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1 Introduction

ALSO is a persistent, dynamically typed object-oriented language for building extensible servers. It was
originally developed during the winter of 1990 when I was a graduate student at MIT, but I then abandoned
it. Although it predates or was contemporary with languages like Python and JavaScript, it has surface sim-
ilarities. It also has some unique and useful features, such as nested transactions and queryable properties. I
resurrected it in 2018 and updated the expression syntax (in particular, that of lambda expressions) to look
more familiar.

ALSO borrows features from several programming languages. Like JavaScript, ALSO is a prototype-
based object-oriented language, inspired by the language Self [US87]. ALSO supports first-class, lexically
scoped functions as in Scheme, and it has exceptions and exception handling. ALSO is not statically typed
but it is strongly typed. The statement syntax is from the C family. Semicolons are optional, making code
look cleaner, but unlike in Python and JavaScript, whitespace is not significant.

ALSO is intended to be used to implement various kinds of networked servers, particularly ones that
are intended to be extended over time. It was designed originally to support MUD (“multi-user dungeon”)
systems, which are interactive, internally reprogrammable multi-player adventure environments. A MUD
system combines aspects of an operating system, a language, and a database. As a result, the ALSO language
has several unusual features:

Persistence. ALSO is a persistent programming language: [ACC82] reachable objects created during ex-
ecution are automatically persisted. There is no need for a back-end database to save persistent state. Per-
sistence is implemented via periodic checkpointing of reachable objects.

Invertible properties. An invertible property can be queried to find the set of objects that have a given
value for that property, automatically maintaining many-to-one/one-to-many relations. Invertible properties
make it easy to construct hierarchically nested containers without worrying about data structure inconsis-
tencies arising between parent and children.

Nested, atomic transactions. Especially important for extensibility is that ALSO supports nested transac-
tions, similar to Argus [LS83]. Also transactions are integrated with exception handling, which simplifies
error recovery because unhandled exceptions automatically cause side effects to be rolled back, avoiding
inconsistent changes to data structures.

Property objects. Unlike in other object-oriented languages such as JavaScript, properties (methods and
fields) are named by objects rather than by strings. All objects are essentially arbitrary hash tables with
inheritance. Because properties are not strings, different namespaces can be used to manipulate the same
objects, for example for internationalization. Property objects themselves have properties that control as-
pects of their use: for example, whether they are invertible. Arrays can be implemented by using integers as
properties.

Encapsulation via access control. During execution of an ALSO program, there is an ambient authority
that controls which object properties may be accessed. Each property defines what authority is required to
read, write, or invoke that property. Unlike in class-based object-oriented languages, encapsulation of object
state is achieved through this fine-grained access-control mechanism. The access control mechanism also
helps avoid confused-deputy attacks by automatically attenuating authority.
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Eval with controlled namespaces. An operation eval allows arbitrary strings to be evaluated as ALSO

code, while retaining control over what names in the environment are made available to the code. ALSO

supports constructing local namespaces, so access from code extensions to objects or to methods can be
controlled by exposing only the properties that are safe to expose.

Primitive prototypes. Primitive values such as integers do not have their own properties, but can still be
treated as objects that inherit properties from standard prototype objects, such as Int.

A small MUD system called “A-mud” has been developed on top of ALSO, and is the largest ALSO

program — more than 3,500 lines long at present. When run in HTTP mode, it implements a simple
web server that is conveniently accessible using a simple JavaScript-based client. The server is currently
reachable at http://www.cs.cornell.edu/andru/amud.

To give an idea of the syntax of ALSO, here are some short code samples:
A function that computes whether a number is prime.

is_prime(n) is {
var i = 2
loop {

if (i*i > n) break
if (n%i == 0) return F
i = i+1

}
return T

}

An inherited method that determines recursively whether a person is holding an object or holding an object
that contains it.

person.is_holding(o) =
o.location == self || self.is_holding(o.location)

A Quine (self-reproducing program)

p is ["p␣is␣","print␣p.first␣|␣p.unparse;␣print␣p.rest.first"]
print p.first | p.unparse; print p.rest.first

2 Values

There are nine different kinds of values in ALSO: integer, character, boolean, string, nil, list, function, record
(ordinary object), and connection. Unlike in many languages, each of these values acts like an object. For
example, they all have a prototype object that can be used to augment them with new operations.

Among these values, only records and connections are mutable, meaning that the data they contain can
be modified.

2.1 Integer

Integers may be positive or negative. Integer constants are named in the usual way. Integer literals may be
given in hexadecimal if preceded by 0x. Most of the usual C arithmetic operations may be performed on
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integers: addition, subtraction, multiplication, integer division, modulo, bitwise-and and or. The prototype
object for integers is Int.

1, 0, -56, 234, 0x0A

2.2 Character

Characters can be any Unicode character except character 0 (NUL). Characters can be converted to other
types, and used for output. Their prototype object is Char.

Character literals are expressed with single quotes. A backslash may be used to denote special charac-
ters, as in C (e.g. ’\n’ is the newline character). In string literals, the escapes \x, \u, and \U may be used
to specify character codes using 2, 4, or 8 hexadecimal digits. In addition, most Unicode characters may be
given directly, encoded in UTF-8.

’a’, ’\n’, ’\\’, ’\u2200’, ’∀’

2.3 Boolean

There are two booleans: true (T) and false (F). Booleans are used by the if statement. The boolean operators
&& (logical and) and || (logical or) are supported. Their prototype object is Bool.

T, F

2.4 String

A string is a character sequence of any length including zero. A string constant is expressed using double
quotation marks, and characters in the string are specified as in character literals, except that embedded
newlines are allowed, and whitespace immediately following a newline is ignored (a backslash can be used
to prevent it from being ignored).

Strings may be manipulated in several ways: substrings or individual characters may be extracted, and a
string may be split into tokens around delimiter characters. Strings also support searching and substitution
operators.

"hello", "string with newline\n", "",
"string with embedded

newline"

2.5 Null

NIL is a special value that is used to mean “no information”. Under certain conditions, some built-in opera-
tors will return this value. Its prototype object is Null.

NIL
[].first == NIL
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2.6 List

A list contains a sequence of values of any type. The first item of a list may be found using the first
method, and the remainder of the list is obtained with the rest method.

A list expression is specified with square brackets, and the items in the list are separated by commas.
When a list expression is evaluated, the result is a list containing the values of each of the item expressions.

[1, 2, 3]
[]
[[ 1 ],[ ’x’ ], [[]]]
[‘a’, "string", 0]

2.7 Function

A function in ALSO acts like a mathematical function: it takes in arguments and returns a result. ALSO

functions do not demand that their arguments be of any fixed type, or even that a particular number of
arguments be supplied.

