
QUANTIFICATION AND FORMALIZATION OF
SECURITY

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Michael Ryan Clarkson

February 2010

c© 2010 Michael Ryan Clarkson

ALL RIGHTS RESERVED

QUANTIFICATION AND FORMALIZATION OF SECURITY

Michael Ryan Clarkson, Ph.D.

Cornell University 2010

Computer security policies often are stated informally in terms of confidential-

ity, integrity, and availability of information and resources; these policies can be

qualitative or quantitative. To formally quantify confidentiality and integrity, a

new model of quantitative information flow is proposed in which information

flow is quantified as the change in the accuracy of an observer’s beliefs. This

new model resolves anomalies present in previous quantitative information-

flow models, which are based on change in uncertainty. And the new model is

sufficiently general that it can be instantiated to measure either accuracy or un-

certainty. To formalize security policies in general, a generalization of the theory

of trace properties (originally developed for program verification) is proposed.

Security policies are modeled as hyperproperties, which are sets of trace prop-

erties. Although important security policies, such as secure information flow,

cannot be expressed as trace properties, they can be expressed as hyperproper-

ties. Safety and liveness are generalized from trace properties to hyperproper-

ties, and every hyperproperty is shown to be the intersection of a safety hyper-

property and a liveness hyperproperty. Verification, refinement, and topology

of hyperproperties are also addressed. Hyperproperties for system representa-

tions beyond trace sets are investigated.

BIOGRAPHICAL SKETCH

Michael Clarkson received the Indiana Academic Honors Diploma from the In-

diana Academy for Science, Mathematics, and Humanities in 1995. He received

the B.S. with honors in Applied Science (Systems Analysis) and the B.M. in Mu-

sic Performance (Piano) from Miami University in 1999, both summa cum laude.

The Systems Analysis curriculum was a combination of studies in computer sys-

tems, software engineering, and operations research. As part of an experimental

branch of that curriculum, he studied formal methods of software development.

He received the M.S. in Computer Science from Cornell University in 2004. As

part of his doctoral studies at Cornell, he completed a graduate minor in music

including studies in organ, conducting, and voice.

iii

Remote as we are from perfect knowledge,

we deem it less blameworthy to say too little,

rather than nothing at all.

—St. Jerome

iv

ACKNOWLEDGEMENTS

I thank all the institutions that directly supported me through fellowships: a

Cornell University Fellowship (2000), a National Science Foundation Graduate

Research Fellowship (2001), and an Intel Foundation Fellowship (2007). The

work reported in this dissertation was also supported in part by the Depart-

ment of the Navy, Office of Naval Research, ONR Grant N00014-01-1-0968; Air

Force Office of Scientific Research, Air Force Materiel Command, USAF, grant

F9550-06-0019; National Science Foundation grants 0208642, 0133302, 0430161;

AF-TRUST (Air Force Team for Research in Ubiquitous Secure Technology for

GIG/NCES), which receives support from the Air Force Office of Scientific Re-

search (FA9550-06-1-0244), the National Science Foundation (CCF-0424422), BT,

Cisco, ESCHER, HP, IBM, iCAST, Intel, Microsoft, ORNL, Pirelli, Qualcomm,

Sun, Symantec, Telecom Italia, and United Technologies; a grant from Intel; and

a gift from Microsoft.

Research is neither an art nor a science, but a craft that requires special skill

and careful attention to detail. As in the Middle Ages, this craft is taught via

apprenticeship. I had the good fortune to apprentice myself to two outstanding

masters of the craft, Andrew Myers and Fred B. Schneider. Both were essential

to my training, and I profited from working with both—despite Matthew 6:24,

“No man can serve two masters.” This dissertation would not exist if not for

their ample ideas, critiques, and advice. The skills and habits that I learned

from these researchers are inestimable and practically innumerable. But I thank

Andrew most of all for the habit of steadfast persistence and curiosity in the

pursuit of research. And I thank Fred most of all for the habit of lucid writing.

Perfection of these habits is something I will pursue throughout my life, with

their voices guiding me.

v

Three other Cornell faculty especially deserve mention. Graeme Bailey and

Dexter Kozen helped me to solve mathematical problems. And Kavita Bala gave

me surprisingly useful advice in my last semester.

The faculty of Miami University introduced me to scholarship. Gerald Miller

first predicted that I would take the path toward a Ph.D., and Ann Sobel made

certain that I did. Ann was my first master, and I thank her for helping me find

my way to Cornell. Alton Sanders and Michael Zmuda tutored me in subjects

in which Miami did not offer classes. James Kiper was an influential role model

for teaching. Donald Byrkett gave me my first teaching assistantship, in my

first semester at Miami. Douglas Troy gave me my first teaching appointment,

in my last semester at Miami, and he gave me my first job offer (albeit tongue-in-

cheek) for an assistant professorship. Richard Nault predicted where this path

would end; only time will tell.

To my fellow apprentices—Steve Chong, Matthew Fluet, Nate Nystrom,

Kevin O’Neill, and Tom Roeder: thank you most of all for your friendship.

To the staff who supported me not just as a student, but as a person—

Stephanie Meik and Becky Stewart: thank you for allowing me to distract you

from your daily work, and for listening. Your nurture and counsel have made

my life better.

Steve Chong once said to me that graduate school was supposed to be a pro-

cess of losing hobbies, but somehow I kept gaining them. For the recreation of

gaming, I thank Joseph Ford, Karen Downey, William Hurley, and Rob Knep-

per. For the satisfaction of food and drink, I thank the Cornell Hotel School wine

and cooking classes, Standing Stone Vineyards, Gimme! coffee, and the depart-

ment espresso machine. For the inspiration of music, I thank my music teachers

at Cornell—Thom Baker, Chris Kim, James Patrick Miller, Timothy Olsen, An-

vi

nette Richards, and David Yearsley—and my musician–friends—Heidi Miller,

Catherine Oertel, Emily Sensenbach, Bob Whalen, and the members of the Cor-

nell Chorale.

I cannot adequately thank my parents, Dennis and Rhonda, but I will try by

continuing to live by their good example.

Finally, medieval apprentices were not allowed to wed, but I married my

high school sweetheart, Rachel. I cannot express my gratitude or debt to her, so

I shall simply say: I love you, always and forever.

Michael Clarkson

Whit Sunday 2009

Ithaca, New York

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . viii
List of Tables . x
List of Figures . xi

1 Introduction 1
1.1 Historical Background . 1
1.2 Contributions of this Dissertation 6
1.3 Dissertation Outline . 14

2 Quantification of Confidentiality 15
2.1 Incorporating Beliefs . 16
2.2 Confidentiality Experiments . 22
2.3 Quantification of Information Flow 30
2.4 Language Semantics . 46
2.5 Insider Choice . 49
2.6 Related Work . 55
2.7 Summary . 60
2.A Appendix: Proofs . 61

3 Quantification of Integrity 83
3.1 Quantification of Contamination 85
3.2 Quantification of Suppression . 90
3.3 Error-Correcting Codes . 97
3.4 Statistical Databases . 99
3.5 Duality of Integrity and Confidentiality 101
3.6 Related Work . 104
3.7 Summary . 105
3.A Appendix: Proofs . 106

4 Formalization of Security Policies 110
4.1 Hyperproperties . 111
4.2 Hypersafety . 122
4.3 Beyond 2-Safety . 125
4.4 Hyperliveness . 128
4.5 Topology . 133
4.6 Beyond Hypersafety and Hyperliveness 139
4.7 Summary . 140
4.A Appendix: Proofs . 142

viii

5 Formalization of System Representations 158
5.1 Generalized Hypersafety and Hyperliveness 159
5.2 Relational Systems . 160
5.3 Labeled Transition Systems . 163
5.4 State Machines . 167
5.5 Probabilistic Systems . 168
5.6 Results on Generalized Hypersafety and Hyperliveness 176
5.7 Summary . 179

6 Conclusion 181

Bibliography 184

Index 196

ix

LIST OF TABLES

1.1 Definitions of the CIA taxonomy 2

2.1 Beliefs about pH . 26
2.2 Distributions on PWC output . 26
2.3 Analysis of FLIP . 35
2.4 Leakage of PWC and FPWC . 40
2.5 Repeated experiments on PWC 44

x

LIST OF FIGURES

2.1 Channels in confidentiality experiment 22
2.2 Experiment protocol . 23
2.3 Effect of FLIP on postbelief . 35
2.4 State semantics of programs . 46
2.5 Distribution semantics of programs 49
2.6 State semantics of programs with insider 52
2.7 Distribution semantics of programs with insider 52
2.8 Experiment protocol with insider 53

3.1 Channels in contamination experiment 86
3.2 Contamination experiment protocol 88
3.3 Channels in suppression experiment 91
3.4 Suppression experiment protocol 92
3.5 Model of anonymizer . 99
3.6 Information flows in a system . 101
3.7 Dualities between integrity and confidentiality 102

4.1 Classification of security policies 140

5.1 Classification of security policies for system representations . . . 180

xi

CHAPTER 1

INTRODUCTION

Computer security policies express what computer systems may and may not

do. For example, a security policy might stipulate that a system may not allow

a user to read information that belongs to other users, or that a system may

process transactions only if they are recorded in an audit log, or that a system

may not delay too long in making a resource accessible to a user.1

This dissertation addresses mathematical foundations for security policies,

in two ways. First, metrics are developed for quantifying how much secret

information a computer system can leak, and for quantifying the amount of

trusted information within a computer system that becomes contaminated. Sec-

ond, a taxonomy is proposed for formal, mathematical expression and classifica-

tion of security policies. These contributions are best understood in the context

of a select history of computer security policies.

1.1 Historical Background

Security policies have long been formulated in terms of a tripartite taxonomy:

confidentiality, integrity, and availability. Henceforth, this is called the CIA tax-

onomy. There is no agreement on how to define each element of this taxonomy—

as evidenced by table 1.1, which summarizes the evolution of the CIA taxonomy

in academic literature, standards, and textbooks.2 Perhaps the most widely ac-

1Security policies might also express what human users of computer systems may or may
not do—for example, that users may not remove machines from a building. This dissertation
focuses on computers, not humans; Sterne [111] discusses the relationship between these two
kinds of policies.

2Nor is there agreement on what abstract noun to associate with the elements of this tax-
onomy. Various authors use the terms “aspects” [16, 47], “categories of protection” [31], “char-
acteristics” [97], “goals” [26, 97], “needs” [72], “properties” [58], “qualities” [97], and “require-
ments” [92].

1

Table 1.1: Definitions of the CIA taxonomy. Confidentiality, integrity, and avail-
ability are abbreviated C., I., and A.

Source Year Term Definition

Voydock and Kent [121] 1983 N/A Security violations can be divided into. . . unauthorized re-
lease of information, unauthorized modification of informa-
tion, or unauthorized denial of resource use.

Clark and Wilson [26] 1987 N/A System should prevent unauthorized disclosure or theft of
information, . . . unauthorized modification of information,
and. . . denial of service.

ISO 7498-2 [58] 1989 C. Information is not made available or disclosed to unautho-
rized individuals, entities, or processes.

I. Data has not been altered or destroyed in an unauthorized
manner.

A. Being accessible and useable upon demand by an authorized
entity.

ITSEC [30] 1991 C. Prevention of unauthorized disclosure of information.
I. Prevention of unauthorized modification of information.
A. Prevention of unauthorized withholding of information or re-

sources.
NRC [92] 1991 C. Controlling who gets to read information.

I. Assuring that information and programs are changed only in
a specified and authorized manner.

A. Assuring that authorized users have continued access to in-
formation and resources.

Pfleeger [97] 1997 C. The assets of a computing system are accessible only by au-
thorized parties. The type of access is read-type access.

I. Assets can be modified only by authorized parties or only in
authorized ways.

A. Assets are accessible to authorized parties.
Gollmann [47] 1999 C., I., A. Same as ITSEC.
Lampson [72] 2000 Secrecy Controlling who gets to read information.

I. Controlling how information changes or resources are used.
A. Providing prompt access to information and resources.

Bishop [16] 2003 C. Concealment of information or resources.
I. Trustworthiness of data or resources. . . usually phrased in

terms of preventing improper or unauthorized change.
A. The ability to use the information or resource desired.

Common Criteria [31] 2006 C. Protection of assets from unauthorized disclosure.
I. Protection of assets from unauthorized modification.
A. Protection of assets from loss of use.

2

cepted, current definitions (if only because of adoption by North American and

European governments) are those given by the Common Criteria [31, §1.4], an

international standard for evaluation of computer system security:

• Confidentiality is the protection of assets from unauthorized disclosure.

• Integrity is the protection of assets from unauthorized modification.

• Availability is the protection of assets from loss of use.

The term “assets” is essentially undefined by the Common Criteria. From the

other definitions in table 1.1, we surmise that assets include information and

system resources.

These definitions of the CIA taxonomy raise the question of how to distin-

guish between unauthorized and authorized actions. Authorization policies have

been developed to answer this question. In the vocabulary of authorization

policies, a subject generalizes the notion of a user to include programs running

on behalf of users. Likewise, object generalizes “information” and “resource,”

and right is used instead of “action.” Every subject can also be treated as an

object, so that subjects can have rights to other subjects. Authorization policies

can be categorized as follows:

• Access-control policies regulate actions directly by specifying for each sub-

ject and object exactly what rights the subject has to the object. File-system

permissions (e.g., in Unix or Microsoft Windows) embody a familiar ex-

ample of an access-control policy, in which users may (or may not) read,

write, and execute files. Access-control policies originated in the devel-

opment of multiprogrammed systems for the purpose of preventing one

user’s program from harming another user’s program or data [74].3

3Lampson [74] gives the canonical formalization of access-control policies as matrices in
which rows represent subjects, columns represent objects, and entries are rights.

3

• Information-flow policies regulate actions indirectly by specifying, for each

subject and object, whether information is allowed to flow between them.

This specification is used to determine what actions are allowed. Mul-

tilevel security, formalized by Bell and LaPadula [13] and by Feiertag et

al. [43], is a familiar example of an information-flow policy that is used

to govern confidentiality: Each subject is associated with a security level

comprising a hierarchical clearance (e.g., Top Secret, Secret, or Unclassified)

and a non-hierarchical category set (e.g., {Atomic, NATO}). Information is

permitted to flow from a subject S1 to subject S2 only if the clearance of

S1 is less than or equal to the clearance of S2 and the category set of S1

is a subset of the category set of S2.4 Noninterference, defined by Goguen

and Meseguer [46], is another, important example of an information-flow

policy. It stipulates commands executed on behalf of users holding high

clearances have no effect on system behavior observed by users holding

low clearances. This policy, or a variant of it, is enforced by many pro-

gramming language-based mechanisms [104].

When used to govern confidentiality of information, access-control poli-

cies regulate the release of information in a system, whereas information-

flow policies regulate both the release and propagation of information. Thus

information-flow policies are stronger than access-control policies. For example,

an information-flow policy might require that the information in file f.txt does

not become known to any user other than alice. A Unix access-control policy

on file f.txt might approximate the information-flow policy by stipulating that

4The first mathematical formalization of security-level comparison seems to be a result of
Weissman [124]; a more general formalization in terms of lattices was given by Denning [36].
Differences between the Bell–LaPadula and Feiertag et al. models of multilevel security are dis-
cussed by Taylor [114]. Multilevel security, in addition to being an information-flow policy, is
an example of a mandatory access control (MAC) policy. In contrast are discretionary access control
(DAC) policies—for example, Unix file-system permissions.

4

only alice can execute a read operation on f.txt. But a Trojan horse5 running

with the permissions of alice would be allowed, according to the access-control

policy, to copy f.txt to some public file from which anyone may read. The con-

tents of f.txt would no longer be secret, violating the information-flow policy.

Malicious programs such as a Trojan horse might exploit channels, or com-

munication paths, other than the file system to violate information-flow policies.

Lampson introduces the notion of a covert channel, which is a channel “not in-

tended for information transfer at all” [73]—for example, filesystem locks, sys-

tem load, power consumption, or execution time.6 The Department of Defense

later defined a covert channel somewhat differently in its Trusted Computer

System Evaluation Criteria—also known as the “Orange Book” because of its

cover—as “any communication channel that can be exploited by a process to

transfer information in a manner that violates the system’s security policy” [37].

The TCSEC categorizes covert channels into storage and timing channels. Stor-

age channels involve reading and writing of storage locations, whereas timing

channels involve using system resources to affect response time [37].7

Rather than forbid the existence of covert channels, the TCSEC specifies

that systems should not contain covert channels of high bandwidth.8 Low-

bandwidth covert channels are allowed only because eliminating them is usu-

ally infeasible. And sometimes elimination is impossible: the proper function of

some systems requires that some information be leaked. One example of such

5A Trojan horse [7] is a program that offers seemingly beneficial functionality, so that users
will run the program—even if the program is given to them as a gift and they do not know its
provenance or contents. But the program also contains malicious functionality of which users
are unaware.

6Lampson also introduces “storage” and “legitimate” channels. The distinctions between
these and covert channels—as Millen [89] observes—are somewhat elusive.

7Kemmerer [62] seems to be the source of TCSEC’s categorization.
8The TCSEC defines “high” as 100 bits per second, the rate at which teletype terminals ran

circa 1985. The “Light Pink Book” [91] offers a more nuanced analysis of what constitutes high
bandwidth.

5

a system is a password checker, which allows or denies access to a system based

on passwords supplied by users. By design, a password checker must release

information about whether the passwords entered by users are correct.

Research into quantifying the bandwidth of covert channels began by em-

ploying information theory, the science of data transmission. Information the-

ory could already quantify communication channel bandwidth, so its use with

covert channels was natural. Denning’s seminal work [35] in this area uses en-

tropy, an information-theoretic metric for uncertainty, to calculate how much

secret information can be leaked by a program. Millen [88] proposes mutual in-

formation, which is defined in terms of entropy, as a metric for information flow.

These metrics make it possible to quantify information flow.

Much more history of computer security policies could be surveyed, but

what we have covered suffices to put this dissertation in context. The begin-

ning (a taxonomy of security policies) and the end (quantification of informa-

tion flow) of our background are the places where this dissertation makes its

contributions.

1.2 Contributions of this Dissertation

Quantification of security. Quantification of information flow is more diffi-

cult than at first it might seem. Consider a password checker PWC that sets

an authentication flag a after checking a stored password p against a (guessed)

password g supplied by the user.

PWC : if p = g then a := 1 else a := 0

For simplicity, suppose that the password is either A, B, or C. Suppose also that

the user is actually an attacker attempting to discover the password, and he be-

6

lieves the password is overwhelmingly likely to be A but has a minuscule and

equally likely chance to be eitherB or C. (This need not be an arbitrary assump-

tion on the attacker’s part; perhaps the attacker was told by a usually reliable

informant.) If the attacker experiments by executing PWC and guessing A, he

expects to observe that a equals 1 upon termination. Such a confirmation of the

attacker’s belief would seem to convey some small amount of information. But

suppose the informant was wrong: the real password is C. Then the attacker

observes that a is equal to 0 and infers that A is not the password. Common

sense dictates that his new belief is that B and C each have a 50% chance of

being the password. The attacker’s belief has greatly changed—he is surprised

to discover the password is not A—so the outcome of this experiment conveys

more information than the previous outcome. Thus, the information conveyed

by executing PWC depends on what the attacker initially believed.

How much information flows from p to a in each of the above experiments?

Answers to this question have traditionally been based on change in uncer-

tainty, typically quantified by entropy or mutual information: information flow

is quantified by the reduction in uncertainty about secret data [19, 24, 35, 49, 76,

82, 88]. Observe that, in the case where the password is C, the attacker initially

is quite certain (though wrong) about the value of the password and after the

experiment is rather uncertain about the value of the password; the change from

“quite certain” to “rather uncertain” is an increase in uncertainty. So according

to a metric based on reduction in uncertainty, no information flow occurred,

which is anomalous and contradicts our intuition.

The problem with metrics based on uncertainty is twofold. First, they do

not take accuracy into account. Accuracy and uncertainty are orthogonal prop-

erties of the attacker’s belief—being certain does not make one correct—and as

7

the password checking example illustrates, the amount of information flow de-

pends on accuracy rather than on uncertainty. Second, uncertainty-based met-

rics are concerned with some unspecified agent’s uncertainty rather than an

attacker’s. The unspecified agent is able to observe a probability distribution

over secret input values but cannot observe the particular secret input used in

the program execution. If the attacker were the unspecified agent, there would

be no reason in general to assume that the probability distribution the attacker

uses is correct. Because the attacker’s probability distribution is therefore sub-

jective, it must be treated as a belief. Beliefs are thus an essential—though until

now uninvestigated—component of information flow.

Chapter 2 presents a new way to quantify information flow, based on these

insights about beliefs and accuracy. We9 give a formal model for experiments,

which describe the interaction between attackers and systems by specifying

how attackers update beliefs after observing system execution. This experi-

ment model can be used with any mathematical representation of beliefs that

supports three natural operations (product, update, and distance); as a concrete

representation, we use probability distributions. Accordingly, we model sys-

tems as probabilistic imperative programs. We show that the result of belief up-

date in the experiment model is equivalent to the attacker employing Bayesian

inference, a standard technique in applied statistics for making inferences.

Our formula for calculating information flow is based on attacker beliefs be-

fore and after observing execution of a program. The formula is parameterized

on the belief distance function; we make the formula concrete by instantiating it

with relative entropy, which is an information-theoretic measure of the distance

between two distributions. The resulting metric for the amount of leakage of se-

9Joint work with Andrew C. Myers and Fred B. Schneider.

8

cret information eliminates the anomaly described above, enabling quantifica-

tion of information flow for individual executions of programs when attackers

have subjective beliefs. We show that the metric correctly quantifies “informa-

tion” as defined by information theory.10 Moreover, we show that the metric

generalizes previously defined uncertainty-based metrics.

Our metric also enables two kinds of analysis that were not previously pos-

sible. First, it is able to analyze misinformation, which is a negative information

flow. We show that deterministic programs are incapable of producing misin-

formation. Second, our metric is able to analyze repeated interactions between

an attacker and a system. This ability enables compositional reasoning about

attacks—for example, about attackers who make a series of guesses in trying to

determine a password.

We extend our experiment model to handle insiders, whose goal is to help

the attacker learn secret information. Insiders are capable of influencing pro-

gram execution, and we model them by introducing nondeterministic choice

into programs. We show that if a program satisfies observational determin-

ism [85, 102, 130], a noninterference policy for nondeterministic programs, then

the quantity of information flow is always zero.

Previous work on quantitative information flow has considered only confi-

dentiality, despite the fact that information theory itself is used to reason about

integrity. Chapter 3 addresses this gap by applying the results of chapter 2 to

integrity.11 This application enables quantification of the amount of untrusted

information with which an attacker can taint trusted information; we name this
10Information quantifies how surprising the occurrence of an event is. The information (or

self-information) conveyed by an event is the negative logarithm of the probability of the event.
An event that is certain (probability 1) thus conveys zero information, and as the probability
decreases, the amount of information conveyed increases.

11Concurrent with the work described in this dissertation, Newsome et al. [94] also began to
investigate quantitative information-flow integrity.

9

quantity contamination. Contamination is the information-flow dual of leakage,

and it enjoys a similar interpretation based on information theory.

Moreover, our12 investigation of information-flow integrity reveals another

connection with information theory. Recall that information theory can be used

to quantify the bandwidth, or channel capacity, of communication channels. We

model such channels with programs that take trusted inputs from a sender and

give trusted outputs to a receiver. The transmission of information to the receiver

might be decreased because a program introduces random noise into its output

that obscures the inputs, or because a program uses untrusted inputs (supplied

by an attacker) in a way that obscures the trusted inputs. In either case, in-

formation is suppressed. We show how to quantify suppression; in expectation,

this quantity is the same as the channel capacity. We analyze error-correcting

codes [4] with suppression.

Simultaneously quantifying both confidentiality and integrity is also fruitful,

because programs sometimes sacrifice integrity of information to improve confi-

dentiality. For example, a statistical database that stores information about indi-

viduals might add randomly generated noise to a query response in an attempt

to protect the privacy of those individuals. The addition of noise suppresses

information yet reduces leakage, and our quantitative frameworks make this

relationship precise: the amount of suppression plus the amount of leakage is a

constant, for a given interaction between the database and a querier.

Formalization of security. The CIA taxonomy is an intuitive categorization of

security requirements. Unfortunately, it is not supported by formal, mathemat-

ical theory: There is no formalization that simultaneously characterizes con-

12Joint work with Fred B. Schneider.

10

fidentiality, integrity, and availability.13 Nor are confidentiality, integrity, and

availability orthogonal—for example, the requirement that a principal be un-

able to read a value could be interpreted as confidentiality or unavailability of

that value. And the CIA taxonomy provides little insight into how to enforce

security requirements, because there is no verification methodology associated

with any of the taxonomy’s three categories.

This situation is similar to that of program verification circa the 1970s. Many

specific properties of interest had been identified—for example, partial correct-

ness, termination, and total correctness, mutual exclusion, deadlock freedom,

starvation freedom, etc. But these properties were not all expressible in some

unifying formalism, they are not orthogonal, and there was no verification

methodology that was complete for all properties.

These problems were addressed by the development of the theory of trace

properties. A trace is a sequence of execution states, and a property either holds

or does not hold (i.e., is a Boolean function) of an object. Thus a trace prop-

erty either holds or does not hold of an execution sequence. (The extension of

a property is the set of objects for which the property holds. The extension of

a property of individual traces—that is, a set of traces—sometimes is termed

“property,” too [5, 70]. But for clarity, “trace property” here denotes a set of

traces.) Every trace property is the intersection of a safety property and a live-

ness property:

• A safety property is a trace property that proscribes “bad things” and can

be proved using an invariance argument, and

13A formalism that comes close is that of Zheng and Myers [131], who define a particular
noninterference policy for confidentiality, integrity, and availability.

11

• a liveness property is a trace property that prescribes “good things” and can

be proved using a well-foundedness argument.14

This categorization forms an intuitively appealing and orthogonal basis from

which all trace properties can be constructed. Moreover, safety and liveness

properties are affiliated with specific, relatively complete verification methods.

It is therefore natural to ask whether the theory of properties could be used to

formalize security policies.

Unfortunately, important security policies cannot be expressed as properties

of individual execution traces of a system [2, 44, 86, 103, 115, 117, 129]. For ex-

ample, noninterference is not a property of individual traces, because whether

a trace is allowed by the policy depends on whether another trace (obtained

by deleting command executions by high users) is also allowed. For another

example, stipulating a bound on mean response time over all executions is an

availability policy that cannot be specified as a property of individual traces, be-

cause the acceptability of delays in a trace depends on the magnitude of delays

in all other traces. However, both example policies are properties of systems,

because a system (viewed as a whole, not as individual executions) either does

or does not satisfy each policy.

The fact that security policies, like trace properties, proscribe and prescribe

behaviors of systems suggested that a theory of security policies analogous to

the theory of trace properties might exist. This dissertation develops that the-

ory by formalizing security policies as properties of systems, or system properties.

If systems are modeled as sets of execution traces, as with trace properties [70],

14Lamport [68] gave the first informal definitions of safety and liveness properties, appropri-
ating the names from Petri net theory, and he also gave the first formal definition of safety [70].
Alpern and Schneider [5] gave the first formal definition of liveness and the proof that all trace
properties are the intersection of safety and liveness properties; they later established the corre-
spondence of safety to invariance and of liveness to well-foundedness [6].

12

then the extension of a system property is a set of sets of traces or, equivalently, a

set of trace properties.15 We16 named this type of set a hyperproperty [29]. Every

property of system behavior (for systems modeled as trace sets) can be speci-

fied as a hyperproperty, by definition. Thus, hyperproperties can describe trace

properties and moreover can describe security policies, such as noninterference

and mean response time, that trace properties cannot.

Chapter 4 shows that results similar to those from the theory of trace prop-

erties carry forward to hyperproperties:

• Every hyperproperty is the intersection of a safety hyperproperty and a

liveness hyperproperty. (Henceforth, these terms are shortened to hyper-

safety and hyperliveness.) Hypersafety and hyperliveness thus form a basis

from which all hyperproperties can be constructed.

• Hyperproperties from a class that we introduce, called k-safety, can be ver-

ified by using invariance arguments. Our verification methodology gen-

eralizes prior work on using invariance arguments to verify information-

flow policies [12, 115].

However, we have not obtained complete verification methods for hypersafety

or for hyperliveness.

The theory we develop also sheds light on the problematic status of refine-

ment for security policies. Refinement never invalidates a trace property but

can invalidate a hyperproperty: Consider a system π that nondeterministically

chooses to output 0, 1, or the value of a secret bit h. System π satisfies the

security policy “The possible output values are independent of the values of

secrets.” But one refinement of π is the system that always outputs h, and this

15McLean [86] gave the first formalization of security policies as properties of trace sets.
16Joint work with Fred B. Schneider.

13

system does not satisfy the security policy. We characterize the entire set of

hyperproperties for which refinement is valid; this set includes the safety hy-

perproperties.

Safety and liveness not only form a basis for trace properties and hyper-

properties, but they also have a surprisingly deep mathematical characteriza-

tion in terms of topology. In the Plotkin topology on trace properties, safety

and liveness are known to correspond to closed and dense sets, respectively [5].

We generalize this topological characterization to hyperproperties by showing

that hypersafety and hyperliveness also correspond to closed and dense sets in

a new topology, which turns out to be equivalent to the lower Vietoris construc-

tion applied to the Plotkin topology [109]. This correspondence could be used

to bring results from topology to bear on hyperproperties.

Chapter 5 applies the theory of hyperproperties to models of system execu-

tion other than trace sets. We show that relational systems, labeled transition

systems, state machines, and probabilistic systems all can be encoded as trace

sets and handled using hyperproperties.

1.3 Dissertation Outline

Chapter 2 presents the new mathematical model and metric for quantitative

information flow, as applied to confidentiality. Chapter 3 applies those ideas

to integrity. Chapter 4 turns to the problem of a mathematical taxonomy of

security policies and presents the results on hyperproperties. Chapter 5 extends

those ideas to system models beyond trace sets. Related work is covered within

each chapter. Chapter 6 concludes.

14

CHAPTER 2

QUANTIFICATION OF CONFIDENTIALITY∗

Qualitative security properties, such as noninterference [46], typically either

prohibit any flow of information from a high security level to a lower level,

or they allow any information to flow provided it passes through some release

mechanism. For a program whose correctness requires flow from high to low,

the former policy is too restrictive and the latter can lead to unbounded leakage

of information. Quantitative confidentiality policies, such as “at most k bits leak

per execution of the program,” allow information flows but at restricted rates.

Such policies are useful when analyzing programs whose nature requires that

some—but not too much—information be leaked, such as the password checker

from chapter 1.

Recall that the amount of secret information a program leaks has tradition-

ally been defined using change in uncertainty, but that definition leads to an

anomaly when analyzing the password checker. We argued informally in chap-

ter 1 that accuracy of beliefs provides a better explanation of the password

checker. This chapter substantiates that argument with formal definitions and

examples.

This chapter proceeds as follows. Basic representations for beliefs and pro-

grams are stated in §2.1. A model of the interaction between attackers and sys-

tems, describing how attackers update beliefs by observing execution of pro-

grams, is given in §2.2. A new quantitative flow metric, based on information

theory, is defined in §2.3. The new metric characterizes the amount of informa-

tion flow that results from change in the accuracy of an attacker’s belief. The

∗This chapter contains material from a previously published paper [28], which is c© 2005
IEEE and reprinted with permission from Proceedings of the 18th IEEE Computer Security Founda-
tions Workshop.

15

metric can also be instantiated to quantify change in uncertainty, and thus it

generalizes previous information-flow metrics. The model and metric are for-

mulated for use with any programming model that can be given a denotational

semantics compatible with the representation of beliefs, as §2.4 illustrates with

a particular programming language (while-programs plus probabilistic choice).

The model is extended in §2.5 to programs in which nondeterministic choices

are resolved by insiders, who are allowed to observe secret values. Related

work is discussed in §2.6, and §2.7 concludes. Most proofs are delayed from the

main body to appendix 2.A.

2.1 Incorporating Beliefs

A belief is a statement an agent makes about the state of the world, accompanied

by some characterization of how certain the agent is about the truthfulness of

the statement. Our agents will reason about probabilistic programs, so we begin

by developing mathematical structures for representing programs and beliefs.

2.1.1 Distributions

A frequency distribution is a function δ that maps a program state to a frequency,

which is a non-negative real number. A frequency distribution is essentially an

unnormalized probability distribution over program states; it is easier to define

a programming language semantics by using frequency distributions than by

using probability distributions [101]. Henceforth, we write “distribution” to

mean “frequency distribution.”

The set of all program states is State, and the set of all distributions is Dist.

The structure of State is mostly unimportant; it can be instantiated according to

16

the needs of any particular language or system. For our examples, states map

variables to values, where Var and Val are both countable sets:

v ∈ Var,

σ ∈ State , Var→ Val,

δ ∈Dist , State→ R+.

We write a state as a list of mappings—for example, (g 7→ A, a 7→ 0) is a state in

which variable g has value A and a has value 0.

The mass ‖δ‖ in a distribution δ is the sum of frequencies:1

‖δ‖ , (
∑

σ : δ(σ)).

A probability distribution has mass 1, but a frequency distribution may have

any non-negative mass. A point mass is a probability distribution that maps a

single state to 1. It is denoted by placing a dot over that single state:

σ̇ , λσ′ . if σ′ = σ then 1 else 0.

2.1.2 Programs

Execution of program S is described by a denotational semantics in which the

meaning [[S]] of S is a function of type State → Dist. This semantics describes

the frequency of termination in a given state: if [[S]]σ = δ, then the frequency

that S terminates in σ′ when begun in σ is δ(σ′). This semantics can be lifted to

a function of type Dist→ Dist by the following definition:

[[S]]δ , (
∑

σ : δ(σ) · [[S]]σ).

1Formula (? x ∈ D : R : P) is a quantification in which ? is the quantifier (such as ∀ or Σ), x
is the variable that is bound in R and P , D is the domain of x, R is the range, and P is the body.
We omit D, R, and even x when they are clear from context; an omitted range means R ≡ true .

17

Thus, the meaning of S given a distribution on inputs is completely determined

by the meaning of S given a state as input. By defining programs in terms of

how they operate on distributions, we enable analysis of probabilistic programs.

Our examples use while-programs extended with a probabilistic choice con-

struct. Let metavariables S, v, E, and B range over programs, variables, arith-

metic expressions, and Boolean expressions, respectively. Evaluation of expres-

sions is assumed side-effect free, but we do not otherwise prescribe their syntax

or semantics. The syntax of the language is as follows:

S ::= skip | v := E | S;S | if B then S else S

| while B do S | S p8 S

The operational semantics for the deterministic subset of this language is stan-

dard. Probabilistic choice S1 p 8 S2 executes S1 with probability p or S2 with

probability 1 − p, where 0 ≤ p ≤ 1. A denotational semantics for this language

is given in §2.4.

2.1.3 Labels and Projections

We need a way to identify secret data; confidentiality labels serve this purpose.

For simplicity, assume there are only two labels: a label L that indicates low-

confidentiality (public) data, and a label H that indicates high-confidentiality

(secret) data. Assume that State is a product of two domains StateL and StateH ,

which contain the low- and high-labeled data, respectively. A low state is an

element σL ∈ StateL; a high state is an element σH ∈ StateH . The projection

of state σ ∈ State onto StateL is denoted σ � L; this is the part of σ visible to

the attacker. Projection onto StateH , the part of σ not visible to the attacker, is

denoted σ �H .

18

Each variable in a program is subscripted by a label to indicate the confiden-

tiality of the information stored in that variable; for example, xL is a variable

that contains low information. For convenience, let variable l be labeled L and

variable h be labeledH . VarL is the set of variables in a program that are labeled

L, so StateL = VarL → Val. The low projection σ �L of state σ is

σ �L , λv ∈ VarL . σ(v).

States σ and σ′ are low-equivalent, written σ =L σ′, if they have the same low

projection:

σ =L σ
′ , (σ �L) = (σ′ �L).

Distributions also have projections. Let δ be a distribution and σL a low state.

Then (δ �L)(σL) is the combined frequency of those states whose low projection

is σL:

δ �L , λσL ∈ StateL . (
∑

σ′ : (σ′ �L) = σL : δ(σ′)).

High projection and high equivalence are defined by replacing occurrences of L

with H in the definitions above.

2.1.4 Belief Representation

To be usable in our framework, a belief representation must support certain

natural operations. Let b and b′ be beliefs ranging over sets of possible worldsW

and W ′, respectively, where a possible world is some elementary outcome about

which beliefs can be held [52].

1. Belief product ⊗ combines b and b′ into a new belief b ⊗ b′ about possible

worlds W ×W ′, where W and W ′ are disjoint.

19

2. Belief update b|U is the belief that results when b is updated to include new

information that the actual world is in a set U ⊆ W of possible worlds.

3. Belief distance D(b _ b′) is a real number r ≥ 0 that quantifies differences

between b and b′.

Although the results in this chapter are, for the most part, independent of

any particular representation, the rest of this chapter uses distributions to rep-

resent beliefs. High states are the possible worlds for beliefs, and a belief is a

probability distribution over high states:

b ∈ Belief , StateH → R+, s.t. ‖b‖ = 1.

