = x; content = y;
}

}

3.2.4 Path-expression labels

Consider theLabeled class again, and supposeo is aLabeled object. Then what is the type ofo.content?
According to theLabeled class, the precise type would beint{*o.lb}, which cannot be expressed in Jif
because Jif does not allowpath expressionssuch aso.lb to appear in labels.

In Jif-DX, a path expression with the typelabel can be used in label expressions as long as all the
identifiers in the path expression are final, ensuring that the path expression always has the same value. For
example, ifo is a final variable, then{*o.lb} is a legitimate label, and the following code can be used to
accesso.content while preserving its precise type.

(G) int{*o.lb} y = o.content;

If o were not a final variable, theno.content would not be well-typed in Jif-DX. But there is an easy
workaround: assigno to a final variablefo and access thecontent field by fo.content, which has a
well-formed typeint{*fo.lb}.

3.2.5 Example: bounded dynamic labeling

In this section, we show how to use the new dynamic label constructs in Jif-DX to implement a MAC
mechanism, which would be much harder and unintuitive to implement in Jif. The MAC mechanism in the
MITRE CMW system [28] associates two labels with each object: afloating labeland a fixedmandatory

6

label. The floating label is updated accordingly when the content of the object is updated, but is bounded by
the fixed mandatory label in order to prevent the covert channel caused by label updates. The doubly labeled
object can be represented by aUBLabeled (see code fragment F) object in Jif-DX, and the policy that the
floating label be bounded by the mandatory label is represented by the field constraint{*lb} v `, where
{*lb} is the floating label, and̀ is the mandatory label.

The following code shows how to update the label and access the content of aUBLabeled object. Simple
as it is, this example demonstrates several subtle issues related to manipulating dynamic labels.

(H) UBLabeled o;
final label{} x, y;
int{*x} data;
...

(1) if ({*x} <= `) o = new UBLabeled(x, data);
final UBLabeled{} fo = o;

(2) if ({*fo.lb} <= {*y})
if ({*y} <= `) o = new UBLabeled(y, fo.content);

(3) int{`} output = fo.content;
int{Alice:} output2;

(4) if ({*fo.lb} <= {Alice:}) output2 = fo.content;

The first label-test statement (1) attempts to update the content ofo, and the constraint{*x} <= ` guarantees
the label of the new value is bounded by the mandatory label`. The constructor callnew UBLabeled(x,
data) is well-typed because of the constraint{*x} v ` enforced by the label test.

The second label-test statement (2) attempts to just update the label field ofo to y. The first test
{*fo.lb} <= {*y} is necessary fornew UBLabeled(y, fo.content) to be well-typed, because the type
of fo.content (int{*fo.lb}) must be a subtype ofint{*y}. Essentially, the constraint prevents down-
grading the label of the object content. Furthermore, this example shows that the immutability requirement
for label fields is not a fundamental limitation because adding a level of indirection makes it possible to
updateo.lb even though the fieldlb is final.

The last two statements (3,4) attempt to accesso.content. The assignment tooutput is well-typed
because of the field label constraint{*fo.lb} v `. The assignment tooutput2 might appear secure
because a label test is used to ensure the label ofoutput2 is at least as restrictive as the label offo.content.
However, there is an implicit flow fromfo.lb to output2 in the label-test statement. The implicit flow is
legal only if ` v {Alice:}, which prevents a possible covert channel caused by dynamic labeling.

4 Type system and noninterference
This section formalizes the powerful dynamic label mechanism of Jif-DX and proves its soundness in term
of enforcing noninterference, which means that high-security inputs to a program cannot affect low-security
outputs.

The vehicle for this formal analysis is a core languageλDSec focused on modeling the dynamic label
constructs in Jif-DX. Distilling Jif-DX to a simple core language has the advantage that the semantics of the
dynamic label mechanism can be described clearly and formally. Many features of Jif-DX are intentionally
omitted fromλDSec , including objects, class inheritance, exceptions, and downgrading; however, these
features are largely orthogonal to the dynamic label mechanism, and their impact on information flow has
been studied in other work [3, 22, 31].

7

Base Labels k ∈ L
Variables x, y, f ∈ V
Locations m ∈ M

Labels `, pc ::= k | x | `1 t `2
Constraints C ::= `1 v `2 , C | ε

Base Types β ::= int | label | unit | (x :τ1)[C] ∗ τ2 | τ ref | (x :τ1)
C ; pc−−−→ τ2

Security Types τ ::= β`

Values v ::= x | n | mτ | λ(x :τ)[C ; pc]. e | () | k | (x=v1[C], v2 :τ)
Expressions e ::= v | `1 t `2 | e1 e2 | !e | e1 := e2 | refτe | if `1 v `2 then e1 else e2

| let (x, y)=v in e

Figure 1: Syntax ofλDSec

4.1 TheλDSec language

TheλDSec language is a security-typed lambda calculus that supports first-class dynamic labels. InλDSec , la-
bels are terms so that they can be manipulated and checked at run time. Furthermore, label terms can be used
as type annotations that are analyzed statically. Syntactic restrictions are imposed on label terms to increase
the practicality of type checking, which follows the approach used by Xi and Pfenning inMLΠ

0 (C) [30].
From the computational standpoint,λDSec is fairly expressive, because it supports both first-class func-

tions and state (which together are sufficient to encode recursive functions).

4.1.1 Syntax

The syntax ofλDSec is given in Figure 1. We use the namek to range over a lattice of label valuesL (more
precisely, a join semi-lattice with bottom element⊥), x, y to range over variable namesV, andm to range
over a space of memory addressesM.

To make the lattice explicit, we writeL |= k1 v k2 to mean thatk2 is at least as restrictive ask1 in L,
andL |= k = k1 t k2 to meank is the join ofk1 andk2 in L. The least and greatest elements ofL are
⊥ and>. We also assumeL contains at least the pointsL andH whereH 6v L, but the noninterference
result applies to an arbitrary lattice. The labelL is assumed to describe what information is observable by
low-security userswho are to be prevented from seeing confidential information. Thus,low-securitydata
has a label bounded above byL; high-securitydata has a label (such asH) not bounded byL.

In λDSec , a label can be either a label valuek, a label variablex, or the join of two other labels̀1 t `2.
For example,L, x, andL t x are all valid labels, andL t x can be interpreted as a security policy that is
as restrictive as bothL andx. The security typeτ = β` is the base typeβ annotated with label̀. The base
types include integers, unit, labels, functions, references and products.