A function is a value. It can be passed to other functions as an argument; it can be returned as a result.
Functions are created using lambda expressions, which specify a fixed list of argument variables that

arguments are placed into. If you supply too few arguments, the remaining argument variables are filled
with the value NIL; too many arguments, and the extra argument values are ignored.

There are a number of built-in functions that implement the methods of built-in types. For example,
Int.rand: is a native function that computes a random number.

The following example uses a lambda expression to create a function that squares its argument and
returns the result:

f is {x -> return x*x}
f(5) == 25

The “f is” part has nothing to do with the function. It just defines f to take on the value of the
expression after the word “is”. Formal parameters to the function are ordinary identifiers, separated by
commas. This function has one argument, named x. If the function is called with the expression f(5), the
parameter variable x will contain 5. The parameter list is optional — for example, { 5 } is the constant
function that always returns 5. Argument variables are just ordinary variables — they can be assigned to.

Functions can also be introduced conveniently in applicative form, by writing the arguments with the
name of the function:

f(x) is x*x
f(5) == 25

The first example function contains one statement, a return statement, which causes the function to
terminate immediately and return the specified result. However, a return is not needed to return a result.
The value returned by a function is always the value of the last statement executed by the function. In
fact, we could rewrite the function as {x->x*x} and it would have the same effect. The statement x*x (any
expression may be used as a statement) will be the first, last, and only statement executed, so its value will
be returned as the result of the function.

If a function contains no statements, it will return NIL.
Some other examples using function expressions are:
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{return "hello"}
{x,y -> if (x) y else y - 1}
{}
{f,x -> var x10 = x*10; f(x10) }({y -> y + 1}, 2) == 21
church-zero(f) is {x->x}
church-one(f) is {x->f(x)}
church-increment(f) is {n->{f->{x->n(f)(f(x))}}}

2.8 Record

A record corresponds to the usual notion of an object, so we use the two terms largely interchangeably.
A record is a collection of mutable properties. A property is a pair of two items: an immutable property
key and a (usually mutable) property value. The property key is used to look up the associated property
value. The value of a property can be changed by assigning to it. Typically, other records are used as keys.
However, any kind of value (except a function or a list containing a function) may be used as a property key,
so objects can be used as associative arrays.

Each object, including primitive values, has a prototype object, also known as its parent object — a
record from which it inherits any properties that it has not specifically overwritten. An inherited property
is still owned by the parent object, so any modifications to the value of that property are visible in all the
children that inherit from it. Objects are typically created as a modification of some parent by using the
with operator.

Property operations

Various property operations may be performed on an object. Properties may be invoked using the dot (.)
operator. On the left side of the dot is the object; on the right side is the property key. Arguments to the
invocation may be specified as well.

If a property with the specified property key is contained in the object, the property value is invoked. If
the property is not contained in the object, the object’s parent is checked for the property, and so on up the
parent chain. If no object in the parent chain has the property, the no-such-property failure occurs.

Invoking a value is the same as returning the value unless the value is a function. If the property value is
a function, the function is invoked. Invoking a property is implicit, because this allows attributes of objects
to be redefined as pieces of code that compute the attribute value rather than simply storing it, blurring the
distinction between value-like and functional properties. This feature makes the system more extensible.

When a functional property value is invoked, the object is always passed as the first argument to this
function, and any arguments supplied to the property invocation are passed to the function along with the
optionally specified arguments. Even when a property is inherited, the original object — and not the parent
in which the property was found — is the object passed as the first argument to the property value function.
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object.key == value
object.key(arg1, arg2) == value
hair.color
andru.gender.nominative
me.put-in(wand, bag)
andru.name == "andru"
factors.6 == [1, 2, 3]
10.rand == 7

It is also possible to check whether an object has a property using the has method. It returns either T or
F.

if (o.has(p))
x = o.p

To avoid invoking any functions, a property may be read without invocation by using a dollar sign ($)
instead of a dot. The semantics are the same as for property invocation, except that the property value is
simply returned. No arguments may be supplied.

object$key == value
hair$color
me$put-in
month-index$"jan" == 1
andru$names == ["andru"]
person$name == {self -> self.names.first }

Property values may be written using the standard assignment syntax for fields of records. If no property
contained in the object has the property key that is assigned to, a new property will be created and attached
to the object. This new property will break the chain of inheritance.

object.key = new-value
male.possessive = "his"
me.put-in = {obj, container ->

obj.transfer(obj.location, container) }
me.put-in(container) = {

self.transfer(self.location, container) }
factors.28 = [1, 2, 4, 7, 14]

Properties may be assigned as methods by providing identifier arguments to the assignment. In this case,
the right hand-side must be a lambda expression; an extra formal parameter self is automatically prepended
to the argument list.

Properties whose property key is invertible make available a fourth operation: they may be queried.
Property keys are invertible if they are objects whose invertible property has the value T.

Properties are queried by the query operator: the question mark, ?. On the left side of the operator is
placed the property to be queried, and on the right side is placed the property value. The result of a query
p?v will be a list of all objects o such that o.p == v. The value v must be a record object, since values of
invertible properties may only be objects. An attempt to assign a non-record to an invertible property will
result in a run-time type-check error.
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property?value == [object1, object2, ...]
color?blond == [hair]

Finally, properties may be removed from objects using the delete method. When a property is deleted,
the inheritance chain is restored: the property is subsequently inherited from the parent object, assuming
that the parent either has or inherits that property.

o.delete(p)
a.delete(i+1)

Creating objects

Objects are created with the new and with operators. The new operator creates a new object using an
initialization list. An initialization list specifies new properties that are to be created at the same time as the
object and attached to it. An object created with new has no parent object. The with operator takes a parent
object and an initialization list, and constructs a new object that inherits from the parent but is modified by
the list.

new()
var point = new (x = 10, y = 20)
var new-hair = hair with (color = red, length = 24)
factors = new (15 = [1, 3, 5], 17 = [1])

Special property keys

Certain objects are well-known objects that have a special meaning to ALSO when used as property keys
(See also section 10).

parent This immutable property contains the parent of the object. All objects except Object have a parent
property; the parent of Object is NIL.

properties This property cannot be written to; it contains a value that is a list of all the properties currently
contained in the object, except for the special property keys discussed here.

immutable This property determines whether the object containing it is an immutable property. Immutable
properties cannot be changed; they can be given values only by at object initialization. The immutable
property can only have values of T or F, and is itself immutable. That is, whether a property is
immutable or not cannot be changed.

invertible This immutable property determines whether the object containing it is an invertible property.
Invertible properties can be queried, as described above.

endorse This immutable property determines whether methods invoked using this property key automati-
cally possess the effective authority of the property key. See Section 8 for details.