Thus, beliefs correspond to probability measures. Probability measures are

well-studied as a belief representation [52], and they have several advantages

here: they are familiar, quantitative, support the operations required above, and

admit a programming language semantics (as shown in §2.4). There is also a

nice justification for the numbers they produce: roughly, b(σ) characterizes the

amount of money an attacker should be willing to bet that σ is the actual state

of the system [52]. Other choices of belief representation could include belief

functions or sets of probability measures [52]. Although these alternatives are

more expressive than probability measures, it is more complicated to define the

required operations for them.

For belief product ⊗, we employ a distribution product ⊗ of two distribu-

tions δ1 : A→ R+ and δ2 : B → R+, with A and B disjoint:

δ1 ⊗ δ2 , λ(σ1, σ2) ∈ A×B . δ1(σ1) · δ2(σ2).

It is easy to check that if b and b′ are beliefs, b⊗ b′ is too.

For belief update |, we use distribution conditioning:

δ|U , λσ . if σ ∈ U then
δ(σ)

(
∑

σ′ ∈ U : δ(σ′))
else 0.

20

For belief distance D we use relative entropy, an information-theoretic met-

ric [59] for the distance between distributions:

D(b_ b′) , (
∑

σ : b′(σ) · log b′(σ)
b(σ)

).

The base of the logarithm inD can be chosen arbitrarily; we use base 2 and write

lg to indicate log2, making bits the unit of measurement for distance. The relative

entropy of b to b′ is the expected inefficiency (that is, the number of additional

bits that must be sent) of an optimal code that is constructed by assuming an

inaccurate distribution over symbols b when the real distribution is b′ [32]. Like

an analytic metric, D(b _ b′) is always at least zero and D(b _ b′) equals zero

only when b = b′.2

Relative entropy has the property that if b′(σ) > 0 and b(σ) = 0, then

D(b _ b′) = ∞. Intuitively, b′ is “infinitely surprising” because it regards σ

as possible whereas b regards σ as impossible. To avoid this anomaly, beliefs

may be required to satisfy an admissibility restriction, which ensures that attack-

ers do not initially believe that certain states are impossible. For example, a

belief might be restricted such that it never differs by more than a factor of ε

from a uniform distribution. This restriction could be useful with the password

checker (c.f. §1.2) if it is reasonable to assume that attackers believe that all pass-

words are nearly equally likely. Or, the attacker’s belief may be required to

be a maximum entropy distribution [32] with respect to attacker-specified con-

straints. This restriction could be useful with the password checker if attackers

believe that passwords are English words (which is a kind of constraint). Other

admissibility restrictions can be substituted for these when stronger assump-

tions can be made about attacker beliefs.
2Unlike an analytic metric, D does not satisfy symmetry or the triangle inequality. However,

it seems unreasonable to assume that either of these properties holds for beliefs, since it can be
easier to rule out a possibility from a belief than to add a new possibility, or vice-versa.

21

Program
L out Attacker

H in

L inAttacker

System

Figure 2.1: Channels in confidentiality experiment

2.2 Confidentiality Experiments

We formalize as a confidentiality experiment (or simply an experiment) how an

attacker, an agent that reasons about secret data, revises his beliefs from interac-

tion with program that is executed by a system. The attacker should not learn

about the high input to the program but is allowed to observe and influence

low inputs and outputs. Other agents (a system operator, other users of the

system with their own high data, an informant upon which the attacker relies,

etc.) might be involved when an attacker interacts with a system; however, it

suffices to condense all of these to just the attacker and the system. The channels

between agents and the program are depicted in figure 2.1 and are described in

detail below.

We conservatively assume that the attacker knows the code of the program

with which he interacts. For simplicity, we assume that the program always

terminates and that it never modifies the high state. Both restrictions can be

lifted without significant changes, as shown in §2.2.4.

2.2.1 Confidentiality Experiment Protocol

Formally, an experiment E is described by a tuple,

E = 〈S, bH , σH , σL〉,

22

An experiment E = 〈S, bH , σH , σL〉 is conducted as follows.

1. The attacker chooses a prebelief bH about the high state.

2. (a) The system picks a high state σH .

(b) The attacker picks a low state σL.

3. The attacker predicts the output distribution: δ′A = [[S]](σ̇L ⊗ bH).

4. The system executes program S, which produces a state σ′ ∈ δ′ as output,
where δ′ = [[S]](σ̇L ⊗ σ̇H). The attacker observes the low projection of the
output state: o = σ′ �L.

5. The attacker infers a postbelief: b′H = (δ′A|o)�H .

Figure 2.2: Experiment protocol

where S is the program, bH is the attacker’s belief at the beginning of the experi-

ment, σH is the high projection of the initial state, and σL is the low projection of

the initial state. The protocol for experiments, which uses some notation defined

below, is summarized in figure 2.2. Here is a justification for the protocol.

An attacker’s prebelief bH , describing his belief at the beginning of the exper-

iment (step 1), may be chosen arbitrarily (subject to an admissibility restriction

as in §2.1.4) or may be informed by previous experiments. In a series of ex-

periments, the postbelief from one experiment typically becomes the prebelief

to the next. The attacker might even choose a prebelief bH that contradicts his

true subjective probability distribution for the state, and this gives our analysis

additional power by allowing the attacker to conduct experiments to answer

questions such as “What would happen if I were to believe bH?”

The system chooses σH (step 2a), the high projection of the initial state, and

this part of the state might remain constant from one experiment to the next

or might vary. For example, Unix passwords do not usually change frequently,

but the output displayed on an RSA SecurID token changes each minute. We

conservatively assume that the attacker chooses all of σL (step 2b), the low pro-

23

jection of the initial state. This gives the attacker additional power in controlling

execution of the program, which he can use to attempt to maximize the amount

of information flow. The attacker’s choice of σL is thus likely to be influenced

by bH , but for generality, we do not require there be such a strategy.

Using the semantics of S along with prebelief bH as a distribution on high

input, the attacker conducts a “thought experiment” to generate a prediction of

the output distribution (step 3). We define prediction δ′A to correlate the output

state with the high input state:

δ′A = [[S]](σ̇L ⊗ bH).

Program S is executed (step 4) only once in each experiment; multiple exe-

cutions are modeled by multiple experiments. The meaning of S given inputs

σL and σH is an output distribution δ′:

δ′ = [[S]](σ̇L ⊗ σ̇H).

From δ′ the attacker makes an observation, which is a low projection of an output

state. Probabilistic programs may yield many possible output states, but in a

single execution of the program, only one output state is actually produced.

This output state σ′ is produced with frequency δ′(σ′). We write σ′ ∈ δ′ to denote

that σ′ is in the support of (i.e., has positive frequency according to) δ′. In a single

experiment, the attacker is allowed only a single observation. The observation

o resulting from σ′ is σ′ �L.

Finally, the attacker incorporates any new inferences that can be made from

observation o by conditioning prediction δ′A. The result is projected to H to

produce the attacker’s postbelief b′H (step 5):

b′H = (δ′A|o)�H.

24

Here, conditioning operator δ|o is defined in terms of conditioning operator δ|U .

The new operator removes all mass in distribution δ that is inconsistent with

observation o, then normalizes the result:

δ|o , δ|{σ′ | σ′ �L = o}

= λσ . if (σ �L) = o then δ(σ)
(δ�L)(o)

else 0.

2.2.2 Password Checking as an Experiment

Our experiment model allows the informal reasoning in §1.2 to be made pre-

cise. For example, consider the password checker; adding confidentiality labels

yields:

PWC : if pH = gL then aL := 1 else aL := 0

The attacker begins an experiment by choosing prebelief bH , perhaps as spec-

ified in the column labeled bH of table 2.1. Next, the system chooses initial high

projection σH , and the attacker chooses initial low projection σL. In the first ex-

periment in §1.2, the password was A, so the system chooses σH = (p 7→ A).

Similarly, the attacker chooses σL = (g 7→ A, a 7→ 0). (The initial value of a is

actually irrelevant, since it is never used by the program and a is set along all

control paths.) Next, the system executes PWC . Output distribution δ′ should

be the point mass at state σ′ = (p 7→ A, g 7→ A, a 7→ 1); the semantics in §2.4 will

validate this intuition. Since σ′ is the only state that can be sampled from δ′, the

attacker’s observation o1 is σ′ �L = (g 7→ A, a 7→ 1).

Finally, the attacker infers a postbelief. He conducts a thought experiment,

predicting an output distribution δ′A = [[PWC]](σ̇L ⊗ bH), given in table 2.2. The

ellipsis in the final row of the table indicates that all states not shown have fre-

quency 0. This distribution is intuitively correct: the attacker believes that he

has a 98% chance of being authenticated, whereas 1% of the time he will fail to

25

Table 2.1: Beliefs about pH

pH bH b′H1 b′H2

A 0.98 1 0
B 0.01 0 0.5
C 0.01 0 0.5

Table 2.2: Distributions on PWC output

p g a δ′A δ′A|o1 δ′A|o2

A A 0 0 0 0
A A 1 0.98 1 0
B A 0 0.01 0 0.5
B A 1 0 0 0
C A 0 0.01 0 0.5
C A 1 0 0 0
. . . 0 0 0

be authenticated because the password isB, and another 1% because it isC. The

attacker conditions prediction δ′A on observation o1, obtaining δ′A|o1, also shown

in table 2.2. Projecting to high yields the attacker’s postbelief, b′H1, shown in

table 2.1. This postbelief is what the informal reasoning in §1.2 suggested: the

attacker is certain that the password is A.

The second experiment in §1.2 can also be formalized. In it, bH and σL re-

main the same as before, but σH becomes (p 7→ C). Observation o2 is therefore

the point mass at (g 7→ A, a 7→ 0). Prediction δ′A remains unchanged, and con-

ditioned on o2 it becomes δ′A|o2, shown in table 2.2. Projecting to high yields

postbelief b′H2 from table 2.1. This postbelief again agrees with the informal rea-

soning: the attacker believes that there is a 50% chance each for the password to

be B or C.

26

2.2.3 Bayesian Belief Revision

The formula the attacker uses to infer a postbelief is an application of Bayesian

inference, which is a standard technique used in applied statistics for making

inferences when uncertainty is made explicit through probability models [45].

The attacker therefore reasons rationally, according to Halpern’s rationality ax-

ioms [52], though the literature on human behavior shows that this is not always

the same as human reasoning [60, 64].

Let belief revision operator B yield the postbelief from an experiment E =

〈S, bH , σH , σL〉, given observation o:

B(E , o) , ([[S]](σ̇L ⊗ bH)|o)�H.

We write b′H ∈ B(E) to denote that there exists some o for which b′H = B(E , o).

Recall Bayes’ rule for updating a hypothesis Hyp with an observation obs :

Pr (Hyp|obs) =
Pr (Hyp) Pr (obs|Hyp)

(
∑

Hyp ′ : Pr (Hyp ′) Pr (obs|Hyp ′))
.

In our model, the attacker’s hypothesis is about the values of high states, so

the domain of hypotheses is State �H . Therefore Pr (Hyp), the probability the

attacker ascribes to a particular hypothesis, is modeled by bH(σH). The prob-

ability Pr (obs|Hyp) the attacker ascribes to an observation given the assumed

truth of a hypothesis is modeled by the program semantics: the probability of

observation o given an assumed high input σH is ([[S]](σ̇L ⊗ σ̇H)�L)(o).

Given experiment E = 〈S, bH , σH , σL〉, instantiating Bayes’ rule on these

probabilities yields Bayesian inference BI (E , o), which is Pr (σH |o):

BI (E , o) =
bH(σH) · ([[S]](σ̇L ⊗ σ̇H)�L)(o)

(
∑

σ′H : bH(σ′H) · ([[S]](σ̇L ⊗ σ̇′H)�L)(o))
.

With this instantiation, we can show that the experiment protocol leads an at-

tacker to update his belief according to Bayesian inference:

27

Theorem 2.1. B(E , o)(σH) = BI (E , o).

Proof. In appendix 2.A.

2.2.4 Mutable High Inputs and Nontermination

Two simplifying assumptions about programs were invoked by §2.2.1: pro-

grams never modify high input, and they always terminate. We now dispense

with these technical issues.

Mutable high inputs. If program S were to modify the high state, the at-

tacker’s prediction δ′A would correlate high outputs with low outputs. How-

ever, to calculate a postbelief (in step 5), δ′A must correlate high inputs with low

outputs. So our experiment protocol requires the high input state be preserved

in δ′A.

Informally, we can do this by keeping a copy of the initial high inputs in the

program state. This copy is never modified by the program. Thus, the copy is

preserved in the final output state, and the attacker can again establish a corre-

lation between high inputs and low outputs.

Formally, let the notation b0H mean the same distribution as bH , except that

each state of its domain has a 0 as a superscript. So, if bH ascribes probability

p to state σ, then b0H ascribes probability p to the state σ0. We assume that S

cannot modify states with a superscript 0. In the case that states map variables to

values, this could be achieved by defining σ0 to be the same state as σ, but with

the superscript 0 attached to variables; for example, if σ(v) = 1 then σ0(v0) = 1.

Note that S cannot modify σ0 if did not originally contain any variables with

superscripts.

28

Using this notation, the belief revision operator is extended to B!, which al-

lows S to modify the high state in experiment E = 〈S, bH , σH , σL〉:

B!(E , o) , (([[S]](σ̇L ⊗ bH ⊗ b0H)|o))�H0.

In this definition, the high input state is preserved by introducing the product

with b0H , and the attacker’s postbelief about the input is recovered by restricting

to H0, the high input state with the superscript 0.

Nontermination. To eliminate the second assumption, note that program S

must terminate for an attacker to obtain a low state as an observation when

executing S. If the attacker has an oracle that decides nontermination,3 then

nontermination can be modeled in the standard denotational style with a state

⊥ representing divergence, as follows.

Let State⊥ , State ∪ {⊥}, and ⊥�L , ⊥. Nontermination is now allowed as

an observation, leading to an extended belief revision operator B!⊥:

B!⊥(E , o) , (out⊥(S, σ̇L ⊗ bH ⊗ b0H)|o)�H0.

3An attacker that cannot detect nontermination is more difficult to model. At some point
during the execution of the program, he can stop waiting for the program to terminate and
declare that he has observed nontermination. However, he might be incorrect in doing so—
leading to beliefs about nontermination and instruction timings. The interaction of these beliefs
with beliefs about high inputs would be complex; we do not address it here.

29

Observation o is now produced from output distribution δ′ = out⊥(S, σ̇L ⊗ σ̇H).

Function out⊥(S, δ) produces a distribution which yields the frequency that S

terminates, or fails to terminate, on input distribution δ:

out⊥(S, δ) , λσ : State⊥ . if σ = ⊥

then ‖δ‖ − ‖[[S]]δ‖

else ([[S]]δ)(σ).

If S does not terminate on some input states in δ, output distribution [[S]]δ will

contain less mass than δ; otherwise, ‖δ‖ = ‖[[S]]δ‖. Missing mass corresponds to

nontermination [83, 101], so out⊥ maps the missing mass to ⊥.

2.3 Quantification of Information Flow

The informal analysis of PWC in §1.2 suggests that information flow corre-

sponds to an improvement in the accuracy of an attacker’s belief. We now for-

malize that analysis by using change in accuracy, as measured by belief distance

D, to quantify information flow.

2.3.1 Information Flow from an Outcome

Given an experiment E = 〈S, bH , σH , σL〉, an outcome is a postbelief b′H such that

b′H ∈ B(E), where B is the belief revision operator from §2.2.3. Recall from §2.1.4

that D(b _ b′) is the distance from belief b to belief b′. The accuracy of the

attacker’s prebelief bH in experiment E is D(bH _ σ̇H); the accuracy of outcome

b′H , the attacker’s postbelief, is D(b′H _ σ̇H).

30

We define the amount of information flow Q caused by outcome b′H of ex-

periment E as the difference of those two quantities:

Q(E , b′H) , D(bH _ σ̇H)−D(b′H _ σ̇H).

Thus quantity of flowQ is the improvement in the accuracy of the attacker’s be-

lief. This amount can positive or negative; we defer discussion of negative flow

to §2.3.3. Since D is instantiated with relative entropy, the unit of measurement

for Q is (information-theoretic) bits.

With an additional definition from information theory, a more consequential

characterization of Q is possible. Let Iδ(F) denote the information contained in

event F drawn from probability distribution δ:

Iδ(F) , − lg Prδ(F).

Information is sometimes called “surprise” because I quantifies how surprising

an event is; for example, when an event that has probability 1 occurs, no infor-

mation (0 bits) is conveyed because the occurrence is completely unsurprising.

For an attacker, the outcome of an experiment involves two unknowns:

the initial high state σH and the probabilistic choices made by the program.

Let δS = [[S]](σ̇L ⊗ σ̇H) � L be the system’s distribution on low outputs, and

δA = [[S]](σ̇L⊗ bH)�L be the attacker’s distribution on low outputs. IδA(o) quan-

tifies the information contained in o about both unknowns, but IδS (o) quanti-

fies only the probabilistic choices made by the program.4 For programs that

make no probabilistic choices, δA contains information about only the initial

high state, and δS is a point mass at some state σ such that σ �L = o. So amount

of information IδS (o) is 0. For probabilistic programs, IδS (o) is generally not

4The technique used in §2.2.4 for modeling nontermination ensures that δA and δS are prob-
ability distributions. Thus, IδA

and IδS
are well-defined.

31

equal to 0; subtracting it removes all the information contained in IδA(o) that is

solely about the results of probabilistic choices, leaving information only about

high inputs.

The following theorem states that Q quantifies the information about high

input σH contained in observation o:

Theorem 2.2. Q(E , b′H) = IδA(o)− IδS (o).

Proof. In appendix 2.A.

As an example, consider the experiments involving PWC in §2.2.2. The first

experiment E1 has the attacker correctly guess the password A, so

E1 = 〈PWC , bH , (p 7→ A), (g 7→ A, a 7→ 0)〉,

where table 2.1 defines bH (and the other beliefs used below). Only one outcome,

b′H1, is possible from this experiment. We calculate the amount of flow from this

outcome, letting σH = (p 7→ A):

Q(E1, b′H1) = D(bH _ σ̇H)−D(b′H1 _ σ̇H)

= (
∑

σ′H : σ̇H(σ′H) · lg σ̇H(σ′H)

bH(σ′H)
) − (

∑
σ′H : σ̇H(σ′H) · lg σ̇H(σ′H)

b′H1(σ′H)
)

= − lg bH(σH) + lg b′H1(σH)

= 0.0291

This small flow makes sense because the outcome has only confirmed some-

thing the attacker already believed to be almost certainly true. In experiment E2

the attacker guesses incorrectly:

E2 = 〈PWC , bH , (p 7→ C), (g 7→ A, a 7→ 0)〉.

Again, only one outcome is possible from this experiment, and calculating

Q(E2, b′H2) yields an information flow of 5.6439 bits. This higher information

32

flow makes sense, because the attacker’s postbelief is much closer to correctly

identifying the high state. The attacker’s prebelief bH ascribed a 0.02 probability

to the event p 6= A, and the information conveyed by an event with probability

0.02 is 5.6439. This suggests that Q is the right metric for the information about

high input contained in the observation.

The information flow of 5.6439 bits in experiment E2 might seem surprisingly

high. At most two bits are required to store password p in memory, so why

does the program leak more than five bits? Here, the greater leakage occurs

because the attacker’s belief is not uniform. A uniform prebelief (ascribing 1/3

probability to each password A, B, and C) would, in a series of experiments,

cause the attacker to learn a total of lg 3 ≈ 1.6 bits. However, belief bH is more

erroneous than the uniform belief, so a larger amount of information is required

to correct it.

An uncertainty-based definition for information flow does not produce a

reasonable leakage for this experiment. The attacker’s initial uncertainty about

p is H(bH) = 0.1614 bits, where H is the information-theoretic metric of entropy,

or uncertainty, in a probability distribution δ:

H(δ) , −(
∑

σ : δ(σ) · lg δ(σ)).

In the second experiment, the attacker’s final uncertainty about p isH(bH2) = 1.

The reduction in uncertainty is 0.1614 − 1 = −0.8386, hence there is actually

an increase in uncertainty. So the uncertainty-based analysis that we have per-

formed is forced to conclude that information did not flow to the attacker. But

this is clearly not the case—the attacker’s belief has been guided closer to reality

by the experiment. The uncertainty-based analysis ignores reality by comparing

bH and bH2 against themselves, instead of against the high state σH .

33

2.3.2 Interpreting Metric Q

According to theorem 2.2, metric Q correctly quantifies the amount of informa-

tion flow, in bits. But what does it mean to leak one bit of information? The

next theorem states that k bits of leakage correspond to a k-fold doubling of the

probability that the attacker ascribes to reality.

Theorem 2.3. Let E = 〈S, bH , σH , σL〉. Then:

Q(E , b′H) = k ≡ b′H(σH) = 2k · bH(σH).

Proof. In appendix 2.A.

Suppose an attacker were to guess what reality is by sampling from his belief

bH ; the probability he guesses correctly is bH(σH). Thus, by theorem 2.3, one bit

of leakage makes the attacker twice as likely to guess correctly. This reveals

an interesting analogy with the uncertainty-based definition. In it, one bit of

leakage corresponds to the attacker becoming twice as certain about the high

state, though he may, as the example in §2.3.1 shows, become certain about the

wrong high state. However, one bit of leakage in our accuracy-based definition

corresponds to the attacker becoming twice as certain about the correct high

state.

2.3.3 Accuracy, Uncertainty, and Misinformation

Accuracy and uncertainty are orthogonal properties of beliefs, as depicted in

figure 2.3. The figure shows the change in an attacker’s accuracy and uncer-

tainty when the program

FLIP : l := h 0.998 l := ¬h

34

bH = 〈0.5, 0.5〉
o = (l 7→ 1)

bH = 〈0.5, 0.5〉
o = (l 7→ 0)

bH = 〈0.99, 0.01〉
o = (l 7→ 1)

bH = 〈0.01, 0.99〉
o = (l 7→ 0)

-�

6

?

Less accurate More accurate

More certain

Less certain

III

III IV

Figure 2.3: Effect of FLIP on postbelief

Table 2.3: Analysis of FLIP

Quadrant
I II III IV

bH(h 7→ 0) 0.5 0.5 0.99 0.01
bH(h 7→ 1) 0.5 0.5 0.01 0.99
o (l 7→ 0) (l 7→ 1) (l 7→ 1) (l 7→ 0)
b′H(h 7→ 0) 0.99 0.01 0.5 0.5
b′H(h 7→ 1) 0.01 0.99 0.5 0.5
Increase in accuracy +0.9855 −5.6439 −0.9855 +5.6439
Reduction in uncertainty +0.9192 +0.9192 −0.9192 −0.9192

is analyzed with experiment E = 〈FLIP , bH , (h 7→ 0), (l 7→ 0)〉 and observation

o is generated by the experiment. The notation bH = 〈x, y〉 in figure 2.3 means

that bH(h 7→ 0) = x and bH(h 7→ 1) = y.

Usually, FLIP sets l to be h, so the attacker will expect this to be the case.

Executions in which this occurs will cause his postbelief to be more accurate,

but may cause his uncertainty to either increase or decrease, depending on his

prebelief; when uncertainty increases, an uncertainty metric would mistakenly

say that no flow has occurred.

With probability 0.01, FLIP produces an execution that fools the attacker

and sets l to be ¬h, causing his belief to become less accurate. The decrease in

35

accuracy results in misinformation, which is a negative information flow. When

the attacker’s prebelief is almost completely accurate, such executions will make

him more uncertain. But when the attacker’s prebelief is uniform, executions

that result in misinformation will make him less uncertain; when uncertainty

decreases, an uncertainty metric would mistakenly say that flow has occurred.

Table 2.3 concretely demonstrates the orthogonality of accuracy and uncer-

tainty. The quadrant labels refer to figure 2.3. The attacker’s prebelief bH , ob-

servation o, and resulting postbelief b′H are given in the top half of the table. In

the bottom half of the table, increase in accuracy is calculated using information

flow metricQ, and reduction in uncertainty is calculated using the difference in

entropy H(bH) − H(b′H). The symmetries in the bottom half of the table are a

result of the symmetries between prebeliefs and postbeliefs. Quadrants II and

IV, for example, have exchanged these beliefs, which for both metrics has the

effect of negating the amount of information flow.

The probabilistic choice in FLIP is essential for producing misinformation,

as shown by the following theorem. Let Det be the set of syntactically deter-

ministic programs, i.e., programs that do not contain any probabilistic choice.

Because they lack a source of randomness, these programs cannot decrease the

accuracy of an attacker’s belief:

Theorem 2.4. S ∈ Det =⇒ ∀E , b′H ∈ B(E) .Q(E , b′H) ≥ 0.

Proof. In appendix 2.A.

2.3.4 Emulating Uncertainty

The accuracy metric of §2.3.1 generalizes uncertainty metrics. Informally, this is

because uncertainty metrics recognize only two distributions (belief before and

36

after execution), whereas our framework recognizes these plus one additional

distribution (reality). By ignoring reality, our framework can produce the same

results as many uncertainty metrics. Here we show how to emulate the metric

of Clark et al. [25].

Let A, B, and C be random variables. The conditional mutual information

I(A,B|C) is the amount of uncertainty about the value of A that is resolved

by learning the value of B, given prior knowledge of the value of C [32]. Con-

ditional mutual information is defined using a generalization of the entropy

function from §2.3.1 to conditional entropy [32]:

I(A,B|C) , H(A|C)−H(A|B,C)

=
∑
a

∑
b

∑
c

Pr (a, b, c) lg
Pr (a, b|c)

Pr (a|c) · Pr (b|c)
.

In this definition, a abbreviates A = a, etc. The probability is taken with respect

to the joint distribution on A, B, and C.

The metric of Clark et al. states that the amount of information flow L from

high input Hin into low output Lout , given low input Lin ,5 is the mutual infor-

mation between Hin and Lout , given Lin :

L(Hin , Lin , Lout) , I(Hin , Lout |Lin).

First, to instantiate our framework to that of Clark et al., we force our frame-

work to ignore reality by introducing an admissibility restriction (c.f. §2.1.4):

prebeliefs must be identical to the system’s chosen high input distribution. This

means that prebeliefs must be correct; there can be no error in the attacker’s

estimate of the probability distribution on high inputs.

Second, we adjust the definition of belief. The uncertainty model of Clark et

al. calculates information flow as an expectation over a probability distribution
5Their metric more generally allows the quantification of information flow into any subset

of the output variables. The approach we give here can similarly be generalized.

37

on both low and high inputs. We could model this using the techniques about

to be introduced in §2.3.5 and §2.3.6, but because of the admissibility restriction

just made, it is equivalent and simpler to allow beliefs to range over low state

as well as high state. As before, we assume that high state remains constant

using the copying technique of §2.2.4. Since beliefs now include low state, we

must also apply this technique to assure that the initial values of low variables

are preserved in the state. Let the low input component of the state be denoted

L0. Assume that the attacker’s prebelief b ranges over L0 ∪ H0, whereas his

postbelief b′ ranges over L0 ∪H0 ∪ L ∪H .

We want to establish that accuracy metric Q yields the same result as uncer-

tainty metric L for any outcome. Recall that Q is defined in terms of distance

function D. Our previous instantiation of D as relative entropy yielded an ac-

curacy metric. Now we reinstantiate D using (non-relative) entropy:

D(b_ b′) = H(b�(L ∪ L0 ∪H0))−H(b�(L ∪ L0)).

Observe that this instantiation ignores argument b′, the belief representing real-

ity. Let Hin = σ̇H , Lin = σ̇L, and Lout = δ′ �L, where δ′ is the output distribution

from the experiment protocol. This yields that amount of information flow Q is

the same as uncertainty metric L:

Theorem 2.5. Q(E , b′) = L(Hin , Lin , Lout).

Proof. In appendix 2.A.

We discuss another relationship between accuracy and uncertainty in §2.3.6.

38

2.3.5 Expected Flow for an Experiment

Since an experiment on a probabilistic program can produce many observations,

and therefore many outcomes, it is desirable to characterize expected flow over

those outcomes. So we define expected flow QE over all observations from ex-

periment E :

QE(E) , Eo∈δ′�L[Q(E ,B(E , o))]

= (
∑

o : (δ′ �L)(o) · Q(E , ([[S]](σ̇L ⊗ bH)|o)�H))

where δ′ � L = [[S]](σ̇L ⊗ σ̇H) � L is the distribution on observations; Eσ∈δ[X(y)]

is the expected value of expression X , which has free variable y, with respect to

distribution δ; and B is the belief revision operator from §2.2.3.

Expected flow is useful in analyzing probabilistic programs. Consider a

faulty password checker:

FPWC : if p = g then a := 1 else a := 0;

a := ¬a 0.18 skip

With probability 0.1, FPWC inverts the authentication flag. Can this program

be expected to confound attackers—does FPWC leak less expected information

than PWC ? This question can be answered by comparing the expected flow

from FPWC to the flow of PWC . Table 2.4 gives information flows from FPWC

for experiments EF1 and EF2 , which are identical to E1 and E2 from §2.3.1, except

that they execute FPWC instead of PWC . Observations (a 7→ 0) and (a 7→ 1)

correspond to an execution where the value of a is inverted. The flow for the

outcomes resulting from these observations is negative, indicating that the pro-

gram is giving the attacker misinformation. Note that, for both pairs of experi-

ments in table 2.4, the expected flow of FPWC is less than the flow of PWC . We

have confirmed that the random corruption of a makes it more difficult for the

attacker to increase the accuracy of his belief.

39

Table 2.4: Leakage of PWC and FPWC

E o Q(E ,B(E , o)) QE(E)
E1 (a 7→ 1) 0.0291 0.0291

(a 7→ 0) impossible
EF1 (a 7→ 1) 0.0258 0.0018

(a 7→ 0) −0.2142
E2 (a 7→ 1) impossible 5.6439

(a 7→ 0) 5.6439
EF2 (a 7→ 1) −3.1844 2.3421

(a 7→ 0) 2.9561

Expected flow can be conservatively approximated by conditioning on a sin-

gle distribution rather than conditioning on many observations. Conditioning

δ on δL has the effect of making the low projection of δ identical to δL, while

leaving the high projection of δ|σL unchanged for all σL:

δ|δL , λσ .
δ(σ)

(δ �L)(σ �L)
· δL(σ �L).

A bound on expected flow is then calculated as follows. Given experiment

E = 〈S, bH , σH , σL〉, let δ′ be the distribution that results from the system ex-

ecuting S as in step 4 of the experiment protocol, i.e., δ′ = [[S]](σ̇L ⊗ σ̇H). In

the experiment protocol, an attacker would observe the low projection of a

state from δ′. But suppose that the attacker instead observed the low projec-

tion of δ′ itself. (This projection is the distribution over observations that the

attacker would approach if he continued to repeat E .) Let eH be the postbelief

that results from conditioning on this distribution, as in step 5 of the protocol:

eH = (([[S]](σ̇L ⊗ bH))|(δ′ � L)) � H . Intuitively, eH is the attacker’s expected

postbelief with respect to δ′ �L. The amount of information flow from expected

postbelief eH then bounds the expected amount of information flow:

40

Theorem 2.6. Let:

E = 〈S, bH , σH , σL〉,

δ′ = [[S]](σ̇L ⊗ σ̇H),

eH = (([[S]](σ̇L ⊗ bH))|(δ′ �L))�H.

Then:

QE(E) ≤ Q(E , eH).

Proof. In appendix 2.A.

As an example, consider experiment EF2 . Calculating the attacker’s expected

postbelief eH in this experiment yields eH = 〈0.8601, 0.0699, 0.0699〉, using the

postbelief notation from §2.3.3. Bound Q(E , eH) from theorem 2.6 is thus 6.4264

bits, which is indeed greater than expected flow QE as calculated in table 2.4.

2.3.6 Expected Flow over All Experiments

Uncertainty-based metrics typically consider the expected information flow

over all experiments, rather than the flow in a single experiment. An analy-

sis, like ours, based on single experiments allows a more expressive language

of security properties in which particular inputs or experiments can be consid-

ered. Moreover, our analysis can be extended to calculate expected flow over all

experiments.

Rather than choosing particular high input states σH , the system may choose

distribution δH over high states. A distribution over high inputs could be used,

for example, to determine the expected flow of the password checker when

users’ choice of passwords can be described by a distribution. Distribution δH

is sampled to produce the initial high input state. Taking the expectation in QE

41

with respect to both σH and o then yields the expected flow over all experiments

for a given low input σL.

The expected flow over all experiments can be characterized using condi-

tional mutual information (c.f. §2.3.4). Let Hin denote the distribution over high

inputs, Lin over low inputs, and Lout over low outputs. For an experiment

E = 〈S, bH , δH , σL〉, distribution Hin is δH , distribution Lin is σ̇L, and distribution

Lout is δ′ �L, where δ′ is the output distribution from the experiment protocol. If

system distribution δH is identical to attacker prebelief bH (i.e., there is no error

in the attacker’s estimate of the probability distribution on high inputs), the ex-

pected flow over all experiments for a given low input is equal to the conditional

mutual information between Hin and Lout given Lin :

Theorem 2.7. Let E = 〈S, bH , δH , σL〉, where bH = δH . Then:

QE(E) = I(Hin , Lout |Lin).

Proof. In appendix 2.A.

This theorem means that our metric for expected information flow agrees

with uncertainty metrics (such as Clark et al. [24]) if attackers have beliefs that

do not differ from reality—that is, if the attacker’s belief is equal to the system’s

distribution on high inputs. This requirement is unsurprising, because uncer-

tainty metrics do not distinguish between beliefs and reality.

The attacker may also choose distribution δL over low states. This extension

increases the expressive power of the experiment model—for example, the at-

tacker can use δL to express a randomized guessing strategy. His distribution

might also be a function of his belief; we do not address such attacker strategies

here.

42

2.3.7 Maximum Information Flow

System designers are likely to want to limit the maximum possible information

flow. We characterize the maximum amount of information flow that program

S can cause in a single outcome as the maximum amount of flow from any

outcome of any experiment E = 〈S, bH , σH , σL〉 on S:

Qmax(S) , max{Q(E , b′H) | E , b′H ∈ B(E)}.

Consider applying Qmax to PWC . Assume that bH is a uniform distribution,

representing a lack of belief for any particular password, over k-bit passwords.

If the attacker guesses correctly, the maximum leakage is k bits according to

Qmax. But if the attacker guesses incorrectly, PWC can leak at most k− lg(2k−1)

bits in an outcome; for k > 12 this is less than 0.0001 bits.

Uncertainty metrics typically declare that the maximum possible informa-

tion flow is lg |StateH |; this is the number of bits necessary to store the high

state. This was true for the example of k-bit passwords above. However, as

experiment E2 from §2.3.1 shows, this declaration is valid only if the attacker’s

prebelief is no more inaccurate than the uniform distribution. Thus uncertainty

metrics make an implicit restriction on attacker beliefs that our accuracy metric

does not.

2.3.8 Repeated Experiments

Nothing precludes performing a series of experiments. The most interesting

case has the attacker return to step 2b of the experiment protocol in figure 2.2

after updating his belief in step 5—that is, the system keeps the high input to the

program constant, and the attacker is allowed to check new low inputs based

on the results of previous experiments.

43

Table 2.5: Repeated experiments on PWC

Repetition
1 2

bH : A 0.98 0
B 0.01 0.5
C 0.01 0.5

σL(g) A B
o(a) 0 0
b′H : A 0 0

B 0.5 0
C 0.5 1

Q(E , b′H) 5.6439 1.0

Suppose that experiment E2 from §2.3.1 is conducted and repeated with

σL = (g 7→ B). Then the attacker’s belief about the password evolves as shown

in table 2.5. Summing the information flow for each experiment yields a total

information flow of 6.6439. This total corresponds to what Q would calculate

for a single experiment, if that experiment changed prebelief bH to postbelief

b′H2, where b′H2 is the attacker’s final postbelief in table 2.5:

D(bH _ σ̇H)−D(b′H2 _ σ̇H) = 6.6439− 0

= 6.6439

This example suggests that, given a series of experiments in which the post-

belief from one experiment becomes the prebelief to the next, the final postbelief

contains all the information learned during the series. Let Ei = 〈S, bHi
, σH , σLi

〉

be the ith experiment in the series, and let b′Hi
be the outcome from Ei. Let pre-

belief bHi
in experiment Ei be chosen as postbelief b′Hi−1

from experiment Ei−1.

Let bH1 be the attacker’s prebelief for the entire series. Let n be the length of the

series. The following theorem states that the final postbelief does contain all the

information:

44

Theorem 2.8. D(bH1 _ σ̇H)−D(b′Hn
_ σ̇H) = (

∑
i : 1 ≤ i ≤ n : Q(Ei, b′Hi

)).

Proof. Immediate by the definition of Q and arithmetic.

Consequently, our experiment model enables compositional reasoning about

series of attacks.

2.3.9 Number of Experiments

Attackers conduct experiments to refine their beliefs. This suggests another

quantification of the security of a program: the number of experiments required

for an attacker to refine his belief to within some distance of reality. For sim-

plicity, assume that program S is deterministic,6 such that only one observation

is possible from an experiment. Then belief revision B (from §2.2.3) can be used

as a function from experiments to postbeliefs. Let A : Belief → StateL be the

attacker’s strategy for choosing low inputs based on his beliefs. Define the ith

iteration of B as Bi:

Bi(S, bH , σH ,A) , B(S, b′H , σH ,A(b′H)),

where b′H = Bi−1(S, bH , σH ,A);

B1(S, bH , σH ,A) , B(S, bH , σH ,A(bH)).