The function type(x : τ1)
C ; pc−−−→ τ2 is a dependent type sinceτ2, C andpc may mentionx. To avoid

recursion,x is not allowed to appear inτ1. The componentC is a set oflabel constraintswith the form
`1 v `2, which must be satisfied when the function is invoked. Thepc component is a lower bound on the
memory effects of the function, and an upper bound on thepc label of the caller. Consequently, a function
is not able to leak information about where it is called. Without the annotationsC andpc, this kind of type
is sometimes written asΠx :τ1.τ2 [13].

The product type(x :τ1)[C]∗ τ2 is also a dependent type in the sense that occurrences ofx can appear in
τ2 andC. The componentC is a set of label constraints that any value of the product type must satisfy. Ifτ2

does not containx, andC is empty, the type may be written as the more familiarτ1 ∗τ2. Without component
C, this kind of type is sometimes written asΣx :τ1.τ2 [13].

8

In λDSec , values include integersn, typed memory locationsmτ , functionsλ(x : τ)[C ; pc]. e, the unit
value(), constant labelsk, and pairs(x = v1[C], v2 : τ). A functionλ(x : τ)[C ; pc]. e has one argumentx
with typeτ , and the componentsC andpc have the same meanings as those in function types. The empty
constraint setC or the toppc can be omitted. A pair(x=v1[C], v2 :τ) contains two valuesv1 andv2. The
second elementv2 has typeτ and may mention the first elementv1 by the namex. The componentC is a
set of label constraints that the first element of the pair must satisfy. For example, ifC is {x v L}, then
v1 v L must be true.

Expressions include valuesv, variablesx, the join of two labels̀ 1 t `2, applicationse1 e2, dereferences
!e, assignmentse1 := e2, referencesrefτe, label-test expressionsif `1 v `2 then e1 else e2, and product
destructorslet (x, y)=v in e2.

The label-test expressionif `1 v `2 then e1 else e2 is used to examine labels—at run time, if the
value of`2 is a constant label at least as restrictive as the value of`1, thene1 is evaluated, otherwise,e2 is
evaluated. Consequently, the constraint`1 v `2 can be assumed when type-checkinge1.

The product destructorlet (x, y)=v in e unpacks the pairv, assigns the first element ofv to x and the
second toy, and then evaluatese.

4.1.2 Encoding Jif-DX constructs

TheλDSec language is designed to model the dynamic label constructs of Jif-DX. AlthoughλDSec is not
object-oriented, first-class functions and products provide some ability to explore issues that arise in a class-
based language (without inheritance).

The label-test statement in Jif-DX can be encoded directly by the label-test expression inλDSec . Methods
in Jif-DX correspond to functions inλDSec , and both constructs allow constraints to be specified on the
arguments of typelabel. Objects in Jif-DX correspond to product values inλDSec . Just as Jif-DX allows
specifying label constraints on fields,λDSec allows constraints on product components. TheλDSec language
provides the product destructor to retrieve the components from a product value. This pattern-matching style
of access not only retrieves the product components, but also preserves constraints.

The followingλDSec expressions and types can be used to represent correspondingly labeled code frag-
ments of Jif-DX in Section 3. Since class declarations in Jif-DX are essentially types, some Jif-DX code
corresponds to types ofλDSec . TheλDSec type in (C) shows how to encode the signature of the method
encrypt. The product types in (E) and (F) are used to encode theLabeled class and theUBLabeled class,
respectively. The function term in (G) shows how to retrieve the components from a product value and use
the components in some computation represented bye. The function in (H) encodes updating aUBLabeled
object. It takes in three arguments:o is a reference of the product type encoding theUBLabeled class;y
is a label;z is an integer labeled withy. The function wrapsy andz in a product value and assigns the
product value too, updating the information contained ino and the corresponding label at the same time. A
label-test expression is used to ensure that the product label constraint holds.

(C) (x :label⊥)
xv{p:}−−−−→ (y :intx) −→ int⊥

(E) (x :label`) ∗ intx

(F) (x :label`)[x v `] ∗ intx

(G) λo : ((x :label`) ∗ intx)⊥. let (x, y)=o in e

(H) λo : (((x :label`)[x v `] ∗ intx)` ref)⊥. λy :label`. λ(z :inty)[`].
if y v ` then o := (x=y, z :intx) else ()

9

[E1]
L |= k = k1 t k2

〈k1 t k2, M〉 7−→ 〈k, M〉

[E2] 〈!mτ , M〉 7−→ 〈M(mτ), M〉

[E3]
m = newloc(M)

〈refτv, M〉 7−→ 〈mτ , M [mτ 7→ v]〉

[E4] 〈mτ := v, M〉 7−→ 〈(), M [mτ 7→ v]〉

[E5] 〈(λ(x :τ)[C ; pc]. e) v, M〉 7−→ 〈e[v/x], M〉

[E6]
L |= k1 v k2

〈if k1 v k2 then e1 else e2, M〉 7−→ 〈e1, M〉

[E7]
L |= k1 6v k2

〈if k1 v k2 then e1 else e2, M〉 7−→ 〈e2, M〉

[E8] 〈let (x, y)=(x=v1[C], v2 :τ) in e, M〉 7−→ 〈e[v2/y][v1/x], M〉

[E9]
〈e, M〉 7−→ 〈e′, M ′〉

〈E[e], M〉 7−→ 〈E[e′], M ′〉

E[·] ::= [·] e | v [·] | [·] := e | v := [·] | ! [·] | refτ [·] | [·] t `2 | k1 t [·]
| if [·] v `2 then e1 else e2 | if k1 v [·] then e1 else e2

Figure 2: Small-step operational semantics ofλDSec

4.1.3 Operational Semantics

The small-step operational semantics ofλDSec is given in Figure 2. LetM represent a memory that is a
finite map from typed locations to closed values, and let〈e, M〉 be a machine configuration. Then a small
evaluation step is a transition from〈e, M〉 to another configuration〈e′, M ′〉, written〈e, M〉 7−→ 〈e′, M ′〉.

It is necessary to restrict the form of〈e, M〉 to avoid using undefined memory locations. Letloc(e)
represent the set of memory locations appearing ine. A memoryM is well-formed if every addressm
appears at most once indom(M), and for anymτ in dom(M), loc(M(mτ)) ⊆ dom(M). The configuration
〈e, M〉 is well-formed if M is well-formed, loc(e) ⊆ dom(M), ande contains no free variables. By
induction on the derivation of〈e, M〉 7−→ 〈e′, M ′〉, we can prove that if〈e, M〉 is well-formed, then
〈e′, M ′〉 is also well-formed.