7



2.9 Connection

A connection represents the state of a communication connection to the external environment. Connection
objects support operations to query the state of this connection, modify the way that input from them is
handled, send output, and ultimately close the connection.

Connections cannot be created by the user. Once a connection comes into existence, any input which
arrives on the connection is passed to the connection’s attached dispatch function. The dispatch function
may be changed, but its initial value is always defined by the login object (See section 10).

The dispatch function should expect two arguments. The argument is the connection itself; the second
is ordinarily a string value containing received input. If a connection is closed from the other end, NIL is
sent as the second argument, and the connection is then automatically closed.

Enqueuing output on a connection is treated as a mutation, so the output is never delivered to the other
side of the connection if the transaction that enqueued the output fails.

3 Identifiers and Environments

Identifier names consist textually of a string which begins with a letter (upper- or lower-case) and contin-
ues with any number of letters, digits, underscores, or hyphens. An identifier may not be more than 100
characters long.

a, z29, name-of-the-rose, p sample 2

The fact that hyphens are allowed in identifiers can lead to unexpected results if you are using subtrac-
tion: be sure to place spaces around minus signs, since x-y is interpreted as a single identifier.

Identifiers refer either to local variables or to constants. Local variables must be declared before use,
and thus are easy to identify. Constants are defined by the compilation environment, which is provided at
the time that the program containing the identifier is executed.

local variables Like C, ALSO allows you to nest scopes to arbitrary depth. Variable names can be created in
a scope with a var declaration, and identifiers will resolve to the nearest preceding scope declaration,
if any.

Assignment can only be performed on local variables, and not on constant definitions. An attempt to
assign to a constant will produce a compile-time error.

Local variables are created either by being declared as arguments to a function, or by the var state-
ment. Argument variables may be used throughout the body of the function. var variables may be
used in the part of the nearest enclosing function expression which follows the var statement.

For example, in the function f:

f(x) is {
loop {
x = x - 1
var n = x
if (n == 0) break
}
print x

}
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the argument variable x is available throughout the entire function expression, whereas the local vari-
able n is only available in the if statement following its declaration.

compilation environment The compiler looks for identifiers that are determined not to be local variables
in the compilation environment. The compilation environment is an argument to the compiler when it
is invoked by the eval operator. An environment is simply an ALSO value, and the interpretation of
this value depends on its type:

list environment A list may specify definitions for variables. The list must contain two-item lists, in
which the first item is the identifier and the second item is the value to which the identifier is
bound. For example, the list [["a",2],["b",["c", 4]]] binds the identifier a to the integer 2
and the identifier b to the list ["c", 4].

function environment Every function value contains definitions for all of the compilation environ-
ment identifiers that are used inside the function. If a function value is used an environment,
it will provide exactly those definitions. Using a function value f as an environment is exactly
equivalent to using the list value defns f as an environment.

object environment An object environment resolves the definition of identifiers by invoking its
lookup method, if any. If the invocation of the lookup method fails, the identifier is consid-
ered to be unbound.
Object environments provide a powerful hook into the internal name mechanism of the compiler,
since they can be used to provide an arbitrary mapping from names to values — a mapping that
can even change during compilation. This feature is particularly useful with the eval operation,
since a later statement can use identifiers whose binding is created by the execution of a previous
statement.

Identifiers can also be formed by explicitly specifying an environment, using the :: operator. The left
side of the operator must be an identifier that evaluates at compile time to a valid environment of one
of the three types specified above, and the right side must be a valid identifier name.

myModule::foo
a::b::c

4 Programs

A program in ALSO is a piece of text that is evaluated. A program is a sequence of commands: statements,
definitions, and imports.

A program produces two results: a value, which is the result of the last statement executed in the pro-
gram, or the value of the last definition; and a list environment. This environment contains all of the public
definitions in the program.

A definition is public if it is declared to be so. All identifiers defined in the program may be used within
the program, but only public identifiers are exported in the returned environment.

statements The syntax of statements is described in section 5.

a[i][j] = b[i][k] * c[k][j]
if (fact(4) == 24) print "Evaluation test ok."
me.say("hi")
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definitions Definitions bind the result of evaluating an expression to a particular identifier. The identifier
is placed on the left side of is, and the expression on the right. The definition will be in force for
the remainder of the program. An identifier may not be used before it is defined, except in its own
definition.

A definition may include parameters, in which case it defines a function. This kind of definition is
syntactic sugar for defining the identifier to be the corresponding lambda expression.

A definition may be recursive; that is, an identifier may be used in its own definition. This feature
is normally used to define recursive functions, though it can be used more generally. However, if
evaluating the definition causes evaluation of the identifier, a bottom-error exception results.

four is 2 + 2
plus-one(x) is x + 1
factorial is { n -> if (n == 0) 1 else n * factorial(n-1) }
fib(n) is { if (n < 2) 1 else fib(n-1) + fib(n-2) }

public The words public may be placed before a definition to make it public.

public public-id is 1
private-id is 2

import Additional environments may be added in the middle of the program, using the import command.
Any environment value may be imported and it has the effect of adding a new environment in which
identifiers are resolved during compilation. The expression that is imported must be a constant iden-
tifier. It may evaluate to any of the three possible environment types described in section 3.

Imported environments take precedence over other external environments (including previous im-
ported environments), but not over public or private identifiers defined within the program.

env is [["a", 10]]
import env
a == 10
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An example of a simple program is:

is_prime(n) is {
var i = 3
loop {

if (i*i > n) break
if (n%i == 0) return F
i = i+2

}
return T

}

public list -primes(max) = {
var i = 3
while (i <= max) {

if (is_prime(i)) print i
i = i+2

}
}

print "is_prime␣is␣"| is_prime.unparse
print "list -primes␣is␣"| list -primes.unparse

list -primes (200)

This program prints all the prime numbers less than 200 and exports the following environment contain-
ing just the identifier list-primes:

[["list -primes",
{max -> var i = 3;
loop { if (is_prime(i)) print i;

i = i+2; if (i>max) break }
}]]

Note that the vertical bar operator | represents string concatenation in this context.

5 Statements

The code of a function is a statement (if it starts with an open brace) or an expression, otherwise. Statements
are similar in form to C statements, though the separating semicolons are optional. It is considered good
form to separate statements on the same line by semicolons but to leave them out at the ends of lines. In rare
cases, semicolons may be necessary to avoid ambiguity.