Then the number of experiments N needed to achieve a postbelief within dis-

tance ε of reality is:

N (S, bH , σH ,A) , min{i | D(Bi(S, bH , σH ,A) _ σH) ≤ ε}.

As discussed in §2.3.2, when an attacker’s belief is k bits distant from re-

ality, the probability he ascribes to the correct high state is 1/2k. If the attacker

6If program S is probabilistic, B(E) could instead be defined as a random variable giving the
probability with which the attacker holds a postbelief. This would allow the definition of the
expected number of experiments to achieve a distance from reality.

45

[[skip]]σ = σ̇
[[v := E]]σ = σ̇[v 7→ E]
[[S1;S2]]σ = [[S2]]

∗([[S1]]σ)
[[if B then S1 else S2]]σ = if [[B]]σ then [[S1]]σ else [[S2]]σ

[[while B do S]] = fix(λd : State→ Dist .
λσ . if [[B]]σ then d∗([[S]]σ) else σ̇)

[[S1 p8 S2]]σ = p · [[S1]]σ + (1− p) · [[S2]]σ

Figure 2.4: State semantics of programs

were to guess a high state by sampling from his belief, he would therefore guess

correctly with probability 1/2ε after N experiments.

Sometimes an attacker needs only to reach a belief that is close to reality. For

example, if the high state is a Cartesian coordinate, the attacker might need only

to bound the coordinate within some Cartesian distance. Let ball(σH) be all the

high states within distance γ of σH according to a distance metric M on StateH :

ball(σH) , {σ′H |M(σ′H _ σH) ≤ γ}.

Then the number of experiments needed to achieve some distance ε from some

ball γ around reality is:

N (S, bH , σH ,A) , min{i | σ′H ∈ ball(σH) ∧ D(Bi(S, bH , σH ,A) _ σ′H) ≤ ε}.

2.4 Language Semantics

The last technical piece we require is a semantics [[S]] in which programs de-

note functions that map distributions to distributions. Here we build such a

semantics in two stages. First, we build a simpler semantics that maps states to

distributions. Second, we lift that semantics so that it operates on distributions.

Our first task then is to define the semantics [[S]] : State→ Dist. That seman-

tics is given in figure 2.4. We assume a semantics [[E]] : State → Val that gives

46

meaning to expressions, and a semantics [[B]] : State→ Bool that gives meaning

to Boolean expressions.

The statements skip and if have essentially the same denotations as in the

standard deterministic case. State update σ[v 7→ V], where V ∈ Val, changes

the value of v to V in σ. The distribution update δ[v 7→ E] in the denotation of

assignment represents the result of substituting the meaning of E for v in all the

states of δ:

δ[v 7→ E] , λσ . ((
∑

σ′ : σ′[v 7→ [[E]]σ′] = σ : δ(σ′))).

The semantics of while and sequential composition S1;S2 use lifting operator ∗,

which lifts function d : State → Dist to function d∗ : Dist → Dist, as suggested

by §2.1.2:

d∗ , λδ . (
∑

σ : δ(σ) · d(σ))

= λδ . λσ . (
∑

σ′ : δ(σ′) · d(σ′)(σ)),

where the equality follows from η-reduction, and · and + are used as pointwise

operators:

p · δ , λσ . p · δ(σ),

δ1 + δ2 , λσ . δ1(σ) + δ2(σ).

Lifted d∗ is thus the expected value (which is a distribution) of d with respect to

distribution δ.

To ensure that the fixed point for while exists, we must verify that Dist is

a complete partial order with a bottom element and that [[·]] is continuous. We

omit the proof here, as it is a consequence of a theorem proved by Kozen [66].

But we note that a key step is to strengthen the definition of Dist from §2.1.1 to

be {δ | δ ∈ State → [0, 1] ∧ ‖δ‖ ≤ 1}. This makes distributions correspond

to subprobability measures, and it is easy to check that the semantics produces

subprobability measures as output. The bottom element is then λσ . 0, and the

47

ordering relation on distributions is pointwise. Note that the definition of Belief

from §2.1.4 remains unchanged, since it did not depend on Dist. Thus beliefs

still correspond to probability measures. Anywhere that the result of the pro-

gram semantics must be upgraded to a belief (i.e., from a subprobability to a

probability), we rely on the technique of §2.2.4 to handle nontermination. The

most important occurrence of this is in step 5 of the experiment protocol in fig-

ure 2.2.

The final program construct is probabilistic choice, S1 p 8 S2, where 0 ≤

p ≤ 1. The semantics multiplies the probability of choosing a side Si with the

frequency that Si produces a particular output state σ′. Since the same state

σ′ might actually be produced by both sides of the choice, the frequency of its

occurrence is the sum of the frequency from either side: p · ([[S1]]σ)(σ′) + (1− p) ·

([[S2]]σ)(σ′), which can be simplified to the formula in figure 2.4.

To lift the semantics in figure 2.4 and define [[S]] : Dist → Dist, we again

employ lifting operator ∗:

[[S]]δ , [[S]]∗δ

= λσ . (
∑

σ′ : δ(σ′) · ([[S]]σ′)(σ)).

Interpreting this definition, note there are many states σ′ in which S could begin

execution, and all of them could potentially terminate in state σ. So to compute

([[S]]δ)(σ), we take a weighted average over all input states σ′. The weights are

δ(σ′), which describes how likely σ′ is to be used as the input state. With σ′ as

input, S terminates in state σ with frequency ([[S]]σ′)(σ).

Applying this definition to the semantics in figure 2.4 yields [[S]]δ, shown

in figure 2.5. This lifted semantics corresponds directly to a semantics given

by Kozen [66], which interprets programs as continuous linear operators on

probability measures. Our semantics uses an extension of the distribution con-

48

[[skip]]δ = δ
[[v := E]]δ = δ[v 7→ E]
[[S1;S2]]δ = [[S2]]([[S1]]δ)

[[if B then S1 else S2]]δ = [[S1]](δ |B) + [[S2]](δ | ¬B)
[[while B do S]] = fix(λd : Dist→ Dist . λδ . d([[S]](δ |B)) + (δ | ¬B))

[[S1 p8 S2]]δ = [[S1]]p · δ + [[S2]](1− p) · δ

Figure 2.5: Distribution semantics of programs

ditioning operator | to Boolean expressions. Whereas distribution conditioning

produces a normalized distribution, Boolean expression conditioning produces

an unnormalized distribution:

δ|B , λσ . if [[B]]σ then δ(σ) else 0.

By producing unnormalized distributions as part of the meaning of if and while

statements, we track the frequency with which each branch of the statement is

chosen.

2.5 Insider Choice

The experiment protocol in §2.2 involved two agents, the attacker and the sys-

tem. Consider a third agent called the insider, whose goal is to help the attacker

learn secret information. The insider and attacker might initially communicate

to establish a strategy to achieve this goal. Once execution begins, the insider

cannot directly communicate with the attacker, but the insider can observe the

entire program state and can influence execution.

The insider’s ability to influence execution is modeled by a new program-

ming language construct, insider choice, denoted S1 8 S2:

S ::= . . . | S1 8 S2

49

The insider, rather than the system, is the entity who executes this kind of

choice. The insider chooses either S1 or S2 and execution continues with the

chosen program.

As an example of insider choice, consider program L1 :

L1 : h := h mod 2;

l := 0 8 l := 1

The second line of L1 allows the insider to choose between two values for vari-

able l. Since the insider is allowed to observe the high component of the state,

he can observe the parity of h and choose to set l equal to it, thus leaking the

parity of h.

The insider in this example made a deterministic choice. More generally,

insiders may also make probabilistic choices. For example, an insider could flip

a fair coin then choose the left side on heads or the right side on tails. This

can be seen as an extension of probabilistic choice, in which the probability is

a function of the program state rather than just a constant. Thus insider choice

can model the behavior of probabilistic programs that are not influenced by an

insider.

2.5.1 Insider Functions

Formally, an insider is a function I ∈ Insider, where

Insider , State→ [0..1].

I(σ) is the probability with which the left-hand side of the insider choice is

taken. For example, insider function IL1 leaks the value of h in program L1

with probability 0.99:

IL1 (σ) = if σ(h) = 0 then 0.99 else 0.01

50

In a program with multiple syntactic occurrences of insider choice, a single in-

sider function can encode different probabilities for each occurrence if the pro-

gram state encodes the program counter.

Moreover, if the program state is sufficiently rich, insider functions can

model a range of insider capabilities. For example, suppose the operational

semantics guarantees that for every variable x, the previous value of x (i.e., the

value that was assigned to it before its current value was assigned) is preserved

in variable x̀. Then insider functions can make decisions based on past state by

reading those previous values.7 In the following program, the insider leaks the

initial parity of h:

LP : h := h mod 2;

h := 0;

l := 0 8 l := 1

The insider function that accomplishes this is

ILP(σ) = if σ(h̀) = 0 then 1 else 0.

Note that without access to variable h̀, the insider is unable to leak the initial

parity of h because this information is removed from the state when h is as-

signed the value 0.

Insiders with limited computational resources can be modeled by further

restricting Insider. For example, suppose that insiders are allowed only poly-

nomial time to make a choice. Then insider functions could be replaced by

polynomially time-bounded Turing machines, where the input to the machine

is the input σ to the insider function, and the output of the machine is used as

the output of the insider function.

7This mechanism is similar to history variables [1]. Likewise, insiders who can predict the
future values of variables could be modeled by a mechanism similar to prophecy variables [1].

51

[[skip]]Iσ = σ̇
[[v := E]]Iσ = σ̇[v 7→ E]
[[S1;S2]]Iσ = ([[S2]]I)

∗([[S1]]Iσ)
[[if B then S1 else S2]]Iσ = if [[B]]σ then [[S1]]Iσ else [[S2]]Iσ

[[while B do S]]I = fix(λd : State→ Dist .
λσ . if [[B]]σ then d∗([[S]]Iσ) else σ̇)

[[S1 p8 S2]]Iσ = p · [[S1]]Iσ + (1− p) · [[S2]]Iσ
[[S1 8 S2]]Iσ = I(σ) · [[S1]]Iσ + (1− I(σ)) · [[S2]]Iσ

Figure 2.6: State semantics of programs with insider

[[skip]]Iδ = δ
[[v := E]]Iδ = δ[v 7→ E]
[[S1;S2]]Iδ = [[S2]]I([[S1]]Iδ)

[[if B then S1 else S2]]Iδ = [[S1]]I(δ |B) + [[S2]]I(δ | ¬B)
[[while B do S]]I = fix(λd : Dist→ Dist .

λδ . d([[S]]I(δ |B)) + (δ | ¬B))
[[S1 p8 S2]]Iδ = [[S1]]I p · δ + [[S2]]I(1− p) · δ
[[S1 8 S2]]Iδ = [[S1]]II(δ) + [[S2]]II(δ)

Figure 2.7: Distribution semantics of programs with insider

2.5.2 Semantics and Experiments

Formal semantics [[S]] : Insider → State → Dist is given in figure 2.6. The only

place in the semantics that the insider function is used is in the semantics of

S1 8 S2, and the semantics never modifies the insider function. Because of this

second-class nature of insider functions, and for improved readability, we use

a subscript notation for the insider function I in semantics [[S]]I . We can lift the

semantics to operate on distributions as shown in figure 2.7. The lifted insider

function is defined as follows:

I(δ) , λσ . I(σ) · δ(σ),

I(δ) , λσ . (1− I(σ)) · δ(σ).

The experiment protocol in §2.2.1 can be extended to include insiders, as

shown in figure 2.8. Note that the attacker uses insider function I when con-

52

An experiment E = 〈S, bH , σH , σL, I〉 is conducted as follows.

1. The attacker chooses a prebelief bH about the high state.

2. (a) The system picks a high state σH .

(b) The attacker picks a low state σL.

3. The attacker predicts the output distribution: δ′A = [[S]]I(σ̇L ⊗ bH).

4. The system and insider execute the program S, which produces a state
σ′ ∈ δ′ as output, where δ′ = [[S]]I(σ̇L ⊗ σ̇H). The attacker observes the low
projection of the output state: o = σ′ �L.

5. The attacker infers a postbelief: b′H = (δ′A|o)�H .

Figure 2.8: Experiment protocol with insider

ducting the thought-experiment. This function thus encodes choices that the

insider and attacker have agreed upon in advance.

2.5.3 Security Conditions

Observational determinism [85,102,130] is a security condition for nondeterminis-

tic systems that generalizes noninterference [46]. We can state a probabilistic

generalization of observational determinism that is applicable to our insider

model: a program S satisfies observational determinism exactly when S be-

haves as a function from a low input state to a low output distribution, for any

insider and high input. Let the set of programs satisfying observational deter-

minism be denoted ObsDet, which is defined as follows:

ObsDet , {S | ∀I . ∀σL . ∃δL . ∀σH . [[S]]I(σ̇L ⊗ σ̇H)�L = δL}.

Observational determinism is equivalent to zero information flow in the in-

sider model—that is, a program S satisfies observational determinism exactly

when all experiments over S leak exactly 0 bits of information:

53

Theorem 2.9. S ∈ ObsDet ≡ ∀E , b′H ∈ B(E) .Q(E , b′H) = 0.

Proof. In appendix 2.A.

Theorem 2.9 suggests that observational determinism is the absolute security

condition for nondeterministic systems. On the other hand, the theorem also

shows that observational determinism is too strong to be useful with programs

that require information flow, such as PWC .

Other nondeterministic security conditions, such as generalized noninterfer-

ence (GNI) [81], are already known to allow leakage of information [119]. Our

model of insider choice allows this leakage to be quantified: a program S sat-

isfies GNI when S behaves as a relation on a low input state and low output

distributions, for any insider and high input:

GNI , {S | ∀σL . ∃∆L . ∀σH .
⋃
I

([[S]]I(σ̇L ⊗ σ̇H)�L) = ∆L}.

Consider program LH , which can be shown to be in GNI:

LH : l := h 8 (l := 0 8 l := 1)

Using insider function ILH (σ) = 1, this program always leaks the value of h.

Unless the attacker already has a perfectly accurate belief about h, this is a pos-

itive (and non-zero) amount of leakage. So even though the program is secure

according to GNI, an insider can refine the program to be insecure. This weak-

ness is known as the refinement paradox [102]. Insiders therefore introduce a kind

of nondeterminism that is not secure under refinement.

54

2.6 Related Work

Quantification of information flow. The first published connection between

information theory and information flow is by Denning [35], who uses entropy

to calculate the leakage of a few assignment and conditional statements.

Backes, Köpf, and Rybalchenko [11] construct an automated static analysis

for computing the quantity of information flow in simple imperative programs.

Their analysis assumes a uniform distribution on high inputs, computes a high

equivalence relation on low observable outputs, then counts the number of high

inputs in each equivalence class. This count yields a probability distribution that

can be used to compute several entropy-based metrics of information flow.

Smith [108] argues that the function used to quantify uncertainty should de-

pend on the attack model. For some programs, the expectation taken as part of

the formula for mutual information masks the fact that certain executions leak

a large amount of information, thus making it easy for the attacker to guess the

remaining secret information. Our framework in part addresses this problem

by allowing quantification of information flow both for single experiments and

in expectation over all experiments.

McCamant and Ernst [80] implement an automated hybrid analysis for

quantification of information flow in Linux/x86 binaries. Their analysis com-

putes a conservative upper bound on the amount of information that can be

leaked by the particular execution the dynamic part of the analysis observes.

But the analysis cannot bound the quantity of flow for executions it does not

observe. The quantity measured by the analysis is an upper bound on channel

capacity, which is the maximum amount, over any probability distribution on

inputs, of mutual information between secret inputs and public outputs.

55

Köpf and Basin [65] quantify the resistance of a deterministic system against

sequences of attacks, where resistance is a function from the number of attacks

performed to the expected remaining uncertainty of the attacker. Their defini-

tions can quantify uncertainty with several variants of entropy. They give an

automated, heuristic analysis that approximates resistance.

Clark, Hunt, and Malacaria [24] develop a static analysis that bounds the

amount of information leaked by a while-program. Their metric for informa-

tion leakage is based on conditional entropy. The analysis comprises a dataflow

analysis, which computes a use-def graph, and syntax-directed inference rules,

which calculate leakage bounds. These authors also investigate other leakage

metrics, settling on conditional mutual information as an appropriate metric

for quantification of flow in probabilistic languages [23]; they do not consider

relative entropy. Mutual information is always at least 0, so unlike relative en-

tropy it cannot represent misinformation. As noted in §2.3.4, this uncertainty-

based definition requires a strong admissibility restriction: the attacker’s pre-

belief must be the same distribution from which the system generates the high

input. Malacaria [77] extends this line of work by classifying the rate of leak-

age of loops. His basic definition of amount of leakage is equivalent to [24], so

it is an instance of our own definition, as shown in §2.3.4. For the same rea-

son, Malacaria’s model is no more precise than our own model. Rate of leakage

could be defined in our own model, like the other statistics in §2.3.

Backes [10] quantifies information flow for reactive systems, which exe-

cute cryptographic protocols, as the maximum distance between the low user’s

views of a protocol run for any two high behaviors, where a view is a probabil-

ity distribution on the traces observed by the user. The distance metric is left

abstract, hence not instantiated by any information-theoretic definition.

56

Di Pierro, Hankin, and Wiklicky [38] relax noninterference to approximate

noninterference, where “approximate” denotes similarity of two processes in a

process algebra; similarity is quantified using the supremum norm of the differ-

ence between the probability distributions that the processes create on memory.

This quantity can be interpreted as a probability on an attacker’s ability to dis-

tinguish the two processes using a finite number of tests. This work also builds

an abstract interpretation that allows approximation of the confinement of a

process. Subsequent work [39] generalizes from process algebras to probabilis-

tic transition systems.

Lowe [76] defines the information flow quantity of a process with two users H

and L to be the number of behaviors of H that L can distinguish. When there

are n such distinguishable behaviors, H can use them to transmit lg n bits to L.

Weber [123] defines n-limited security, which allows declassification at a rate

that depends, in part, on the size n of a buffer shared by the high and low pro-

jections of a state.

Millen [88], using deterministic state machines, proves that a system satis-

fies noninterference exactly when the mutual information between certain in-

puts and outputs is zero. He also proposes mutual information as a metric for

information flow, but he does not show how to compute the amount of flow for

programs.

Database privacy. Evfimievski, Gehrke, and Srikant [42] quantify privacy

breaches in data mining. In their framework, randomized operators are applied

to confidential data before the data is released. A privacy breach occurs when

release of the randomized data causes a large change in an attacker’s proba-

bility distribution on a property of the confidential data. They use Bayesian

57

reasoning, based on observation of randomized data, to update the attacker’s

distribution. Their distributions are similar to our beliefs, but have the same

strong admissibility restriction as Clark et al. [24] (c.f. §2.3.4). They also show

that relative entropy can be used to bound the maximum privacy breach for a

randomized operator.

Anonymity protocols. Chatzikokolakis et al. [21] analyze the degree of

anonymity provided by anonymity protocols. They model protocols as chan-

nels, and they quantify the loss of anonymity introduced by a protocol as the

information-theoretic capacity of the channel.

Noninterference. The flow model (FM) is a security property proposed by

McLean [84] and later given a quantitative formalization by Gray [49], who

called it the Applied Flow Model. The FM stipulates that the probability of a

low output may depend on previous low outputs, but not on previous high

outputs. Gray formalizes this in the context of probabilistic state machines, and

he relates noninterference to the maximum rate of flow between high and low.

Browne [19] develops a novel application of the Turing test: a system passes

Browne’s Turing test exactly when for all finite lengths of time, the information

flow over that time is zero.

Volpano [118] gives a type system that can be used to establish the security

of password checking and one-way functions such as MD5 and SHA1. Nonin-

terference does not usually allow such functions to be typed, so this type system

is an improvement over previous type systems. However, the type system does

not allow a general analysis of quantitative information flow.

58

Volpano and Smith [120] give a type system that enforces relative secrecy,

which enforces that well-typed programs cannot leak confidential data in poly-

nomial time.

Nondeterminism. Wittbold and Johnson [127] introduce nondeducibility on

strategies, an extension of Sutherland’s nondeducibility [113]. Wittbold and John-

son observe that if a program is run multiple times and feedback between runs

is allowed, information can be leaked by coding schemes across multiple runs.

A system that is nondeducible on strategies has no noiseless communication

channels between high input and low output, even in the presence of feedback.

Our insider framework can quantify the leakage due to strategies that are en-

codable as insider functions.

Halpern and Tuttle [53] introduce a framework for reasoning about knowl-

edge and probability based on three kinds of adversaries: adversaries who make

nondeterministic choices, adversaries who represent the knowledge of the op-

ponent, and adversaries who control timing. Our insiders can be seen as an

instantiation of this framework. The insider choice and insider function consti-

tute an adversary who makes nondeterministic choices, and each of the models

of the insider’s power in §2.5.1 correspond to an adversary representing the

knowledge of the opponent. Gray and Syverson [50] apply the Halpern-Tuttle

framework to reason about qualitative security of probabilistic systems. They

relate their security condition to probabilistic noninterference [49] and informa-

tion theory. Halpern and O’Neill [51] construct a framework for reasoning about

secrecy that generalizes many previous results on qualitative and probabilistic,

but not quantitative, security. Their framework, like ours, uses subjective prob-

ability distributions.

59

McIver and Morgan [82] calculate the channel capacity of a program using

conditional entropy. They add demonic nondeterminism as well as probabilis-

tic choice to the language of while-programs, and they show that whether a

program is perfectly secure (i.e., leaks 0 bits) is determined by the behavior of

its deterministic refinements. They also consider restricting the observational

power of the demon making the nondeterministic choices.

2.7 Summary

This chapter presents a model for incorporating attacker beliefs into analysis of

quantitative information flow. Our theory reveals that uncertainty, the tradi-

tional metric for information flow, is inadequate. Information flows when an

attacker’s belief becomes more accurate, but an uncertainty metric can mistak-

enly report a flow of zero or less. Inversely, misinformation flows when an at-

tacker’s belief becomes less accurate, but an uncertainty metric can mistakenly

report a positive information flow. Hence, in the presence of beliefs, accuracy is

the correct metric for information flow.

We have shown how to use an accuracy metric to calculate exact, expected,

and maximum information flow; other statistics of information flow, such as

variance, median, and rate, could be defined in the same way. We have demon-

strated that our metric generalizes uncertainty metrics. Our formal model of

experiments enables precise, compositional reasoning about attackers’ actions

and beliefs. We have instantiated this model with a probabilistic semantics and

have shown that probabilistic choice is essential to producing misinformation.

We have also extended the model to enable analysis of information flow caused

by insiders who collude with attackers.

60

2.A Appendix: Proofs

Theorem 2.1. B(E , o)(σH) = BI (E , o).

Proof.

BI (E , o)

= 〈 Definition of BI 〉

bH(σH) · ([[S]](σ̇L ⊗ σ̇H)�L)(o)
(
∑

σ′H : bH(σ′H) · ([[S]](σ̇L ⊗ σ̇′H)�L)(o))

= 〈 Definition of δ �L, apply distribution to o 〉

bH(σH) · ((
∑

σ : σ �L = o : ([[S]](σ̇L ⊗ σ̇H)(σ)))
(
∑

σ′H : bH(σ′H) · ((
∑

σ : σ �L = o : ([[S]](σ̇L ⊗ σ̇′H)(σ))))

= 〈 Lemma 2.1 (below) 〉

bH(σH) · ((
∑

σ : σ �L = o : ([[S]](σ̇L ⊗ σ̇H)(σ)))
(
∑

σ′ : σ′ �L = o : [[S]](σ̇L ⊗ bH)(σ′))

= 〈 Distributivity, one-point rule 〉

(
∑

σ : σ �L = o ∧ σ �H = σH : (
∑

σ′H : bH(σH) · [[S]](σ̇L ⊗ σ̇H)(σ)))
(
∑

σ′ : σ′ �L = o : [[S]](σ̇L ⊗ bH)(σ′))

= 〈 Lemma 2.1 (below) 〉

(
∑

σ : σ �L = o ∧ σ �H = σH : [[S]](σ̇L ⊗ bH)(σ))
(
∑

σ′ : σ′ �L = o : [[S]](σ̇L ⊗ bH)(σ′))

= 〈 Distributivity 〉

(
∑

σ : σ �L = o ∧ σ �H = σH :
[[S]](σ̇L ⊗ bH)(σ)

(
∑

σ′ : σ′ �L = o : [[S]](σ̇L ⊗ bH)(σ′))
)

= 〈 Definition of δ �L 〉

(
∑

σ : σ �H = σH : (([[S]](σ̇L ⊗ bH))|o)(σ))

= 〈 Definition of δ �H , applying distribution to σH 〉

((([[S]](σ̇L ⊗ bH))|o)�H)(σH)

61

= 〈 Definition of B(E , o) 〉

B(E , o)(σH)

Lemma 2.1. Let σ �L = o. Then:

[[S]](σ̇L ⊗ bH)(σ) = (
∑

σH : bH(σH) · [[S]](σ̇L ⊗ σ̇H)(σ)).

Proof.

[[S]](σ̇L ⊗ bH)(σ)

= 〈 Definition of [[S]]δ 〉

(
∑

σ′ : (σ̇L ⊗ bH)(σ′) · ([[S]]σ′)(σ))

= 〈 Definition of point mass 〉

(
∑

σ′ : σ′ �L = σL : bH(σ′ �H) · ([[S]]σ′)(σ))

= 〈 Let σ = σL ∪ σH , nesting, one-point rule 〉

(
∑

σH : bH(σH) · [[S]](σ̇L ⊗ σ̇H)(σ))

Theorem 2.2. Q(E , b′H) = IδA(o)− IδS (o).

Proof.

Q(E , b′H)

= 〈 Definition of Q 〉

D(bH _ σ̇H)−D(b′H _ σ̇H)

= 〈 Definitions of D and point mass 〉

62

− lg bH(σH) + lg b′H(σH)

= 〈 Lemma 2.2 (below), properties of lg 〉

− lg PrδA(o) + lg PrδS (o)

= 〈 Definition of I 〉

IδA(o)− IδS (o)

Lemma 2.2. b′H(σH) = bH(σH) · δS(o)
δA(o)

.

Proof.

b′H(σH)

= 〈 Definition of b′H in experiment protocol 〉

(([[S]](σ̇L ⊗ bH)|o)�H)(σH)

= 〈 Definition of δ �H 〉

(
∑

σ : σ �H = σH : ([[S]](σ̇L ⊗ bH)|o)(σ))

= 〈 Definition of δ|o 〉

(
∑

σ : σ �H = σH ∧ σ �L = o :
[[S]](σ̇L ⊗ bH)(σ)

([[S]](σ̇L ⊗ bH)�L)(o)
)

= 〈 One-point rule: σ = o ∪ σH 〉

[[S]](σ̇L ⊗ bH)(o ∪ σH)
([[S]](σ̇L ⊗ bH)�L)(o)

= 〈 Definition of δA 〉

1
δA(o)

· [[S]](σ̇L ⊗ bH)(o ∪ σH)

= 〈 Definition of [[S]]δ 〉

63

1
δA(o)

· (
∑

σ′ : (σ̇L ⊗ bH)(σ′) · ([[S]]σ′)(o ∪ σH))

= 〈 Definition of ⊗, point mass 〉

1
δA(o)

· (
∑

σ′ : σ′ �L = σL : bH(σ′ �H) · ([[S]](σ̇L ⊗ (σ̇′ �H)))(o ∪ σH))

= 〈 High input is immutable 〉

1
δA(o)

· (
∑

σ′ : σ′ �L = σL ∧ σ′ �H = σH : bH(σ′ �H)

· ([[S]](σ̇L ⊗ (σ̇′ �H)))(o ∪ σH))

= 〈 One-point rule: σ′ = σL ∪ σH 〉

1
δA(o)

· bH(σH) · ([[S]](σ̇L ⊗ σ̇′H))(o ∪ σH)

= 〈 High input is immutable, Definition of δ �L 〉

1
δA(o)

· bH(σH) · (([[S]](σ̇L ⊗ σ̇′H))�L)(o)

= 〈 Definition of δS 〉

bH(σH) · δS(o)
δA(o)

Theorem 2.3. Let E = 〈S, bH , σH , σL〉. Then:

Q(E , b′H) = k ≡ b′H(σH) = 2k · bH(σH).

Proof.

Q(E , b′H) = k

≡ 〈 Definition of Q 〉

D(bH _ σ̇H)−D(b′H _ σ̇H) = k

≡ 〈 Definition of D 〉

64

−(lg bh(σH)− lg b′H(σH)) = k

≡ 〈 Arithmetic, properties of log 〉

b′H(σH) = 2k · bH(σH)

Theorem 2.4. S ∈ Det =⇒ ∀E , b′H ∈ B(E) .Q(E , b′H) ≥ 0.

Proof. Assume S ∈ Det and let E , b′H be arbitrary.

Q(E , b′H) ≥ 0

≡ 〈 Definition of Q, arithmetic 〉

D(bH _ σ̇H) ≥ D(b′H _ σ̇H)

≡ 〈 Definition of D, arithmetic 〉

lg b(σH) ≤ lg b′(σH)

≡ 〈 Lemma 2.3 (below), lg is monotonic on (0, 1], admissibility of b 〉

true

Lemma 2.3. Assume S ∈ Det and let E , b′H be arbitrary. Then:

b(σH) ≤ b′(σH).

Proof.

b′(σH)

= 〈 Definition of b′ 〉

([[S]](σ̇L ⊗ bH)|o�H)(σH)

65

= 〈 Definition of�H , application to σH , one-point rule 〉

(
∑

σ′L : ([[S]](σ̇L ⊗ bH)|o)(σ′L ∪ σH))

= 〈 Definition of |, one-point rule 〉

[[S]](σ̇L ⊗ bH)(o ∪ σH)
([[S]](σ̇L ⊗ bH)�L)(o)

= 〈 High input is immutable 〉

b(σH) · [[S]](σ̇L ⊗ bH)(o ∪ σH)
([[S]](σ̇L ⊗ bH)�L)(o)

= 〈 Output of S is a point mass (see below), let x be the denominator 〉

b(σH) · 1
x

≥ 〈 Admissibility of b implies x ∈ (0, 1], arithmetic 〉

b(σH)

To see that the output of S is a point mass, let o be the observation producing

b′. It is straightforward to check that if S ∈ Det, then [[S]]σ is the point mass at σ′,

where σ′ is the state produced by the standard denotational semantics of while

programs, such as Winskel’s [125]. So the output of [[S]](σL ∪ σH) is the point

mass at o ∪ σH .

Theorem 2.5. Q(E , b′) = L(Hin , Lin , Lout).

Proof.

Q(E , b′)

= 〈 Definition of Q 〉

D(b_ σ̇H)−D(b′ _ σ̇H)

66

= 〈 Definition of D 〉

H(b�(L ∪ L0 ∪H0))−H(b�(L ∪ L0))

− (H(b′ �(L ∪ L0 ∪H0))−H(b′ �(L ∪ L0)))

= 〈 Definition of domain of b 〉

H(b�(L0 ∪H0))−H(b�L0)− (H(b′ �(L ∪ L0 ∪H0))−H(b′ �(L ∪ L0)))

= 〈 Definitions of Hin , Lin , Lout ; b′ is an output distribution 〉

H(Hin , Lin)−H(Lin)− (H(Hin , Lin , Lout)−H(Lin , Lout))

= 〈 Definition of conditional entropy 〉

H(Hin |Lin)−H(Hin |Lin , Lout)

= 〈 Definition of L 〉

L(Hin , Lin , Lout)

Theorem 2.6 Let:

E = 〈S, bH , σH , σL〉,

δ′ = [[S]](σ̇L ⊗ σ̇H),

eH = (([[S]](σ̇L ⊗ bH))|(δ′ �L))�H.

Then:

QE(E) ≤ Q(E , eH).

Proof.

QE(E)

= 〈 Definition of QE 〉

67

Eo∈δ′�L[Q(E ,B(E , o))]

= 〈 Definition of Q, let b′H = B(E , o) 〉

Eo∈δ′�L[D(bH _ σ̇H)−D(b′H _ σ̇H)]

= 〈 Linearity of E 〉

D(bH _ σ̇H)− Eo∈δ′�L[D(b′H _ σ̇H)]

≤ 〈 Jensen’s inequality and convexity of D [32] 〉

D(bH _ σ̇H)−D(Eo∈δ′�L[b′H] _ σ̇H)

= 〈 Lemma 2.4 〉

D(bH _ σ̇H)−D(eH _ σ̇H)

= 〈 Definition of Q 〉

Q(E , eH)

Lemma 2.4. Let E , δ′, eH be defined as in theorem 2.6. Let b′H = B(E , o), where

o ∈ δ′ �L. Then:

Eo∈δ′�L[b′H] = eH .

Proof. (by extensionality)

Eo∈δ′�L[b′H](σH)

= 〈 Definitions of E, b′H 〉

((
∑

o : (δ′ �L)(o) · B(E , o)))(σH)

= 〈 Definition of B(E , o) 〉

((
∑

o : (δ′ �L)(o) · ((([[S]](σ̇L ⊗ bH))|o)�H)))(σH)

68

= 〈 Definition of δ �H , applying distribution to σH 〉

(
∑

o : (δ′ �L)(o) · ((
∑

σ′ : σ′ �H = σH : (([[S]](σ̇L ⊗ bH))|o)(σ′))))

= 〈 Definition of δ|o, applying distribution to σ′ 〉

(
∑

o : (δ′ �L)(o) · (
∑

σ′ : σ′ �H = σH ∧ σ′ �L = o : ([[S]](σ̇L⊗bH))(σ′)
([[S]](σ̇L⊗bH)�L)(o)

))

= 〈 One-point rule 〉

(
∑

o : (δ′ �L)(o) · ([[S]](σ̇L ⊗ bH))(o ∪ σH)
([[S]](σ̇L ⊗ bH)�L)(o)

)

= 〈 Definition of δ �L, applied to o 〉

(
∑

o : (δ′ �L)(o) · ([[S]](σ̇L ⊗ bH))(o ∪ σH)
(
∑

σ′ : σ′ �L = o : [[S]](σ̇L ⊗ bH)(σ′))
)

= 〈 Let σ = o ∪ σH , change of dummy: o := σ, definition of =L 〉

(
∑

σ : σ �H = σH : (δ′ �L)(o) · ([[S]](σ̇L ⊗ bH))(σ)
(
∑

σ′ : σ′ =L σ : [[S]](σ̇L ⊗ bH)(σ′))
)

= 〈 Definition of δ|δL, applied to σ 〉

(
∑

σ : σ �H = σH : ([[S]](σ̇L ⊗ bH)|(δ′ �L))(σ))

= 〈 Definition of δ �H , applied to σH 〉

(([[S]](σ̇L ⊗ bH)|(δ′ �L))�H)(σH)

= 〈 Definition of eH 〉

eH(σH)

Theorem 2.7. Let E = 〈S, bH , δH , σL〉, where bH = δH . Then:

QE(E) = I(Hin , Lout |Lin).

Proof. Consider the amount of flow resulting from a given high input σH , obser-

vation o, and postbelief b′H . We calculate:

69

Q(〈S, bH , σH , σL〉, b′H)

= 〈 Definition of Q 〉

D(bH _ σ̇H)−D(b′H _ σ̇H)

= 〈 Definition of D 〉

− lg(bH(σH)) + lg(b′H(σH))

= 〈 Log identity 〉

lg
b′H(σH)
bH(σH)

= 〈 Definition of b′H and δA 〉

lg
((δA|o)�H)(σH)

bH(σH)

= 〈 Lemma 2.5 〉

lg
((δA|o)�H)(σH)

δA(σH)

It is now convenient to introduce notation for probability. Let Prδ(E) denote

the probability of event E according to distribution δ, and let Prδ(E|F) denote

Prδ|F (E). Let h denote the event that the high input sampled from Hin is σh, let l

denote the event that the low input sampled from Lin (which is actually a point

mass) is σL, and let o denote the event that the observation sampled from Lout

is o. Then ((δA|o) �H)(σH) can be rewritten as PrδA(h|o); and δA(σH), as PrδA(h).

We continue calculating:

lg
((δA|o)�H)(σH)

δA(σH)

= 〈 Rewriting using probability notation 〉

lg
PrδA(h|o)
PrδA(h)

70

= 〈 δA = δA|σL 〉

lg
PrδA|l(h|o)
PrδA|l(h)

= 〈 Rewriting using conditional probability notation 〉

lg
PrδA(h|o, l)
PrδA(h|l)

= 〈 Definition of conditional probability 〉

lg
PrδA(h, o|l)

PrδA(h|l) · PrδA(o|l)

Now take the expectation of the amount of flow with respect to observation o,

which is distributed according to δ′ = [[S]](σ̇L ⊗ σ̇H).