The notatione[v/x] indicates capture-avoiding substitution of valuev for variablex in expressione. The
notationM(mτ) denotes the value mapped tomτ in M , and the notationM [mτ 7→ v] denotes the memory
obtained by assigningv to mτ in M .

The evaluation rules are standard. The allocatornewloc(M) in rule (E3) generates a fresh memory
locationm such thatmτ 6∈ dom(M) for all τ . In rule (E8),v2 may mentionx, so substitutingv2 for y in
e is performed before substitutingv1 for x. The variable name in the product value matchesx so that no
variable substitution is needed when assigningv1 andv2 to x andy. In rule (E9),E represents an evaluation
context, a term with a single “hole”, into which a subterm can fit. Rule (E9) says that an evaluation step of
a subterm counts as an evaluation step of the enclosing term. The syntax ofE specifies the evaluation order
of subterms.

10

[C1]
L |= k1 v k2

` k1 v k2
[C2]

`1 v `2 ∈ C

C ` `1 v `2
[C3] ` ` v ` t `′ [C4] ` ` v `

[C4]
C ` `1 v `2 C ` `2 v `3

C ` `1 v `3
[C5]

C ` `1 v `3 C ` `2 v `3
C ` `1 t `2 v `3

Figure 3: Relabeling rules

[S1]
C ` τ1 ≤ τ2 C ` τ2 ≤ τ1

C ` τ1 ref ≤ τ2 ref
[S2]

C ` τ2 ≤ τ1 C ` τ ′
1 ≤ τ ′

2

C ` pc2 v pc1 C2 ` C1

C ` (x :τ1)
C1 ; pc1−−−−→ τ ′

1 ≤ (x :τ2)
C2 ; pc2−−−−→ τ ′

2

[S3]
C ` τ1 ≤ τ2 C ` τ ′

1 ≤ τ ′
2 C1 ` C2

C ` (x :τ1)[C1] ∗ τ ′
1 ≤ (x :τ2)[C2] ∗ τ ′

2

[S4]
C ` β1 ≤ β2 C ` `1 v `2

C ` (β1)`1 ≤ (β2)`2

Figure 4: Subtyping rules

4.1.4 Subtyping

The subtyping relationship between security types plays an important role in enforcing information flow
security. Given two security typesτ1 = β1`1 and τ2 = β2`2 , supposeτ1 is a subtype ofτ2, written as
τ1 ≤ τ2. Then any data of typeτ1 can be treated as data of typeτ2. Thus, data with label̀1 may be treated
data with label̀ 2, which requires̀ 1 v `2.

As described in Section 3.1, the type system keeps track of the set of label constraints that can be used
to prove relabeling relationships between labels. LetC ` `1 v `2 denote that̀ 1 v `2 can be inferred
from the set of constraintsC. The inference rules are shown in Figure 3; they are standard and consistent
with the lattice properties of labels. Rule (C2) shows that all the constraints inC are assumed to be true.
The constraint setC may contain constraints that are inconsistent with the latticeL, such asH v L.
Inconsistent constraint sets are harmless because they always indicate dead code, such as expressione1 in
“if H v L then e1 else e2”.

Since the subtyping relationship depends on the relabeling relationship, the subtyping context also needs
to include theC component of the typing context. The inference rules for provingC ` τ1 ≤ τ2 are the rules
shown in Figure 4 plus the standard reflexivity and transitivity rules.

Rules (S1)–(S3) are about subtyping on base types. These rules demonstrate the expected covariance or
contravariance. InλDSec , function types contain two additional componentspc andC, both of which are

contravariant. Suppose the function typeτ = (x : τ1)
C1 ; pc1−−−−→ τ ′1 is a subtype ofτ ′ = (x : τ2)

C2 ; pc2−−−−→ τ ′2.
Then wherever functions with typeτ ′ can be called, functions with typeτ can also be called. This implies
two necessary premises. First, whereverC2 is satisfied,C1 is also satisfied. This premise is writtenC2 ` C1,
meaning that for any constraint`1 v `2 in C1, we can deriveC2 ` `1 v `2. Second, the premisepc2 v pc1

is needed because thepc of a function type is an upper bound on thepc where the function is applied.
Rule (S4) is used to determine the subtyping on security types. The premiseC ` β1 ≤ β2 is natural.

The other premiseC ` `1 v `2 guarantees that coercing data fromτ1 to τ2 does not violate information
flow policies.

11

[INT] Γ ; C ; pc ` n : int⊥ [UNIT] Γ ; C ; pc ` () : unit⊥

[LABEL] Γ ; C ; pc ` k : label⊥
[LOC]

FV (τ) = ∅
Γ ; C ; pc ` mτ : (τ ref)⊥

[JOIN]
Γ ; C ; pc ` `1 : label`′1

Γ ; C ; pc ` `2 : label`′2

Γ ; C ; pc ` `1 t `2 : label`′1t`′2

[VAR]
x :τ ∈ Γ

Γ ; C ; pc ` x : τ

[REF]
Γ ; C ; pc ` e : τ C ` pc v τ

Γ ; C ; pc ` refτe : (τ ref)⊥
[DEREF]

Γ ; C ; pc ` e : (τ ref)`

Γ ; C ; pc `!e : τ t `

[ABS]
Γ, x :τ ′ ; C′ ; pc′ ` e : τ

Γ ; C ; pc ` λ(x :τ ′)[C′ ; pc′]. e : ((x :τ ′)
C′ ; pc′−−−−→ τ)⊥

[ASSIGN]

Γ ; C ; pc ` e1 : (τ ref)`

Γ ; C ; pc ` e2 : τ C ` pc t ` v τ

Γ ; C ; pc ` e1 := e2 : unit⊥

[L-APP]

Γ ; C ; pc ` e1 : ((x :label`′)
C′ ; pc′−−−−→ τ)`

Γ ; C ; pc ` `2 : label`′ C ` pc t ` v pc′[`2/x]
C ` C′[`2/x] x ∈ FV (τ) ∪ FV (C′) ∪ FV (pc′)

Γ ; C ; pc ` e1 `2 : τ [`2/x] t `
[APP]

Γ ; C ; pc ` e1 : ((x :τ ′)
C′ ; pc′−−−−→ τ)`

Γ ; C ; pc ` e2 : τ ′ C ` pc t ` v pc′

C ` C′ x /∈ FV (τ) ∪ FV (C′) ∪ FV (pc′)