Each statement returns some value, though this value is only accessible if the statement is the last
executed by a function, since the value returned by a function is the value of its last-executed statement.
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Within parentheses, many statements can be used as expressions; however, new variables can only be
introduced inside braces. For example, the if statement is particularly useful as an expression:

var y = (if (x < 0) -x else x)

assignment Assignment is a statement rather than an expression. Assignments may be made to local vari-
ables and to properties of objects. Assignments may not be made to identifiers declared in the com-
pilation environment, which are global constants. The value of an assignment is the assigned value.

x = a + 2
hair.color = red
i = [i,0]
y.i.j = ’b’

block A sequence of statements in braces, optionally separated by semicolons, may be used as a statement.

expression Any valid non-function expression may serve as a statement. The value of the statement is
simply the value of the expression. However, the expression cannot start with an open parenthesis
or open brace; An open brace indicates the start of a block of statements and an open parenthesis
indicates a continuation of the previous statement.

f(1,2)
2 * x
person.get(thing)

break Breaks the flow of control out of the nearest enclosing for or loop loop. The value of a break is
NIL. It may only be used inside a loop.

loop { n = n - 1; if (n == 0) break }

fail This statement raises an exception. It is similar to return, except that it causes the flow of control to
return to the nearest dynamically enclosing except statement that can handle it.

Two arguments must be supplied to fail. The first argument is the exception object, which is used to
select the except clause to invoke. The second argument is the exception value, which is supplied as
an argument to the except clause.

fail(lookup-failure, id)

for The first argument to this statement is a parenthesized expression that is expected to evaluate to a list
value. The second argument is a function expression. The function is evaluated once for each item in
the list

for i in ([1,2,3,4,5]) { check-num(i) }
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if The syntax of this statement is the same as in C. if evaluates its first argument, then invokes the second
argument (a function expression) if the first argument was true when converted to a boolean. An
optional else clause will be invoked if the conditional was false.

The value of an if is the value of whichever clause gets executed, or NIL if none is.

if (a==2 && b==3) { c = f(4); }
if (person.hair.color == red)
person.chroma = red

else
person.chroma = unknown

loop Executes an infinite loop. The break statement may be used to break out of the loop, just as in C.

loop { a = a+1; if (a>=10) break; }

while Executes a loop with a guard expression, as in C. The break statement may be used to break out of
the loop.

while (a < 10) { a = a+1 }

print Prints the value of the expression on the debugging connection, if any. Printing has the advantage
that it is not subject to rollback when transactions fail, so you can see things that happen inside
transactions.

print "At that point"

return Causes the nearest lexically enclosing function that was invoked through ordinary function invoca-
tion (rather than by one of the built-in statements such as if or loop), to exit. Unlike C, an expression
must be supplied as the return value of the function.

return a + b

try/except The try/except statement executes a statement and catches exceptions it generates. The
try/except statement is often used in conjunction with an atomic statement (See also Section 7).

A try/except has some number of except clauses. Each except clause matches a specified ex-
ception, given in parentheses. It may be a user-defined exception or an exception corresponding to a
run-time error, such as divide-by-zero. Each except clause provides a function taking two argu-
ments. The first argument is the failure value or the error message. The second argument is a list with
two items. The first item is the line number of the code where the failure occurred. The second item
is the name of the program that the failure occurred in — the name that was provided as the second
argument to the eval operation when the code was compiled.

A final except clause that matches all exceptions may be provided as well, by writing two or three
identifiers in place of the parenthesized exception object. These are bound to three arguments that
are supplied by the source of the failure. The first argument is the exception object, and the second
and third arguments respectively are exactly like the first and second arguments in an ordinary except
clause.
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If no except clause catches the failure, the exception propagates up to the next containing except
statement, if any.

try a = hair.color
except e, v in (peroxide) {

print "Peroxide␣error␣in␣line␣" | i.first
a = unknown_color

}
except e, v, i {

fail(hair -error ,
i.rest.first | ",␣line␣" | i.first |

":␣Unhandled␣failure␣" | e | "␣while␣getting␣hair␣color:␣"| v)
}

atomic Creates a new transaction. The atomic is immediately followed by a statement, which is executed in
a new child transaction. If the statement fails (terminates with an exception), all mutations performed
by the transaction will be erased. The exception will also propagate through the atomic statement
(See also Section 7).

An atomic statement may have some number of attached except clauses, which cannot be wildcard
handlers. If one of these clauses handles the exception, the transaction is not rolled back.

atomic a = b/c
try { atomic { me.look() } }

except e { me.tell("Failed!") }

val The val statement is used to evaluate an arbitrary expression as a statement.

val {x->x} == {x->x}

var A new local variable may be declared in the current scope at any time with the var declaration. The
syntax is similar to C. A list of variables may be supplied, and each variable in the list may be
initialized with an expression. An uninitialized variable will always contain NIL initially.

Variables in ALSO are lexically scoped and may be referred to and mutated by lambda expressions
within their scope.

A variable may not be declared with the same name as another local variable that is already in scope;
local variables do not have holes in scope.

Items in the variable list must be separated by commas, just as in C. The value of a var statement is
NIL.

f(a,b) is {
var c = a + b, d
d = c * c
var a2 = d
return(a2)

}
}
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6 Expressions

Expressions in ALSO strongly resemble C expressions, although the set of predefined operators is slightly
different.

The expression-building operators described below have been sorted into different lists, depending on
what types they manipulate.

6.1 Arity

Nullary operators take no arguments.

main

Unary operators are all prefix operators — they expect one argument, which is placed to the right of the
operator.

!x
-y

Binary operators are infix — they expect two arguments, placed on either side of the operator.

1 + 2
x == 5

6.2 Precedence

In general, the larger the number of arguments, the lower the precedence of an operator. There are exceptions
to this. Object operators have the highest precedence. Comparison operators have very low precedence. The
actual precedences are, from top to bottom:

. ()

!

* / %

+ -

< > <= >= != == =>

&

|

with

6.3 Conversions

The various built-in ALSO operators often expect argument types different from what one has available.
Many of the different value types automatically convert themselves to the desired type.

If a value cannot be converted to the desired type, the runtime error
typecheck-error occurs.

to integer NIL converts to 0, T converts to 1, F converts to 0. Characters convert to their ASCII index,
strings convert via the C library function atoi. Other types usually do not convert.
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to boolean NIL converts to F, integers other than zero convert to T and zero converts to F. Lists and strings
convert to T if and only if they contain any items. All record objects convert to T. Other types do not
convert.

to string NIL converts to an empty string. Characters convert to a string containing just that character.
Integers convert to a standard ASCII representation. Other types do not convert.

to list Values other than lists usually convert to a list containing just that one value. NIL converts to an
empty list.