Eo[lg
PrδA(h, o|l)

PrδA(h|l) · PrδA(o|l)]

= 〈 Definition of E 〉∑
o Prδ′(o) · lg

PrδA(h, o|l)
PrδA(h|l) · PrδA(o|l)

= 〈 δ′ = δA|h, l; conditional probability notation 〉∑
o PrδA(o|h, l) · lg PrδA(h, o|l)

PrδA(h|l) · PrδA(o|l)

Again take the expectation, now with respect to high input h, whose distribution

is δH :

Eh[
∑

o PrδA(o|h, l) · lg PrδA(h, o|l)
PrδA(h|l) · PrδA(o|l)]

= 〈 Definition of E 〉∑
h PrδH (h) ·

∑
o PrδA(o|h, l) · lg PrδA(h, o|l)

PrδA(h|l) · PrδA(o|l)

= 〈 δH = bH 〉

71

∑
h PrbH (h) ·

∑
o PrδA(o|h, l) · lg PrδA(h, o|l)

PrδA(h|l) · PrδA(o|l)

= 〈 Lemma 2.5 〉∑
h PrδA(h) ·

∑
o PrδA(o|h, l) · lg PrδA(h, o|l)

PrδA(h|l) · PrδA(o|l)

= 〈 δA|l = δA; conditional probability notation 〉∑
h PrδA(h|l) ·

∑
o PrδA(o|h, l) · lg PrδA(h, o|l)

PrδA(h|l) · PrδA(o|l)

= 〈 Distributivity 〉∑
h

∑
o PrδA(h|l) · PrδA(o|h, l) · lg PrδA(h, o|l)

PrδA(h|l) · PrδA(o|l)

= 〈 Definition of conditional probability 〉∑
h

∑
o PrδA(h, o|l) · lg PrδA(h, o|l)

PrδA(h|l) · PrδA(o|l)

= 〈 Definition of conditional probability 〉∑
h

∑
o

PrδA(h, o, l)
PrδA(l)

· lg PrδA(h, o|l)
PrδA(h|l) · PrδA(o|l)

= 〈 δA is a point mass at l, twice 〉∑
l

∑
h

∑
o PrδA(h, o, l) · lg PrδA(h, o|l)

PrδA(h|l) · PrδA(o|l)

= 〈 Definition of mutual information 〉

I(Hin , Lout |Lin)

72

Lemma 2.5. bH = δA �H .

Proof. Let σH be arbitrary, and let b = σ̇L ⊗ bH be the attacker’s belief about the

entire (low and high) state. We calculate:

(δA �H)(σH)

= 〈 Definition of δA 〉

([[S]](σ̇L ⊗ bH)�H)(σH)

= 〈 Definition of b 〉

(([[S]]b)�H)(σH)

= 〈 Definition of�H 〉

(
∑

σ : σ �H = σH : ([[S]]b)(σ))

= 〈 Definition of [[S]]δ 〉

(
∑

σ : σ �H = σH : (
∑

σ′ : b(σ′) · ([[S]]σ′)(σ)))

= 〈 High input is immutable 〉

(
∑

σ : σ �H = σH : (
∑

σ′ : σ′ �H = σH : b(σ′) · ([[S]]σ′)(σ)))

= 〈 Commutativity, distributivity 〉

(
∑

σ′ : σ′ �H = σH : b(σ′) · (
∑

σ : σ �H = σH : ([[S]]σ′)(σ)))

= 〈 High input is immutable 〉

(
∑

σ′ : σ′ �H = σH : b(σ′) · (
∑

σ : ([[S]]σ′)(σ)))

= 〈 S always terminates 〉

(
∑

σ′ : σ′ �H = σH : b(σ′) · 1)

73

= 〈 Definition of�H 〉

(b�H)(σH)

= 〈 Definition of b 〉

bH(σH)

Therefore bH = δA �H by extensionality.

Theorem 2.9. S ∈ ObsDet ≡ ∀E , b′H ∈ B(E) .Q(E , b′H) = 0.

Proof. By mutual implication.

(⇒) Assume S ∈ ObsDet. Let E = 〈S, σL, σH , bH , I〉 and b′H ∈ B(E) be arbi-

trary.

Q(E , b′H) = 0

≡ 〈 Definition of Q, arithmetic 〉

D(bH _ σH) = D(b′H _ σH)

≡ 〈 Definition of D, arithmetic 〉

bH(σH) = b′H(σH)

≡ 〈 Lemma 2.7 〉

true

This concludes the forward direction (⇒) of the proof.

74

(⇐) By contrapositive. Assume S 6∈ ObsDet. We need to show:

∃E = 〈S, σL, σH , bH , I〉, b′H ∈ B(E) .Q(E , b′H 6= 0

We calculate:

S 6∈ ObsDet

≡ 〈 Definition of ObsDet 〉

¬∀I, σL∃δL∀σH . [[S]]I(σ̇L ⊗ σ̇H)�L = δL

≡ 〈 Predicate calculus, change of dummy 〉

∃Ĩ , σ̃L∀δ̃L∃σ̃H . [[S]]Ĩ(˙̃σL ⊗ ˙̃σH)�L 6= δ̃L (∗)

Make the following definitions:

I = Ĩ

σL = σ̃L

σ′H = arbitrary

δ′ = [[S]]I(σ̇L ⊗ σ̇′H)

δ′L = δ′ �L

σH = the σ̃H guaranteed by formula (*) above when δ̃L = δ′L

δ = [[S]]I(σ̇L ⊗ σ̇H)

δL = δ �L

And let bH be the belief mapping σH to 1/2 and σ′H to 1/2.

We have now defined all the variables in experiment E , but we need to define

b′H ∈ B(E). To that end, we calculate attacker prediction δA:

75

δA

= 〈 Definition of prediction 〉

[[S]]I(σ̇L ⊗ bH)

= 〈 Definition of [[S]]δ 〉

1/2 · [[S]](σ̇L ⊗ σ̇H) + 1/2 · [[S]](σ̇L ⊗ σ̇′H)

= 〈 Definition of δ,δ′ 〉

1/2 · (δ + δ′)

To define b′H , we also need an observation o. Note that, by formula (2.6),

δL 6= δ′L, so there is some low state σ′L such that δL(σ′L) 6= δ′L(σ′L). Assume,

without loss of generality, that δL(σ′L) > δ′L(σ′L). Let o be σ′L. But in order for

o to be an observation, it must be that o ∈ [[S]](σ̇L ⊗ σ̇H), which implies that

[[S]](σ̇L ⊗ σ̇H)(o) > 0. This is guaranteed by the fact that δL(o) > δ′L(o), and that

δ′L(o) ≥ 0.

We can now calculate b′H :

b′H

= 〈 Definition of b′H experiment protocol 〉

δA|o�H

= 〈 Definition of δA 〉

1/2 · (δ + δ′)|o�H

76

With all these definitions, we can prove the desired result:

Q(E , b′H) 6= 0

≡ 〈 Definition of Q, arithmetic 〉

D(bH _ σH) 6= D(b′H _ σH)

≡ 〈 Definition of D, arithmetic 〉

bH(σH) 6= b′H(σH)

≡ 〈 Lemma 2.9 〉

true

Lemma 2.6.

S ∈ ObsDet =⇒ ∀I .∀σL .∃δL .∀δH .‖δH‖ = 1 =⇒ [[S]]I(σ̇L⊗ σ̇H)�L = δL.

Proof. Assume S ∈ ObsDet. Let I, σL be arbitrary. Let δL be the distribution

guaranteed to exist by the definition of ObsDet. Let δH be arbitrary such that

‖δH‖ = 1.

[[S]]I(σ̇L ⊗ σ̇H)�L

= 〈 Definition of [[S]]δ 〉

((
∑

σH : δH(σH) · [[S]]I(σL ∪ σH)))�L

= 〈�L distributes over +, · 〉

(
∑

σH : δH(σH) · [[S]]I(σL ∪ σH)�L)

= 〈 S ∈ ObsDet, definition of δL 〉

77

(
∑

σH : δH(σH) · δL)

= 〈 Distributivity, definition of ‖δ‖ 〉

δL · ‖δH‖

= 〈 Assumed ‖δH‖ = 1 〉

δL

Lemma 2.7. Assume S ∈ ObsDet. Let E = 〈S, σL, σH , bH , I〉 and b′H ∈ B(E) be

arbitrary. Then:

bH = b′H .

Proof. Let δA = [[S]]I(σ̇L ⊗ bH). Let o ∈ [[S]]I(σ̇L ⊗ σ̇H)�L.

b′H

= 〈 Definition of b′H in experiment protocol 〉

(δA|o)�H

= 〈 Definition of�H 〉

λσH . (
∑

σ′ : σ′ �H = σH : (δA|o)(σ′))

= 〈 Definition of δ|o 〉

λσH . (
∑

σ′ : σ′ �H = σH : if (σ′ �L) = o then δA(σ′)
(δA�L)(o)

else 0)

= 〈 Lemma 2.6 〉

λσH . (
∑

σ′ : σ′ �H = σH : if (σ′ �L) = o then δA(σ′)
δL(o)

else 0)

= 〈 One-point rule 〉

78

λσH .
δA(o∪σH)
δL(o)

= 〈 Lemma 2.8 〉

λσH .
bH(σH)·δL(o)

δL(o)

= 〈 Arithmetic, η-reduction 〉

bH

Lemma 2.8. Assume the definitions in lemma 2.7 and its proof. Then:

δA(o ∪ σH) = bH(σH) · δL(o).

Proof.

δA(o ∪ σH)

= 〈 Definition of δA 〉

[[S]]I(σ̇L ⊗ bH)(o ∪ σH)

= 〈 Definition of [[S]]δ 〉

(
∑

σ′ : (σ̇L ⊗ bH)(σ′) · ([[S]]Iσ
′)(o ∪ σH))

= 〈 Definition of ⊗, one-point rule 〉

(
∑

σ′H : bH(σ′H) · ([[S]]I(σL ∪ σ′H))(o ∪ σH))

= 〈 Immutable high input, one-point rule 〉

bH(σH) · ([[S]]I(σL ∪ σH))(o ∪ σH)

= 〈 Immutable high input, definition of�L 〉

bH(σH) · (([[S]]I(σL ∪ σH))�L)(o)

79

= 〈 S ∈ ObsDet, definition of δL 〉

bH(σH) · δL(o)

Lemma 2.9. Assume the definitions in the contrapositive proof of theorem 2.9. Then:

bH(σH) 6= b′H(σH).

Proof. First we calculate b′H(σH):

b′H(σH)

= 〈 Definition of b′H 〉

(δA|o�H)(σH)

= 〈 Calculation of δA in theorem 2.9 〉

(1/2 · (δ + δ′)|o�H)(σH)

= 〈 Definition of δ �H , one-point rule, D defined below 〉

(
∑

σL : (1/2 · (δ + δ′)|o)(σL ∪ σH)/D)

= 〈 Definition of δ|o, one-point rule 〉

1/2 · (δ + δ′)(o ∪ σH)/D

= 〈 Definition of + for distributions 〉

1/2 · (δ(o ∪ σH) + δ′(o ∪ σ′H))/D

= 〈 Definition of δ′, immutability of H input 〉

1/2 · δ(o ∪ σH)/D

80

Quantity D is defined to be 1/2 · (δ(o ∪ σH) + δ′(o ∪ σ′H)). Similarly, we can

calculate b′H(σ′H) = 1/2 · δ(o ∪ σ′H)/D.

We next calculate δL(o):

δL(o)

= 〈 Definition of δL and projection 〉

(
∑

σH : δ(o ∪ σH))

= 〈 Definition of δ, immutability of high input, one-point rule 〉

δ(o ∪ σH)

Similarly, δ′L(o) = δ′(o ∪ σ′H). By the definition of o we have δL(o) 6= δ′L(o), so

δ(o ∪ σH) 6= δ′(o ∪ σ′H). Thus:

b′H(σ′H)

= 〈 Calculated value of b′H(σ′H) 〉

1/2 · δ(o ∪ σ′H)/D

6= 〈 Above inequality 〉

1/2 · δ(o ∪ σH)/D

= 〈 Calculated value of b′H(σH) 〉

b′H(σH)

81

Finally, note that by the immutability of high input, the only high states with

non-zero mass in b′H are σH and σ′H . If b′H(σH) = 1/2, we would be forced to con-

clude b′H(σ′H) = 1/2 because the mass in a belief must sum to 1. But this would

contradict the previous calculation. So b′H(σH) 6= 1/2. Thus, since bH(σH) = 1/2,

we conclude bH(σH) 6= b′H(σH).

Theorem 3.2 D(b_ Ḋ) = Q(〈A, b,D, q〉, b′) + SP (〈A, b,D, q〉, b′)

Proof. The quantity of leakage is

Q(〈A, b,D, q〉, b′) = D(b_ Ḋ)−D(b′ _ Ḋ).

And the amount of program suppression is

SP (〈A, b,D, q〉, b′) = D((b′|q)�TI _ Ḋ)

= D(b′ _ Ḋ).

The equality follows because q is already contained in the attacker’s observa-

tion, so b′ has already been conditioned on q; and because restricting b′ to trusted

inputs is here equivalent to restricting to secret inputs (i.e., the actual database

contents), and this has already been done by the experiment protocol that pro-

duced b′.

Substituting and rewriting, we have

D(b_ Ḋ) = Q(〈A, b,D, q〉, b′) + SP (〈A, b,D, q〉, b′).

82

CHAPTER 3

QUANTIFICATION OF INTEGRITY

Computer security policies often involve integrity requirements for infor-

mation and other system resources—for example, that electronic data must cor-

rectly represent what appears in paper sources [37, glossary entry “data in-

tegrity”], that information may be modified only by authorized programs and

authorized users [26], or that inputs to a program must be validated before be-

ing used to change system state external to the program, such as the filesys-

tem [122, p. 356]. This last example can be interpreted as an information-flow

security policy in which information from (attacker-controlled) inputs can be

considered untrusted, whereas the system state should contain only trusted in-

formation: information flow from untrusted to trusted is prohibited unless it

passes a validation procedure. Taint analysis [75,93,112,122,128] enforces a sim-

ilar information-flow policy. Untrusted information is considered to be tainted;

and trusted information, untainted. If information flows from tainted sources to

a sink that is supposed to be untainted, contamination of the sink has occurred.

In some scenarios, a qualitative integrity policy might be overly restrictive.

If the attacker can cause only a little contamination, a flow from tainted to un-

tainted (i.e., untrusted to trusted) might be acceptable. Thus, quantitative in-

tegrity policies would be useful in characterizing security.

Since confidentiality and integrity are information-flow duals [15], previous

models for quantification of information-flow confidentiality [11, 24, 35, 49, 76,

80, 88] seem likely to apply to quantification of integrity. In particular, the in-

tegrity policy “information is prohibited to flow from untrusted to trusted” is

the dual of the confidentiality policy “information is prohibited to flow from se-

cret to public,” which is the kind of qualitative policy that previous work—and

83

chapter 2—has made quantitative. Here, we adapt the results of chapter 2 to

quantify contamination with accuracy of belief.

Besides contamination, there is another, distinct aspect of quantitative in-

tegrity. In the information-theoretic model of communication channels [32],

a sender sends messages through a noisy channel to a receiver. The receiver

cannot observe the sender’s inputs or the noise but must attempt to determine

what message was sent. A standard question to ask is: “how much information

is transmitted over the channel?” When information is lost because of noise,

information has been suppressed; noise thus damages the integrity of the infor-

mation. Here, we show that suppression and transmission can be quantified by

using accuracy of beliefs. We also examine error-correcting codes and show that,

as we would expect, they reduce suppression of information. Moreover, anal-

ysis of suppression is applicable with programs in general, not just programs

that model communication channels.

Contamination and suppression are not necessarily disjoint: A program that

takes t as trusted input and u as untrusted input, then outputs pair (t, u) as

trusted output, exhibits contamination—because output (t, u) is obviously af-

fected by an untrusted input u—but does not exhibit suppression. A program

that instead outputs t⊕ n, where ⊕ is exclusive-or and n is randomly generated

noise, exhibits suppression but not contamination. And a program that outputs

t⊕ u exhibits both.

Quantifying confidentiality and integrity simultaneously is useful for under-

standing the security of a statistical database, which contains information about

individuals and should respond to queries in a way that protects the privacy

of those individuals. The queries and responses might involve statistics (e.g.,

sums or averages) computed from individuals’ information. One mechanism

84

that enforces this privacy policy is the addition of randomly generated noise to

the underlying data or to the response [35]; the database is responding with in-

formation that has been deliberately suppressed to improve confidentiality. The

quantitative frameworks we have developed for confidentiality and integrity

can be used to analyze this enforcement mechanism.

This chapter proceeds as follows. Models and metrics for quantification of

contamination and suppression are given in §3.1 and §3.2. These metrics are

applied in §3.3 and §3.4 to error-correcting codes and statistical databases. The

duality between confidentiality and integrity is explored in §3.5. Related work

is discussed in §3.6, and §3.7 concludes. Most proofs are delayed from the main

body to appendix 3.A.

3.1 Quantification of Contamination

Three agents are involved in execution of a program: a system, a user, and an

attacker.1 The system executes a program, whose variables are categorized as

input, output, or internal. Input variables may only be read by the program,

output variables may only be written by the program, and internal variables

may be read and written but are never be observed by any agent except the

system itself. The user and the attacker supply inputs by writing the initial values

of input variables. These agents receive outputs by reading the final values of

output variables. Since the attacker is untrusted, or low integrity, variables read

and written by the attacker are labeled U . Likewise, the user is trusted and the

user’s variables are labeled T . The channels between agents and the program

are depicted in figure 3.1.

1In chapter 2, we modeled only the system and the attacker. We further discuss the addition
of the user in §3.1.1 and §3.5.

85

Program
T out User

U in

T inUser

Attacker

Figure 3.1: Channels in contamination experiment

Our goal is to quantify the amount of information about untrusted inputs

that the user learns by observing trusted outputs. This goal entails two restric-

tions on the user’s access to variables. First, the user should not be allowed to

read untrusted inputs—otherwise, the user could learn all the untrusted infor-

mation without observing any outputs. Second, the user should not be allowed

to read untrusted outputs, because we are interested only in the information the

user learns from trusted outputs. In addition to these restrictions, for simplic-

ity, we do not allow the user to write untrusted inputs (although this would be

possible to model). So the user may access only the trusted variables.

Similarly, the attacker may access only the untrusted variables. The attacker

may not write trusted inputs because he is untrusted. And for simplicity, we do

not allow the attacker to read trusted inputs or outputs. However, since flow

from trusted to untrusted need not be prohibited, it would be possible to allow

and to model such reads.

Note that these access rules agree with the Biba integrity model [15] in that

they prohibit reading up (i.e., the user cannot read untrusted information) and

writing down (i.e., the attacker cannot write trusted information).

86

3.1.1 Contamination Experiment Protocol

Users cannot directly observe untrusted inputs, thus users are uncertain about

them. A user’s belief characterizes this uncertainty. Note that it is now the user

who holds beliefs—not the attacker, who held beliefs about secret inputs in the

model of chapter 2. Recall (from §2.1) that beliefs are held about program states,

which map variables to values. Previously, a state could be decomposed into

two parts: its high projection, containing just the secret variables, and its low pro-

jection, containing just the public variables. Now, since we are concerned with

integrity, we instead decompose a state into a trusted projection, containing just

the trusted variables, and an untrusted projection, containing just the untrusted

variables. The trusted projection of state σ is denoted σ � T ; and the untrusted

projection, σ � U . Probability distributions, hence beliefs, can likewise be pro-

jected. Previously, beliefs were probability distributions over the high projection

of states; now, beliefs are probability distributions over the untrusted projection

of states.

A contamination experiment describes how a user revises his beliefs about un-

trusted inputs. During an experiment, the user interacts with a system and

observes trusted outputs. The protocol for contamination experiments is given

in figure 3.2 and is explained below.2

Formally, a contamination experiment E is described by a tuple,

E = 〈S, bU , σU , σT 〉,

where S is the program executed by the system, σU is the untrusted projection of

the initial state, and σT is the trusted projection of the initial state. For simplicity,

2This protocol is essentially identical to the protocol for confidentiality experiments in fig-
ure 2.2. The changes are (i) the introduction of the user as an agent, (ii) the reversal of the roles
of the user and attacker, and (iii) the substitution of “trusted” for “low” and “untrusted” for
“high.”

87

A contamination experiment E = 〈S, bU , σU , σT 〉 is conducted as follows.

1. The user chooses a prebelief bU about the untrusted state.

2. (a) The attacker picks an untrusted state σU .

(b) The user picks a trusted state σT .

3. The user predicts the output distribution: δ′P = [[S]](σ̇T ⊗ bU).

4. The system executes program S, producing a state σ′ ∈ δ′ as output, where
δ′ = [[S]](σ̇T ⊗ σ̇U). The user observes the trusted projection of the output
state: o = σ′ �T .

5. The user infers a postbelief: b′U = (δ′P |o)�U .

Figure 3.2: Contamination experiment protocol

assume that S always terminates.3 Also assume that the attacker and user know

the code of program S.

The user’s prebelief bU , characterizing his uncertainty about untrusted inputs

at the beginning of the experiment, may be chosen arbitrarily.4 The attacker

chooses σU , the untrusted projection of the initial state, and the user chooses σT ,

the trusted projection of the initial state. Using the semantics of S along with

prebelief bU as a distribution on untrusted input, the user conducts a “thought

experiment” to generate a prediction δ′P of the output distribution:

δ′P = [[S]](σ̇T ⊗ bU).

Program S is executed by the system. The distribution on output states pro-

duced by that execution is δ′:

δ′ = [[S]](σ̇T ⊗ σ̇U).

3This assumption can be eliminated by using the technique described in §2.2.4. Also, recall
that in confidentiality experiments we assumed that S did not modify any of the secret (high)
projection of the state, because the initial secret values needed to be preserved in the final state.
To remove this restriction, §2.2.4 described a technique for preserving a copy of the untrusted
component of the state. But here, we have already introduced an alternate solution—the im-
mutable inputs preserve such a copy. Thus copying is not needed here.

4As with confidentiality, an admissibility restriction (c.f. §2.1.4) can rule out nonsensical prebe-
liefs.

88

The user makes an observation, which is the trusted projection of an output state

sampled from δ′. We write σ′ ∈ δ′ to denote that σ′ is in the support of (i.e., has

positive frequency according to) δ′. The observation o resulting from σ′ is

o = σ′ �T.

Finally, the user’s postbelief b′U is the untrusted projection of the distribution

that results from conditioning prediction δ′P on observation o:

b′U = (δ′P |o)�U.

Postbelief b′U characterizes the user’s uncertainty about the untrusted inputs at

the end of the experiment.

3.1.2 Contamination Metric

Define the amount of information flow Qcon caused by outcome b′U of experi-

ment E as the improvement in the accuracy of the user’s belief:

Qcon(E , b′U) , D(bU _ σ̇U)−D(b′U _ σ̇U).

Let D be instantiated with relative entropy as in chapter 2. Thus the unit of

measurement for Qcon is (information-theoretic) bits.

As an example of quantification of contamination, consider the following

program:

t2 := t1 + u

Variables t1 and t2 are trusted, whereas variable u is untrusted. Suppose that t1

and u are one-bit variables—that is, they can store either 0 or 1—but that t2 can

store any integer. Let the user have a uniform prebelief bU about the value of

u. Based on his knowledge of t1, the user will correctly infer the value of u by

89

observing t2. For example, if σT (t1) = 0 and σU(u) = 1, then observation o will

be that t2 = 1, and postbelief b′U will assign state (u 7→ 1) probability 1. Quantity

of flow Qcon is thus 1. This amount is intuitively sensible: one bit of untrusted

information, the value of u, has contaminated the trusted output.

More generally, we can show that Qcon correctly quantifies the infor-

mation contained in an observation o about untrusted input σU . Let

δY = [[S]](σ̇T ⊗ σ̇U)�T be the system’s distribution on trusted outputs, and let

δU = [[S]](σ̇T ⊗ bU)�T be the user’s distribution on trusted outputs. As in §2.3.1,

let Iδ(F) denote the information conveyed by event F drawn from probability

distribution δ. Then IδU (o) quantifies the information contained in o about both

the untrusted inputs and the probabilistic choices made by the program, but

IδY (o) quantifies only the information about the probabilistic choices. AndQcon

quantifies just the information about the untrusted inputs:

Corollary 3.1. Qcon(E , b′U) = IδU (o)− IδY (o).

Proof. Identical to the proof of theorem 2.2, with the appropriate textual substi-

tutions for agents and security levels.

3.2 Quantification of Suppression

We now model a sender and receiver, who communicate through a program.

The receiver, by observing the program’s outputs, attempts to determine the

sender’s inputs. For example, the sender might be a database, and the program

might construct a web page using queries to the database; the receiver attempts

to reconstruct information in the database from the (incomplete) information in

the web page. As another example, the program might model a noisy channel;

90

Program
T out Receiver

U in

T inSender

Attacker

Figure 3.3: Channels in suppression experiment

the sender’s inputs are messages, and the receiver attempts to determine what

messages were sent.

As with contamination, the program receives trusted inputs as the initial

values of variables and produces trusted outputs as the final values of variables.

The sender writes the initial values of trusted inputs, and the receiver reads

the final values of trusted outputs. These are the only ways that either agent

may access any variables. We continue to model an attacker, who can attempt

to interfere with the trusted outputs. The attacker writes the initial values of

untrusted inputs and may also read the final values of untrusted outputs. The

channels between agents and the program are depicted in figure 3.3.

3.2.1 Suppression Experiment Protocol

Formally, a suppression experiment E is described by a tuple,

E = 〈S, b, σU , σT 〉,

where S is the program, b is the receiver’s prebelief about trusted and untrusted

inputs, σU is the untrusted projection of the initial state, and σT is the trusted

projection of the initial state. Note that the receiver’s belief concerns the entire

initial state because he may not observe any inputs. The protocol for suppres-

sion experiments is given in figure 3.4. In the protocol, notation σ �TO denotes

91

A suppression experiment E = 〈S, b, σU , σT 〉 is conducted as follows.

1. The receiver chooses a prebelief b about the trusted and untrusted state.

2. (a) The attacker picks an untrusted state σU .

(b) The sender picks a trusted state σT .

3. The receiver predicts the output distribution: δ′R = [[S]]b.

4. The system executes program S, which produces a state σ′ ∈ δ′ as output,
where δ′ = [[S]](σ̇T ⊗ σ̇U). The receiver observes the trusted projection of
the output state: o = σ′ �TO .

5. The receiver infers a postbelief: b′ = (δ′R|o).

Figure 3.4: Suppression experiment protocol

projection of state σ to trusted outputs. The protocol is a straightforward adap-

tation of the contamination protocol from §3.1.1.

3.2.2 Suppression Metric

Define the amount of information flow Qtrans—that is, the amount of

transmission—caused by outcome b′ of experiment E as the improvement in

the accuracy of the receiver’s belief about trusted inputs:

Qtrans(E , b′) , D(b�TI _ σ̇T)−D(b′ �TI _ σ̇T),

where notation b�TI denotes projection of belief b to trusted inputs.

Quantity D(b � TI _ σ̇T) is the maximum amount of information the re-

ceiver could learn about trusted inputs. Quantity Qtrans(E , b′) is the amount of

information the receiver actually learned about trusted inputs from outcome b′.

Thus, quantity D(b′ �TI _ σ̇T) is the amount of information the receiver failed

to learn about trusted inputs, meaning that it quantifies suppression. Define

S(E , b′) to be that quantity:

S(E , b′) , D(b′ �TI _ σ̇T).

92

As an example of quantification of suppression, consider the following pro-

gram:

o := i⊕ rnd()

Variables i and o are one-bit input and output variables, respectively. Both vari-

ables are trusted. Program expression rnd() returns a uniformly random bit. Let

the receiver have a uniform prebelief b about the value of i. As a result of the

suppression experiment protocol, the receiver infers a postbelief b′ about i that

is uniform, thus b = b′. So quantity of transmission Qtrans is 0 bits, and quantity

of suppression S is 1 bit. These quantities are intuitively sensible: the receiver

cannot learn anything about i by observing o because of the bit of random noise

added by the program.

We can show that Qtrans correctly quantifies the information about trusted

input σT contained in observation o. Let δR = ([[S]]b) � TO be the receiver’s

distribution on trusted outputs. Suppose that the sender shares the receiver’s

belief about untrusted inputs, meaning that the sender’s distribution on un-

trusted inputs is b|σT when the trusted input is σT , and let δY = ([[S]](b|σT))�TO

be the sender’s distribution on trusted outputs.5 Then IδR(o) quantifies the in-

formation contained in o about the trusted inputs, untrusted inputs, and the

probabilistic choices made by the program. And IδY (o) quantifies only the in-

formation about the untrusted inputs and the probabilistic choices. Thus Qtrans

quantifies just the information about the trusted inputs:

Theorem 3.1. Qtrans(E , b′) = IδR(o)− IδY (o).

Proof. In appendix 3.A.

5Another way to rationalize distribution δY is to recognize that it would be the receiver’s
distribution on trusted outputs if he were told the value of trusted input σT .

93

Furthermore, a result similar to theorem 2.7 holds forQtrans : if the sender and

receiver use the same distribution δT on trusted inputs, then expected amount

of flow E[Qtrans] is equal to the mutual information between trusted inputs Tin

and trusted outputs Tout , given the untrusted inputs Uin . The expectation is with

respect to observation o and distribution δT .

Corollary 3.2. Let E = 〈S, (b|σU), δT , σU〉, where b�TI = δT . Then:

E[Qtrans(E)] = I(Tin , Tout |Uin).

Proof. The proof is essentially identical to the proof of theorem 2.7, substituting

“trusted” for “high” and “untrusted” for “low,” T for H and U for L, etc.

If program S does not mention any untrusted inputs, the conditioning on

untrusted input σU can be eliminated from corollary 3.2. In this case, the ex-

pected amount of flow is simply the mutual information between the trusted

inputs and the trusted outputs. This coincides with the standard information-

theoretic model of a communication channel [32], in which there are no un-

trusted inputs—suppression occurs only when random errors are introduced

by the channel itself.

Finally, as an example of quantifying both contamination and suppression,

consider this program:

o := i⊕ u

Recall that i and o are one-bit, trusted input and output variables, and that u is a

one-bit, untrusted input variable. Suppose the receiver has a uniform prebelief

about inputs i and u. Then the quantity of suppression is 1 bit because the

receiver cannot learn anything about i. Likewise, if we treat the receiver as a

user—allowing him to observe i and o—then the quantity of contamination is 1

bit because he learns everything about u.

94

3.2.3 Attacker-controlled Suppression

Sometimes the attacker can control how much suppression occurs. For example,

consider the following program:

o := i+ u

Assume that inputs i and u are integers in the interval [1,M] for some M > 1.

Output o is therefore an integer in [2, 2M]. If the receiver observes that o is 2,

the receiver can infer that u = i = 1. Hence the attacker, by choosing u = 1,

can make it possible that no information about i is suppressed—though not

necessary, because imight be set to some integer other than 1. But if the attacker

sets u to M , no matter what value of o the receiver observes, all values of i are

still possible. Hence the attacker, by choosing u = M , can make it possible that

all information about i is suppressed. We now formalize this intuition.

Define the quantity of attacker-controlled suppression SA for a program S, re-

ceiver prebelief b, and trusted input σT as follows:

SA(S, b, σT) , max
σU ,b′∈B(〈S,b,σU ,σT 〉)

S(〈S, b, σU , σT 〉, b′)

− min
σU ,b′∈B(〈S,b,σU ,σT 〉)

S(〈S, b, σU , σT 〉, b′)

This quantity is the difference between the maximum and the minimum amount

of suppression possible over any choice of inputs σU made by the attacker. For

the program above with a uniform receiver prebelief, the quantity of attacker-

controlled suppression is lgM bits. This is intuitively sensible, because the at-

tacker can control whether it is possible for the receiver to learn everything or

nothing about i.

Consider this revision of the program we have been considering:

o := i1 + i2 + u

95

Assume that i1 and i2 are integers in the interval [1,M]. If the receiver observes

that o = 3, the receiver can again infer the exact values of i1, i2, and u. So the

attacker can again make it possible that no information is suppressed. But if the

attacker sets u to M , then the receiver will observe that o is in [M + 2, 3M]. Note

that this allows the receiver to eliminate some possibilities for the input values,

since they cannot sum to less thanM+2. Hence if the receiver’s prebelief on the

inputs is uniform, his postbelief will not be uniform, meaning that he learned

information about the inputs and that some information was not suppressed.

For example, suppose that the receiver observes that o = M + 2. There are(
M+1

2

)
= M(M+1)

2
ways to choose input values that sum to M + 2. Each of these

will be equally likely, so the postbelief will assign each probability 2
M(M+1)

. (But

the remaining ways to choose inputs—those that do not sum toM+2—will have

probability 0, establishing that this distribution is not uniform.) The amount of

suppression is therefore lg M(M+1)
2

, which is always less than the total amount of

information the receiver could have learned, lgM2. This is intuitively sensible,

because the attacker can no longer suppress all the information about trusted

inputs i1 and i2.

3.2.4 Program Suppression

Consider the following program:

if u then i2 := i1 else i2 := i1⊕ rnd()

Assume that i1 is a 2-bit input variable and i2 is a 2-bit output variable. If the

attacker sets u to true, then i2 equals i1 and is no information is suppressed. But

if the attacker sets u to false, all information about i1 is suppressed. It would be

useful to quantify the amount of suppression that the attacker directly controls,

96

versus the amount that is intrinsic in the program itself. The metric for attacker-

controlled suppression did not make this distinction.

Toward that goal, define the quantity of program suppression SP as follows:

SP (E , b′) , D((b′|σU)�TI _ σ̇T).

This definition differs from the definition of suppression S only by condition-

ing receiver postbelief b′ on untrusted input σU . This conditioning yields the

receiver’s postbelief were he told the attacker’s untrusted inputs. Any remain-

ing suppression must come solely from the program.

Define the quantity of attacker-controlled program suppression SPA for a pro-

gram S, receiver prebelief b, and trusted input σT as follows:

SPA(S, b, σT) , max
σU ,b′∈B(〈S,b,σU ,σT 〉)

SP (〈S, b, σU , σT 〉, b′)

− min
σU ,b′∈B(〈S,b,σU ,σT 〉)

SP (〈S, b, σU , σT 〉, b′)

This quantity is the difference between the maximum and the minimum amount

of program suppression possible over any choice of inputs σU made by the at-

tacker. For the program above with a uniform receiver prebelief, the quantity

of attacker-controlled program suppression is 2 bits. This is intuitively sensible,

because the attacker controls whether i1 is completely suppressed.

3.3 Error-Correcting Codes

An error-correcting code adds redundant information to a message so that sup-

pression can be detected and corrected. One of the simplest error-correcting

codes is the repetition code Rn [4], which adds redundancy by repeating a mes-

sage n times to form a code-word. For example, R3 would encode message 1 as

97

code-word 111. The code-word is sent over a noisy channel, which might cor-

rupt the code-word; the receiver receives this possibly corrupted word from the

channel. For example, the sender might send code-word 111 yet the receiver

could receive word 101. To decode the received word, the receiver can employ

nearest-neighbor decoding: the nearest neighbor of a word w is the6 code-word c

that is closest to w by the Hamming distance metric d. Treating words as vectors

of symbols, Hamming distance d(w, x) between words w and x is the number of

positions i at which wi 6= xi. For the repetition code, nearest-neighbor decoding

is a majority vote: a word is decoded to the symbol that occurs most frequently

in the word. For example, word 101 would be decoded to code-word 111, thus

to message 1, but 001 would be decoded to message 0.

Consider the following program, which models the binary symmetric channel

often studied in information theory:7

BSC : i := 1;

while i ≤ n do

vi := ti p8 vi := not ti;

i := i+ 1

BSC takes as trusted input an n-bit variable t, and outputs n-bit trusted variable

v. Each bit of the input has probability 1− p of being flipped in the output.

If n = 1 and the receiver has a uniform prebelief on trusted input t, then

after executing BSC and observing v, the receiver’s postbelief b′ ascribes proba-

bility p to an input t such that t = v. The amount of program suppression SP is

thus − lg p. But suppose that the sender and receiver employ repetition code R3

with program BSC : the sender encodes a one-bit input s into three bits t1, t2, t3
6The nearest neighbor is not necessarily unique for some codes, in which case an arbitrary

nearest neighbor is chosen.
7Recall from chapter 2 that probabilistic choice S1 p8 S2, where 0 ≤ p ≤ 1, executes program

S1 with probability p or S2 with probability 1− p.

98

Anonymizer anonymized
response

User

response

query
User

Database

Figure 3.5: Model of anonymizer

(so n = 3), inputs those bits to BSC , then the receiver gets three bits v1, v2, v3 as

output, and decodes them to one bit r. Let this composed program be R3(BSC).

Assuming for simplicity that the receiver has a uniform prebelief, postbelief b′

ascribes probability p3 + 3p2(1 − p) to actual input s.8 The amount of program

suppression SP is thus− lg(p3 +3p2(1−p)). So for any p > 1/2 (i.e., for any chan-

nel at least slightly biased toward correct transmission), the program suppres-

sion from R3(BSC) is less than the program suppression from BSC . Repetition

code R3 thus corrects program suppression.

3.4 Statistical Databases

The introduction to this chapter suggested that mechanisms used by statistical

databases to create anonymized responses to queries can be characterized as

sacrificing integrity to improve confidentiality. We can now make this charac-

terization precise by using our models.

As depicted in figure 3.5, we model the anonymizer with a program that

receives two inputs. The first input is the user’s query, which contains pub-

8This probability can be derived either by evaluating the program semantics directly, or by
the following argument. Decoded output r equals input s if exactly zero or one bits in code
word t1t2t3 are flipped during transmission. Each bit ti is transmitted correctly with probability
p and flipped with probability 1 − p. The probability that zero bits are flipped is thus p3; the
probability that a particular bit ti is flipped is p2(1 − p); and there are three possible single bits
that could be flipped. So the total probability of correct decoding is p3 + 3p2(1− p).