Γ ; C ; pc ` e1 e2 : τ t `

[PROD]

Γ ; C ; pc ` v1 : τ1 Γ, x :τ1 ` τ2

Γ ; C ; pc ` v2[v1/x] : τ2[v1/x] C ` C′[v1/x]

Γ ; C ; pc ` (x=v1[C
′], v2 :τ2) : ((x :τ1)[C

′] ∗ τ2)⊥
[UNPACK]

Γ ; C ; pc ` v : ((x :τ1)[C
′] ∗ τ2)`

Γ, x :τ1t`, y :τ2t` ; C, C′ ; pc ` e : τ

Γ ; C ; pc ` let (x, y)=v in e : τ

[IF]

Γ ; C ; pc ` `i : label`′i
i ∈ {1, 2}

Γ ; C, `1 v `2 ; pc t `′1 t `′2 ` e1 : τ
Γ ; C ; pc t `′1 t `′2 ` e2 : τ

Γ ; C ; pc ` if `1 v `2 then e1 else e2 : τ t `′1 t `′2
[SUB]

Γ ; C ; pc ` e : τ C ` τ ≤ τ ′

Γ ; C ; pc ` e : τ ′

Figure 5: Typing rules for theλDSec language

4.1.5 Typing

The type system ofλDSec prevents illegal information flows and guarantees that well-typed programs have
a noninterference property. The typing rules are shown in Figure 5. The notationlabel(β`) = ` is used
to obtain the label of a type, and the notations` v τ andτ v ` are abbreviations for̀ v label(τ) and
label(τ) v `, respectively.

The typing context includes atype assignmentΓ, a set of constraintsC and the program-counter label
pc. Γ is a finiteorderedlist of x : τ pairs in the order that they came into scope. For a givenx, there is at
most one pairx :τ in Γ.

A variable appearing in a type must be a label variable. Therefore, a typeτ is well-formed with respect
to type assignmentΓ, writtenΓ ` τ , if Γ maps all the variables inτ to label types. The definition of well-
formed labels (Γ ` `) is the same. ConsiderΓ = x1 : τ1, . . . , xn : τn. For any0 ≤ i ≤ n, the typeτi may
only mention label variables that are already in scope:x1 throughxi−1. Therefore,Γ is well-formed if for
any0 ≤ i ≤ n, τi is well-formed with respect tox1 :τ1, . . . , xi−1 :τi−1. For example, “x :labelL, y :intx”
is well-formed, but “y : intx, x : labelL” is not. A constraint̀ 1 v `2 is well-formed with respect toΓ
if both `1 and`2 are well-formed with respect toΓ. A typing context “Γ ;C ; pc” is well-formed if Γ is
well-formed, andpc and all the constraints inC are well-formed with respect toΓ.

The typing assertionΓ ;C ; pc ` e : τ means that with the type assignmentΓ, current program-counter
label aspc, and the set of constraintsC satisfied, expressione has typeτ . The assertionΓ ;C ; pc ` e : τ is

12

well-formed ifΓ ;C ; pc is well-formed, andΓ ` τ .
Rules (INT), (UNIT), (LABEL) and (LOC) are used to check values. Valuev has typeβ⊥ if v has base

typeβ. Rule (VAR) is standard: variablex has typeΓ(x). Rule (JOIN) checks the join of two labels and
assigns a result label that is the join of the labels of the operands.

Rule (REF) checks memory allocation operations. If thepc label is high, the generated memory location
must not be observable to low-security users, which is guaranteed by the premiseC ` pc v τ . Rule
(DEREF) checks dereference expressions. Since some information about a reference can be learned by
knowing its contents, the result of dereferencing a reference with type(τ ref)` has typeτ t `, where
τ t ` = β`′t` if τ is β`′ . Rule (ASSIGN) checks memory update. As in rule (REF), if the updated memory
location has type(τ ref)`, thenC ` pc v τ is required to prevent illegal implicit flows. In addition, the
conditionC ` ` v τ protects the reference that is assigned to. Without the condition, the following code
would be well-typed. However, low-security users can learn whetherx v L by observing which ofm1 and
m2 is updated to0.

λ(x :labelH)[L]. ((if x v L then mintL
1 else mintL

2) := 0)

Rule (ABS) checks function values. The body is checked with the constraint setC ′ and the program-
counter labelpc′, so the function can only be called at places whereC ′ is satisfied and thepc label is not
more restrictive thanpc′.

Rules (L-APP) and (APP) are used to check application expressions. Consider an application expression

e1e2, wheree1 has type((x : label`′)
C′ ; pc′−−−−→ τ)`. Rule (L-APP) is used when the occurrences ofx do

appear inC ′, pc′ or τ . In this case, the type checker needs to useC ′[e2/x], pc′[e2/x] or τ [e2/x], which
are well-formed only ife2 is a label term̀ 2. In rule (L-APP), the label ofe1`2 is at least as restrictive as
`, preventing the result ofe1 from being leaked. The premiseC ` C ′[`2/x] guarantees thatC ′[`2/x] are
satisfied when the function is invoked. The premiseC ` pc t ` v pc′[`2/x] ensures that the invocation
cannot leak the program counter or the function itself through the memory effects of the function. Rule
(APP) applies whenx does not appear inC ′, pc′ or τ . In this case, the type ofe1 is just a normal function
type, soe1 can be applied to arbitrary terms.

Rule (PROD) is used to check product values. To checkv2, the occurrences ofx in v2 andτ2 are both
replaced byv1. If v1 is not a label, thenx cannot appear inτ2. Thus,τ2[v1/x] is always well-formed no
matter whetherv1 is a label or not. Rule (UNPACK) checks product destructors straightforwardly. After
unpacking the product value, those product label constraints inC ′ are in scope and used for checkinge.

Rule (IF) checks label-test expressions. The constraint`1 v `2 is added into the typing context when
checking the first branche1. When checking the branches, the program-counter label subsumes the labels
of `1 and`2 to protect them from implicit flows. The resulting type contains`′1 and`′2 because the result is
influenced by the values of`1 and`2.

Rule (SUB) is the standard subsumption rule. Ifτ is a subtype ofτ ′ with the constraints inC satisfied,
then any expression of typeτ also has typeτ ′.

This type system satisfies the subject reduction property and the progress property. The proof is standard,
so we simply state the theorems here.

Definition 4.1 (Well-typed memory). A memoryM is well-typed if for any memory locationmτ in M ,
` M(mτ) : τ .