6.4 Integer operators

arithmetic (Binary), (Unary)

ALSO supports the usual C arithmetic operators: +, -, *, /, %. The arguments are converted to
integers. The % and / operator fail with the exception divide-by-zero if their right-hand side is zero.

bitwise (Binary)

The operators && and || (equivalently, &, |) are treated as bitwise-and and bitwise-or when the left
argument to the operator is an integer.

rand (Method)

The rand method returns a random number ranging from 0 up to one less than the receiver. For
example, 100.rand gives a number between 0 and 99. The random seed can be specified on the
command line when ALSO is started.

toChar (Method)

This method converts an integer to the corresponding ASCII character.

65.toChar == ’A’

Comparisons See below.

6.5 Boolean operators

! (Unary)

Takes the logical negation of the value provided.

!T == F

& or && (Binary)

Takes the logical conjunction (and) of its boolean arguments.

T & F == F
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| or || (Binary)

The action of this operator depends on the type of the left operand. If boolean, it performs a logical
or.

T | F == T

Comparisons See below.

6.6 List operators

[] (Special)

A bracket expression produces a list value. The expression contains a sequence of expressions, sepa-
rated by commas. The expressions are evaluated, and a list value is constructed from the results.

[1,2,3]
[]
[[["Hello"],’y’],{}]

first (Method)

Returns the first item of the receiving list value. If the value is not a list, the value is returned. If the
list value is an empty list, NIL is returned.

[1,2,3].first == 1
[].first == NIL

rest (Method)

Returns a list containing all the items from the list receiver, except the first item. Returns [] if the list
is empty.

[1,2,3].rest == [2,3]
[].rest == []

length (Method)

Yields the number of items in the list.

[’1’,2].length == 2
[].length == 0

reverse (Method)

Returns a list that is the list handed it in reverse order.

[1,2,"hello"].reverse == ["hello",2,1]
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cons (Method)

Constructs a new list out of a value and an existing list. The new list will have the value as its head,
and the existing list as its tail.

[2,3,4,5].cons(1) == [1,2,3,4,5]
[].cons({x -> x + x}) == [{x -> x + x}]

contains (Method)

Returns true if an element is contained in the list.

[1,2,"hello"].contains("hello") == T
[1,2,"hello"].contains(0) == F

6.7 String operators

| or || (Binary)

Concatenates two string arguments, returning a new string with the arguments spliced together.

"Hello " | "there" == "Hello there"
"he" | ’y’ == "hey"

All values may be used on the right-hand side of this operator, and are converted to strings using the
same mechanism as when printing them.

length (Method)

Yields the number of characters in the string.

"ab".length == 2
"".length == 0

unparse (Method)

Generates a string representation of the argument value. Functions yield an approximation of the
code that was used to compile them. Record objects do not support this method by default, but one
can be defined for all record objects by attaching a method definition to Object. Lists produce a
pseudo-list-expression. If the list is too long, ellipses (...) will be used.

An optional integer argument may be provided to control the depth to which subexpressions are re-
ported. This feature is primarily useful for lists.

1. unparse == "1"
’a’.unparse == "’a’"
T.unparse == "T"
NIL.unparse == "NIL"
[[1 ,2] ,3]. unparse == "[[1,2],3]"
[[1 ,2] ,3]. unparse (1) == "[<list >,3]"
val {x,y -> loop {x = x - y; if (x<=0) break} x}. unparse ==
"{x,y->␣loop␣{
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␣␣␣␣␣x␣=␣x␣-␣y;
␣␣␣␣␣if␣(x␣<=␣0)␣break␣};
␣␣␣x}"

at (Method)

Returns the character located at a specified position in a string. If the position is out of range for the
string, a range-error exception is raised.

"andru".at(0)== ’a’

If invoked with two arguments, it extracts a subsequence of the string and returns it. The first argument
specifies the index of the first character in the subsequence. The second integer specifies the length of
the subsequence. If the requested subsequence is too long to fit within the string, a correspondingly
shorter string is returned.

"Hello".at(1,3) == "ell"
"Hello".at(4,3) == "o"

The time required to perform this operation increases with the number of characters that must be
traversed from the beginning of the string.

search (Method)

This operator searches in the receiver string for the first occurrence of a smaller string past a certain
index. The smaller string is the first argument, and the index is the second. The returned value is the
index at which the smaller string was located, or the length of the larger string if it was not. If the
second argument is omitted, it defaults to zero.

"test test test".search("test", 7) == 10
"Hello there".search("here") == 7

replace (Method)

Globally substitutes all occurrences of one string for another in a larger string, returning the result.
No wildcards are supported. The first argument is the string in which substitution is done. The
second string argument is a pattern to substitute for. The third string is the string that replaces every
occurrence of the pattern. If the pattern is the empty string (""), no substitution is performed.

"XXXla".replace("X", "ho") == "hohohola"

split (Method)

Breaks a string into two pieces around any character in a delimiter set. The left argument is the string
to be broken; the right argument is a string whose characters are the delimiter set. split finds the first
sequence of non-delimiter characters in the string, and the sequence of characters that follow after
skipping over any immediately following delimiters. It returns a two-item list. The first list item is
the token at the beginning of the string; the second list item is the rest of the string.

" andru is author." split(" x") ==
["andru","is author "]
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lowercase (Method)

Returns an all-lowercase version of the same string.

"Hello There".lowercase == "hello there"

sha1 (Method)

Returns a SHA-1 hash of the string.

"hello".sha1 == "aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d"

substr (Method)

Returns the substring located at a specified position in a string. If the position is out of range for the
string, an empty string is returned. It may be invoked with one or two arguments. With one argument
it returns the substring starting from that position. It can be expected that substr is especially efficient
for small arguments; using this method is the recommended way to iterate through a string.

"andru".substr(2) == "dru"

If invoked with two arguments, substr acts just like at.

eval (Method)

This operator evaluates a string as an ALSO program. Up to four additional arguments may be pro-
vided. The first is the name of the program, and is placed in any resulting error messages. The second
argument provides an environment in which undefined variables are evaluated. See section 3 for
more information on environments. The third argument is a boolean specifying whether the program
should be evaluated in interactive mode, so that identifier bindings are affected by previously exe-
cuted top-level statements. The fourth argument is a boolean specifying whether definitions should
be automatically be considered public, and hence exported from the program.

The program is compiled at the top lexical environment, so it may not reference any local variables
that it does not define.

If a syntactic error is encountered while evaluating the string, the operator fails with the exception
parse-error. The failure value will be an appropriate error message.