99

lic information. The second input is a response containing secret informa-

tion from the database—perhaps even the entire contents of the database. The

anonymizer produces an anonymized response as public output.9 The user is an

attacker against confidentiality, because he might be attempting to learn secret

information through his query. Since the model we have just described coin-

cides with our model for quantitative confidentiality, it is straightforward to an-

alyze the amount of information leaked by the anonymizer using the techniques

in §2.3. In particular, metric Q is the quantity of leakage.

But the anonymizer also acts as a noisy communication channel, where the

database is the sender and the user is the receiver. The input to this chan-

nel is trusted input from the database, and the output from the channel is the

trusted, anonymized response to the user. The query input from the user could

be deemed untrusted, but the user is not an attacker against integrity because

he does not attempt to reduce the amount of information he learns through the

channel—indeed, he would prefer to increase the amount. So although there

is no attacker-controlled suppression, the anonymizer causes program suppres-

sion as quantified by SP .

We can relate the quantity of leakage to the amount of program suppression.

Let A be the anonymizer program, b be the user’s prebelief about the database,

d be the actual database contents, q be the user’s query, and b′ be the user’s post-

belief after observing the anonymized response. Then we obtain the following

theorem:
9The anonymizer might also produce some output about the anonymization it just per-

formed, and this output might be stored in the database and used during future anonymiza-
tions. This output would be secret; we do not model it here.

100

HO

LO

HI

LI

Figure 3.6: Information flows in a system. Dashed lines are uninteresting from
our security perspective.

Theorem 3.2. D(b_ ḋ) = Q(〈A, b, d, q〉, b′) + SP (〈A, b, d, q〉, b′).

Proof. In appendix 3.A.

This theorem means that the quantity of leakage plus the quantity of pro-

gram suppression is constant for a given experiment and outcome. That con-

stant is inaccuracy D(b _ ḋ) in the user’s prebelief b about the database con-

tents d. This is intuitively sensible, because D(b _ ḋ) is the total amount of

information the user could possibly learn about the database contents. All of

that information is either communicated to the user (quantity Q(〈A, b, d, q〉, b′))

or suppressed (quantity SP (〈A, b, d, q〉, b′)).

3.5 Duality of Integrity and Confidentiality

Consider a program that processes two levels of information, low and high,

denoted L and H . We take as the defining characteristic of low information

that its use be unrestricted in the program. For confidentiality, low is therefore

synonymous with public, and for integrity, low is synonymous with trusted.

Analogously, we take as the defining characteristic of high information that its

use be restricted in the program. So for confidentiality, high is synonymous with

secret, and for integrity, high is synonymous with untrusted.

101

Flow Attenuation
HI → LO C: leakage C: hiding

I: contamination I: hygiene
LI → LO C: — C: —

I: transmission I: suppression

Figure 3.7: Dualities between integrity (I) and confidentiality (C)

Let HI denote the high inputs to the system; LO , the low outputs; etc. As de-

picted in figure 3.6, there are four information flows between inputs and outputs

in this system: LI → LO , HI → LO , LI → HO , and HI → HO . The two flows

to HO are uninteresting from our security perspective because high outputs do

not need to be protected—that is, for confidentiality, it does not matter what

information flows to secret outputs; and for integrity, it does not matter what

information flows to untrusted outputs. However, the remaining two flows to

LO are interesting and exhibit dualities, which are summarized in figure 3.7 and

discussed below.

Flow HI → LO is the standard problem with which information-flow se-

curity has been concerned. For confidentiality, this is the flow, or leakage, from

secret inputs to public outputs; §2.2 and §2.3 presented our framework for quan-

tification of leakage. For integrity, this is the flow from untrusted inputs to

trusted outputs; this flow was named contamination in §3.1. Contamination of

trusted information is therefore the information-flow dual of leakage of secret

information: both quantify how much information flows between inputs and

outputs at different security levels. Indeed, our framework for quantification

of contamination was nearly the same as our framework for quantification of

leakage. We needed to introduce a new agent, the user, in the integrity model.

But the user could have been included in the confidentiality model; the user’s

102

role there would have been to choose secret inputs. Note that the user and at-

tacker reverse roles in the two models: for confidentiality, the attacker holds

belief about high (secret) inputs, and for integrity, the user holds belief about

high (untrusted) inputs.

Define attenuation as the amount of information that does not flow from an

input to an output. The amount of actual flow of information is therefore the

amount of information that could possibly flow less the amount of attenuation.

For confidentiality, the attenuation of HI → LO is the distance D(b′H _ σ̇H)

from attacker’s postbelief b′H to state σH . This distance is the amount of secret

information that is not leaked to the attacker; we could call this attenuation

hiding of information. Dually, for integrity, distance D(b′U _ σ̇U) is the amount

of untrusted information that does contaminate the trusted outputs; we could

call this attenuation hygiene because it preserves the “cleanliness” of the trusted

outputs.

Flow LI → LO can be understood as one of the standard problems with

which classical information theory is concerned. For integrity, this is the flow, or

transmission, from trusted inputs to trusted outputs; our framework for quan-

tifying the flow and its attenuation, which we named suppression, was given in

§3.2. For confidentiality, this flow is uninteresting: the amount of information

that flows from public inputs to public outputs does not characterize how the

program leaks or hides secret information. So there does not seem to be a dual

to this flow.

103

3.6 Related Work

Newsome, Song, and McCamant [94] quantify the amount of influence an at-

tacker can exert over the execution of a program as the logarithm of the size

of the set of possible outputs. Assuming that programs are deterministic and

that all inputs are either under the control of the attacker or are fixed constants,

this quantity is the channel capacity of the program. Our definition of con-

tamination generalizes this definition by allowing probabilistic programs and

trusted inputs that are not under the control of the attacker. Also, their defini-

tion conservatively assumes a uniform distribution over outputs, but the defi-

nitions given here allow arbitrary distributions over inputs and outputs. How-

ever, they implement a dynamic analysis that automatically quantifies influence

in real-world programs.

Kifer and Gehrke [63] quantify the utility of anonymized data with relative

entropy (there called Kullback-Leibler divergence). They use this metric to se-

lect among different anonymizations of a dataset.

Biba [15] first identified a duality between confidentiality and integrity, mod-

eling integrity with a dual of the Bell–LaPadula model of confidentiality. Similar

dualities have been exploited in Flume [67] and recent versions of Jif [22].

Clark and Wilson [26] propose a different kind of integrity policy, suitable

for commercial organizations, based on well-formed transactions and verifica-

tion procedures. We have not investigated quantitative generalizations of this

policy.

104

3.7 Summary

This chapter presents an information-flow model for quantification of integrity.

We introduced two novel information-flow integrity metrics, contamination

and suppression. Both metrics are defined by adapting our belief-based model

(in chapter 2) for quantification of confidentiality. We have shown that our

metric for suppression agrees with the classical information-theoretic metric for

channel capacity. We have also applied our definition to the analysis of error-

correcting codes and statistical databases.

105

3.A Appendix: Proofs

Theorem 3.1 Qtrans(E , b′) = IδR(o)− IδY (o).

Proof.

Qtrans(E , b′)

= 〈 Definition of Qtrans 〉

D(b�TI _ σ̇T)−D(b′ �TI _ σ̇T)

= 〈 Definitions of D and point mass 〉

− lg(b�TI)(σT) + lg(b′ �TI)(σT)

= 〈 Lemma 3.1 (below), properties of lg 〉

− lg PrδR(o) + lg PrδY (o)

= 〈 Definition of I 〉

IδR(o)− IδY (o)

Lemma 3.1. (b′ �TI)(σT) = (b�TI)(σT) · δS(o)
δR(o)

.

Proof.

(b′ �TI)(σT)

= 〈 Definition of b′ in corruption experiment protocol 〉

((([[S]]b)|o)�TI)(σT)

= 〈 Definition of δ �TI 〉

(
∑

σ : σ �TI = σT : (([[S]]b)|o)(σ))

106

= 〈 Definition of δ|o 〉

(
∑

σ : σ �TI = σT ∧ σ �TO = o :
([[S]]b)(σ)

(([[S]]b)�TO)(o)
)

= 〈 Definition of δ �T 〉

(
∑

σ : σ �T = (σT ∪ o) :
([[S]]b)(σ)

(([[S]]b)�TO)(o)
)

= 〈 Distributivity 〉

1
(([[S]]b)�TO)(o)

· (
∑

σ : σ �T = (σT ∪ o) : ([[S]]b)(σ))

= 〈 Definition of δR 〉

1
δR(o)

· (
∑

σ : σ �T = (σT ∪ o) : ([[S]]b)(σ))

= 〈 Definition of [[S]]δ 〉

1
δR(o)

· (
∑

σ : σ �T = (σT ∪ o) : (
∑

σ′ : b(σ′) · ([[S]]σ′)(σ)))

= 〈 Input is immutable, so σ and σ′ must agree on it 〉

1
δR(o)

· (
∑

σ : σ �T = (σT ∪ o) :

(
∑

σ′ : σ′ �TI = σT : b(σ′) · ([[S]]σ′)(σ)))

= 〈 Associativity 〉

1
δR(o)

· (
∑

σ′ : σ′ �TI = σT :

(
∑

σ : σ �T = (σT ∪ o) : b(σ′) · ([[S]]σ′)(σ)))

= 〈 Distributivity 〉

1
δR(o)

· (
∑

σ′ : σ′ �TI = σT : b(σ′)

· (
∑

σ : σ �T = (σT ∪ o) : ([[S]]σ′)(σ)))

= 〈 Unit of · 〉

107

1
δR(o)

· (b�TI)(σT)
(b�TI)(σT)

· (
∑

σ′ : σ′ �TI = σT : b(σ′)

· (
∑

σ : σ �T = (σT ∪ o) : ([[S]]σ′)(σ)))

= 〈 Distributivity 〉

1
δR(o)

· (b�TI)(σT) · (
∑

σ′ : σ′ �TI = σT :
b(σ′)

(b�TI)(σT)

· (
∑

σ : σ �T = (σT ∪ o) : ([[S]]σ′)(σ)))

= 〈 Definition of b|U , using range of σ′ 〉

1
δR(o)

· (b�TI)(σT) · (
∑

σ′ : σ′ �TI = σT : (b|σT)(σ′)

· (
∑

σ : σ �T = (σT ∪ o) : ([[S]]σ′)(σ)))

= 〈 Distributivity 〉

1
δR(o)

· (b�TI)(σT) · (
∑

σ′ : σ′ �TI = σT :

(
∑

σ : σ �T = (σT ∪ o) : (b|σT)(σ′) · ([[S]]σ′)(σ)))

= 〈 Associativity 〉

1
δR(o)

· (b�TI)(σT) · (
∑

σ : σ �T = (σT ∪ o) :

(
∑

σ′ : σ′ �TI = σT : (b|σT)(σ′) · ([[S]]σ′)(σ)))

= 〈 Input is immutable, so σ and σ′ must agree on it 〉

1
δR(o)

· (b�TI)(σT) · (
∑

σ : σ �T = (σT ∪ o) :

(
∑

σ′ : (b|σT)(σ′) · ([[S]]σ′)(σ)))

= 〈 Definition of [[S]]δ 〉

1
δR(o)

· (b�TI)(σT) · (
∑

σ : σ �T = (σT ∪ o) : ([[S]](b|σT))(σ))

= 〈 Definition of b|U 〉

108

1
δR(o)

· (b�TI)(σT) · (
∑

σ : σ �TO = o : ([[S]](b|σT))(σ))

= 〈 Definition of δ �TO 〉

1
δR(o)

· (b�TI)(σT) · (([[S]](b|σT))�TO)(o)

= 〈 Definition of δS 〉

1
δR(o)

· (b�TI)(σT) · δS(o)

= 〈 Commutativity 〉

(b�TI)(σT) · δS(o)
δR(o)

109

CHAPTER 4

FORMALIZATION OF SECURITY POLICIES∗

The Trusted Computer System Evaluation Criteria (TCSEC) [37], also known

as the “Orange Book,” establishes verified design as the highest security certifica-

tion that a computer system can obtain.1 To meet (in part) the criteria for verified

design, a system must be accompanied by a formal security policy, a formal de-

sign, and a formal or informal proof that the design satisfies the policy. Some

lower levels of certification also require the statement of a formal security pol-

icy.2 So formal techniques for specification of security policies are necessary to

achieve high levels of certification.

Recall from chapter 1 that the theory of trace properties seems appealing as

a formal technique for specification of security policies, but that security poli-

cies such as noninterference and mean response time are not trace properties.

Sets of trace properties, however, are sufficient to formalize security policies. In

chapter 1, we named these sets hyperproperties. A theory of hyperproperties is

developed in this chapter. We generalize safety and liveness, and their topo-

logical characterizations, from trace properties to hyperproperties. We identify

a subclass of hypersafety, called k-safety, for which we give a relatively com-

plete verification methodology. And we show that every hyperproperty is the

intersection of a safety hyperproperty and a liveness hyperproperty.

This chapter proceeds as follows. Hyperproperties, hypersafety, k-safety,

and hyperliveness are defined and explored in §4.1, §4.2, §4.3, and §4.4, respec-

tively. A topological account of hyperproperties is given in §4.5. The hyperpro-
∗This chapter contains material from a previously published paper [29], which is c© 2008

IEEE and reprinted, with permission, from Proceedings of the 21st IEEE Computer Security Foun-
dations Symposium.

1Verified design is designated “Class A1” by the TCSEC.
2These certifications are structured protection and security domains, designated “Class B2” and

“Class B3” by the TCSEC.

110

perty intersection theorem is presented in §4.6, and §4.7 concludes. Most proofs

are delayed from the main body to appendix 4.A.

4.1 Hyperproperties

We model system execution with traces, where a trace is a sequence of states; by

employing rich enough notions of state, this model can encode other represen-

tations of execution.3

The structure of a state is not important in the following definitions, so we

leave set Σ of states abstract. However, the structure of a state is important

for real examples, and we introduce predicates and functions, on states and on

traces, as needed to model events, timing, probability, etc.

Traces may be finite or infinite sequences, which we categorize into sets:

Ψfin , Σ∗,

Ψinf , Σω,

Ψ , Ψfin ∪Ψinf ,

where Σ∗ denotes the set of all finite sequences over Σ, and Σω denotes the set

of all infinite sequences over Σ. For trace t = s0s1 . . . and index i ∈ N, we define

the following indexing notation:

t[i] , si,

t[..i] , s0s1 . . . si,

t[i..] , sisi+1 . . .

3Chapter 5 shows how to model a labeled transition system as a set of traces by including
transition labels in states, thereby preserving information about the nondeterministic branching
structure of the system. This encoding is also used by chapter 5 to model state machines and
probabilistic systems.

111

We denote concatenation of finite trace t and (finite or infinite) trace t′ as tt′, and

we denote the empty trace as ε.

A system is modeled by a non-empty set of infinite traces, called its executions.

If an execution terminates (and thus could be represented by a finite trace), we

represent it as an infinite trace by infinitely stuttering the final state in the finite

trace.

4.1.1 Trace Properties

A trace property is a set of infinite traces [5, 70]. The set of all trace properties is

Prop , P(Ψinf),

whereP denotes powerset. A set T of traces satisfies a trace property P , denoted

T |= P , iff all the traces of T are in P :

T |= P , T ⊆ P.

Some security policies are expressible as trace properties. For example, con-

sider the policy “The system may not write to the network after reading from a

file.” Formally, this is the set of traces

NRW , {t ∈ Ψinf | ¬(∃ i, j ∈ N : i < j ∧ isFileRead(t[i])

∧ isNetworkWrite(t[j]))}, (4.1.1)

where isFileRead and isNetworkWrite are state predicates.

Similarly, access control is a trace property requiring every operation to be

consistent with its requestor’s rights:

AC , {t ∈ Ψinf | (∀ i ∈ N : rightsReq(t[i])

⊆ acm(t[i− 1])[subj (t[i]), obj (t[i])])}. (4.1.2)

112

Function acm(s) yields the access control matrix in state s. Function subj (s)

yields the subject who requested the operation that led to state s, function obj (s)

yields the object involved in that operation, and function rightsReq(s) yields the

rights required for the operation to be allowed.

As another example, guaranteed service is a trace property requiring that ev-

ery request for service is eventually satisfied:

GS , {t ∈ Ψinf | (∀ i ∈ N : isReq(t[i])

=⇒ (∃ j > i : isRespToReq(t[j], t[i])))}. (4.1.3)

Predicate isReq(s) identifies whether a request is initiated in state s, and predi-

cate isRespToReq(s′, s) identifies whether state s′ completes the response to the

request initiated in state s.

4.1.2 Hyperproperties

A hyperproperty is a set of sets of infinite traces, or equivalently a set of trace

properties. The set of all hyperproperties is

HP , P(P(Ψinf))

= P(Prop).

The interpretation of a hyperproperty as a security policy is that the hyperpro-

perty is the set of systems allowed by that policy.4 Each trace property in a

hyperproperty is an allowed system, specifying exactly which executions must

be possible for that system. Thus a set T of traces satisfies hyperproperty H ,

denoted T |= H , iff T is in H :

T |= H , T ∈ H .

4The hyperproperty might also contain the empty set of traces, although this set does not
correspond to a system.

113

Note the use of bold face to denote hyperproperties (e.g., H) and sans serif

to denote sets of trace properties (e.g., Prop). Although a hyperproperty and a

set of trace properties are mathematically the same kind of object (a set of sets

of traces), they are used differently in formulas, hence the different typography.

Sets of hyperproperties are simultaneously bold face and sans serif (e.g., HP).

Given a trace property P , there is a unique hyperproperty denoted [P] that

expresses the same policy as P . We call this hyperproperty the lift of P . For P

and [P] to express the same policy, they must be satisfied by the same sets of

traces. Thus we can derive a definition of [P]:

(∀T ∈ Prop : T |= P ⇐⇒ T |= [P])

= (∀T ∈ Prop : T ⊆ P ⇐⇒ T ∈ [P])

= [P] = {T ∈ Prop | T ⊆ P}

= [P] = P(P).

Consequently, the lift of P is the powerset of P :

[P] , P(P).

4.1.3 Hyperproperties in Action

Trace properties are satisfied by traces, whereas hyperproperties are satisfied

by sets of traces. This additional level of sets means that hyperproperties can be

more expressive than trace properties. We explore this added expressivity with

some examples.

Secure information flow. Information-flow security policies express restric-

tions on what information may be learned by users of a system. Users interact

114

with systems by providing inputs and observing outputs. To model this interac-

tion, define ev(s) as the input or output event, if any, that occurs when a system

transitions to state s. Assume that at most one event, input or output, can occur

at each transition. For a trace t, extend this notation to ev(t), denoting the se-

quence of events resulting from application of ev(·) to each state in trace t.5 Fur-

ther assume that each user of a system is cleared either at confidentiality level

L, representing low (public) information, or H , representing high (secret) infor-

mation, and that each event is labeled with one of these confidentiality levels.

Define evL(t) to be the subsequence of low input and output events contained

within ev(t), and evHin(t) to be the subsequence of high input events contained

within ev(t).

Noninterference, as defined by Goguen and Meseguer [46], requires that com-

mands issued by users holding high clearances be removable without affecting

observations of users holding low clearances. Treating commands as inputs

and observations as outputs, we model this security policy as a hyperproperty

requiring a system to contain, for any trace t, a corresponding trace t′ with no

high inputs yet with the same low events as t:

GMNI , {T ∈ Prop | T ∈ SM

∧ (∀ t ∈ T : (∃ t′ ∈ T : evHin(t′) = ε

∧ evL(t) = evL(t′)))}. (4.1.4)

Conjunct T ∈ SM expresses the requirement, made by Goguen and Meseguer’s

formalization, that systems are deterministic state machines (§5.4 defines SM

formally). GMNI is not a trace property because trace t is allowed only if cor-

responding trace t′ is also allowed.

5Depending on the nature of events in the particular system that is being modeled, it might
be appropriate for ev(t) to eliminate stuttering of events.

115

Generalized noninterference [81] extends Goguen and Meseguer’s definition

of noninterference to handle nondeterministic systems, which are the systems

modeled by Prop. McLean [86] reformulates generalized noninterference as a

policy requiring a system to contain, for any traces t1 and t2, an interleaved

trace t3 whose high inputs are the same as t1 and whose low events are the same

as t2. This is a hyperproperty:

GNI , {T ∈ Prop | (∀ t1, t2 ∈ T : (∃ t3 ∈ T :

evHin(t3) = evHin(t1) ∧ evL(t3) = evL(t2)))}. (4.1.5)

GNI is not a trace property because the presence of any two traces t1 and t2 in

a system necessitates the presence of a third trace t3.

Observational determinism [85, 102] requires a system to appear deterministic

to a low user. Zdancewic and Myers’s [130] definition of observational deter-

minism can be formulated as a hyperproperty:

OD , {T ∈ Prop | (∀ t, t′ ∈ T : t[0] =L t
′[0] =⇒ t ≈L t′)}. (4.1.6)

State equivalence relation s =L s′ holds whenever states s and s′ are indistin-

guishable to a low user, and trace equivalence relation t ≈L t′ holds whenever

traces t and t′ are indistinguishable to a low user. Zdancewic and Myers define

trace equivalence in terms of state equivalence, requiring the sequence of states

in each trace to be equivalent up to both stuttering and prefix; equivalence up to

prefix makes their definition termination insensitive—that is, systems are allowed

to leak information via termination channels.6 OD is not a trace property be-

cause whether some trace is allowed in a system depends on all the other traces

of the system.

6Zdancewic and Myers also require systems to be race free, hence they weaken trace equiv-
alence to hold for each memory location in a state in isolation, not over all memory locations
simultaneously. We omit this requirement for simplicity.

116

Bisimulation-based definitions of information-flow security policies can also

be formulated as hyperproperties,7 which we demonstrate in chapter 5 with Fo-

cardi and Gorrieri’s [44] bisimulation nondeducibility on compositions (BNDC)

and with Boudol and Castellani’s [18] definition of noninterference.

All information-flow security policies we investigated turned out to be hy-

perproperties, not trace properties. This is suggestive, but any stronger state-

ment about the connection between information flow and hyperproperties

would require a formal definition of information-flow policies, and none is uni-

versally accepted. Nonetheless, we believe that information flow is intrinsically

tied to correlations between (not within) executions. And hyperproperties are

sufficiently expressive to formulate such correlations, whereas trace properties

are not.

Service level agreements. A service level agreement (SLA) specifies acceptable

performance of a system. Such specifications commonly use statistics such as

• mean response time, the mean time that elapses between a request and a

response;

• time service factor, the percentage of requests that are serviced within a

specified time; and

• percentage uptime, the percentage of time during which the system is avail-

able to accept and service requests.

These statistics can be used to define policies with respect to individual exe-

cutions of a system or across all executions of a system. In the former case, the

7Since hyperproperties are trace-based, this might at first seem to contradict results, such as
Focardi and Gorrieri’s [44], stating that bisimulation-based definitions are more expressive than
trace-based definitions. However, by employing a richer notion of state [105, §1.3] in traces than
Focardi and Gorrieri, hyperproperties are able to express bisimulations.

117

SLA would be a trace property. For example, the policy “The mean response

time in each execution is less than 1 second” might not be satisfied by a system

if there are executions in which some response times are much greater than 1

second. Yet if these executions are rare, the system might still satisfy the policy

“The mean response time over all executions is less than 1 second.” This latter

SLA is not a trace property, but it is a hyperproperty:

RT , {T ∈ Prop | mean

(⋃
t∈T

respTimes(t)

)
≤ 1}. (4.1.7)

Function mean(X) denotes the mean8 of a set X of real numbers, and

respTimes(t) denotes the set of response times (in seconds) from request and

response events in trace t. Policies derived from the other SLA statistics above

can similarly be expressed as hyperproperties.

4.1.4 Beyond Hyperproperties?

Hyperproperties are able to express security policies that trace properties can-

not. So it is natural to ask whether there are security policies that hyperproper-

ties cannot express. We have equated security policies with system properties,

and we chose to model systems as trace sets. Every property of trace sets is a

hyperproperty, so by definition hyperproperties are expressively complete for

our formulations of “system” and “security policy.” To find security policies

that hyperproperties cannot express (if any exist), we would need to examine

alternative notions of systems and security policies. Alternative formulations

of systems are discussed in chapter 5, but all the formulations considered there

turn out to have encodings as trace sets—thus hyperproperties are complete for

8Since X might have infinite cardinality, RT requires a definition of the mean of an infinite
set (and, for some sets, this mean does not exist). We omit formalizing such a definition here;
one possibility is to use Cesàro means [54].

118

those formulations. We do not know whether other formulations exist that do

not have such encodings.

One way to generalize the notion of a security policy is to consider policies

on sets of systems—for example, diversity [100], which requires the systems all to

implement the same functionality but to differ in their implementation details.

Any such policy, however, could be modeled as a hyperproperty on a single

system that is a product9 of all the systems in the set. So hyperproperties again

seem to be sufficient.

4.1.5 Logic and Hyperproperties

We have not given a logic in which hyperproperties may be expressed. The ex-

amples in this chapter require only second-order logic. Although higher-order

logic might also be useful to express hyperproperties, higher-order logic is re-

ducible to second-order logic [107, §6.2]. So we believe that second-order logic

is sufficient to express all hyperproperties. But we do not know whether the full

power of second-order logic is necessary to express hyperproperties of interest.

This has ramifications for verification of hyperproperties, because although full

second-order logic cannot be effectively and completely axiomatized, fragments

of it can be [14, §2.3].10

9The product of systems T1 and T2 can be defined as system {(t1[0], t2[0])(t1[1], t1[2]) . . . | t1 ∈
T1 ∧ t2 ∈ T2}, comprising traces over pairs of states. Generalizing, the product of a set of n
systems comprises traces over n-tuples of states.

10It is natural to ask whether we could further reduce second-order logic to first-order. Such a
reduction is possible, but only with the Henkin, rather than standard, semantics of second-order
logic [14, §4.2]. We do not know which of these semantics should be preferred for hyperproper-
ties. However, there are trace properties, and thus hyperproperties, that we conjecture cannot
be expressed in first-order logic—for example, the trace property containing the single trace
pqppqqpppqqq . . ., where p and q are states. This suggests that the standard semantics is appro-
priate.

119

4.1.6 Refinement and Hyperproperties

Programmers use stepwise refinement [1,9,33,40,71,126] to develop, in a series of

steps, a program that implements a specification. The programmer starts from

the specification. Each successive step creates a more concrete specification, ul-

timately culminating in a specification sufficiently concrete that a computer can

execute it. To prove that the final concrete specification correctly implements the

original specification, the programmer argues at each step that the new concrete

specification refines the previous specification. Specification S1 refines specifica-

tion S2, denoted S1 REF S2, iff every behavior permitted by S1 is also permitted

by S2—that is, the set of behaviors of S1 is a subset of the set of behaviors of S2.

Specifications might describe behaviors at different levels of abstraction. For

example, a specification might describe behaviors of a queue, but a refinement

of that specification might use an array to implement this behavior. Or a speci-

fication might describe behaviors using critical sections, but a refinement might

implement critical sections with semaphores. So programmers need techniques

to relate the behaviors described by specifications. Abstraction functions [55, 56]

and refinement mappings [1] have been developed for this purpose; both interpret

concrete behaviors as abstract behaviors.

Generalizing from these two techniques, let an interpretation function be a

function of type Ψ→ Ψ. Let IF be any class of interpretation functions that (like

abstraction functions and refinement mappings) is closed under composition

and contains the identity function id .11

11Abstraction functions must also preserve data type operations, and refinement mappings
must preserve externally visible components up to stuttering. But these restrictions are not
relevant to our discussion.

120

An interpretation function α can be lifted to Prop → Prop by applying α to

each trace in a set:

α(T) , {α(t) | t ∈ T}.

System S α-satisfies trace property P , denoted S |=α P , iff α(S) |= P . Notation

S |= P , as we have used it so far, thus means that S |=id P .

Trace property P1 refines P2 under interpretation α, denoted P1 REFα P2,

iff α(P1) ⊆ P2. So for trace properties, satisfaction is the same relation as refine-

ment, and subset implies refinement—that is, if C is a subset ofA, then C refines

A (under interpretation id). This implication is desirable, because it permits re-

finements that resolve nondeterminism by removing traces from a system.

It is well-known that this kind of refinement does not generally work for se-

curity policies.12 For example, recall system π (chapter 1), which nondetermin-

istically chooses to output 0, 1, or the value of a secret bit h. System π satisfies

the specification “The possible output values are independent of the values of

secrets,” which can be formulated as a hyperproperty. But consider a system π′

that always outputs h. System π′ does not satisfy the specification and therefore

cannot refine π, yet π′ ⊆ π. So subset does not imply refinement for hyperprop-

erties as it does for trace properties.

Hyperproperty H 1 refines H 2 under interpretation α, denoted H 1 HREFα

H 2 , iff α(H 1) ⊆ H 2 , where α(H) is defined as {α(T) | T ∈ H}. A natural

relationship that we would expect to hold is

(∀S ∈ Prop,H ∈ HP : S |= H ⇐⇒ [S] HREFid H), (4.1.8)

12Previous work has identified refinement techniques that are valid for use with certain
information-flow security policies [17, 79, 86].

121

because satisfaction and refinement intuitively should agree (as they did for

trace properties). Straightforward application of definitions shows that (4.1.8)

holds iff H is subset closed.

Thus, perhaps unsurprisingly, the set of hyperproperties with which refine-

ment works is the set SSC of subset-closed hyperproperties:

SSC , {H ∈ HP | (∀T ∈ Prop : T ∈ H

=⇒ (∀T ′ ∈ Prop : T ′ ⊆ T =⇒ T ′ ∈ H))}.

The lifted trace properties are, of course, members of SSC. But SSC contains

more than just the lifted trace properties. For example, observational determin-

ism OD (4.1.6) is subset closed and therefore a member of SSC, but OD is not a

lifted trace property.

4.2 Hypersafety

According to Alpern and Schneider [5], the “bad thing” in a safety property

must be both

• finitely observable, meaning its occurrence can be detected in finite time,

and

• irremediable, so its occurrence can never be remediated by future events.

No-read-then-write NRW (4.1.1) and access control AC (4.1.2) are both safety.

The bad thing for NRW is a finite trace in which a network write occurs after a

file read. This bad thing is finitely observable, because the write can be detected

in some finite prefix of the trace, and irremediable, because the network write

can never be undone. For AC , the bad thing is similarly a finite trace in which

an operation is performed without appropriate rights.

122

For trace properties, a bad thing is a finite trace that cannot be a prefix of any

execution satisfying the safety property. A finite trace t is a prefix of a (finite or

infinite) trace t′, denoted t ≤ t′, iff t′ = tt′′ for some t′′ ∈ Ψ.

Definition 4.1. A trace property S is a safety property [5] iff

(∀ t ∈ Ψinf : t /∈ S =⇒ (∃m ∈ Ψfin : m ≤ t ∧

(∀ t′ ∈ Ψinf : m ≤ t′ =⇒ t′ /∈ S))).

Define SP to be the set of all safety properties; note that SP is itself a hyperpro-

perty.

We generalize safety to hypersafety by generalizing the bad thing from a

finite trace to a finite13 set of finite traces. Define Obs to be the set of such obser-

vations:

Obs , Pfin(Ψfin),

where Pfin(X) denotes the set of all finite subsets of set X . Prefix ≤ on sets of

traces is defined as follows:14

T ≤ T ′ , (∀ t ∈ T : (∃ t′ ∈ T ′ : t ≤ t′)).

Note that this definition allows T ′ to contain traces that have no prefix in T .

Definition 4.2. A hyperproperty S is a safety hyperproperty (is hypersafety) iff

(∀T ∈ Prop : T /∈ S =⇒ (∃M ∈ Obs : M ≤ T

∧ (∀T ′ ∈ Prop : M ≤ T ′ =⇒ T ′ /∈ S))).

13Infinite sets might seem to be an attractive alternative, and many of the results in the rest of
this chapter would still hold. However, the topological characterization given in §4.5 (specifi-
cally, propositions 4.4 and 4.5) would be sacrificed.

14Other definitions of trace set prefix are possible, but inconsistent with our notion of obser-
vation. We discuss this in §4.5.

123

The definition of hypersafety parallels the definition of safety, but the domains

involved now include an extra level of sets. Define SHP to be the set of all safety

hyperproperties.

Observational determinism OD (4.1.6) is hypersafety. The bad thing is a pair

of traces that are not low-equivalent despite having low-equivalent initial states.

But set SP of all safety properties is not hypersafety: there is no bad thing that

prevents an arbitrary trace property from being extended to a safety property.

Safety properties lift to safety hyperproperties:

Proposition 4.1. (∀S ∈ Prop : S ∈ SP ⇐⇒ [S] ∈ SHP).

Proof. In appendix 4.A.

Refinement of hypersafety. Stepwise refinement works with all safety hy-

perproperties, because safety hyperproperties are subset closed (c.f. §4.1.6), as

stated by the following theorem.

Theorem 4.1. SHP ⊂ SSC.

Proof. In appendix 4.A.

A consequence of theorem 4.1 is that any hyperproperty that is not sub-

set closed cannot be hypersafety. For example, generalized noninterference

GNI (4.1.5) is not subset closed: a system containing traces t1 and t2 and in-

terleaved trace t3 might satisfy GNI , but the subset containing only t1 and t2

would not satisfy GNI . Thus GNI cannot be hypersafety.

124

4.3 Beyond 2-Safety

Safety properties enjoy a relatively complete verification methodology based on

invariance arguments [6]. Although we have not obtained such a methodology

for hypersafety, we can use invariance arguments to verify a class of safety hy-

perproperties by generalizing recent work on verification of secure information

flow.

Recall that secure information flow is a hyperproperty but not a trace prop-

erty. Recent work gives system transformations that reduce verifying secure

information flow15 to verifying a safety property of some transformed system:

Pottier and Simonet [99] develop a type system for verifying secure informa-

tion flow based on simultaneous reasoning about two executions of a program.

Darvas et al. [34] show that secure information flow can be expressed in dy-

namic logic. Barthe et al. [12] give an equivalent formulation for Hoare logic

and temporal logic, based on a self-composition construction.

Define the sequential self-composition of P as the program P ;P ′, where P ′ de-

notes program P , but with every variable renamed to a fresh, primed variable—

for example, variable x is renamed to x′. One way to verify that P exhibits se-

cure information flow is to establish the following trace property of transformed

program P ;P ′:

If for every low variable l, before execution l = l′ holds, then when

execution terminates l = l′ still holds, no matter what the values of

high variables were.

15These reductions are possible because the particular formulations of secure information
flow used in each work are actually hypersafety. A formulation that is hyperliveness—which
would include all possibilistic information-flow policies, as discussed in §4.4—would not be
amenable to these reductions.

125

Barthe et al. generalize the self-composition operator from sequential composi-

tion to any operator that satisfies certain conditions, and they note that parallel

composition satisfies these conditions. They also relax the equality constraints

in the above trace property to partial equivalence relations. Terauchi and

Aiken [115] further generalize the applicability of self-composition by showing

that it can be used to verify any 2-safety property, which they define informally

as a “property that can be refuted by observing two finite traces.”

Using hyperproperties, we can show that the above results are special cases

of a more general theorem. Define a k-safety hyperproperty as a safety hyper-

property in which the bad thing never involves more than k traces:

Definition 4.3. A hyperproperty S is a k-safety hyperproperty (is k-safety) iff

(∀T ∈ Prop : T /∈ S =⇒ (∃M ∈ Obs : M ≤ T ∧ |M | ≤ k

∧ (∀T ′ ∈ Prop : M ≤ T ′ =⇒ T ′ /∈ S))).

This is just the definition of hypersafety with an added conjunct “|M | ≤ k”. For

a given k, define KSHP(k) to be the set of all k-safety hyperproperties.

As an example of a k-safety hyperproperty for any k, consider a system that

stores a secret by splitting it into k shares. Suppose that an action of the system

is to output a share. Then a hyperproperty of interest might be that the system

cannot, across all of its executions, output all k shares (thereby outputting suf-

ficient information for the secret to be reconstructed). We denote this k-safety

hyperproperty as SecS k.

The 1-safety hyperproperties are the lifted safety properties—that is,

KSHP(1) = {[S] | S ∈ SP}

—since the bad thing for a safety property is a single trace. Thus “1-safety” and

“safety” are synonymous.

126

The Terauchi and Aiken definition of 2-safety properties is limited to deter-

ministic programs that are expressed in a relational model of execution (which

we address further in §5.2), and it ignores nonterminating traces. So their 2-

safety properties are a strict subset of the 2-safety hyperproperties, KSHP(2).

For example, observational determinism OD (4.1.6) is not a 2-safety property,

but it is a 2-safety hyperproperty.

Define the parallel self-composition of system S as the product system S × S

consisting of traces over Σ× Σ:

S × S , {(t[0], t′[0])(t[1], t′[1]) · · · | t ∈ S ∧ t′ ∈ S}.

Define the k-product of S, denoted Sk, to be the k-fold parallel self-composition

of S, comprising traces over Σk. Self-composition S × S is equivalent to 2-

product S2.

Previous work has shown how to reduce a particular formulation of nonin-

terference of system S to a related safety property of S2 [12], and how to reduce

any 2-safety hyperproperty of S to a related safety property of S;S ′ [115]. The

following theorem generalizes those results. Let Sys be the set of all systems.