Theorem 4.1 (Subject reduction).Supposepc ` e : τ , and there exists a well-typed memoryM such that
〈e, M〉 7−→ 〈e, M ′〉, thenM ′ is well-typed, andpc ` e′ : τ .

Theorem 4.2 (Progress).If pc ` e : τ , andM is a well-typed memory such that〈e, M〉 is a well-formed
configuration, then eithere is a value or there existse′ andM ′ such that〈e, M〉 7−→ 〈e′, M ′〉.

13

4.2 Noninterference proof

This section outlines a proof that any well-typed program inλDSec satisfies the noninterference property.
(The full proof is given in the appendix.) Consider an expressione in λDSec . Supposee has one free variable
x, andx : τ ` e : intL whereH v τ . Thus, the value ofx is a high-security input toe, and the result ofe is
a low-security output. Then noninterference requires that for all valuesv of typeτ , evaluatinge[v/x] in the
same memory must generate the same result, if the evaluation terminates. For simplicity, we only consider
that results are integers because they can be compared outside the context ofλDSec .

The noninterference property discussed here istermination insensitive[20] becausee[v/x] is required
to generate the same result only if the evaluation terminates. The type system ofλDSec does not attempt
to control termination and timing channels. Control of these channels is largely an orthogonal problem.
Termination channels can leak at most one bit per run, so they have often been considered acceptable (e.g.,
[5, 26]). Some recent work [1, 19, 33] partially addresses the control of timing channels.

Let 7−→∗ denote the transitive closure of the7−→ relationship. The following theorem formalizes the
claim that the type system ofλDSec enforces noninterference:

Theorem 4.3 (Noninterference).Supposex : τ ` e : intL, andH v τ . Given two arbitrary valuesv1

andv2 of typeτ , and an initial memoryM , if 〈e[vi/x], M〉 7−→∗ 〈v′i, M ′
i〉 for i ∈ {1, 2}, thenv′1 = v′2.

To prove this noninterference theorem, we adapt the elegant proof technique developed by Pottier and
Simonet for an ML-like security-typed language [18] (which did not have dynamic labels). To show that
noninterference holds, it is necessary to reason about the executions of two related terms:e[v1/x] and
e[v2/x]. We extendλDSec with a bracket construct(e1 |e2) that represents alternative expressions that might
arise during the evaluation of two programs that differs initially only inv1 andv2. Thene[v1/x] ande[v2/x]
can be incorporated into a single terme[(v1 | v2)/x] in the extended languageλ2

DSec , providing a syntactic
way to reason about two executions.

Usingλ2
DSec , the noninterference theorem can be proved in three steps:

1. Prove that the evaluation ofλ2
DSec adequately represents the execution of twoλDSec terms. Given a

λ2
DSec terme, let bec1 andbec2 represent the twoλDSec terms encoded bye. Further, ifM mapsx

to aλ2
DSec terme, thenbMci mapsx to beci for i ∈ {1, 2}. Then the adequacy ofλ2

DSec means that
〈e, M〉 7−→∗ 〈v, M ′〉 holds inλ2

DSec if and only if 〈beci, bMci〉 7−→∗ 〈bvci, M ′
i〉 for i ∈ {1, 2}

holds inλDSec .

2. Prove thatλ2
DSec satisfies subject reduction: the result of an expression has the same type as the

expression. The type system ofλ2
DSec gives the bracket(e1 | e2) a high-security type. Intuitively,e1

ande2 are different terms and may produce different results, which must have high-security types and
be unobservable to low-security users because otherwise low-security users can distinguish the two
executions, violating noninterference.

3. Prove the noninterference theorem: Because〈e[vi/x], M〉 7−→∗ 〈v′i, M ′
i〉 ande[vi/x] = be[(v1|v2)/x]ci

for i ∈ {1, 2}, we have〈e[(v1 | v2)/x], M〉 7−→∗ 〈v′, M ′〉, wherebv′ci = v′i for i ∈ {1, 2}. By the
subject reduction theorem,` v′ : intL, which implies thatv′ is not a bracket construct. Thenv′ must
be an integern, andbv′c1 = bv′c2 = n.

The appendix details the syntax and semantic extensions ofλ2
DSec and proves the key subject reduction

theorem ofλ2
DSec . The major extension to Pottier’s proof technique is that the bracket construct must also

be applied to labels. Because types may contain bracketed labels, the projection operation also applies to
typing environments.

14

5 Related Work
Dynamic information flow control mechanisms [27, 28] track security labels dynamically and use run-time
security checks to constrain information propagation. These mechanisms are transparent to programs, but
they cannot prevent illegal implicit flows arising from the control flow paths not taken at run time.

Various general security models [11, 24, 7] have been proposed to incorporate dynamic labeling. Unlike
noninterference, these models define what it means for a system to be secure according to a certain relabeling
policy, which may allow downgrading labels.

Using static program analysis to check information flow was first proposed by Denning and Denning [5];
later work phrased the analysis as type checking (e.g., [17]). Noninterference was later developed as a more
semantic characterization of security [8], followed by many extensions. Volpano, Smith and Irvine [26] first
showed that type systems can be used to enforce noninterference, and proved a version of noninterference
theorem for a simple imperative language, starting a line of research pursuing the noninterference result for
more expressive security-typed languages. Heintze and Riecke [10] proved the noninterference theorem for
the SLam calculus, a purely functional language. Zdancewic and Myers [32] investigated a secure calculus
with first-class continuations and references. Pottier and Simonet [18] considered an ML-like functional
language, and demonstrated the innovative proof technique that is used in this paper to reduce the proof of
noninterference to a proof of subject reduction. Banerjee and Naumann [3] proved a noninterference result
for a Java-like language. A more complete survey of language-based information-flow techniques can be
found in [20].

The Jif language [14, 16] extends Java with a type system for analyzing information flow, and aims to be
a practical language for developing secure applications. However, there is not yet a noninterference proof
for the type system of Jif, because of its complexity. This work is inspired by the dynamic label mechanism
of Jif, although the dynamic label mechanism in Jif-DX andλDSec is more expressive.

Concurrent to this work, Tse and Zdancewic proved a noninterference result for a security-typed lambda
calculus (λDP) with dynamic principals [25]. Our work is more general in the sense that it can be applied
to label models that do not involve principals. In addition,λDSec has more computational power thanλDP

becauseλDSec supports references, which can used to encode recursive functions. The type system of
λDP usessingleton types[2] to enforce that every dynamic principal term has a static counterpart, and the
dynamism of security policies is captured by the principal hierarchy and a delegation mechanism. It is not
clear that this approach can be easily generalized to dynamic labels.