The result of a successful evaluation is a list. The first item in the list is the value returned by the last
statement executed in the program. The second item in the list is a list environment containing all
public definitions made in the program.

Interactive mode affects how evaluation and parsing are performed. In non-interactive mode, eval
parses the entire program at once, then executes it. In interactive mode, the program is parsed and
executed one statement at a time. During an invocation of eval, it cannot be performed, else a
nested-eval failure occurs. Note that in interactive mode, eval may partially execute a program,
then encounter a syntax error and fail with parse-error.
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"2 + 3".eval
("simple-add", []) == [5, []]

"a is 10; 45".eval
("simple-defn", []) == [45, []]

"public a is 1 + b".eval
("defn-with-env", [["b", 2]]) ==

[3, [["a", 3]]]
"a is 1 + b".eval

("defn-with-env2", [["b", 2]]) == [3, []] "a is 1 + b; a*2".eval
("defn-with-env2", [["b", 2]], F, T) == [6, [["a", 3]]]

Comparisons See below.

6.8 Function operators

Invocation (Special)

Functions are invoked similarly to C. Arguments to the function are parenthesized and separated by
commas.

f(1,2)
g()
proc-array(a,b,c)

If too many arguments are provided, the extra argument values are dropped. If not enough arguments
are supplied, argument variables not provided values are initialized to NIL.

apply (Method)

Invokes a function, passing the elements of a supplied list as the arguments to the function. The result
is the result of invoking the function.

val {x,y->x*y}.apply([4,5]) == 20

map (Method)

This method is applied to a function expecting n arguments. The arguments are n lists. The function
is invoked once for each item in the lists, receiving the corresponding elements from all n lists at once.
The result of a map is a list containing the return values of all the function invocations.

If any of the right-side arguments are not lists, then they are supplied as the corresponding argument
to all of the invocations of the function. If the list arguments on the right-hand side are of different
length, the function will be called a number of times that is equal to the length of the shortest lists. If
none of the right-side arguments are lists, map invokes the function once.

{x,y,z->x*y+z}.map ([2,3],[5,7],1) == [11,22]

defns (Method)
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Extracts the set of global environment definitions used by a function, and returns a list environ-
ment containing them. This means that for any function f at the top lexical level, the result of
f.unparse.eval ("foo", f.defns) will be a function equivalent to f itself.

a is 10
{x->x+a}.defns == [["a",10]]
{x->x + x}.defns == []

6.9 Connection operators

make (Method)

If socket creation is enabled via the command-line option -x socket, then Connection.make can be
used to create TCP sockets. It expects two arguments: the DNS name of the host to connect to, and
the TCP port number. It establishes a TCP connection to that port on the specified host, and returns a
new connection object which can be used to talk to the system on the other end of the connection. The
dispatch function of the new connection will be the default one, and should be modified immediately.

If a connection cannot be established, the failure e external happens, with an appropriate operating-
system error message.

For example, we can write a trivial version of the program telnet as follows:

conn is {
var c = Connection.make(argv.first , argv.rest.first + 0);
c.dispatch ({c, s ->

if (s == NIL)
System.shutdown("Connection␣closed.")

else
io.enqueue(s)

})
c

}()

login is new()
dispatch is new()
login.dispatch(c,s) = conn.enqueue(s)

enqueue (Method)

Enqueues a value onto the output of a connection. Output sent to a connection is transacted appropri-
ately. Values such as strings and characters are sent in the obvious way; other values will be converted
into an appropriate string in an implementation-dependent fashion.

The left argument is a connection; the right argument is the value to be enqueued.

c.enqueue("Hello\n")

dispatch (Method)
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Changes the dispatch function of a connection. The dispatch function of a connection is invoked for
each piece of data that arrives on the connection. The connection and the received data (a string) are
then passed to the new dispatch function whenever data subsequently arrives. The initial value of
the dispatch function is determined by the value login.dispatch at the time that the connection is
created.

info (Method)

Given a connection value, this method returns information about the connection. The information is
returned in a list, where the first item in the list is the string name of the remote host that has connected
to the system; the second item is the total number of seconds that the connection has existed; and the
third item is the number of seconds that the connection has been idle.

close (Method)

Closes a connection. After the connection is closed, it is useless.

6.10 Record object operators

execute (Special)

A property of a record object may be invoked using the unadorned “.” operator. Optionally, argu-
ments for invocation may be supplied after the property, like a function call.

If the value of the property is a function, the object containing the property is implicitly passed as the
first (“self”) argument to the function. The optionally supplied arguments are passed as the second
and succeeding arguments to the function. If the value of the property is not a function, the value of
the property will be returned when the property is executed, and arguments, if any, will be ignored.

o.p
o.p(q r s)
var c = a.b(d)

read (Special)

The value of a property may be read without invoking functions by using a dollar sign instead of a
dot:

v = o$p
var c = a$b

If no value has been assigned to a property of an object (or to the parent(s) from which it inherits), the
result of reading that property will be a no-such-property exception.

write (Special)

The value of a property may be modified by assigning to the property. This is actually a statement
rather than an expression. Formal parameters may be used on the left-hand side to define a function
value.

o.p = v
a.b = {x->x*x}
fact.f(x) = if (x == 0) 1 else x*fact.f(x-1)
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query (Binary)

Some properties are invertible. Invertible properties can only be assigned values that are record ob-
jects. Querying yields a list of those objects from which, if the designated property were read, the
specified value would result.

[o] == p?v

new (Special)

Produces a new object with no parent object. The right side of the operator is a parenthesized modifier
list, which specifies new values for properties that override the values from the old object.

The modifier list consists of a series of modifiers of the form p = v. The expression to the left of the
equal sign should evaluate to a valid property key. The right side should evaluate to a value. Together,
the property key and the property value specify a property to be attached to the new object, possibly
replacing one of the inherited properties. Modifiers may be optionally separated by commas.

with (Special)

The with operator takes an existing object and produces a new object that inherits all of its properties.
A modifier list is used to override existing properties or to supply new ones.

hair is new (color=brown, preferred=F, length=6)
blond-hair is hair with (color=blond, preferred=T)
blond-hair.color == blond blond-hair.length == 6

6.11 Comparisons

ALSO supports the six usual comparison operators: >, <, >=, <=. They work only on characters, strings,
and integers. Operators == and != work on any values.

Two values are equal in ALSO if no operation applied to the values results in discernably different
behavior. Equality is defined on integers, characters, and strings in the obvious way. Two lists are defined to
be equal if all of their elements are equal. Two objects are equal if they are the same object. Two functions
are equal only if they are the result of evaluating the same function expression in code produced by the
same invocation of eval. This rule is appropriate since failure results encapsulate information about the
compilation that produced the failure.