For any system S, any k-safety hyperproperty K of S can be reduced to a safety

property K of Sk, and the proof of the following theorem (in appendix 4.A)

shows how to construct K from K :

Theorem 4.2. (∀S ∈ Sys,K ∈ KSHP(k) : (∃K ∈ SP : S |= K ⇐⇒ Sk |= K)).

Proof. In appendix 4.A.

Theorem 4.2 provides a verification technique for k-safety: reduce a k-safety

hyperproperty to a safety property, then verify that the safety property is satis-

fied by Sk using an invariance argument. Since invariance arguments are rela-

127

tively complete for safety properties [6], this methodology is relatively complete

for k-safety.

However, theorem 4.2 does not provide the relatively complete verification

procedure we seek for hypersafety, because there are safety hyperproperties that

are not k-safety for any k. For example, consider the hyperproperty “for any k,

a system cannot output all k shares of a secret from a k-secret sharing”:

SecS ,
⋃
k

SecS k. (4.3.1)

SecS is not k-safety for any k. Yet it is hypersafety, since any trace property not

contained in it violates some SecS k.

4.4 Hyperliveness

Alpern and Schneider [5] characterize the “good thing” in a liveness property as

• always possible, no matter what has occurred so far, and

• possibly infinite, so it need not be a discrete event.

For example, guaranteed service GS (4.1.3) is a liveness property in which the

good thing is the eventual response to a request. This good thing is always pos-

sible, because a state in which a response is produced can always be appended

to any finite trace containing a request. And this good thing is not infinite be-

cause the response is a discrete event, but starvation freedom, which stipulates

that a system makes progress infinitely often, is an example of a liveness prop-

erty with an infinite good thing.

128

Formally, a good thing is an infinite suffix of a finite trace:

Definition 4.4. Trace property L is a liveness property [5] iff

(∀ t ∈ Ψfin : (∃ t′ ∈ Ψinf : t ≤ t′ ∧ t′ ∈ L)).

Define LP to be the set of all liveness properties. Not surprisingly, LP is a hyper-

property.

Just as with hypersafety, we generalize liveness to hyperliveness by general-

izing a finite trace to a finite set of finite traces. The definition of hyperliveness

is essentially the same as the definition of liveness, except for an additional level

of sets:

Definition 4.5. Hyperproperty L is a liveness hyperproperty (is hyperliveness) iff

(∀T ∈ Obs : (∃T ′ ∈ Prop : T ≤ T ′ ∧ T ′ ∈ L)).

Define LHP to be the set of all liveness hyperproperties.

Mean response time RT (4.1.7) is not liveness but it is hyperliveness: the

good thing is that the mean response time is low enough. Given any observa-

tion T with any mean response time, it is always possible to extend T , such that

the resulting system has a low enough mean response time, by adding a trace

that has many quick responses. Note that if this policy were approximated by

limiting the maximum response time in each execution, the resulting hyperpro-

perty would be a lifted safety property.

Set LP of all liveness properties is a liveness hyperproperty: every obser-

vation can be extended to any liveness property. Similarly, set SP of all safety

properties is a liveness hyperproperty: every observation can be extended to a

safety property (whose bad thing is “not beginning execution with one of the

finite traces in the observation”).

129

The only hyperproperty that is both hypersafety and hyperliveness is true ,

defined as Prop. The hyperproperty false , defined as {∅}, is hypersafety but not

hyperliveness.16

Liveness properties lift to liveness hyperproperties:

Proposition 4.2. (∀L ∈ Prop : L ∈ LP ⇐⇒ [L] ∈ LHP).

Proof. In appendix 4.A.

Possibilistic information flow. Some information-flow security policies, such

as observational determinism OD (4.1.6), restrict nondeterminism of a system

from being publicly observable. However, observable nondeterminism might

be useful, for a couple of reasons. First, systems might exhibit nondeterminism

due to scheduling. If the scheduler cannot be influenced by secret information

(i.e., the scheduler does not serve as a covert timing channel), it is reasonable

to allow the scheduler to behave nondeterministically. Second, nondetermin-

ism is a useful modeling abstraction when dealing with probabilistic systems

(which we consider in more detail in §5.5). When the exact probabilities for a

system are unknown, they can be abstracted by nondeterminism. For at least

these reasons, there is a history of research on possibilistic information-flow se-

curity policies, beginning with nondeducibility [113] and generalized noninter-

ference [81]. Such policies are founded on the intuition that low observers of

a system should gain little from their observations. Typically, these policies re-

quire that every low observation is consistent with some large set of possible

high behaviors.

16The false property is the empty set of traces, so it might seem reasonable to define false as
the empty set of trace sets. But then the lift of the false property would not equal false . Note
that false is not satisfied by any system because, by definition, ∅ is not a system.

130

McLean [86] shows that possibilistic information-flow policies can be ex-

pressed as trace sets that are closed with respect to selective interleaving func-

tions. Such functions, given two executions of a system, specify another trace

that must also be an execution of the system—as did the definition of general-

ized noninterference GNI (4.1.5). Mantel [78] generalizes from these functions

to closure operators, which extend a set S of executions to a set S ′ such that S ⊆ S ′.

Mantel argues that every possibilistic information-flow policy can be expressed

as a closure operator.

Given a closure operator Cl that expresses a possibilistic information-flow

policy, the hyperproperty PCl induced by Cl is

PCl , {Cl(T) | T ∈ Prop}.

Define the set PIF of all such hyperproperties to be
⋃

Cl PCl . It is now easy to see

that these are liveness hyperproperties: any observation T can be extended to

its closure.

Theorem 4.3. PIF ⊂ LHP.

Proof. In appendix 4.A.

Possibilistic information-flow policies are therefore never hypersafety.17

Temporal logics. Consider the hyperproperty “For every initial state, there is

some terminating trace, but not all traces must terminate,” denoted as NNT . In

branching-time temporal logic, NNT could be expressed as

♦ terminates , (4.4.1)
17Another way to reach this conclusion is to observe that closure operators need not yield hy-

perproperties that are subset closed—yet, by theorem 4.1, every safety hyperproperty is subset
closed.

131

where terminates is a state predicate and ♦ is the “not never” operator.18 There

is no linear-time temporal predicate that expresses NNT , nor is there a live-

ness property equivalent to NNT [69]; an approximation would be a linear-time

predicate, or a liveness property, that requires every trace to terminate. How-

ever, NNT is hyperliveness because any finite trace can be extended to a set of

executions such that at least one execution terminates.

This example suggests a relationship between hyperproperties and

branching-time temporal predicates, and between trace properties and linear-

time temporal predicates. We can make this relationship precise by examin-

ing the semantics of temporal logic. In both branching time and linear time,

a semantic model contains a set of states and a valuation function assign-

ing a Boolean value to each atomic proposition in each state. Additionally, a

branching-time model requires a current state and a set of traces, whereas a

linear-time model requires a single trace [41]. These requirements differ because

a linear-time predicate is a property of a trace, whereas a branching-time predi-

cate is a property of a state and all the future traces that could proceed from that

state. Thus, trace properties model linear-time predicates, and hyperproperties

model branching-time predicates for a given state.

Moreover, hyperproperties can express policies that branching-time predi-

cates cannot. Consider the trace property “Every trace must end with an infi-

nite number of good states,” denoted SAG , where good is a state predicate. In

linear-time temporal logic, SAG could be expressed as

 � good , (4.4.2)

18Temporal logics CTL [27] would express this formula as E F terminates .

132

where is the “sometime” operator and � is the “always” operator. SAG is

liveness and thus hyperliveness, but there is no branching-time predicate that

expresses it [69].

4.5 Topology

Topology enables an elegant characterization of the structure of hyperproper-

ties, just as it did for trace properties. We begin by summarizing the topology

of trace properties [110].

Consider an observer of an execution of a system, who is permitted to see

each new state as it is produced by the system; otherwise, the system is a black

box to the observer. The observer attempts to determine whether trace property

P holds of the system. At any point in time, the observer has seen only a finite

prefix of the (infinite) execution. Thus, the observer should declare that the

system satisfies P , after observing finite trace t, only if all possible extensions of

t will also satisfy P . Abramsky names such properties observable [3].

Like the bad thing for a safety property, a observable property must be de-

tectable in finite time; and once detected, hold thereafter. Formally, O is a ob-

servable property iff

(∀ t ∈ Ψinf : t ∈ O =⇒ (∃m ∈ Ψfin : m ≤ t

∧ (∀ t′ ∈ Ψinf : m ≤ t′ =⇒ t′ ∈ O))).

Define O to be the set of observable properties. This set satisfies two closure

conditions. First, if O1, . . . , On are observable, then
⋂n
i=1Oi is also observable.

Second, if O is a (potentially infinite) set of observable properties, then
⋃
O∈O O

is also observable. Thus O is closed under finite intersections and infinite unions.

133

A topology on a set S is a set T ⊆ P(S) such that T is closed under finite inter-

sections and infinite unions. Because O is so closed, it is a topology on Ψinf . We

name O the Plotkin topology, because Plotkin proposed its use in characterizing

safety and liveness [5].19

The elements of a topology T are called its open sets. A convenient way to

characterize the open sets of a topology is in terms of a base or a subbase. A base

of topology T is a set B ⊆ T such that every open set is a (potentially infinite)

union of elements of B. A subbase is a setA ⊆ T such that the collection of finite

intersections of A is a base for T . The set

OB , {↑ t | t ∈ Ψfin}

is a base (and a subbase) of the Plotkin topology, where

↑ t , {t′ ∈ Ψinf | t ≤ t′}

is the completion of a finite trace t. When t ≤ t′ we say that t′ extends t. The

completion of t is thus the set of all infinite extensions of t.

Alpern and Schneider [5] noted that, in the Plotkin topology, safety proper-

ties correspond to closed sets and liveness properties correspond to dense sets.

A closed set is the complement (with respect to S) of an open set. If a trace t is

not a member of a closed set C, there is some bad thing (specifically, the prefix

m of t in the definition of observable as instantiated on open set C, the comple-

ment of C) that is to blame; the existence of such bad things makes C a safety

property. Likewise, a set that is dense intersects every non-empty open set in T .

So for any finite trace t and dense set D, the intersection of ↑ t (which is open

because it is a member of OB) and D is nonempty. Since any finite trace can be

extended to be in D, it holds that D is a liveness property.

19Topology O is also the Scott topology on the ω-algebraic CPO of traces ordered by ≤ [110].

134

We want to construct a topology on sets of traces that extends this correspon-

dence to hyperproperties. The most important step is generalizing the notion of

finite observability from trace properties to hyperproperties. In fact, this gener-

alization was already accomplished in §4.2, where a bad thing was generalized

from a finite trace to a finite set of finite traces—that is, an observation. The

observer, as before, sees the system produce each new state in the execution.

However, the observer may now reset the system at any time, causing it to be-

gin a new execution. At any finite point in time, the observer has now collected

a finite set of finite (thus partial) executions. An observation is thus an element

of Obs, as defined in §4.2.

An extension of an observation should allow the observer to perform addi-

tional resets of the system, yielding a larger set of traces. An extension should

also allow each execution to proceed longer, yielding longer traces. So extension

corresponds to trace set prefix ≤ (c.f. §4.2). The completion of observation M is

↑M , {T ∈ Prop |M ≤ T}.

We can now define our topology on sets of traces in terms of its subbase:

OSB , {↑M |M ∈ Obs}.

The base OB of our topology is then OSB closed under finite intersections. The

base and subbase turn out to be the same sets:

Proposition 4.3. OB = OSB .

Proof. In appendix 4.A.

Finally, our topology O is OB closed under infinite unions.

Define C to be the closed sets in our topology and D to be the dense sets.

Just as safety and liveness correspond to closed and dense sets in the Plotkin

135

topology, hypersafety and hyperliveness correspond to closed and dense sets in

our generalization of that topology:

Proposition 4.4. SHP = C.

Proof. In appendix 4.A.

Proposition 4.5. LHP = D.

Proof. In appendix 4.A.

Our topology O is actually equivalent to well-known topology. The Vietoris

(or finite or convex Vietoris) topology is a standard construction of a topology on

sets out of an underlying topology [87, 116]. Our underlying topology was on

traces, and we constructed a topology on sets of traces. The Vietoris construction

can be decomposed into the lower Vietoris and upper Vietoris constructions [109],

which also yield topologies. Let VL(T) denote the lower Vietoris construction,

which given underlying topology T on space X produces the topology on P(X)

induced by subbase VSB
L (T):

VSB
L (T) , {〈O〉 | O ∈ T },

where 〈T 〉 is defined20 as

〈T 〉 , {U ∈ P(X) | U ∩ T 6= ∅}.

20Operators [·] (from §4.1) and 〈·〉 are similar to modal logic operators � (necessity) and ♦
(possibility): For trace property T , lift [T] denotes the set of all refinements of T—that is, the
hyperproperty in which T is necessary. Similarly, 〈T 〉 denotes the set of all trace properties that
share a trace with T—that is, the hyperproperty in which T is always possible.

136

The following theorem states that our topology is equivalent to the lower

Vietoris construction applied to the Plotkin topology:

Theorem 4.4. O = VL(O).

Proof. In appendix 4.A.

Smyth [109] established that the lower Vietoris topology is equivalent to the

lower (or Hoare) powerdomain, which is a construction used to model the seman-

tics of nondeterminism [98]. So our topology embodies the same intuition about

nondeterminism as the lower powerdomain does.

The proof of theorem 4.4 yields another topological characterization of safety

hyperproperties: the set of lifted safety properties, closed under infinite inter-

sections and finite unions (denoted as closure operator ClC , because these clo-

sure conditions characterize a topology of Closed sets), is the set of safety hyper-

properties.

Proposition 4.6. SHP = ClC({[S] | S ∈ SP}).

Proof. In appendix 4.A.

Defining trace set prefix. Recall that trace set prefix ≤ is defined as follows:

T ≤ T ′ , (∀ t ∈ T : (∃ t′ ∈ T ′ : t ≤ t′)).

For clarity, we use ≤L instead of ≤ to refer to that definition throughout the rest

of this section (L stands for Lower Vietoris).

Two natural alternatives to ≤L are

T ≤U T ′ , (∀ t′ ∈ T ′ : (∃ t ∈ T : t ≤ t′)),

T ≤C T ′ , T ≤L T ′ ∧ T ≤U T ′.

137

(U and C stand for Upper and Convex Vietoris. These prefix relations corre-

spond to the eponymous topologies.) However, both alternatives turn out to be

unsuitable for our purposes, because they do not correspond to our intuition

about finite observability—as we now explain.

Hyperproperty O is observable iff

(∀T ∈ Prop : T ∈ O =⇒ (∃M ∈ Obs : M ≤ T

∧ (∀T ′ ∈ Prop : M ≤ T ′ =⇒ T ′ ∈ O))).

Consider using ≤U for trace set prefix ≤. For a concrete example, suppose that

Σ = {a, b, c}, O is observable, T ∈ O , and M = {a, b}. Any T ′ such that M≤UT ′

must be a member of O . Every trace t′ in T ′ must begin with either a or b and

cannot begin with c. In particular, T ′ might contain traces beginning only with

b, never with a. Observation M therefore characterizes a system in which a non-

deterministic choice to produce c as the first state is not possible. So with≤U , an

observation records what nondeterminism is denied, and all future extensions

of that observation are also required to deny that nondeterminism.

In contrast, with ≤L (i.e., our topology), an observation records what non-

determinism has so far been permitted, and all future extensions of that obser-

vation are required also to permit that nondeterminism. Our intuition is that

observers of a black-box system can observe permitted nondeterminism (by ob-

serving states produced by the system) but not denied nondeterminism. The

definition of ≤U does not correspond to that intuition, but the definition of ≤L

does. Similarly, using ≤C for trace set prefix leads to observations that record

both permitted and denied nondeterminism (because ≤C is the conjunction of

≤L and ≤U), and therefore ≤C does not correspond to our intuition, either.

138

So neither the upper nor the convex Vietoris topology enjoys open sets that

are the observable hyperproperties; consequently, the equivalence of closed sets

and hypersafety is lost. Nonetheless, these topologies might be useful for other

purposes—for example, in refusal semantics for CSP [57].

4.6 Beyond Hypersafety and Hyperliveness

Security policies can exhibit features of both safety and liveness. For example,

consider a policy on a medical information system that must maintain the confi-

dentiality of patient records and must also eventually notify patients whenever

their records are accessed [8]. If the confidentiality requirement is interpreted

as observational determinism OD (4.1.6), this system must both prevent bad

things (OD , which is hypersafety) as well as guarantee good things (eventual

notification, which can be formulated as liveness). As another example, con-

sider an asynchronous proactive secret-sharing system [132] that must main-

tain and periodically refresh a secret. Each share refresh must complete dur-

ing a given time interval with high probability. Maintaining the confidential-

ity of the secret can be formulated as SecS (4.3.1), which is hypersafety. The

eventual refresh of the secret shares can be formulated as liveness: every execu-

tion eventually completes the refresh if enough servers remain uncompromised.

And the high probability that the refresh succeeds within a given time inter-

val is hyperliveness—similar to mean response time RT (4.1.7). Both of these

examples illustrate hyperproperties that are intersections of (hyper)safety and

(hyper)liveness.

In fact, as stated by the following theorem, every hyperproperty is the inter-

section of a safety hyperproperty with a liveness hyperproperty. This theorem

139

HP

SHP LHP

PIF

[LP]

[SP] = KSHP(1)

KSHP(2)
GNI

GS

RTfalse

AC
NRW

ODSecS

true

Figure 4.1: Classification of security policies

generalizes the result of Alpern and Schneider [5] that every trace property is

the intersection of a safety property and a liveness property:

Theorem 4.5. (∀P ∈ HP : (∃S ∈ SHP,L ∈ LHP : P = S ∩ L)).

Proof. In appendix 4.A.

4.7 Summary

This chapter has classified several security policies with hypersafety and hyper-

liveness. Figure 4.1 summarizes this classification.

We have introduced hyperproperties, which are sets of trace properties and

can express security policies that trace properties cannot, such as secure infor-

mation flow and service level agreements. We have generalized safety and live-

ness to hyperproperties, showing that every hyperproperty is the intersection of

a safety hyperproperty and a liveness hyperproperty. We have also generalized

140

the topological characterization of safety and liveness from trace properties to

hyperproperties. We have shown that refinement is applicable with safety hy-

perproperties.

We have given a relatively complete verification methodology for k-safety

hyperproperties that generalizes prior techniques for verifying secure informa-

tion flow. But we do not know whether there is a relatively complete method-

ology for all hyperproperties, or even all safety hyperproperties.21 If such a

methodology could be found, security might take its place as “just another”

functional requirement to be verified.

21If the full power of second-order logic is necessary to express hyperproperties (as discussed
at the end of §4.1), such methods could not exist. Nonetheless, methods for verifying fragments
of the logic might suffice for verifying hyperproperties that correspond to security policies.

141

4.A Appendix: Proofs

Bueno and Clarkson [20] have formally verified propositions 4.1 and 4.2, theo-

rems 4.2, 4.3, and 4.5, and an analogue of theorem 4.1 using the Isabelle/HOL

proof assistant [95]. We believe that the remaining proofs could also be formally

verified.

Proposition 4.1. (∀S ∈ Prop : S ∈ SP ⇐⇒ [S] ∈ SHP).

Proof. By mutual implication.

(⇒) Let S be an arbitrary safety property. We want to show that [S] is a safety

hyperproperty—that is, any trace property T not in [S] contains some bad

thing.

First, we find a bad thingM for T . By the definition of lifting, [S] = P(S) =

{P ∈ Prop | P ⊆ S}. Since T is not in this set, T 6⊆ S. So some trace t is

in T but not in S. By the definition of safety, if t /∈ S, there is some finite

trace m that is a bad thing for S. So no extension of m is in S. Define M to

be {m}.

Second, we show that M is irremediable. Note that M ≤ T because m ≤ t

and t ∈ T . Let T ′ be an arbitrary trace property that extends M—that is,

M ≤ T ′. By the definition of ≤, there exists a t′ ∈ T ′ such that m ≤ t′. We

established above that no extension of m is in S, so t′ /∈ S. But, again by

the definition of lifting, T ′ /∈ [S], since T ′ contains a trace not in S.

Thus, by definition, [S] is hypersafety.

(⇐) Let S be an arbitrary trace property such that [S] is hypersafety. We want

to show that S is safety. Our strategy is as above—we find a bad thing and

then show that it is irremediable.

142

Consider any t such that t /∈ S. By the definition of lifting, we have that

{t} /∈ [S]. By the definition of hypersafety applied to [S], there exists an

M ≤ {t} such that for all T ′ ≥M , we have T ′ /∈ [S].

We claim that M must be non-empty. To show this, suppose for sake of

contradiction that M is empty. Then M is a prefix of every trace property

T ′, so no T ′ can be a member of S, which implies that [S] itself must be

empty. But [S] = P(S), so [S] must at least contain S as a member. This is

a contradiction, thus M is non-empty and contains at least one trace.

All traces in M must be prefixes of t, by the definition of ≤. Choose the

longest such prefix inM and denote it asm∗. Thism∗ serves as a bad thing

for t, as we show next.

Let t′ be arbitrary such that m∗ ≤ t′, and let T ′ = {t′}. By the transitivity of

≤, we have M ≤ T ′, so T ′ /∈ [S] by the above application of the definition

of hypersafety. But this implies that t′ /∈ S, by the definition of lifting.

We have shown that, for any t /∈ S, there exists an m ≤ t, such that for any

t′ ≥ m, we have t′ /∈ S. Therefore, S is safety, by definition.

Theorem 4.1. SHP ⊂ SSC.

Proof. Assume that S is hypersafety. For sake of contradiction, also assume that

S is not subset closed. This latter assumption implies that there exist two trace

properties T and T ′ such that T ∈ S , and T ′ /∈ S , yet T ′ ⊂ T . By the definition

of hypersafety, since T ′ /∈ S , there exists an observation M that is a bad thing

for T ′—that is, M ≤ T ′ and for all T ′′ such that M ≤ T ′′, it holds that T ′′ /∈ S .

Consider this M . By the definition of ≤, since T ′ ⊂ T and M ≤ T ′, we have

M ≤ T . Then T is an instance of T ′′ above, which means T /∈ S . But this

contradicts T ∈ S . Therefore, S must be subset closed.

143

To see that the subset relation is strict, define the trace property true as Ψinf .

Consider any liveness property L other than true—for example, guaranteed ser-

vice GS (4.1.3). When lifted to hyperproperty [L], the result is subset closed by

definition of [·]. By proposition 4.2 below (whose proof does not depend on this

theorem), [L] is hyperliveness. Since L is not true, we have that [L] is not true ,

which is the only hyperproperty that is both hypersafety and hyperliveness. So

[L] cannot be hypersafety. Thus [L] is a hyperproperty that is not hypersafety

but is subset closed.

Theorem 4.2. (∀S ∈ Sys,K ∈ KSHP(k) : (∃K ∈ SP : S |= K ⇐⇒ Sk |= K)).

Proof. Let K be an arbitrary k-safety hyperproperty of system S. Our strategy is

to construct a safety property K that holds of system Sk exactly when K holds

of S.

Since K is k-safety, every trace property not contained in it has some bad

thing of size at most k—that is, for all T /∈ K , there exists an observation M

where |M | ≤ k and M ≤ T , such that for all T ′ where M ≤ T ′, it holds that

T ′ /∈ K . Construct the set M of all such bad things:

M , {M ∈ Obs | |M | ≤ k ∧ (∃T ∈ Prop : T /∈ K ∧ M ≤ T)

∧ (∀T ′ ∈ Prop : M ≤ T ′ =⇒ T ′ /∈ K)}.

Next we define some notation to encode a set of traces as a single trace.

Consider a trace property T such that |T | ≤ k. Construct a finite list of traces

t1, t2, . . . , tk such that ti ∈ T for all i. Further, we require that no ti is equal to

any tl, for any i and l, unless |T | < k. We construct a trace t such that t[j] is the

tuple (t1[j], t2[j], . . . , tk[j]); note that t is a trace over state space Σk. Let trace t so

constructed from T be denoted zipk(T), and let the inverse of this construction

144

be denoted unzipk(t); note that zipk(·) and unzipk(·) are partial functions. We can

also apply this notation to observations, which are finite sets of finite traces.22

Now we can construct safety property K. Let K be the set of traces over Σk

such that no trace in K encodes an extension of any bad thing M ∈M :

K , {tk | ¬(∃M ∈ Obs : M ∈M ∧ zipk(M) ≤ tk)},

where tk denotes a trace t over space Σk.

To see that K is safety, suppose that tk /∈ K. Then by the definition of K,

there must exist some M ∈ M such that zipk(M) ≤ tk. Consider any trace

uk ≥ zipk(M). By the definition of K, we have that uk /∈ K. Thus, for any trace

tk not in K, there is some finite bad thing zipk(M), such that no extension uk of

the bad thing is in K. By definition, K is therefore safety.

Finally, we need to show that S satisfies K exactly when Sk satisfies K. We

do so by mutual implication.

(⇒) Suppose S |= K . Then, by definition, S ∈ K . For sake of contradiction,

suppose that Sk 6⊆ K. Then, by the definition of subset, there exists some

tk ∈ Sk such that tk /∈ K. Let T be unzipk(t
k). By the definition of K, there

must exist some M ∈ M such that zipk(M) ≤ tk. Applying unzipk(·) to

this predicate, and noting that unzip is monotonic with respect to ≤, we

obtain M ≤ unzipk(t
k). By the definition of T , we then have that M ≤ T .

By the construction of M , T therefore cannot be in K . By the construction

of Sk and the definition of T , each trace in T must also be a trace of S.

So by definition, T ≤ S. By transitivity, we have that M ≤ S. By the

22In this case, the ti have finite and potentially differing length. So if j > |ti|, let ti[j] = ⊥
for some new state ⊥ /∈ Σ. Thus, zipk(T) is a trace over state space (Σ ∪ ⊥)k. We redefine trace
prefix ≤ over this space to ignore ⊥: let t ≤ t′ iff, for some t′′ that is a trace over Σ, dte = dt′et′′,
where dte is the truncation of t that removes any⊥ states. For notational simplicity, we omit this
technicality in the remainder of the proof.

145

construction of M , S then cannot be in K . But this contradicts the fact that

S ∈ K . Therefore, Sk ⊆ K, so by definition Sk |= K.

(⇐) Suppose Sk |= K. Then, by definition, Sk ⊆ K. Suppose, for sake of

contradiction, that S does not satisfy K . Then, by definition, S /∈ K . Since

K is k-safety, this means that there exists an M ≤ S, where |M | ≤ k,

such that for all T ′ ≥ M , T ′ /∈ K . Let mk be zipk(M), and let sk be a

trace of Sk such that mk ≤ sk (such a trace must exist since M ≤ S). By

the construction of K, for any tk ≥ mk, we have that tk /∈ K. Therefore,

sk /∈ K, and it follows that Sk 6⊆ K. But this contradicts the fact that

Sk ⊆ K. Therefore, S ∈ K , so by definition S |= K .

Proposition 4.2. (∀L ∈ Prop : L ∈ LP ⇐⇒ [L] ∈ LHP).

Proof. By mutual implication.

(⇒) Let L be an arbitrary liveness property. We want to show that [L] is a live-

ness hyperproperty—that is, any observationM can be extended to a trace

property T that is contained in [L]. So let M be an arbitrary observation.

By the definition of liveness, for eachm ∈M , there exists some t ≥ m such

that t ∈ L. For a given m, let that trace t be denoted tm. Construct the set

T =
⋃
m∈M{tm}. Since all the tm are elements of L, we have T ⊆ L. By the

definition of lifting, it follows that T is contained in [L]. Further, T extends

M by the construction of T . Thus, T satisfies the requirements of the trace

property we needed to construct. By definition, [L] is hyperliveness.

(⇐) Let L be an arbitrary property such that [L] is hyperliveness. We want to

show that L is liveness. So consider an arbitrary trace t, and let T = {t}.

Since [L] is hyperliveness, we have that there exists a T ′ such that T ≤ T ′

146

and T ′ ∈ [L]. Since T ≤ T ′ and T = {t}, there exists a t′ such that t ≤ t′ and

t′ ∈ T ′, by the definition of ≤. By the definition of lifting, if t′ ∈ T ′ ∈ [L], it

must be the case that t′ ∈ L. Thus, for any t, there exists a t′ such that t ≤ t′

and t′ ∈ L. Therefore, L is liveness, by definition.

Theorem 4.3. PIF ⊂ LHP.

Proof. Let P be an arbitrary possibilistic information-flow hyperproperty, and

let ClP be the closure operator that Mantel [78] would associate with P .23 Then,

by Mantel’s Definition 10, it must be the case that P = {ClP (T) | T ∈ Prop}.

Closure operators must satisfy the axiom (∀X : X ⊆ Cl(X)), which we use

below.

To show that P is hyperliveness, let T ∈ Obs be arbitrary. By the definition

of hyperliveness, we need to show that there exists a T ′ ∈ Prop such that T ≤ T ′

and T ′ ∈ P . Let T ′ be ClP (T̂), where T̂ denotes the embedding of T into Prop by

infinitely stuttering the final state of each trace in T , as discussed in §4.1. By the

closure axiom above, we have that T̂ ⊆ ClP (T̂). So by the definition of≤, we can

conclude T ≤ ClP (T̂) = T ′. Further, T ′ must be an element of P since it is the

ClP -closure of trace property T̂ . Therefore, T ′ satisfies the required conditions,

and P is hyperliveness.

To see that the subset relation is strict, consider liveness property GS (guar-

anteed service) from §4.1. It corresponds to liveness hyperproperty [GS], but

has no corresponding closure operator. For suppose that such a closure opera-

tor did exist, and consider an infinite trace t in which service fails to occur. The

closure of any set containing t must still contain t, by the axiom above. But then
23More precisely, Mantel argues that every “possibilistic information-flow property [sic]” can

be expressed as a basic security predicate, and that each basic security predicate induces a set of
closure operators. Any element of this set suffices to instantiate ClP . Also, Mantel’s closure
operators were over finite traces, and we have generalized to infinite traces.

147

the closure does not satisfy GS , and so the closure operator cannot correspond

to [GS].

Proposition 4.3. OB = OSB .

Proof. By mutual containment.

(⊇) By definition, the elements of OB are finite intersections of elements of

OSB . Thus, every element of OSB is already trivially an element of OB.

(⊆) Let N be an arbitrary element of OB. By the definition of a base, we can

write N as
⋂
i ↑ Mi, where i ranges over a finite index set and each Mi

is an observation. We want to show that there exists an element ↑ N of

OSB such that N =↑N . So consider N . Every trace property T in it must

extend every Mi. Thus, by the definition of ≤, every such trace property

T extends
⋃
iMi. Therefore N =↑

⋃
iMi. Our desired observation N is

thus
⋃
iMi. Note that, for N to be a valid observation, it must be a finite

set. The union over Mi must therefore result in a finite set—which it does,

since i ranges over a finite index set.

Proposition 4.4. SHP = C.

Proof. By mutual containment.

(⊆) Let S be an arbitrary safety hyperproperty. We need to show that it is also

a closed set. By the definition of closed, this is equivalent to showing that

S is the complement of an open set. Our strategy is to construct hyperpro-

perty O , show that O and S are equal, and show that O is open.

By the definition of hypersafety, we have that any trace property T that is

not a member of S—and thus is a member of S—must contain some bad

148

thing. Consider the set M ∈ P(Obs) of all bad things for S . M contains

one or more elements for every trace property in S :

M , {M ∈ Obs | (∃T ∈ S : M ≤ T

∧ (∀T ′ ∈ Prop : M ≤ T ′ =⇒ T ′ ∈ S))}.

Next, define O as the completion of M—that is, the set of all trace proper-

ties that extend a bad thing for S :

O ,
⋃
M∈M

↑M

= {T | (∃M ∈M : M ≤ T)}, (4.A.1)

where the equality follows by the definition of ↑M . Since each such trace

property T violates S , we would suspect that O is the complement of S .

This is indeed the case:

Claim. O = S

Proof. (By mutual containment.)

(⊆) Suppose T ∈ O . Then by equation 4.A.1, there is some M ∈

M such that M ≤ T . By the definition of M , any extension

of M is an element of S . Since T is such an extension, T ∈ S .

(⊇) Suppose T ∈ S . Then T /∈ S , so by the definition of hy-

persafety, (∃M ∈ Obs : M ≤ T ∧ (∀T ′ ∈ Prop : M ≤

T ′ =⇒ T ′ /∈ S)). Consider that M . It must be a member

of M , by definition. Since M ≤ T , we have that T ∈ O by

equation 4.A.1.

All that remains is to show that O is open. First, note that ↑M , for any

M ∈ Obs, is by definition an element of OSB . Thus each of the sets ↑M in

149

the definition of O is open. Second, by the definition of open sets, a union

of open sets is open. O is such a union, and is therefore open.

(⊇) Let C be an arbitrary closed set. We need to show that it is also hyper-

safety. Our strategy is to identify, for any trace property T not in C , a bad

thing for T . If such a bad thing exists for all T , then C is by definition

hypersafety.

Since C is closed, it is by definition the complement of an open set. By

proposition 4.3, we can therefore write C as follows:

C =
⋃
i

↑Mi, (4.A.2)

where each Mi is an observation.

Let T be an arbitrary trace property such that T /∈ C , or equivalently,

such that T ∈ C . Then T must be in at least one of the infinite unions in

equation 4.A.2. Thus, there must exist an i such that

T ∈ ↑Mi and Mi = {U ∈ Prop |Mi ≤ U}, (4.A.3)

where the equality follows from the definition of ↑.

We construct the bad thing M for T by defining:

M , Mi.

We have that M ≤ T , because of equation 4.A.3.

To show that M is a bad thing for T , consider any T ′ ≥ M . By the def-

inition of M , T ′ ≥ Mi. By equation 4.A.3, it follows that T ′, like T , is a

member of ↑Mi. By equation 4.A.2, T ′ ∈ C . Therefore, T ′ /∈ C .

We have now shown that for any T /∈ C , there exists an M ≤ T , such that

for all T ′ ≥M , T ′ /∈ C . Thus C is hypersafety, by definition.

150

Proposition 4.5. LHP = D.

Proof. By mutual containment.

(⊆) Let L be an arbitrary liveness hyperproperty. We need to show that L is

dense. By the definition of dense, we must therefore show that L intersects

every non-empty open set. So let O be an arbitrary non-empty open set.

We need to show that L ∩ O is non-empty. By proposition 4.3 and the

definition of open, we can write O as
⋃
i ↑Mi. Consider an arbitrary Mi.

Since L is hyperliveness, there exists a T ≥ Mi such that T ∈ L . Further,

by the definition of ↑, we have that T ∈ O . Therefore, T ∈ L ∩ O , and it

follows that L is dense, by definition.

(⊇) Let D be an arbitrary dense set. To show that D is hyperliveness, we

must show that any observation T can be extended to a trace property T ′

contained in D—that is, (∀T ∈ Obs : (∃T ′ ∈ Prop : T ≤ T ′ ∧ T ′ ∈ D)).

So let T be an arbitrary observation. Let OT be the completion of T :

OT , ↑T

= {T ′ ∈ Prop | T ≤ T ′} (4.A.4)

OT is an element of OSB , the subbase of our topology, by definition. Thus,

by the definition of a subbase, OT is an open set. By the definition of a

dense set (which is that a dense set intersects every open set), we therefore

have that OT ∩ D 6= ∅. Let T ′ be any element in the set OT ∩ D . By

equation 4.A.4, we have T ≤ T ′.

We have now shown that, for an arbitrary observation T , there exists a

trace property T ′ such that T ≤ T ′ and T ′ ∈ D . Therefore, D is hyperlive-

ness, by definition.

151

Theorem 4.4. O = VL(O).

Proof. By mutual containment.

(⊆) Suppose O ∈ O. By the definitions of a base and of O, we can write O

as
⋃∞
i ↑ Mi, where each Mi is an element of Obs.24 Now we calculate:

⋃∞
i ↑Mi

= 〈 definition of ↑〉⋃∞
i {T | T ≥Mi}

= 〈 definition of ≤ 〉⋃∞
i {T | (∀∗mij ∈Mi : (∃ t ∈ T : mij ≤ t))}

= 〈 definition of ↑〉⋃∞
i {T | (∀∗mij ∈Mi :↑mij ∩ T 6= ∅)}

= 〈 definition of 〈·〉 〉⋃∞
i {T | (∀∗mij ∈Mi : T ∈ 〈↑mij〉)}

= 〈 definition of ∩ 〉⋃∞
i

⋂∗
j〈↑mij〉

Since ↑mij ∈ OB by definition, and OB ⊆ O by the definition of base, we

have that 〈↑mij〉 ∈ VSB
L (O). Thus, by the definition of subbase,

⋃∞
i

⋂∗
j〈↑

mij〉 ∈ VL(O). Therefore, by the calculation above, we can conclude O ∈

VL(O).

24We decorate quantifiers with∞ and ∗ to denote an infinite and finite range, respectively.

152

(⊇) Suppose O ∈ VL(O). By the definition of subbase and VL, we can write

O as
⋃∞
i

⋂∗
j〈Oij〉, where each Oij is an element of O. Now we calculate:

⋃∞
i

⋂∗
j〈Oij〉

= 〈 definition of 〈·〉 〉⋃∞
i

⋂∗
j{T | T ∩Oij 6= ∅}

SinceOij is open in the base topologyO, it can be rewritten a union of base

open sets ↑ tijk, where each tijk is a finite trace:

Oij =
∞⋃
k

↑ tijk.