Other work [30, 29] has used dependent type systems to specify complex program invariants and to
statically catch program errors considered run-time errors by traditional type systems. This work also makes
a trade-off between expressive power and practical type checking.

6 Conclusions
This paper makes two contributions: first, it presents the Jif-DX language that extends the Jif programming
model with better support for dynamic labels. The extensions proposed in Jif-DX make it easier to write
programs manipulating dynamic labels and can reduce the number of run-time label checks. The key new
element is a restricted form of label constraints that is expressive enough for implementing run-time security
checks, yet suitable for static type checking. Label constraints also make it possible to encode previous
mandatory access control mechanisms that support dynamically changing labels.

Second, this paper formalizes computation and static checking of dynamic labels in the type system of
a core languageλDSec and proves a noninterference result: well-typed programs have the noninterference
property. The languageλDSec is the first language supporting general dynamic labels whose type system
provably enforces noninterference.

An important direction for future work is to investigate the interaction between dynamic labels and
parametric polymorphism.

15

Acknowledgements
The authors would like to thank Greg Morrisett, Steve Zdancewic and Amal Ahmed for their insightful
suggestions. Steve Chong, Nate Nystrom, and Michael Clarkson also helped improve the presentation of
this work.

References
[1] Johan Agat. Transforming out timing leaks. InProc. 27th ACM Symp. on Principles of Programming Languages

(POPL), pages 40–53, Boston, MA, January 2000.

[2] David Aspinall. Subtyping with singleton types. InComputer Science Logic (CSL), Kazimierz, Poland, pages
1–15. Springer-Verlag, 1994.

[3] Anindya Banerjee and David A. Naumann. Secure information flow and pointer confinement in a Java-like
language. InIEEE Computer Security Foundations Workshop (CSFW), June 2002.

[4] Dorothy E. Denning.Cryptography and Data Security. Addison-Wesley, Reading, Massachusetts, 1982.

[5] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure information flow.Comm. of the
ACM, 20(7):504–513, July 1977.

[6] Department of Defense.Department of Defense Trusted Computer System Evaluation Criteria, DOD 5200.28-
STD (The Orange Book) edition, December 1985.

[7] Simon Foley, Li Gong, and Xiaolei Qian. A security model of dynamic labeling providing a tiered approach to
verification. InIEEE Symposium on Security and Privacy, pages 142–154, Oakland, CA, 1996. IEEE Computer
Society Press.

[8] Joseph A. Goguen and Jose Meseguer. Security policies and security models. InProc. IEEE Symposium on
Security and Privacy, pages 11–20, April 1982.

[9] James Gosling, Bill Joy, and Guy Steele.The Java Language Specification. Addison-Wesley, August 1996.
ISBN 0-201-63451-1.

[10] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with secrecy and integrity. InProc. 25th
ACM Symp. on Principles of Programming Languages (POPL), pages 365–377, San Diego, California, January
1998.

[11] John McLean. The algebra of security. InIEEE Symposium on Security and Privacy, pages 2–7, Oakland,
California, 1988.

[12] Catherine Meadows. Policies for dynamic upgrading. InDatabase Security, IV: Status and Prospects, pages
241–250. North Holland, 1991.

[13] John C. Mitchell.Foundations for Programming Languages. The MIT Press, Cambridge, Massachusetts, 1996.

[14] Andrew C. Myers. JFlow: Practical mostly-static information flow control. InProc. 26th ACM Symp. on
Principles of Programming Languages (POPL), pages 228–241, San Antonio, TX, January 1999.

[15] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label model.ACM Transactions
on Software Engineering and Methodology, 9(4):410–442, October 2000.

[16] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel Nystrom. Jif: Java informa-
tion flow. Software release. Located athttp://www.cs.cornell.edu/jif, July 2001–2003.

[17] Jens Palsberg and Peter Ørbæk. Trust in theλ-calculus. InProc. 2nd International Symposium on Static Analysis,
number 983 in Lecture Notes in Computer Science, pages 314–329. Springer, September 1995.

[18] François Pottier and Vincent Simonet. Information flow inference for ML. InProc. 29th ACM Symp. on Princi-
ples of Programming Languages (POPL), pages 319–330, 2002.

[19] Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforcement for distributed programs. InProceedings
of the 9th International Static Analysis Symposium, volume 2477 ofLNCS, Madrid, Spain, September 2002.
Springer-Verlag.

16

[20] Andrei Sabelfeld and Andrew Myers. Language-based information-flow security.IEEE Journal on Selected
Areas in Communications, 21(1):5–19, January 2003.

[21] Ravi S. Sandhu and Sushil Jajodia. Honest databases that can keep secrets. InProceedings of the 14th National
Computer Security Conference, Washington, DC, 1991.

[22] Vincent Simonet. Fine-grained information flow analysis for a lambda-calculus with sum types. InProc. 15th
IEEE Computer Security Foundations Workshop, pages 223–237, June 2002.

[23] Vincent Simonet. An extension of HM(X) with first class existential and universal data-types. InProc. 8th
ACM SIGPLAN International Conference on Functional Programming (ICFP), pages 39–50, Uppsala, Sweden,
August 2003.

[24] Ian Sutherland, Stanley Perlo, and Rammohan Varadarajan. Deducibility security with dynamic level assign-
ments. InProc. 2nd IEEE Computer Security Foundations Workshop, Franconia, NH, June 1989.

[25] Stephen Tse and Steve Zdancewic. Dynamic principals in security-typed languages. InIEEE Symposium on
Security and Privacy, Oakland, CA, 2004 (To appear).

[26] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow analysis.Journal of
Computer Security, 4(3):167–187, 1996.

[27] Clark Weissman. Security controls in the ADEPT-50 time-sharing system. InAFIPS Conference Proceedings,
volume 35, pages 119–133, 1969.

[28] John P. L. Woodward. Exploiting the dual nature of sensitivity labels. InIEEE Symposium on Security and
Privacy, pages 23–30, Oakland, California, 1987.

[29] Hongwei Xi. Imperative programming with dependent types. InProceedings of 15th Symposium on Logic in
Computer Science, Santa Barbara, June 2000.

[30] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. InProc. 26th ACM Symp. on
Principles of Programming Languages (POPL), pages 214–227, San Antonio, TX, January 1999.