Comparing two values will never result in failure. Values of different types are incomparable, and
comparing them with an ordering operator (<, >, <=, >=) will always produce F.

2 < 3 == T
"andru" < "mrx" == T
’Z’ <= ’a’ == T
apple != orange == T
’a’ < "b" == F
(""|’a’) < "b" == T
3 < {x->x} == F
{x->x+x} != {x->2*x} == T
{x->x+x} != {x->x+x} == T
var a = {x->x+x}; (!(a != a) && (a == a)) == T
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The binary operator => compares the level of trust of two values when interpreted as authority. See
Section 8 for more detail.

6.12 System operators

System.exec (Method)

This method is available only if the option -x exec is provided at the command line. It executes a
command in the local operating system. It expects an argument list as the first argument, and an envi-
ronment as the second. The argument list must be represented as a list of strings, and the environment
must be a list of lists containing two strings. The first string is the name of an environment variable,
and the second string is the value of that variable.

The value returned by the exec operator is a connection that is connected to the standard input and
output of the exec’ed program. Output generated by the program is sent to the dispatch function of
the connection, and output enqueued on the connection arrives at the standard input of the program.

When the exec’ed program terminates, the connection’s dispatch function is called with a second
argument of NIL, and a third argument which is equal to the exit status of the program as returned by
wait(2).

(System.exec(["ls", "-C"], environ).dispatch {c,s -> io.enqueue(s)}

System.shutdown (Method)

This method of the System object causes the current ALSO universe to shut down, closing all con-
nections, and save its state persistently. The argument to shutdown is sent as output to all open con-
nections before they are closed. This operator has no effect if executed during the bootstrap program.

System.time (Method)

This method of the System object reports the current time in seconds since January 1, 1970, or if that
value is not less than 231, then that value minus 232.

System.transaction-stats (Method)

This method of the System object reports statistics about the current tranaction. Currently the reported
statistics are simply the number of updates performed in the current transaction. This is useful for
aborting tranactions that are causing too many updates or creating too many objects.

6.13 Miscellaneous operators

main (Nullary)

Returns the value of the environment that was returned by the bootstrap program. (See section 9).

Main is main;
Main::list-primes(200)

authority (Nullary)

The current effective authority of the program. (See section 8).
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caller (Nullary)

The effective authority of the caller of the current executing function. (See section 8).

arguments (Nullary)

A list containing the arguments passed to the currently executing function.

typestring (Unary)

Returns the type of the argument value. The type is returned as a string object; the possible return
values are “bool”, “int”, “char”, “string”, “list”, “array”, “record”, “function”, and “connection”.

typestring {} == "function"
typestring ’a’ == "char"
typestring new() == "record"

7 Transactions and Exceptions

All operations performed by ALSO take place inside a transaction. Transactions may either succeed or fail.
If a transaction fails, no mutation performed by the transaction will be visible to the environment that began
the transaction – except for the exception returned by the transaction, it will be as if the transaction never
occurred.

Transactions may contain other transactions. The failure of a nested transaction does not imply that the
containing transaction will also fail. However, if a containing transaction fails, transactions nested inside it
will also fail in the sense that their mutations will be erased.

A transaction is created by use of the atomic statement. atomic creates a new nested transaction and
tries to execute the statement in that transaction. If the statement generates an exception that is not caught by
an except clause, the transaction will fail. The exception will propagate up into the containing transaction.

Except clauses may be attached to the atomic statement itself, allowing the statement to generate ex-
ceptions while also committing. This behavior is equivalent to nesting a try/except immediately inside
the atomic and then rethrowing the same exceptions after the transaction commits.

Failure of a transaction may be caused by a run-time error (e.g. division by zero) or by an explicit fail
statement executed in that transaction. Run-time errors and user-initiated failures are handled in exactly the
same way. When an unhandled failure occurs, mutations performed by the transaction are erased and the
transaction is terminated, and the flow of control is immediately transferred back to the nearest dynamically
enclosing try/except statement.

Updates to objects created during a transaction are not rolled back if that transaction fails, so it is possible
to construct complex data structures that are returned as exception results.

The following example will print the message “Division by zero occurred”, and the condition a == 1
will be true after it executes, since the assignment a = 0 is a mutation that takes place inside the failed
transaction.
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var a = 1;
try atomic { a = 0; a = 10/a }
except
when (divide-by-zero) {

print "Division by zero occurred"
}

Every exception, whether generated by a run-time error, or by an explicit fail statement, has an as-
sociated exception object. The exception object defines the kind of failure that occurred. Run-time er-
rors such division by zero or run-time typecheck errors have pre-defined well-known exception objects:
divide-by-zero and typecheck-error. User exceptions are defined by simply creating new objects, and
are treated no differently from the built-in exceptions.

The fail statement generates an exception. The first argument to a fail is the exception object, which
may be a pre-defined exception object or a user-defined exception object. The second argument to a fail is
the failure result, which is returned to the appropriate except clause. The failure result may be an object or
other mutable value created during the contained transaction.

f(n) is {
if (typestring n != "int")

fail(typecheck -error ,
"Sorry ,␣an␣integer␣is␣required␣for␣n")

}

Other than from the bootstrap program, top-level transactions are created when input arrives on a con-
nection. The connection’s dispatch function is invoked inside a new top-level transaction. If the transaction
fails, an appropriate error message is sent to the connection.

When a statement of the bootstrap program generates an exception, the system halts and prints an error
message that contains the exception value.

8 Access control

ALSO has a built-in access-control mechanism that mediates access to record objects. At any given point
during execution, there is an effective authority that determines the privileges currently possessed by the
execution. The current effective authority can be obtained through the expression authority. Whether
certain actions are permitted is governed by whether this authority suffices to perform the action in question.
When there is insufficient authority to perform an action, an access-error exception occurs.

In addition to the effective authority at a given point during execution, there is also a current maximum
authority, which corresponds to how trusted the running code is. In general, the effective authority of code
is less than the maximum authority, but code can elect to increase the effective authority up to the maximum
authority. This must be done with care to avoid confused-deputy attacks.

8.1 Using authority

Operations on properties are mediated by the properties themselves, based on authority. Properties that are
not records have no access controls; they are always permitted. Record properties can impose controls on
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reading, writing, and invoking them. An invocation of a property o.p using authority a is permitted if the
expression p.may-invoke(a, o) evaluates to true. Similarly, a read of a property o$p is checked using
p.may-read(a, o), and a write to the property is checked using p.may-write(a, o).