We continue calculating:

= 〈 rewriting Oij 〉⋃∞
i

⋂∗
j{T | T ∩ (

⋃∞
k ↑ tijk) 6= ∅}

= 〈 set theory 〉⋃∞
i {T | (∀∗ j : (∃∞ k : T ∩ ↑ tijk 6= ∅))}

= 〈 definition of ≤ 〉⋃∞
i {T | (∀∗ j : (∃∞ k : {tijk} ≤ T))}

= 〈 set theory; let k′ be the k guaranteed to exist for i and j 〉⋃∞
i {T |

⋃∗
j tijk′ ≤ T}

= 〈 let Mi =
⋃∗
j tijk′ ; definition of ↑〉⋃∞

i ↑Mi

Finally, since Mi is a finite set of finite traces, it is an element of Obs. So

by definition, ↑Mi ∈ OSB . Thus by the definition of base,
⋃∞
i ↑Mi ∈ O.

Therefore, by the calculation above, we can conclude O ∈ O.

153

Proposition 4.6. SHP = ClC({[S] | S ∈ SP}).

Proof. Let S be an arbitrary safety hyperproperty. By proposition 4.4, S is a

closed set in topology O. By theorem 4.4, S is thus also a closed set in topol-

ogy VL(O). By the definition of closed, S is the complement of an open set in

topology VL(O). By the definition of a base, we can thus write S as unions of

intersections of base elements. Letting ∼ denote set complement, we calculate:

S

= 〈 definition of base 〉⋃∞
i

⋂∗
j〈Oij〉

= 〈 definition of 〈·〉 〉⋃∞
i

⋂∗
j{T | T ∩Oij 6= ∅}

= 〈 double negation 〉

∼∼
⋃∞
i

⋂∗
j{T | T ∩Oij 6= ∅}

= 〈 set theory 〉

∼
⋂∞
i

⋃∗
j{T | T ∩Oij = ∅}

= 〈 set theory 〉

∼
⋂∞
i

⋃∗
j{T | T ⊆ Oij}

= 〈 definition of [·] 〉

∼
⋂∞
i

⋃∗
j [Oij]

Removing a complement from each side of the above equation, we obtain

S =
∞⋂
i

∗⋃
j

[Oij].

154

Since each Oij is open in topologyO, we have that Oij is closed inO. By the fact

that closed sets in O correspond to safety properties [5], Oij is a safety property.

Therefore, S is the infinite intersection of finite unions of safety properties, and

by definition of ClC must be an element of ClC({[S] | S ∈ SP}).

Similarly, given an arbitrary element of ClC({[S] | S ∈ SP}), the same rea-

soning used above establishes that it is also an element of SHP. Therefore, by

mutual containment, the two sets are equal.

Theorem 4.5. (∀P ∈ HP : (∃S ∈ SHP,L ∈ LHP : P = S ∩ L)).

Proof. This theorem can be easily proved by adapting either the logical [105]

or topological [5] proof of the intersection theorem for trace properties. The

domains involved are merely upgraded to include an additional level of sets.

Here we take the former approach and rehearse the logical proof.

Our strategy is as follows. Given hyperproperty P , we construct safety hy-

perproperty S that contains P as a subset. We also construct liveness hyperpro-

perty L that contains P . The intersection of S and L then necessarily contains

P , and we shall show that the intersection is, in fact, exactly P .

To construct S , we define the safety hyperproperty Safe(P), which stipulates

that the hyperliveness of P is never violated. A bad thing for this safety hyper-

property is any set of traces that cannot be extended to satisfy P . So we require

that Safe(P) contains only sets T of traces such that any observation of T can be

extended to satisfy P . Formally,

Safe(P) , {T ∈ Prop | (∀M ∈ Obs : M ≤ T

=⇒ (∃T ′ ∈ Prop : M ≤ T ′ ∧ T ′ ∈ P))}.

155

It is straightforward to establish that Safe(P) is hypersafety: Any set T not con-

tained in Safe(P) must satisfy the negation of the predicate in the above defini-

tion of Safe(P)—that is, (∃M ∈ Obs : M ≤ T ∧ (∀T ′ ∈ Prop : M ≤ T ′ =⇒

T ′ /∈ P)). If no extension of M can be in P , then no extension T ′ of M can be in

Safe(P) because the hyperliveness of P would be violated in T ′ at observation

M . So

(∀T ′ ∈ Prop : M ≤ T ′ =⇒ T ′ /∈ P)

=⇒ (∀T ′ ∈ Prop : M ≤ T ′ =⇒ T ′ /∈ Safe(P)). (4.A.5)

Thus, by monotonicity, (∃M ∈ Obs : M ≤ T ∧ (∀T ′ ∈ Prop : M ≤ T ′ =⇒

T ′ /∈ Safe(P))). Therefore Safe(P) is hypersafety.

Similarly, to construct L , we define the liveness hyperproperty Live(P),

which stipulates that it is always possible either to satisfy P or to become im-

possible, due to some bad thing, to satisfy P . In the latter case, a safety hyper-

property has been violated—namely, Safe(P). Formally,

Live(P) , P ∪ Safe(P),

where H denotes the complement of hyperproperty H with respect to Prop. To

show that Live(P) is hyperliveness, consider any observation T . Suppose that

T can be extended to some trace property T ′ such that T ′ ∈ P . Then T ′ is also

in Live(P), so Live(P) is hyperliveness for T . On the other hand, if T cannot

be extended to satisfy P , then T is a bad thing for Safe(P)—that is, (∀T ′ ∈

Prop : T ≤ T ′ =⇒ T ′ /∈ P). Let T ′ be an arbitrary extension of T . By the

same reasoning as equation (4.A.5), T ′ is not in Safe(P). Therefore T ′ must be in

Safe(P). Thus, Live(P) is again hyperliveness for T . We conclude that Live(P)

is hyperliveness.

156

Next, note that P ⊆ Safe(P), because any element T of P satisfies the def-

inition of Safe(P). In particular, for any M ≤ T , there is a T ′ ≥ M such that

T ′ ∈ P—namely, T ′ = T . Thus, Safe(P) = P ∪ Safe(P).

Finally, let S = Safe(P) and L = Live(P), and we prove the theorem by

simple set manipulation:

S ∩ L = Safe(P) ∩ Live(P)

= (P ∪ Safe(P)) ∩ (P ∪ Safe(P))

= P ∩ (Safe(P) ∪ Safe(P))

= P ∩ Prop

= P

157

CHAPTER 5

FORMALIZATION OF SYSTEM REPRESENTATIONS

Security policies are properties of systems, meaning that a system either does

or does not satisfy a security policy. Chapter 4 models systems (and their

executions) with trace sets. Some models of system execution are expressed

with other mathematical formalisms—for example, relational semantics, la-

beled transition systems, and state machines. And probability can be used with

each of these formalisms to model random behaviors of systems. Chapter 4

mentions some of these formalisms but does not make them precise.

For example, recall noninterference stipulates that commands executed on be-

half of users holding high clearances have no effect on system behavior ob-

served by users holding low clearances. Goguen and Meseguer’s definition

of noninterference [46] models system behavior with state machines, whereas

our definition GMNI (4.1.4), repeated below, assumes an encoding of state ma-

chines as trace sets and requires a trace set T to contain, for any trace t, a cor-

responding trace t′ with no high input events yet with the same low input and

output events as t:

GMNI , {T ∈ Prop | T ∈ SM

∧ (∀ t ∈ T : (∃ t′ ∈ T : evHin(t′) = ε

∧ evL(t) = evL(t′)))}.

Conjunct T ∈ SM expresses the requirement that trace set T encodes a state

machine, but we have not yet defined set SM (we shall in §5.4). Nor have we

classified GMNI as hypersafety or hyperliveness.

It is reasonable to expect that GMNI is hypersafety; the bad thing should

be a set {t, t′} of finite traces where t′ contains no high inputs and contains the

158

same low inputs as t, yet t and t′ have different low outputs. But GMNI fails

to be hypersafety because of a technicality. Goguen and Meseguer’s state ma-

chines must be deterministic, so SM must exclude all trace sets that exhibit

nondeterminism. Thus a system T might fail to satisfy GMNI only because

T is nondeterministic, in which case a deterministic, non-interfering observa-

tion of T would be remediable—hence GMNI would not be hypersafety.1 The

problem is that the definition of hypersafety, by quantifying over Prop, assumed

that systems are allowed to be nondeterministic. Now that we are interested in

state machines, our definitions of hypersafety and hyperliveness should quan-

tify over only those trace sets that encode state machines. And in general, those

definitions should be parameterized on a system representation.

This chapter proceeds as follows. The definitions of hypersafety and hy-

perliveness are generalized in §5.1 to account for system representations. Hy-

perproperties for relational systems, labeled transition systems, state machines,

and probabilistic systems are presented in §5.2, §5.3, §5.4, and §5.5. The technical

results of chapter 4 are generalized in §5.6 to account for system representations,

and §5.7 concludes.

5.1 Generalized Hypersafety and Hyperliveness

Chapter 4 assumed a particular system representation—namely, Prop, the set of

all trace sets. Now, let Rep be a set of trace sets that encodes a system represen-

tation. For example, each set in Rep might encode a state machine. Note that

Rep is a subset of Prop.
1A similar problem would occur even if we used implication instead of conjunction in the

definition of GMNI to formalize the requirement that systems be (deterministic) state machines:
any observation could be remediated by adding traces that represent nondeterministic transi-
tions of the state machine.

159

Recall that Obs is the set of observations of Prop, and that an observation is a

finite set of finite traces. We now need to define the set of observations of Rep.

Let Obs(Rep) denote the subset of Obs containing observations of Rep, where

Obs(Rep) , {M ∈ Obs | (∃T ∈ Rep : M ≤ T)}.

Note that Obs(Rep) is simply Obs if Rep equals Prop.

Now we can define hypersafety and hyperliveness for a given system repre-

sentation.

Definition 5.1. A hyperproperty S is a safety hyperproperty for system representa-

tion Rep (is hypersafety for Rep) iff

(∀T ∈ Rep : T /∈ S =⇒ (∃M ∈ Obs(Rep) : M ≤ T

∧ (∀T ′ ∈ Rep : M ≤ T ′ =⇒ T ′ /∈ S))).

Definition 5.2. Hyperproperty L is a liveness hyperproperty for system representa-

tion Rep (is hyperliveness for Rep) iff

(∀T ∈ Obs(Rep) : (∃T ′ ∈ Rep : T ≤ T ′ ∧ T ′ ∈ L)).

Note that both definitions simplify to the original definitions of hypersafety and

hyperliveness in chapter 4 if Rep equals Prop. We now demonstrate the use of

these generalized definitions with several system representations.

5.2 Relational Systems

In language-based information-flow security [104], a program P is sometimes

modeled (e.g., with large-step operational semantics) as a relation ⇓ such that

160

〈P, s〉 ⇓ s′ if P begun in initial state s terminates in final state s′. Using this

relation, noninterference can be stated as

s1 =L s2 ∧ 〈P, s1〉 ⇓ s′1 ∧ 〈P, s2〉 ⇓ s′2 =⇒ s′1 =L s
′
2,

where relation =L (c.f. observational determinism OD (4.1.6)) determines which

states are low-equivalent. This statement of noninterference is termination insen-

sitive because it allows information to leak through termination channels.

To model a program P as set T of traces, intuitively, imagine that an observer

of the program periodically checks to see in what state the program is. If P be-

gun in initial state s never terminates, the observer will see an infinite sequence

containing only s. If P does terminate in final state s′, the observer will see a

finite sequence of s followed by an infinite sequence of s′. Let T be the set of all

such traces. Formally, T is defined as follows:

T = {t ∈ Ψinf | 〈P, s〉 ⇓ s′ ∧ t ∈ s+(s′)ω}

∪ {t ∈ Ψinf | ¬(∃ s′ : 〈P, s〉 ⇓ s′) ∧ t = sω}.

Let Rel , the set of all relational systems, be the set of all trace sets so constructed

for any P .

Define termination-insensitive relational noninterference as a hyperproperty:

TIRNI , {T ∈ Prop | T ∈ Rel

∧ (∀ t1, t2 ∈ T : t1[0] =L t2[0]

=⇒ diverges(t1) ∨ diverges(t2)

∨ (∃ s1, s2 ∈ Σ : terminates(t1, s1)

∧ terminates(t2, s2) ∧ s1 =L s2))}. (5.2.1)

Predicate diverges(t) holds whenever t is a trace of a program P such that P does

not terminate when begun in initial state t[0], so t = (t[0])ω. Similarly, predicate

161

terminates(t, s) holds whenever P terminates in final state s when begun in ini-

tial state t[0], so t = (t[0])+sω. We assume without loss of generality that final

states are distinguishable from initial states (e.g., by having a special flag set),

so that diverges and terminates can distinguish between nontermination and ter-

mination in a final state that otherwise is identical to an initial state. TIRNI is

hypersafety for Rel : the bad thing is a pair of traces that begin in low-equivalent

initial states but terminate in final states that are not low-equivalent.

Termination-sensitive noninterference is the same as termination insensitive,

except that it forbids one trace to diverge and the other to terminate. So define

termination-sensitive relational noninterference as follows:

TSRNI , {T ∈ Prop | T ∈ Rel

∧ (∀ t1, t2 ∈ T : t1[0] =L t2[0]

=⇒ (diverges(t1) ∧ diverges(t2))

∨ (∃ s1, s2 ∈ Σ : terminates(t1, s1)

∧ terminates(t2, s2) ∧ s1 =L s2))}. (5.2.2)

Note that the only change is that a disjunction became a conjunction. TSRNI is

neither hypersafety nor hyperliveness for Rel . To see that it is not hypersafety

for Rel , consider a system containing a pair {t, t′} of traces, where t diverges

and t′ does not, yet where t and t′ contain low-equivalent initial states, does

not satisfy TSRNI . But any finite prefix of this pair could be remediated by

extending the prefix of t to terminate in the same final state as t′. Likewise,

to see that TSRNI is not hyperliveness for Rel ,2 consider a finite observation
2Terauchi and Aiken [115] characterized termination-sensitive noninterference as “2-

liveness,” where they defined “2-liveness” as a “property which may observe up to two possibly
infinite traces to refute the property.” Although they are correct that TSRNI could be refuted
by observing two infinite traces, refutation is really about safety, not liveness—there is no good
thing for TSRNI , but there is an infinitely-observable bad thing. So “2-infinite-safety” would
be a better term than “2-liveness.”

162

containing a pair of terminating traces that have low-equivalent initial states

but not low-equivalent final states. This observation cannot be extended to be

in TSRNI .

5.3 Labeled Transition Systems

Definitions of noninterference are sometimes based on bisimulation, which is a

relation that specifies whether two systems are equivalent to an observer. Bisim-

ulations are often expressed over labeled transition systems, which are triples

(S, L,→) where S is a set of LTS-states,3 L is a set of labels, and → is a rela-

tion on S × L × S [90]. Elements of relation→ are usually notated s1
`→ s2 and

are interpreted to mean that the system has a transition labeled ` from LTS-state

s1 to LTS-state s2.

A labeled transition system (S, L,→) can be encoded as a set of traces. Define

the state space Σ for the traces to be S×L.4 Given state s ∈ Σ, let st(s) denote the

LTS-state from s, and let lab(s) denote the label from s. Define traces(S, L,→) to

be

{t | (∀ i ∈ N : st(t[i])
lab(t[i])→ st(t[i+ 1]))}.5

Let LTS be the set of all trace sets so constructed for any LTS.

Bismulation nondeducibility on compositions. We now demonstrate how to

use this encoding by formalizing Focardi and Gorrieri’s [44] definition of bisim-

ulation nondeducibility on compositions (BNDC), which is a noninterference pol-

3We use the term LTS-state to distinguish these from the states defined in §4.1.
4This construction would not work with an impoverished notion of state, as observed by

Focardi and Gorrieri [44] for states that are elements only of L.
5We could replace lab(t[i]) with lab(t[i+ 1]) in this definition; the choice of where to store the

label is arbitrary.

163

icy for nondeterministic LTSs. The intuition behind this policy is that a system

should appear the same to a low observer no matter with what other system

it is composed (i.e., run in parallel). Assume that set L of labels can be par-

titioned into three sets of actions (i.e., events): a set of low security actions, a

set H of high security actions, and {τ}, where τ is an unobservable internal ac-

tion. An LTS E = (S, L,→) satisfies BNDC, denoted BNDC (E), iff for all LTSs

F = (S,H ∪ {τ},→F) that take only high and internal actions,

E/H ≈ (E|F) \H,

with notations /, |, \, and ≈ informally defined as follows:6

• Hiding operator E/H relabels as τ all actions from H that occur during

execution of E. System E/H thus represents the view of system E by a

low observer, since all the high actions are hidden.

• Parallel composition operator E|F denotes the interleaving of systems E

and F . The systems can synchronize on actions, causing the composed

system to emit internal action τ .

• Restriction operator E \H prohibits the occurrence of any actions from H

during execution of E, meaning that no transition with a label from H is

allowed. System (E|F) \ H thus represents a low observer’s view of E

when all the high actions that E takes are synchronized with F .

• Weak bisimulation relation E ≈ F intuitively means that E and F can

simulate each other: if E can take a transition with label `, then there must

exist a transition of F that is also labeled `, and after taking those transi-

tions E and F must remain bisimilar. F is allowed to take any number

6The formal definitions (over LTSs) are standard and given by Focardi and Gorrieri [44]. It is
straightforward to define them directly over trace sets.

164

of internal transitions (labeled τ) before or after the `-labeled transition.

Further, the relation must be symmetric, such that if E ≈ F then F ≈ E.

Thus, ifE/H ≈ (E|F)\H , a low observer’s view ofE does not change whenE is

composed with any high security system F . The hyperproperty corresponding

to Focardi and Gorrieri’s BNDC is

BNDC , {T ∈ Prop | T ∈ LTS

∧ (∃E ∈ LTS : T = traces(E)

∧ BNDC (E))}. (5.3.1)

BNDC is hyperliveness for LTS because of the existential in definition of ≈:

any observation can be remedied by adding additional transitions. This remedi-

ation corresponds to a closure operator because it only adds traces, thus BNDC

is a possibilistic-information flow policy.

Boudol and Castellani’s noninterference. Boudol and Castellani [18] define a

bisimulation-based noninterference policy for concurrent programs. To model

this policy as a hyperproperty, we first formalize their model of program ex-

ecution. They model execution as a binary relation → on program terms and

memories; a program term P and a memory µ step to a new program term P ′

and memory µ′. Define the set ΣP of states for program P to be the set of pairs

of a program term and a memory, prog(s) to be the program term from state s,

and mem(s) to be the memory from state s. Define traces(P) to be the set of all

traces t such that prog(t[0]) is P , and for all i, t[i] → t[i + 1]. This construction

encodes P as a set of traces and is an instance of our general construction for

encoding LTSs (c.f. §5.3); here there are only LTS-states and no labels.

165

Second, we formalize Boudol and Castellani’s security policy. Let =L be

an equivalence relation on memories such that µ1 =L µ2 means µ1 and µ2 are

indistinguishable to a low observer. State s can step to state s′ in program P ,

denoted stepsP (s, s′), if

(∃ t ∈ Ψinf , i ∈ N : t ∈ traces(P) ∧ t[i] = s ∧ t[i+ 1] = s′).

Define≈PL (read “bisimilar”) to be a binary relation on ΣP such that if s1 is bisim-

ilar to s2, then s1 and s2 must have indistinguishable memories to a low ob-

server; further, if s1 can step to state s′1, then either s′1 is bisimilar to s2, or s2 can

step to s′2 where s′1 and s′2 are bisimilar. Formally, ≈PL is the largest symmetric

binary relation on ΣP such that

s1 ≈PL s2 =⇒ mem(s1) =L mem(s2)

∧ (∃ s′1 ∈ Σ : stepsP (s1, s
′
1) =⇒ s′1 ≈PL s2

∨ (∃ s′2 ∈ Σ : stepsP (s2, s
′
2) ∧ s′1 ≈PL s′2)).

Relation ≈PL formalizes Definition 3.5 ((Γ,L)-Bisimulation) from [18].

Boudol and Castellani define program P to be secure, which we denote

BCNI (P), iff P is bisimilar to itself in all initially low-equivalent memories:

BCNI (P) , (∀µ1, µ2 : µ1 =L µ2 =⇒ (P, µ1) ≈PL (P, µ2)).

BCNI (P) formalizes Definition 3.8 (Secure Programs) from [18]. The hyper-

property containing all secure programs according to Boudol and Castellani’s

definition is

BCNI , {T ∈ Prop | T ∈ LTS =⇒ (∃P : T = traces(P) ∧ BCNI (P))}.

BCNI is hyperliveness because of the existential quantifier on s′2 in the defi-

nition of≈PL : any observation that contains traces leading to non-bisimilar states

166

can be remedied by adding additional traces leading to bisimilar states. This re-

mediation corresponds to a closure operator because it only adds traces, thus

BCNI is a possibilistic information-flow policy.

5.4 State Machines

Goguen and Meseguer [46] define a state machine as a tuple (S,C,O, out , do, s0),

where S is a set of machine states, C is a set of commands, O is a set of outputs,

out is a function from S to O yielding what output the user of the machine

observes when the machine is in a given state, do is a function from S × C

to S describing how the machine transitions between states as a function of

commands, and s0 is the initial state of the machine.7 Such state machines are

deterministic because do is a function rather than a relation.

A state machine M = (S,C,O, out , do, s0) can be encoded as a set of traces.

The construction proceeds in two steps. First, M is encoded as a labeled transi-

tion system (c.f. §5.3) by treating the machine commands and outputs as labels:

Let the set Ŝ of LTS-states be set S of machine states. Let the set L̂ of labels be

product set C × O of commands and outputs. Let the transition relation→ in-

clude (s, (c, o), s′) whenever do(s, c) = s′ and out(s′) = o. We now have a labeled

transition system L = (Ŝ, L̂,→). Second, the traces of M are the traces of L that

start with s0: let traces(M) be traces(Ŝ, L,→) ∩ {t ∈ Ψinf | t[0] = s0}.

The set SM of all state machines is a hyperproperty:

SM , {T ∈ Prop | (∃M : T = traces(M))}. (5.4.1)

7Our definition of state machines simplifies Goguen and Meseguer’s by omitting user clear-
ances, though the clearances still appear in the definition of GMNI .

167

Finally, we can declare that GMNI is hypersafety for SM , fulfilling our expec-

tation from the beginning of this chapter.

5.5 Probabilistic Systems

A probabilistic system is equipped with a function p such that the system tran-

sitions from a state s to state s′ with probability p(s, s′).8 This probability is

Markovian because it does not depend upon past or future states in an execution;

nonetheless, dependence upon the past or future can be modeled by allowing

states to contain history or prophecy variables [1]. Function p can itself even be

encoded into the state in various ways. For example, state s could record p(s, s′)

for all states s′. Or in a trace t, state t[i] could record p(t[i], t[i + 1]). This lat-

ter encoding is an instantiation of the construction in §5.3 for encoding labeled

transition systems as sets of traces; here, the labels are probabilities. Either way,

probabilistic systems can be modeled as sets of traces. Define PR to be the set

of all trace sets that encode probabilistic systems—that is, trace set T is in PR if

T encodes a valid probability function p(·, ·).

To obtain a probability measure on sets of traces, let Prs,S(T) denote the prob-

ability with which set T of finite traces is produced by probabilistic system S

beginning in initial state s.9 O’Neill et al. [96] show how to construct this prob-

ability measure from p. We now demonstrate how the measure can be used in

the definitions of hyperproperties.

8To be a valid probability, p(s, s′) must be in the real interval [0,1] for all s and s′; and for all
s, it most hold that

∑
s′ p(s, s

′) = 1.
9The initial state can be eliminated if we also assume a prior probability on initial states [52,

§6.5]. The requirement that the traces in T be finite is, however, essential to ensure that Prs,S(T)
is a valid probability measure.

168

Probabilistic noninterference. In information-flow security, the original mo-

tivation for adding probability to system models was to address covert chan-

nels and to establish connections between information theory and information

flow [48, 49, 88]. Probabilistic noninterference [49] emerged from this line of re-

search. Intuitively, this policy requires that the probability of every low trace be

the same for every low-equivalent initial state. To formulate probabilistic non-

interference as a hyperproperty, we need some notation. Let the low equivalence

class of a finite trace t be denoted [t]L, where

[t]L , {t′ ∈ Ψfin | evL(t) = evL(t′)}.

The probability that system S, starting in state s, produces a trace that is low-

equivalent to t is therefore Prs,S([t]L). Let the set of initial states of trace property

T be denoted Init(T), where

Init(T) , {s | {s} ≤ T}.

Probabilistic noninterference can now be expressed as follows:

PNI , {T ∈ Prop | T ∈ PR

∧ (∀ s1, s2 ∈ Init(T) : evL(s1) = evL(s2)

=⇒ (∀ t ∈ Ψfin : Prs1,T ([t]L) = Prs2,T ([t]L)))}. (5.5.1)

PNI is not hyperliveness for PR , because a system that deterministically

produces two non-low-equivalent traces from two initial low-equivalent states

cannot be extended to satisfy PNI . Whether PNI is hypersafety for PR depends

on whether state space Σ is finite. To see why, consider a system T such that

T /∈ PNI and T ∈ PR . We can attempt to construct a bad thing M for T as

follows. Since T /∈ PNI , there exists a trace tL of low events that is produced by

169

initial states s1 and s2 with differing probabilities. Let M be the prefix of T that

completely determines the probability of tL for those initial states:

M = {t ∈ Ψfin | t[0] ∈ {s1, s2} ∧ t ≤ T ∧ evL(t) = tL}.

Recall that bad things must be finitely observable and irremediable. M is irre-

mediable because no extension of it can change the probability of tL for initial

states s1 and s2. But is M finitely observable—that is, is M ∈ Obs? Recall that an

element of Obs must be a finite set of finite traces. Each trace in M is finite, but

M might not be a finite set:

• If state space Σ is countably infinite,10 there could be infinitely many states

to which s1 (and s2) transition. Hence there could need to be infinitely

many traces in M to completely determine the probability of tL, so M

could not be in Obs. Moreover, any finite subset N of M would necessarily

omit some states from Σ. So it might be possible to extendN to a system T ′

that satisfies PNI by adding traces containing those omitted states. Thus

T would have no bad thing, and PNI would not be hypersafety for PR .

• If Σ is finite, only finitely many finite traces are low-equivalent to tL. Thus

M is finite, and no extension of T ′ of M can change the probability of tL.

So T ′ cannot be in PNI . Therefore PNI is hypersafety for PR .

Gray’s definition of probabilistic noninterference [49] is hypersafety for PR , be-

cause Gray required the state (and input and output) space to be finite. But the

definition of O’Neill et al. [96] is neither hypersafety nor hyperliveness, because

it allowed a countably infinite state space.

10State space Σ cannot be uncountably infinite without generalizing probability function p(·, ·)
to a probability measure.

170

Secure encryption. A private-key encryption scheme is a tuple (M, K, C, Gen,

Enc, Dec), whereM is the message space, K is the key space, and C is the ciphertext

space such that the following hold:

• Gen is the key-generation algorithm, a randomized algorithm that produces

a key k ∈ K. We write k ← Gen to denote the sampling of k from the

probability distribution induced by Gen.

• Enc is the encryption algorithm, an algorithm (either randomized or deter-

ministic) that accepts a key k ∈ K, a plaintext message m ∈M, and yields

a ciphertext c ∈ C that is the encryption of m using k. We denote this as

c = Enc(m, k).

• Dec is the decryption algorithm, a deterministic algorithm that accepts a key

k ∈ K, a ciphertext c ∈ C, and yields a plaintext m that is the decryption of

c using k. We denote this as m = Dec(c, k).

• Decryption is the inverse of encryption. Formally, for all m ∈ M and

k ∈ K, it holds that Pr (Dec(Enc(m, k), k) = m) = 1.

A private-key encryption scheme satisfies perfect indistinguishability [61] if the

probability distribution on ciphertexts is the same for all plaintexts. Formally,

for all m1, m2, and c,

Pr (k ← Gen : Enc(m1, k) = c) = Pr (k ← Gen : Enc(m2, k) = c) .

Perfect indistinguishability can be formulated as a hyperproperty on prob-

abilistic systems. To encode encryption scheme (M, K, C, Gen, Enc, Dec) as a

probabilistic system, let the set of states of the system be

M∪K ∪ C ∪ {Gen} ∪ {Enc(m, k) | k ∈ K,m ∈M}

∪ {Dec(c, k) | k ∈ K, c ∈ C}.

171

Let probability function p(·, ·) be defined such that

• p(Gen, k) = Pr (k = Gen),

• p(Enc(m, k), c) = Pr (c = Enc(m, k)), and

• p(Dec(c, k),m) = 1 iff Dec(c, k) = m.

Let the system so constructed from (M, K, C, Gen, Enc, Dec) be denoted

encSys(M,K, C,Gen,Enc,Dec),

and let the set of all such systems be ES . The following hyperproperty expresses

perfect indistinguishability:

PI , {T ∈ Prop | T ∈ ES

∧ (∃M,K, C,Gen,Enc,Dec :

T = encSys(M,K, C,Gen,Enc,Dec)

∧ (∀m1,m2 ∈M; c ∈ C :

Pr (Enc(m1) = c)

= Pr (Enc(m2) = c)))}, (5.5.2)

where Pr (Enc(m) = c) denotes

∑
k∈K

PrGen,T ({Gen, k}) · PrEnc(m,k),T ({Enc(m, k), c}).

PI is hypersafety for ES because any encryption scheme that is not in PI

has a ciphertext c and two messages m1, m2 such that the probability that m1

encrypts to c is not equal to the probability that m2 encrypts to c. Trace set

{Enc(m, k), c | k ∈ K,m ∈ {m1,m2}} thus is irremediable, and it is finite assum-

ing that key space K is finite. So the trace set is a bad thing. But note that PI is

not subset closed for Prop, so stepwise refinement is not applicable with PI .

172

Other definitions of secure encryption, such as computational indistin-

guishability in various attacker models (including IND-CPA and IND-CCA),

can similarly be formulated as hyperproperties.

Quantification of information flow. Probability can also be used to reason

about the amount of information that a system can leak. For example, chan-

nel capacity is the maximum rate at which information can be reliably sent over

a channel [106]; Gray [49] formulates as a channel the leakage of secret infor-

mation from a system, and he quantifies the capacity of that channel. The hy-

perproperty “The channel capacity is k bits” (denoted CC k) is hyperliveness for

PR , since no matter what the rate is for some finite prefix of the system, the rate

can changed to any arbitrary amount by an appropriate extension that conveys

more or less information.

Chapter 2 gives a model and metric for quantifying the leakage over a series

of experiments on a program S. The policy specifying that the leakage is less

than k bits for all experiments, denoted QL k, is hypersafety for a variant of PR ,

as we now show.

Recall that a state of a probabilistic program has an immutable high pro-

jection and a mutable low projection, that a repeated experiment on probabilistic

program S is a finite sequence of executions of S, and that each individual ex-

ecution is an experiment. An experiment can be represented with two states: an

initial state, in which inputs are provided to the program, and a final state, in

which outputs are given by the program. All initial states (across all executions)

in a repeated experiment must have the same high projection but may have dif-

ferent low projections. Recall that the probabilistic behavior of S is modeled by

a semantics [[S]] that maps inputs states to output distributions, where ([[S]]s)(s′)

173

is the probability that S begun in state s terminates in state s′. An attacker be-

gins an experiment with a prebelief about the high projection of the initial state.

After observing the output of the execution, the attacker updates his prebelief

to produce a postbelief about the high projection of the initial state.

We here use traces and events to represent repeated experiments, where each

state in a trace produces an event. The events alternate between input and out-

put, and the first event in a trace must be an input. Each output must have the

correct probability of occurring according to [[S]] and the most recent input.11

Each low input projection may vary, but the high projection must be the same

in each input. Let Syst(S) denote the system of such traces resulting from pro-

gram S:

Syst(S) , {t ∈ Ψfin | (∀ i : 0 ≤ 2i+ 1 ≤ |t|

=⇒ evHin(t[2i]) = evHin(t[0])

∧ p(t[2i], t[2i+ 1]) = ([[S]]t[2i])(t[2i+ 1]))},

where |t| denotes the length of finite trace t, and p(·, ·) is the probability function

used in §5.5. From Syst(S) we can construct probability measure Prs,Syst(S), also

used in §5.5.12

Each pair of states t[i] and t[i+ 1], for even i, in repeated experiment t yields

an experiment. An experiment is described formally by a prebelief, a high input,

a low input, a low output, and a postbelief.

11A representation in which each finite trace contains two states (initial and final) might at
first seem suitable for repeated experiments. That representation would fail to preserve the
order in which inputs are provided (in initial states) across the sequence of executions in the
repeated experiment. However, a single trace with many states does capture this order.

12Note that p(s, s′) is defined only at every other state in each trace of Syst(S), so to construct
the measure we treat each pair of states in the trace a single state. Also note that the set of
program states must be finite for the probability measure to be well-defined.

174

As part of determining the postbelief for an experiment, the attacker’s pre-

diction δA of the low output is calculated from prebelief bH and low input l:

δA(bH , l) , λs . bH(evHin(s)) · Prr,Syst(S)({rs}),

where r is the state that has evHin(s) as its high projection and l as its low projec-

tion. Denote the ith experiment in trace t, with initial prebelief bH , as E(t, i, bH).

We define E(t, i, bH) using OCaml-style record syntax:

E(t, i, bH) , { preBelief = if i > 0 then E(t, i− 1).postBelief else bH ;

highIn = evHin(t[2i]);

lowIn = evL(t[2i]);

lowOut = evL(t[2i+ 1]);

postBelief = (δA(bH , l) | lowOut)�H },

where | is the distribution conditioning operator, and � is the distribution pro-

jection operator, defined in §2.1.

The quantity of flow in experiment E(t, i, bH) is denoted Q(E(t, i, bH)) and

defined in §2.3.1. The quantity of flow over repeated experiment t with initial

prebelief bH , denoted Q(t, bH), is the sum of the flow for each experiment in t:

Q(t, bH) ,
(|t|−1)/2∑
i=0

Q(E(t, i, bH)).

Hyperproperty QL k is the set of all systems that exhibit at most k bits of flow

over any experiment:

QL k , {T ∈ Prop | (∃S : T = Syst(S) =⇒ (∀ t ∈ T, bH : Q(bH , t) ≤ k))}.

175

5.6 Results on Generalized Hypersafety and Hyperliveness

The results proved in chapter 4 about hypersafety and hyperliveness generalize

naturally to specific system representations.13 Informally, the generalizations

are as follows:

• If P is safety (liveness) for Rep, then [P] is hypersafety (hyperliveness) for

Rep (generalizing propositions 4.1 and 4.2).

• If P is hypersafety for Rep, then P is subset closed for Rep, but not nec-

essarily subset closed for Prop (generalizing theorem 4.1). Consequently,

stepwise refinement does not necessarily work with hyperproperties that

are hypersafety for Rep.

• If P is a possibilistic information-flow policy for Rep, then P is hyperlive-

ness for Rep (generalizing theorem 4.3).

• k-hypersafety for Rep can be reduced to safety for Repk (generalizing the-

orem 4.2).

• Every hyperproperty for Rep is the intersection of a safety hyperproperty

for Rep with a liveness hyperproperty for Rep (generalizing theorem 4.5).

We give the formal statements of these generalized results below. The proofs of

these results are all straightforward corollaries of the original results, although

some proofs require additional assumptions about Rep.

First, we must define safety and liveness for system representations. Let

Tr(Rep) denote the set of all traces that are contained in any system in Rep—that

is, Tr(Rep) =
⋃
T∈Rep T . Let Obs(Tr(Rep)) denote the set of all finite traces that

are prefixes of some trace in Tr(Rep)—that is, Obs(Tr(Rep)) = {t ∈ Ψfin | (∃ t′ ∈
13We do not generalize the topological results here. However, since the intersection theorem

generalizes, we believe that the topological results could also be generalized.

176

Tr(Rep) : t ≤ t′)}. Let the lift [P]Rep of property P in Rep be P(P) ∩ Rep. A trace

property S is a safety property for system representation Rep iff

(∀ t ∈ Tr(Rep) : t /∈ S =⇒ (∃m ∈ Obs(Tr(Rep)) : m ≤ t ∧

(∀ t′ ∈ Tr(Rep) : m ≤ t′ =⇒ t′ /∈ S))).

A trace property L is a liveness property for system representation Rep iff

(∀ t ∈ Obs(Tr(Rep)) : (∃ t′ ∈ Tr(Rep) : t ≤ t′ ∧ t′ ∈ L)).

Note that, compared to the original definitions of safety and liveness in chap-

ter 4, we have simply replaced Ψinf with Tr(Rep), and Ψfin with Obs(Tr(Rep)).

Let SP(Rep) be the set of all safety properties for Rep, and let LP(Rep) be the set

of all liveness properties for Rep. Likewise, let SHP(Rep) be the set of all safety

hyperproperties for Rep, and let LHP(Rep) be the set of all liveness hyperprop-

erties for Rep.