[31] Steve Zdancewic and Andrew C. Myers. Robust declassification. InProc. 14th IEEE Computer Security Foun-
dations Workshop, pages 15–23, Cape Breton, Nova Scotia, Canada, June 2001.

[32] Steve Zdancewic and Andrew C. Myers. Secure information flow via linear continuations.Higher Order and
Symbolic Computation, 15(2–3):209–234, September 2002.

[33] Steve Zdancewic and Andrew C. Myers. Observational determinism for concurrent program security. InProc.
16th IEEE Computer Security Foundations Workshop, pages 29–43, Pacific Grove, California, June 2003.

A Subject Reduction Proof
As described in Section 4.2, the noninterference result forλDSec is proved by extending the language to
a new languageλ2

DSec that includes the special bracket construct. Then the subject reduction property
for λ2

DSec implies the noninterference property forλDSec . The appendix details the syntax and semantic
extensions ofλ2

DSec and proves the key subject reduction theorem.

A.1 Syntax extensions

The syntax extensions ofλ2
DSec include the bracket constructs and a new valuevoid that can have any type.

A λ2
DSec memory encodes twoλDSec memories, which may have distinct domains. The bindings of the form

mτ 7→ (v | void) andmτ 7→ (void | v) represent situations wheremτ is bound within only one of the two
λDSec memories.

` ::= . . . | (` | `)
v ::= . . . | (v | v) | void
e ::= . . . | (e | e)

17

The bracket constructs cannot be nested, so the subterms of a bracket construct must beλDSec terms or
void. Given aλ2

DSec expressione, let bec1 andbec2 represent the twoλDSec terms thate encodes. The
projection functions satisfyb(e1 |e2)ci = ei and are homomorphisms on other expression forms. In addition,
(e1 | e2)[v/x], the capture-free substitution ofv for x in (e1 | e2), must use the corresponding projection of
v in each branch:(e1 | e2)[v/x] = (e1[bvc1/x] | e2[bvc2/x]).

In λ2
DSec , labels can be bracket constructs, and types may contain bracketed labels. Thus, the projection

operation can be applied to labels, types, type assignments, and label constraints. Similarly, the projection
functions are homomorphisms on these typing constructs. For example,bint(L | H)c1 = intL, andbx :
τ, y :τ ′c1 = x :bτc1, y :bτ ′c1.

The following relabeling rule is added to reason about relabeling relationship between bracketed labels:

bCc1 ` b`1c1 v b`2c1 bCc2 ` b`1c2 v b`2c2
C ` `1 v `2

Since aλ2
DSec term effectively encodes twoλDSec terms, the evaluation of aλ2

DSec term can be projected
into twoλDSec evaluations. An evaluation step of a bracket expression(e1 |e2) is an evaluation step of either
e1 or e2. ande1 or e2 can only access the corresponding projection of the memory. Thus, the configuration
of λ2

DSec has an indexi ∈ {•, 1, 2} that indicates whether the term to be evaluated is a subterm of a bracket
expression, and if so which branch of a bracket the term belongs to. For example, the configuration〈e, M〉1
means thate belongs to the first branch of a bracket, ande can only access the first projection ofM . We
write “〈e, M〉” for “ 〈e, M〉•”, which meanse does not belong to any bracket.

A.2 Operational semantics

The operational semantics ofλ2
DSec is shown in Figure 6. It is based on the semantics ofλDSec and contains

some new evaluation rules (E10–E14) for manipulating bracket constructs. Rules (E2)–(E4) are modified
to access the memory projection corresponding to indexi. The rest of the rules in Figure 2 are adapted to
λ2

DSec by indexing each configuration withi. The following two lemmas state that the operational semantics
of λ2

DSec is adequate to encode the execution of twoλDSec terms. Their proof is straightforward.

Lemma A.1 (Soundness).If 〈e, M〉 7−→ 〈e′, M ′〉, then〈beci, bMci〉 7−→ 〈be′ci, bM ′ci〉 for i ∈ {1, 2}.

Lemma A.2 (Completeness).If 〈beci, bMci〉 7−→∗ 〈vi, M ′
i〉 for i ∈ {1, 2}, then there exists a configura-

tion 〈v, M ′〉 such that〈e, M〉 7−→∗ 〈v, M ′〉.

The type system ofλ2
DSec includes all the typing rules in Figure 5 and has two additional rules, one for

typingvoid, the other for typing bracket constructs.

[VOID] Γ ; C ; pc ` void : τ

[BRACKET]
bΓc1 ;bCc1 ;bpc′c1 ` e1 : bτc1 bΓc2 ;bCc2 ;bpc′c2 ` e2 : bτc2 H t pc v pc′ H v τ

Γ ; C ; pc ` (e1 | e2) : τ

A.3 Subject reduction

The proof of subject reduction starts with some lemmas about projection and substitution.

Lemma A.3 (Label Projection). If C ` `1 v `2, thenbCci ` b`1ci v b`2ci for i ∈ {1, 2}.

Proof. By induction on the derivation ofC ` `1 v `2.

18

[E2] 〈!mτ , M〉i 7−→ 〈readi M(mτ), M〉i

[E3]
m = newloc(M)

〈refτv, M〉i 7−→ 〈mτ , M [mτ 7→ newi v]〉i

[E4] 〈mτ := v, M〉i 7−→ 〈(), M [mτ 7→ updatei M(mτ) v]〉i

[E10]
〈ei, M〉i 7−→ 〈e′i, M ′〉i ej = e′j {i, j} = {1, 2}

〈(e1 | e2), M〉 7−→ 〈(e′1 | e′2), M ′〉

[E11] 〈(v1 | v2)v, M〉 7−→ 〈(v1bvc1 | v2bvc2), M〉

[E12] 〈(v1 | v2) := v, M〉 7−→ 〈(v1 := bvc1 | v2 := bvc2), M〉

[E13] 〈!(v1 | v2), M〉 7−→ 〈(!v1 | !v2), M〉

[E14] 〈if v1 v v2 then e1 else e2, M〉 7−→ 〈(if bv1c1 v bv2c1 then be1c1 else be2c1 |
if bv1c2 v bv2c2 then be1c2 else be2c2),M〉

if v1 = (v | v′) or v2 = (v | v′)

[Auxiliary functions]

new• v = v update• vv′ = v′ read• v = v
new1 v = (v | void) update1 vv′ = (v′ | bvc2) read1 v = bvc1
new2 v = (void | v) update2 vv′ = (bvc1 | v′) read2 v = bvc2

Figure 6: Small-step operational semantics ofλ2
DSec

Lemma A.4 (Constraint Reduction). If Γ ;C, `1 v `2 ; pc ` e : τ andC ` `1 v `2, thenΓ ;C ; pc ` e : τ .