Generalization of proposition 4.1. If (∀ t ∈ Tr(Rep) : {t} ∈ Rep), then

(∀S ∈ P(Rep) : S ∈ SP(Rep) ⇐⇒ [S]Rep ∈ SHP(Rep)).

The forward direction of this generalization always holds, but the backward

direction (⇐=) might not hold if Rep does not allow individual traces from

Tr(Rep) to be representations: the bad thing for a safety hyperproperty could

never be an individual trace, hence the safety hyperproperty could not be the

lift of a safety property. So the backward direction requires the assumption that

any individual trace in Tr(Rep) is itself a system representation in Rep—that is,

(∀ t ∈ Tr(Rep) : {t} ∈ Rep). Note that Prop satisfies this assumption.

Generalization of proposition 4.2. If (∀T ⊆ Tr(Rep) : T ∈ Rep), then

(∀L ∈ P(Rep) : L ∈ LP(Rep) ⇐⇒ [L]Rep ∈ LHP(Rep)).

177

The backward direction of this generalization always holds, but the forward

direction (=⇒) might not hold if Rep does not allow arbitrary unions of indi-

vidual traces from Tr(Rep) to be representations: the union of the individual

good things for a liveness property would not necessarily be good for the lift

of that liveness property. So the forward direction requires the assumption that

arbitrary unions of individual traces in Tr(Rep) are themselves system repre-

sentations in Rep—that is, (∀T ⊆ Tr(Rep) : T ∈ Rep). Note that Prop satisfies

this assumption.

Generalization of theorem 4.1. If (∃L ∈ LP(Rep) : L 6= Tr(Rep)), then

SHP(Rep) ⊂ SSC(Rep).

SSC(Rep) is the set of all hyperproperties for Rep that are subset closed on Rep:

P ∈ SSC(Rep) ⇐⇒ (∀T ∈ P : (∀T ′ ∈ Rep : T ′ ⊂ T =⇒ T ′ ∈ P)).

The strictness of the subset in the theorem generalization requires the assump-

tion that there exist subset-closed hyperproperties that are not safety. But it

suffices to instead assume that hyperliveness is not trivial for Rep—that is,

(∃L ∈ LP(Rep) : L 6= Tr(Rep)). Note that Prop satisfies both assumptions.

Generalization of theorem 4.2.

(∀S ∈ Rep,K ∈ KSHP(k)(Rep) : (∃K ∈ SP(Rep) : S |= K ⇐⇒ Sk |= K)).

KSHP(k)(Rep) is the subset of SHP(Rep) where the size of bad thing M is

bounded by k.

178

Generalization of theorem 4.3. If there exists some liveness hyperproperty for

Rep that is not a possibilistic information-flow policy for Rep, then

PIF(Rep) ⊂ LHP(Rep).

PIF(Rep) is the set of all possibilistic information-flow policies expressed by clo-

sure operators Cl of type Rep → Rep. The strictness of the subset requires the

assumption of the existence of a liveness hyperproperty for Rep that is not a

possibilistic information-flow policy for Rep. Note that Prop satisfies this as-

sumption.

Generalization of theorem 4.5.

(∀P ∈ P(Rep) : (∃S ∈ SHP(Rep),L ∈ LHP(Rep) : P = S ∩ L)).

The proof of this generalization requires the following generalized definition:

Safe(P) , {T ∈ Rep | (∀M ∈ Obs(Rep) : M ≤ T

=⇒ (∃T ′ ∈ Rep : M ≤ T ′ ∧ T ′ ∈ P))}.

Also, in the definition of Live(P), notation H must now denote the complement

of hyperproperty H with respect to Rep.

5.7 Summary

This chapter has classified several security policies with hypersafety and hy-

perliveness for particular system representations. Figure 5.1 summarizes this

classification.

We have shown that the theory of hyperproperties can be generalized to ap-

ply to system representations such as relational semantics, labeled transition

179

HP

SHP LHP

PIF

[LP]

[SP] = KSHP(1)

KSHP(2)

GMNI
TIRNI

TSRNI
PNI

QLk
PI

BNDC
BCNI

CCk

Figure 5.1: Classification of security policies for system representations

systems, state machines, and probabilistic systems. In each case, we encode the

system representation into trace sets, thus into hyperproperties. All of our theo-

rems about hyperproperties continue to hold for system representations, though

some additional assumptions about the system representation are needed.

180

CHAPTER 6

CONCLUSION

In practice, computer security policies are often expressed as informal re-

quirements in natural languages (e.g., English), which are inherently ambigu-

ous. But security policies can also be expressed precisely with mathematical

models and notations, and this precision makes policies amenable to analysis

both by humans and computers.

This dissertation has developed such mathematical foundations. Informa-

tion theory was used in chapters 2 and 3 to quantify information-flow security.

This quantification is useful for analyzing the security of systems whose proper

operation requires leakage of information, such as password checkers and sta-

tistical databases. We showed that accuracy of belief can be used to quantify

information flow for both confidentiality and integrity, and that accuracy gen-

eralizes previous metrics based on uncertainty. Hyperproperties were used in

chapters 4 and 5 to formalize security policies. This formalization is the first to

enable expression of all kinds of security requirements in a uniform framework.

We showed that the theory of trace properties generalizes to hyperproperties.

The historical background in §1.1 began with the taxonomy of confidential-

ity, integrity, and availability. More research is needed on the relationship be-

tween this taxonomy and the formalisms we have studied. For quantitative

flow, we have given definitions for confidentiality and integrity, but availability

remains unexplored. For hyperproperties, the relationship with the taxonomy

is an open question, but we can offer some observations:

• Information-flow confidentiality is not a trace property, but it is a hyper-

property, and it can be hypersafety (e.g., observational determinism) or

hyperliveness (e.g., generalized noninterference).

181

• Integrity, as the information-flow dual of confidentiality, includes exam-

ples from both hypersafety and hyperliveness. And when stipulating ac-

cess control on changes to data and other resources, integrity is safety.

• Availability is sometimes hypersafety (maximum response time in any

execution, which is also safety) and sometimes hyperliveness (mean re-

sponse time over all executions).

The classification of security requirements as confidentiality, integrity, and

availability therefore would seem to be orthogonal to hypersafety and hyper-

liveness.

More research is also needed on how to obtain assurance that real systems

meet the security definitions we have given. For quantitative flow, one impor-

tant open question is how to make our theoretical policies practical in real sys-

tems, either by enforcing a limit on information flow or by measuring the actual

amount of information flow. For hyperproperties, we gave a relatively complete

verification methodology for k-hypersafety properties, but whether there is a

relatively complete verification methodology for all hyperproperties remains

an important open question.

The immediate goal of the research presented in this dissertation is to im-

prove our understanding of the foundations of computer security so that we

can specify system security requirements and gain assurance that systems meet

those requirements. But the ultimate goal is to ameliorate the real-world con-

sequences of security vulnerabilities. These vulnerabilities were a motivation

for the 1991 report by the System Security Study Committee of the National

Research Council:

“Computer systems are coming of age. As [they] become more

prevalent, sophisticated, . . . and interconnected, society becomes

182

more vulnerable to poor system design, accidents. . . , and attacks.

Without more responsible design and use, system disruptions will

increase, with harmful consequences for society.” [92, Executive

Summary]

Now, almost two decades later, it seems clear not only that the Committee

was right, but that the potential for disruptions and the severity of their con-

sequences continues to increase. It is my hope that the research presented in

this dissertation will in some way help to reduce the economic, defense, and

social consequences of security vulnerabilities.

183

BIBLIOGRAPHY

[1] Martı́n Abadi and Leslie Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253–284, May 1991.

[2] Martı́n Abadi and Leslie Lamport. Composing specifications. ACM Trans-
actions on Programming Languages and Systems, 15(1):73–132, 1993.

[3] Samson Abramsky. Domain theory in logical form. Annals of Pure and
Applied Logic, 51:1–77, 1991.

[4] Jiřı́ Adámek. Foundations of Coding. John Wiley and Sons, New York, 1991.

[5] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Pro-
cessing Letters, 21(4):181–185, 1985.

[6] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.
Distributed Computing, 2(3):117–126, 1987.

[7] James P. Anderson. Computer security technology planning study. Tech-
nical Report ESD-TR-73-51, Vol. II, Electronic Systems Division, Air Force
Systems Command, Bedford, Mass., October 1972.

[8] Ross J. Anderson. A security policy model for clinical information sys-
tems. In Proc. IEEE Symposium on Security and Privacy, pages 30–43, May
1996.

[9] Ralph-Johan R. Back. On correct refinement of programs. Journal of Com-
puter and System Sciences, 23(1):49–68, August 1981.

[10] Michael Backes. Quantifying probabilistic information flow in computa-
tional reactive systems. In Proc. European Symposium on Research in Com-
puter Security, pages 336–354, September 2005.

[11] Michael Backes, Boris Köpf, and Andrey Rybalchenko. Automated dis-
covery and quantification of information leaks. In Proc. IEEE Symposium
on Security and Privacy, pages 141–153, May 2009.

[12] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure informa-
tion flow by self-composition. In Proc. IEEE Computer Security Foundations
Workshop, pages 100–114, June 2004.

184

[13] D. Elliot Bell and Leonard J. LaPadula. Secure computer systems: Math-
ematical foundations. Technical Report 2547, Volume I, MITRE Corpora-
tion, March 1973.

[14] Johan van Benthem and Kees Doets. Higher-order logic. In Elements of
Classical Logic, volume 1 of Handbook of Philosophical Logic. D. Reidel Pub-
lishing, Dordrecht, Holland, 1983.

[15] Kenneth Biba. Integrity considerations for secure computer systems.
Technical Report MTR-3153, MITRE Corporation, April 1977.

[16] Matt Bishop. Computer Security: Art and Science. Addison-Wesley, Boston,
2003.

[17] Annalisa Bossi, Riccardo Focardi, Carla Piazza, and Sabina Rossi. Re-
finement operators and information flow security. In IEEE Conference on
Software Engineering and Formal Methods, pages 44–53, June 2003.

[18] Gérard Boudol and Ilaria Castellani. Noninterference for concurrent pro-
grams and thread systems. Theoretical Computer Science, 281(1–2):109–130,
2002.

[19] Randy Browne. The Turing test and non-information flow. In Proc. IEEE
Symposium on Security and Privacy, pages 375–385, May 1991.

[20] Denis L. Bueno and Michael R. Clarkson. Hyperproperties: Verification of
proofs. Technical report, Cornell University Computing and Information
Science, July 2008. Available from http://hdl.handle.net/1813/11153.

[21] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash Panan-
gaden. Anonymity protocols as noisy channels. Information and Computa-
tion, 206(2–4):378–401, 2008.

[22] Stephen Chong and Andrew C. Myers. Decentralized robustness. In Proc.
IEEE Computer Security Foundations Workshop, pages 242–253, July 2006.

[23] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantified inter-
ference: Information theory and information flow. In IFIP WG 1.7 Work-
shop on Issues in the Theory of Security, Barcelona, Spain, April 2004. Avail-
able from King’s College London Computer Science E-Repository, docu-
ment ID 1107, http://calcium.dcs.kcl.ac.uk/1107.

185

[24] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantified inter-
ference for a while language. Electronic Notes in Theoretical Computer Sci-
ence, 112:149–166, January 2005.

[25] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative infor-
mation flow, relations and polymorphic types. Journal of Logic and Compu-
tation, 18(2):181–199, 2005.

[26] David D. Clark and David R. Wilson. A comparison of commercial and
military computer security policies. In Proc. IEEE Symposium on Security
and Privacy, pages 184–194, April 1987.

[27] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Auto-
matic verification of finite-state concurrent systems using temporal logic
specifications. ACM Transactions on Programming Languages and Systems,
8(2):244–263, 1986.

[28] Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Belief in
information flow. In Proc. IEEE Computer Security Foundations Workshop,
pages 31–45, June 2005.

[29] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In Proc.
IEEE Symposium on Computer Security Foundations, pages 51–65, June 2008.

[30] Commission of the European Communities (ECSC, EEC, EAEC). Infor-
mation Technology Security Evaluation Criteria: Provisional harmonised
criteria, June 1991. Document COM(90) 314, Version 1.2.

[31] Common Criteria for Information Technology Security Evaluation: Part
1: Introduction and general model, September 2005. CCMB-2006-09-001,
Version 3.1, Revision 1. Available from www.commoncriteriaportal.org.

[32] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John
Wiley & Sons, New York, 1991.

[33] Ole-Johan Dahl, C.A.R. Hoare, and Edsger W. Dijkstra. Structured Pro-
gramming. Academic Press, London, 1972.

[34] Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving ap-
proach to analysis of secure information flow. In Security in Pervasive Com-
puting, volume 3450 of Lecture Notes in Computer Science, pages 193–209.
Springer, Berlin, 2005.

186

[35] Dorothy Denning. Cryptography and Data Security. Addison-Wesley, Read-
ing, Massachusetts, 1982.

[36] Dorothy E. Denning. A lattice model of secure information flow. Commu-
nications of the ACM, pages 236–242, May 1976.

[37] Department of Defense. Trusted Computer System Evaluation Criteria,
December 1985. DoD 5200.28-STD, also known as the “Orange Book”.

[38] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Approximate
non-interference. Journal of Computer Security, 12(1):37–81, 2004.

[39] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Measuring
the confinement of probabilistic systems. Theoretical Computer Science,
340(1):3–56, 2005.

[40] Edsger W. Dijkstra. A constructive approach to the problem of program
correctness. BIT Numerical Mathematics, 8:174–186, 1968.

[41] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “not never”
revisited: On branching versus linear time temporal logic. Journal of the
ACM, 33(1):151–178, January 1986.

[42] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant.
Limiting privacy breaches in privacy preserving data mining. In Proc.
ACM Symposium on Principles of Database Systems, pages 211–222, June
2003.

[43] R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of
a system design. In Proc. ACM Symposium on Operating Systems Principles,
pages 57–65, November 1977.

[44] Riccardo Focardi and Roberto Gorrieri. Classification of security prop-
erties (part I: Information flow). In Riccardo Focardi and Roberto Gorri-
eri, editors, Proc. International School on Foundations of Security Analysis and
Design, volume 2171 of Lecture Notes in Computer Science, pages 331–396.
Springer, 2001.

[45] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin.
Bayesian Data Analysis. Chapman and Hall/CRC, Boca Raton, Florida,
second edition, 2004.

187

[46] Joseph A. Goguen and Jose Meseguer. Security policies and security mod-
els. In Proc. IEEE Symposium on Security and Privacy, pages 11–20, April
1982.

[47] Dieter Gollmann. Computer Security. John Wiley and Sons, Chichester,
1999.

[48] James W. Gray, III. Probabilistic interference. In Proc. IEEE Symposium on
Security and Privacy, pages 170–179, May 1990.

[49] James W. Gray, III. Toward a mathematical foundation for information
flow security. In Proc. IEEE Symposium on Security and Privacy, pages 21–
35, May 1991.

[50] James W. Gray, III and Paul F. Syverson. A logical approach to multilevel
security of probabilistic systems. Distributed Computing, 11(2):73–90, 1998.

[51] Joseph Halpern and Kevin O’Neill. Secrecy in multiagent systems. In Proc.
IEEE Computer Security Foundations Workshop, pages 32–46, June 2002.

[52] Joseph Y. Halpern. Reasoning about Uncertainty. MIT Press, Cambridge,
Massachusetts, 2003.

[53] Joseph Y. Halpern and Mark R. Tuttle. Knowledge, probability, and ad-
versaries. Journal of the ACM, 40(4):917–962, 1993.

[54] Godfrey Harold Hardy. Divergent Series. Chelsea, New York, 1991.

[55] Jifeng He, C.A.R. Hoare, and Jeff W. Sanders. Data refinement refined. In
Proc. European Symposium on Programming, pages 187–196, March 1986.

[56] C.A.R. Hoare. Proof of correctness of data representations. Acta Informat-
ica, 1:271–281, 1972.

[57] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1985.

[58] International Organization for Standardization. Information processing
systems: Open systems interconnection—basic reference model. Part 2:
Security architecture, 1989. ISO 7498-2.

188

[59] Gareth A. Jones and J. Mary Jones. Information and Coding Theory. Springer,
London, 2000.

[60] Daniel Kahneman and Amos Tversky. Subjective probability: A judgment
of representativeness. Cognitive Psychology, 3:430–454, 1972.

[61] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.
Chapman & Hall/CRC, Boca Raton, Florida, 2008.

[62] Richard A. Kemmerer. Shared resource matrix methodology: An ap-
proach to identifying storage and timing channels. ACM Transactions on
Computing Systems, 1(3):256–277, August 1983.

[63] Daniel Kifer and Johannes Gehrke. Injecting utility into anonymized
datasets. In Proc. ACM Conference on Management of Data, pages 217–228,
June 2006.

[64] Johnathan J. Koehler. The base rate fallacy reconsidered: Descriptive,
normative, and methodological challenges. Behavioral and Brain Sciences,
19(1):1–53, 1996.

[65] Boris Köpf and David Basin. An information-theoretic model for adaptive
side-channel attacks. In Proc. ACM Conference on Computer and Communi-
cations Security, pages 286–296, October 2007.

[66] Dexter Kozen. Semantics of probabilistic programs. Journal of Computer
and System Sciences, 22:328–350, 1981.

[67] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans
Kaashoek, Eddie Kohler, and Robert Morris. Information flow control for
standard OS abstractions. In Proc. ACM Symposium on Operating Systems
Principles, pages 321–334, October 2007.

[68] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, 3(2):125–143, 1977.

[69] Leslie Lamport. “Sometime” is sometimes “not never”: On the temporal
logic of programs. In Proc. ACM Symposium on Principles of Programming
Languages, pages 174–185, January 1980.

189

[70] Leslie Lamport. Basic concepts: Logical foundation. In Distributed Sys-
tems: Methods and Tools for Specification, An Advanced Course, volume 190
of Lecture Notes in Computer Science, pages 19–30. Springer, 1985.

[71] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, Boston, 2002.

[72] Butler W. Lampson. Computer security in the real world. Presented
at Annual Computer Security Applications Conference, 2000. Available
from http://research.microsoft.com/en-us/um/people/blampson/

64-securityinrealworld/Acrobat.pdf.

[73] Butler W. Lampson. A note on the confinement problem. Communications
of the ACM, 16(10):613–615, October 1973.

[74] Butler W. Lampson. Protection. ACM SIGOPS Operating Systems Review,
8(1):18–24, January 1974.

[75] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities
in Java applications with static analysis. In Proc. USENIX Security Sympo-
sium, pages 271–286, August 2005.

[76] Gavin Lowe. Quantifying information flow. In Proc. IEEE Computer Secu-
rity Foundations Workshop, pages 18–31, June 2002.

[77] Pasquale Malacaria. Assessing security threats of looping constructs. In
Proc. ACM Symposium on Principles of Programming Languages, pages 225–
235, January 2007.

[78] Heiko Mantel. Possibilistic definitions of security: An assembly kit. In
Proc. IEEE Computer Security Foundations Workshop, pages 185–199, July
2000.

[79] Heiko Mantel. Preserving information flow properties under refinement.
In Proc. IEEE Symposium on Security and Privacy, pages 78–91, May 2001.

[80] Stephen McCamant and Michael D. Ernst. Quantitative information flow
as network capacity. In Proc. ACM Conference on Programming Language
Design and Implementation, pages 193–205, June 2008.

190

[81] Daryl McCullough. Specifications for multi-level security and a hook-up
property. In Proc. IEEE Symposium on Security and Privacy, pages 161–166,
April 1987.

[82] Annabelle McIver and Carroll Morgan. A probabilistic approach to infor-
mation hiding. In Programming Methodology, chapter 20, pages 441–460.
Springer, New York, 2003.

[83] Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof
for Probabilistic Systems. Springer, New York, 2004.

[84] John McLean. Security models and information flow. In Proc. IEEE Sym-
posium on Security and Privacy, pages 180–189, May 1990.

[85] John McLean. Proving noninterference and functional correctness using
traces. Journal of Computer Security, 1(1):37–58, 1992.

[86] John McLean. A general theory of composition for a class of “possibilistic”
properties. IEEE Transactions on Software Engineering, 22(1):53–67, 1996.

[87] Ernest Michael. Topologies on spaces of subsets. Transactions of the Amer-
ican Mathematical Society, 71(1):152–182, July 1951.

[88] Jonathan Millen. Covert channel capacity. In Proc. IEEE Symposium on
Security and Privacy, pages 60–66, April 1987.

[89] Jonathan Millen. 20 years of covert channel modeling and analysis. In
Proc. IEEE Symposium on Security and Privacy, pages 113–114, May 1999.

[90] Robin Milner. Communication and Concurrency. Prentice Hall, New York,
1989.

[91] National Computer Security Center. A guide to understanding covert
channel analysis of trusted systems. Technical Guideline NCSC-TG-030,
Fort Meade, Maryland, November 1993.

[92] National Research Council. Computers at Risk: Safe Computing in the Infor-
mation Age. National Academy Press, Washington, D.C., 1991.

[93] James Newsome and Dawn Song. Dynamic taint analysis for automatic
detection, analysis and signature generation of exploits on commodity
software. In Proc. Symposium on Network and Distributed System Security,

191

San Diego, California, February 2005. Available from http://www.isoc.

org/isoc/conferences/ndss/05/proceedings/papers/taintcheck.pdf.

[94] James Newsome, Dawn Song, and Stephen McCamant. Measuring chan-
nel capacity to distinguish undue influence. In Proc. ACM Workshop on
Programming Languages and Analysis for Security, Dublin, Ireland, June
2009. Available from http://doi.acm.org/10.1145/1554339.1554349.

[95] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic. Springer-Verlag, Berlin, 2002.

[96] Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. Information-
flow security for interactive programs. In Proc. IEEE Computer Security
Foundations Workshop, pages 190–201, July 2006.

[97] Charles P. Pfleeger. Security in Computing. Prentice Hall PTR, Upper Sad-
dle River, New Jersey, second edition, 1997.

[98] Gordon Plotkin. Domains. Available from http://homepages.inf.ed.

ac.uk/gdp/publications/Domains.ps, 1983.

[99] Francois Pottier and Vincent Simonet. Information flow inference for ML.
In Proc. ACM Symposium on Principles of Programming Languages, pages
319–330, January 2002.

[100] Riccardo Pucella and Fred B. Schneider. Independence from obfuscation:
A semantic framework for diversity. In Proc. IEEE Computer Security Foun-
dations Workshop, pages 230–241, July 2006.

[101] Lyle Harold Ramshaw. Formalizing the Analysis of Algorithms. PhD thesis,
Stanford University, 1979. XEROX PARC technical report, 1981.

[102] A. W. Roscoe. CSP and determinism in security modelling. In Proc. IEEE
Symposium on Security and Privacy, pages 114–127, May 1995.

[103] John Rushby. Security requirements specifications: How and what?
(extended abstract). Invited paper presented at Symposium on Re-
quirements Engineering for Information Security, Indianapolis, Indiana,
March 2001. Available from http://www.csl.sri.com/users/rushby/

abstracts/sreis01.

192

[104] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications, 21(1):5–19,
January 2003.

[105] Fred B. Schneider. On Concurrent Programming. Springer, New York, 1997.

[106] Claude E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–423, 623–656, 1948.

[107] Stewart Shapiro. Foundations without Foundationalism: A Case for Second-
order Logic. Clarendon Press, Oxford, 1991.

[108] Geoffrey Smith. On the foundations of quantitative information flow. In
Proc. Conference on Foundations of Software Science and Computation Struc-
tures, pages 288–302, March 2009.

[109] Michael B. Smyth. Power domains and predicate transformers: A topo-
logical view. In Proc. International Colloquium on Automata, Languages, and
Programming, pages 662–675, July 1983.

[110] Michael B. Smyth. Topology. In Background: Mathematical Structures, vol-
ume 1 of Handbook of Logic in Computer Science. Oxford University Press,
1992.

[111] Daniel F. Sterne. On the buzzword “security policy”. In Proc. IEEE Sym-
posium on Security and Privacy, pages 219–230, May 1991.

[112] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devedas. Secure
program execution via dynamic information flow tracking. In Proc. ACM
Conference on Architectural Support for Programming Languages and Systems,
pages 85–96, October 2004.

[113] David Sutherland. A model of information. In Proc. National Computer
Security Conference, pages 175–183, September 1986.

[114] Tad Taylor. Comparison paper between the Bell and LaPadula model and
the SRI model. In Proc. IEEE Symposium on Security and Privacy, pages
195–202, April 1984.

[115] Tachio Terauchi and Alexander Aiken. Secure information flow as a safety
problem. In Proc. ACM Symposium on Static Analysis, pages 352–367,
September 2005.

193

[116] Leopold Vietoris. Bereiche zweiter Ordnung. Monatschefte für Mathematik
und Physik, 33:49–62, 1923.

[117] Dennis Volpano. Safety versus secrecy. In Proc. ACM Symposium on Static
Analysis, pages 303–311, September 1999.

[118] Dennis Volpano. Secure introduction of one-way functions. In Proc. IEEE
Computer Security Foundations Workshop, pages 246–254, July 2000.

[119] Dennis Volpano and Geoffrey Smith. Confinement properties for pro-
gramming languages. SIGACT News, 29(3):33–42, September 1998.

[120] Dennis Volpano and Geoffrey Smith. Verifying secrets and relative se-
crecy. In Proc. ACM Symposium on Principles of Programming Languages,
pages 268–276, January 2000.

[121] Victor L. Voydock and Stephen T. Kent. Security mechanisms in high-level
network protocols. Computing Surveys, 15(2), June 1983.

[122] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.
O’Reilly, Sebastopol, California, second edition, 1996.

[123] Douglas G. Weber. Quantitative hook-up security for covert channel anal-
ysis. In Proc. IEEE Computer Security Foundations Workshop, pages 58–71,
June 1988.

[124] C. Weissman. Security controls in the ADEPT-50 time-sharing system. In
Proc. AFIPS Fall Joint Computer Conference, pages 119–133, November 1969.

[125] Glynn Winskel. The Formal Semantics of Programming Languages: An Intro-
duction. MIT Press, Cambridge, Massachusetts, 1993.

[126] Niklaus Wirth. Program development by stepwise refinement. Communi-
cations of the ACM, 14(4):221–227, April 1971.

[127] J. Todd Wittbold and Dale Johnson. Information flow in nondeterministic
systems. In Proc. IEEE Symposium on Security and Privacy, pages 144–161,
May 1990.

[128] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced policy enforce-
ment: A practical approach to defeat a wide range of attacks. In Proc.
USENIX Security Symposium, pages 121–136, August 2006.

194

[129] Aris Zakinthinos and E.S. Lee. A general theory of security properties. In
Proc. IEEE Symposium on Security and Privacy, pages 94–102, May 1997.

[130] Steve Zdancewic and Andrew C. Myers. Observational determinism for
concurrent program security. In Proc. IEEE Computer Security Foundations
Workshop, pages 29–43, June 2003.

[131] Lantian Zheng and Andrew C. Myers. End-to-end availability policies
and noninterference. In Proc. IEEE Computer Security Foundations Work-
shop, pages 272–286, June 2005.

[132] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. APSS: Proac-
tive secret sharing in asynchronous systems. ACM Transactions on Infor-
mation and System Security, 8(3):259–286, August 2005.

195

INDEX

Symbols
=L (low equivalence), 19, 116

[·]L (low equivalence class), 169

[[·]] (semantics), 46

≈L (low equivalence), 116

⊗ (product), 20

↑(completion), 135

≤ (prefix), 137

[·] (lift), 114

≤ (prefix), 123

� (projection), 19, 87

|= (satisfaction), 112, 113

× (parallel self-composition), 127

Ψ (traces), 111

∗ (lift), 47

t[(..)i(..)] (indexing), 112

| (belief update, conditioning), 20

| (distribution conditioning), 25

; (self-composition), 125

1-safety, 126

2-liveness, 162

2-safety, 126

A
abstraction function, 120

AC , 113

access control, 3, 4, 112, 122, 182

accuracy, 7, 8, 15, 30, 34

vs. uncertainty, 34

action, 164

admissibility restriction, 21, 37, 56, 58,

88

agent, 16, 22

anonymizer, 99

assets, see information

assurance, 182

attacker, 6, 22, 49

attenuation, 103

audit, 1

authorization policy, 3

availability, 1–3, 181

B
B, see belief revision

bad thing, 11, 122, 170

bandwidth, 5

base, 134

Bayesian inference, 8, 27, 58

BCNI , 166

behavior, 120, 158

196

belief, 7, 8, 16, 19–21, 23, 87

distance, 20, 30

product, 19

update, 20

belief revision, 27, 29, 30

Bell–LaPadula model, 4, 104

Biba model, 86, 104

binary symmetric channel, 98

bisimilar, 166

bisimulation, 117, 163

BNDC , 165

C
C (closed sets), 135

Cartesian, 46

category set, 4

CC k, 173

Cesàro means, 118

channel, 5, 84, 94

capacity, 55, 58, 104, 173

covert, 5, 169

termination, 161

ciphertext, 171

Cl , 131

Clark–Wilson model, 104

ClC , 137

clearance, 4, 115, 158, 167

closed set, 14, 134

closure operator, 131, 167, 179

code-word, 97

command, 167

Common Criteria, 3

complete partial order, 47

completion, 134, 135

concatenation, 112

concurrency, 165

confidentiality, 1–3, 9, 101, 115, 181

contamination, 83, 102

critical section, 120

CSP, 139

D
D (distance), 21

D (dense sets), 135

data, see information

denotational semantics, 17, 46, 52

dense set, 14, 134

deterministic

program, 36, 45, 104

system, 115, 116, 159, 167

Dist, 17

distribution, 16, 20, 41, 46, 87

maximum entropy, 21

uniform, 21, 33, 43, 55, 104

197

unnormalized, 49

distribution update, 47

divergence, 161

dual, 83, 102, 104, 182

dynamic analysis, 104

E
encryption, 171

entropy, 6, 7, 33, 55, 56, see relative en-

tropy

conditional, 56

error-correcting code, 84, 97

ES , 172

event, 115, 164

execution, 111, 112, 133, 158

experiment, 22, 173

confidentiality, 22

contamination, 87

number, 45

protocol, 23, 28, 49

insider, 52

repeated, 43

suppression, 91

extension, 11, 134

F
false , 130

file-system permissions, 3

fixed point, 47

frequency, 16

frequency distribution, see distribution

function, 111

G
generalized noninterference, 54, 116,

124, 130, 131, 181

GMNI , 115, 158

GNI , 116

good thing, 12, 128

GS , 113

guaranteed service, 113, 128

H
H (high), 18, 115

Hamming distance, 98

hiding, 103

high information, 101

history variable, 51, 168

HP, 113

humans, 1

hygiene, 103

hyperliveness, 13, 128–133, 136, 139

for Rep, 160, 176

hyperproperty, 13, 110, 113

expressivity, 114, 118

intersection theorem, 140

198

hypersafety, 13, 122–124, 136, 139

for Rep, 160, 176

hypothesis, 27

I
indistinguishability, 171, 173

information, 2, 9, 31, 90, 93

information flow, 4, see quantity of

flow

as hyperproperty, 114–117

correlation, 117

not trace property, 12

possibilistic, 130, 165, 167, 176, 179

reduction to safety property, 127

verification, 125

information theory, 6, 9, 10, 84, 94, 98

Insider, 50

insider, 9, 49

insider choice, 49

insider function, 50, 52, 59

integrity, 1–3, 9, 83, 101, 181

interpretation function, 120

invariance, 11, 13, 125, 127

irremediable, 122, 170

K
k-safety, 13, 125–128

KSHP, 126

L
L (low), 18, 115

label

confidentiality, 18, 25

integrity, 85

labeled transition systems, 14, 111,

163–167

probabilistic, 57

lattice, 4

leakage

one bit, 34

LHP, 129

lift, 114

liveness hyperproperty, see hyperlive-

ness

liveness property, 12, 129

logic, 119, 125, 131, 141

low information, 101

low projection, 19

LP, 129

LTS , 163

M
Markovian, 168

mass, 17

mean response time, 12, 110, 117, 129,

182

199

medical information system, 139

memory, 165

message, 171

misinformation, 9, 36

multilevel security, 4

mutable inputs, 28, 38, 88

mutual information, 6, 7, 57, 94

conditional, 37, 42, 56

N
National Research Council, 182

nearest-neighbor decoding, 98

NNT , 131

noise, 84, 85

nondeducibility, 130

nondeterminism, 121, 137, 138, 159

nondeterministic choice, 9, 59, 60

nondeterministic system, 13, 53,

116, 130

noninterference, 15, 53, 110, 158

bisimulation, 163

Goguen and Meseguer, 4, 115

not trace property, 12

probabilistic, 58, 59, 169

reduction to safety property, 127

relational, 161

nontermination, 29

NRW , 112

O
O (open sets), 135

OB, 135

object, 3, 113

Obs, 123

Obs(Rep), 160

ObsDet, 53

observable, 122, 130, 170

hyperproperty, 138

property, 133

observation, 24, 89

Bayesian inference, 27

of nontermination, 29

of system, 123, 135, 160

observational determinism, 9, 130, 139,

181

as hyperproperty, 116

equivalent to zero flow, 53

is hypersafety, 124

not 2-safety property, 127

subset closed, 122

observer, 133, 161, 164, 166

OD , 116

open set, 134

operational semantics, 160

200

optimal code, 21

Orange Book, see Trusted Computer

System Evaluation Criteria

OSB , 135

outcome, 30

P
paper, 83

password, 23

password checker, 6, 181

expected flow, 41

experiment on, 25

faulty, 39

maximum flow, 43

PWC , 6, 25

quantity of flow, 32–33

PCl , 131

Petri net, 12

PI , 172

PIF, 131

PNI , 169

point mass, 17

possible world, 19

postbelief, 23, 174

powerdomain, 137

PR , 168

Pr, 168, 174

prebelief, 23, 88, 174

predicate, 111

prediction, 24, 88, 175

probabilistic choice

and insider choice, 50

command, 18, 48, 60, 98

made by program, 31, 90, 93

misinformation, 36

probabilistic systems, 14, 111, 130, 168–

175

probability distribution, 8, see distribu-

tion

probability measure, 20, 47, 48, 168,

170, 174

program term, 165

programmers, 120

Prop, 112, 159

property, 11, see hyperproperty, see sys-

tem property, see trace property

prophecy variable, 51, 168

public, 18

Q
Q (quantity of flow), 31

Qcon , 89

QE, 39

QL k, 175

201

Qmax, 43

Qtrans , 92

quantification, 17

quantity of flow, 6, 181

as improvement in accuracy, 31

confidentiality and integrity, 102

contamination, 89–90

expected, 39, 41

integrity vs. confidentiality, 100

maximum, 43

suppression, 92–97

query, 84, 99

R
reality, 34, 45

receiver, 84

refinement, 13, 120, 124, 172, 176

mapping, 120

paradox, 54, 121

Rel , 161

relational systems, 14, 160–163

relative entropy, 8, 21

in database privacy, 58, 104

Rep, 159

repetition code, 97

request, 113, 117, 128

resource, see information

response, 84, 100, 113, 117, 128

right, 3, 113

S
S (suppression), 92

Σ (states), 111, 170

SA, 95

safety hyperproperty, see hypersafety

safety property, 11, 123, 126

SAG , 132

scheduler, 130

secret, 18

secret sharing, 126, 128, 139

SecS , 128

security domains, 110

security level, 4

security policies, 1, 83, 110, 158

are not trace properties, 12

classification, 140, 180

selective interleaving function, 131

self-composition, 125

semaphore, 120

sender, 84

sequence, 111

service level agreement, 117

SHP, 124

SM , 115, 168

202

society, 182

SP , 97

SP, 123

SPA, 97

specification, 120

SSC, 122

starvation freedom, 11, 128

state, 111, 173

final, 161

initial, 161, 168

low equivalence, 19

LTS, 163

program, 16, 87

State, 17

StateH , 18

StateL, 18

state machines, 14, 57, 111, 115, 158,

167

state update, 47

static analysis, 55, 56, 58

statistical database, 84, 99, 181

stepwise refinement, see refinement

strategy, 24, 42, 45, 59

structured protection, 110

stuttering, 115, 116, 120

subbase, 134

subject, 3, 113

subset closed, 122, 124, 172

suppression, 84, 103

attacker-controlled, 95, 97, 100

program, 97, 100

surprise, 21, 31

Sys, 127

system, 22, 50, 85, 112, 133, 182

system product, 127

system property, 12

T
T (trusted), 85

taint analysis, 83

tainted, 83

taxonomy, 1, 2, 10, 181

termination, 17, 22, 88, 112, 161

insensitive, 116, 161

sensitive, 162

TIRNI , 161

topology, 14, 133–139, 176

Plotkin, 14, 134, 136

Scott, 134

Vietoris, 14, 136

trace, 11, 111

ε (empty), 112

trace property, 11, 110, 112

203

transaction, 1

transmission, 84

true , 130

trusted, 83

Trusted Computer System Evaluation

Criteria, 5, 110

trusted projection, 87

TSRNI , 162

U
U (untrusted), 85

uncertainty, 36, see entropy

anomaly, 7, 15

flow metric, 7, 42, 43

vs. accuracy, 34

untainted, 83

untrusted, 83

untrusted projection, 87

user, 1, 22

V
Val, 17

validation, 83

Var, 17

variable, 85

VarL, 19

verification, 11, 110, 182

VL, 136

W
well-foundedness, 12

while-programs, 18

204