Proof. By induction on the derivation ofΓ ;C, `1 v `2 ; pc ` e : τ .

Lemma A.5 (Projection). If Γ ;C ; pc ` e : τ , thenbΓci ;bCci ;bpcci ` beci : bτci, for i ∈ {1, 2}.

Proof. By induction on the derivation ofΓ ;C ; pc ` e : τ , and using the label projection lemma.

Lemma A.6 (Store Access).Let i be in {•, 1, 2}. Supposepc ` v : τ and pc ` v′ : τ . In addition,
i ∈ {1, 2} impliesH v τ . Thenpc ` readi v : bτci, pc ` newi v : τ andpc ` updatei vv′ : τ .

Proof. By the definition of the functionsread, new andupdate in Figure 6, by the projection lemma, and
rules (VOID) and (BRACKET).

Lemma A.7 (Substitution). If x : τ ′,Γ ;C ; pc ` e : τ , and` v : τ ′, thenΓ[v/x] ; C[v/x] ; pc[v/x] `
e[v/x] : τ [v/x].

Proof. By induction on the derivation ofx :τ ′,Γ ;C ; pc ` e : τ .

Theorem A.1 (Subject Reduction).Supposepc ` e : τ , memoryM is well-typed,〈e, M〉i 7−→ 〈e′, M ′〉i,
andi ∈ {1, 2} impliesH v pc. Thenpc ` e′ : τ , andM ′ is also well-typed.

19

Proof. By induction on the derivation of〈e, M〉i 7−→ 〈e′, M ′〉i. Without loss of generality, we assume that
the last step of the derivation ofpc ` e : τ does not use the rule (SUB). Here we just show seven cases:
(E3), (E5), (E6), (E8), (E10), (E11) and (E14). The rest of evaluation rules are treated similarly.

• Case (E3).e is refτ ′ v, andτ is (τ ′ ref)⊥. Thene′ is mτ ′ . By (LOC), pc ` e′ : (τ ′ ref)⊥. By
Lemma A.6,pc ` newiv : τ ′. Thus,M [mτ ′ 7→ newiv] is well-typed.

• Case (E5).e is (λ(x : τ ′)[C ′ ; pc′]. e′)v. Thenpc ` λ(x : τ ′)[C ′ ; pc′]. e′ : ((x : τ ′′)
C′′ ; pc′′−−−−−→ τ1)`, and

pc ` v : τ ′′, and` C ′′[v/x]. By rules (APP) and (L-APP),τ = τ1[v/x] t `, andpc v pc′′[v/x].
By rules (ABS) and (SUB),x : τ ′ ;C ′ ; pc′ ` e′ : τ1, and` τ ′′ ≤ τ ′, ` pc′′ v pc′, andC ′′ ` C ′.
Therefore,̀ C ′[v/x], andpc v pc′[v/x]. By the substitution lemma,C ′[v/x] ; pc′[v/x] ` e′[v/x] :
τ1[v/x]. By Lemma A.4,pc′[v/x] ` e′[v/x] : τ1[v/x]. Sincepc v pc′[v/x] andτ1[v/x] v τ , we
havepc ` e′[v/x] : τ .

• Case (E6). By rule (IF),k1 v k2 ; pc ` e1 : τ . By Lemma A.4 andL |= k1 v k2, we havepc ` e1 : τ .

• Case (E8).e is let (x, y) = (x = v1[C], v2 : τ2) in e′. By rule (UNPACK),pc ` (x = v1[C], v2 :
τ2) : ((x : τ1)[C] ∗ τ2)`, andx : τ1 t `, y : τ2 t ` ; pc ` e′ : τ . By rule (PROD),pc ` v1 : τ1, and
pc ` v2[v1/x] : τ2[v1/x], and` C[v1/x]. Using the substitution lemma twice, we getC[v1/x] ; pc `
e′[v1/x][v2[v1/x]/y] : τ [v1/x][v2[v1/x]/y]. It is easy to show thate′[v1/x][v2[v1/x]/y] = e′[v2/y][v1/x].
According to rule (UNPACK),x, y 6∈ FV (τ). Thus,τ [v1/x][v2[v1/x]/y] = τ . In addition, we have
` C[v1/x]. Therefore,pc ` e[v1/x][v2/y] : τ .

• Case (E10).e is (e1 | e2). Without loss of generality, assume〈e1, M〉1 7−→ 〈e′1, M ′〉1 ande2 = e′2.
By rule (BRACKET),H v pc, andbpcc1 ` e1 : bτc1. H v pc impliesH v bpcc1. By induction,
bpcc1 ` e′1 : bτc1, andM ′ is well-typed. Using rule (BRACKET), we can getpc ` (e′1 | e′2) : τ .

• Case (E11).e is (v1 | v2)v. By (APP) and (L-APP),pc ` (v1 | v2) : ((x :τ ′)
C′ ; pc′−−−−→ τ ′′)`, andpc ` v :

τ ′. Thenτ = τ ′′[v/x]t`. In addition,pct` v pc′. By (BRACKET),H v `, which impliesH v pc′.

By Lemma A.5,bpcci ` vi : ((x : bτ ′ci)
bC′ci ;bpc′ci−−−−−−−→ bτci)b`ci

, andbpcci ` bvci : bτ ′ci, which
imply bpcci ` vibvci : bτci. According to (APP) and (L-APP), a well-typed application expression
e1e2 can be type-checked with thepc component of the type ofe1 in the typing context. Therefore,
bpc′ci ` vibvci : bτci. SinceH v pc′, we can apply (BRACKET) to getpc ` (v1bvc1 | v2bvc2) : τ .

• Case (E14).e is if v1 v v2 then e1 else e2, and there existsj ∈ {1, 2} such thatvj = (v | v′).
Supposepc ` vi : label`i

for i ∈ {1, 2}. Sincevj is a bracket construct,H v `j . By (IF), bothe1

ande2 are type-checked withpct `1 t `2 in the typing context. Thus, we can getpct `1 t `2 ` e : τ .
By Lemma A.5,bpc t `1 t `2ci ` beci : bτci. H v `j implies H v bpc t `1 t `2ci. Applying
(BRACKET), we getpc ` (bec1 | bec2) : τ .

20