If one of these methods is absent from the property, then the corresponding access is implicitly au-
thorized. In addition, the access is authorized if the method property object trusts the current authority as
described below.

8.2 Authority

Authority is simply a value in the language, but the language attaches special significance to some values
when used as authority. Record objects are a typical way to represent authority; in particular, when the
authority is a record object, that authority controls access to the corresponding property.

Hence, access to the different properties of an object is determined in a fine-grained way that may
be distinct for each property. In a typical object-oriented language, classes would determine the access
restrictions to properties, either through public/private visibility modifiers or through more explicit security
mechanisms like the Java stack inspection mechanism. ALSO does not have classes, and properties serve
these roles instead, in a unified way.

Authorities are ordered. Higher authority allows more actions to be performed. When authority a is at
least as powerful and trusted as authority b, we say that b trusts a. Whether this relationship exists can be
tested using the expression a => b. For some values a and b, the ordering of authority is hard-coded into the
language; however, for record objects this ordering is controlled by the program.

• Record objects are the normal way to represent authority. By default, record objects trust only them-
selves (and, like every other value, they trust the empty list).

A record may extend the trust ordering by defining a trusts method. When an access control check
requires determining whether record o trusts value v, the expression o.trusts(v) is evaluated. If
this expression successfully returns T, the trust relationship holds. Any other outcome, including an
exception, means the relationship does not hold.

• A list of values represents the greatest lower bound (or join or disjunction) of the authorities represents
by its elements. In other words, the authority [A,B] represents the greatest authority that trusts both
A and B. For example, the authority [1,2] is equivalent to the authority 2. There is no built-in way to
construct the conjunction of authorities.

The empty list represents the greatest possible authority, which is the authority of a program when it
starts. Every value trusts the empty list: [] => v for all values v.

• The authority NIL is the minimal authority. It trusts all other authority: v => NIL for all values v.

• Integers used as authority are totally ordered according to ordinary integer comparison (≤), so that
0 is more trusted than 1 and -1 is more trusted than 0. This ordering allows integers to be used, if
desired, in a manner analogous to processor rings.

• Booleans used as authority are ordered by implication, so that F is strictly more trusted than T
(F => T).

• Connections used as authority are not ordered; a connection trusts only itself.
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Method calls. Authority changes, in general, at entry to method calls, and is restored on return. The
authority of the caller can be accessed using the special expression caller. How it changes depends on the
property object that is being invoked. In the ordinary case, the effective authority on entry to the method call
becomes the join of the authority of the caller and of the property object being invoked. This join prevents
the caller’s authority from being exploited by the method and prevents the method from acting as a confused
deputy. However, it may prevent access to needed resources. Hence, the maximum authority is set on a
method call to the authority of the property, and the as statement can be used in the method code to increase
authority up to that level.

Calls via a property object that endorses work differently. The call automatically sets effective authority
to be the same as maximum authority; that is, the authority of the property object. Implementation of
methods for endorsing properties must be done with care, since any caller can obtain the full power of the
property object.

Note that ordinary function calls do not have any effect on authority. Hence, whereas a call of the form
x.f() would increase maximum authority during the call to f, a call of the form (x$f)(x) would run the
same code with the same argument but the maximum authority within the call would be the same as in the
caller.

8.3 Changing authority

Effective and maximum authority can also be changed by two explicit mechanisms: as and become. Both
of these mechanisms interact with another aspect of the access control system: each stack frame may have a
current locked authority. By default, the locked authority is NIL (there is no lock), but the locked authority
can be increased by the use of as. Authority is locked to prevent reentrancy attacks in which untrusted code
calls back into trusted code that has called it.

as. The statement as (a) s performs a statement s with the authority a. The authority a must trust the
current maximum authority. There is also a reentrancy check: the current authority must flow to the join of
a with all locked authorities. If both of these checks succeed, the authority a is locked at the current stack
frame, and the current effective authority becomes a.

become. The statement become a changes the current authority to be authority a. The authority a must
trust the current effective authority. The locked authority of the current stack frame is joined with a, relaxing
the condition checked by the as statement.

9 Executing ALSO

ALSO starts by loading a bootstrap program from either standard input or a file specified with the -f option.
The program is evaluated using the eval operator in interactive mode, with the program name set to either
"standard input" or the name of the bootstrap file. The bootstrap program is executed in debugging mode.

A special bootstrap environment is used to compile the bootstrap program. This environment contains
definitions for identifiers environ and argv. environ is a list environment containing definitions for
all environment variables. For example, the expression environ::HOME contains the value of the HOME
environment variable. The identifier argv is bound to a list containing all command-line arguments not
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parsed by the also program itself. There is no binding for argc, but argv.length suffices. The name io is
bound to the console connection — that is, standard input and output.

After the bootstrap program completes successfully, the returned environment can be thereafter retrieved
using the main operator. This environment also serves as a root for garbage collection purposes. If the
bootstrap program fails, an appropriate error message is printed, and the system halts.

This structure makes it easy to have small sessions with raw ALSO (where the bootstrap file is standard
input) and to write small “shell scripts” to be executed.

ALSO enters multi-user mode after the bootstrap program ends if the bootstrap program defines the
well-known objects login and dispatch and sets the property login.dispatch to a function value. In
multi-user mode, the system will accept new TCP connections from the outside world,

New connections are created with their dispatch function equal to the current value of login$dispatch.
Input arriving on these connections is then dispatched through that dispatch function, with the first argument
equal to the connection object providing the input, and the second argument equal to a string containing the
data that has arrived. When a new connection is created, the message login.value, if defined, is dispatched
to the connection.

Once multi-user mode is entered, ALSO begins saving the state of the world in a database. This database
can then be used to restart ALSO in the same configuration at any future time, using the -r option.

During multi-user mode, ALSO uses the well-known heartbeat object to initiate periodic actions. The
heartbeat$dispatch function, if any, is invoked at regular intervals. The default interval is 5 seconds, but
if heartbeat$value is defined, it specifies the heartbeat interval in milliseconds.

Ordinarily, ALSO creates new connection objects to service users when input arrives on standard input,
or when a connection is made to the connection socket. By default, the socket port is 4201, although the
-p option may be used to change it. Standard input is the console connection. If the -C option is supplied,
ALSO runs in the background, with no console connection.

10 Well-Known Objects

Certain objects are called “well-known” objects because they are specially recognized by the ALSO language
system. These objects do not have to exist; but once created, they become well-known and assume their
function as described below.

Creation of a well-known object is accomplished by defining an identifier of the appropriate name in the
bootstrap program, and giving it a value which is an object. This causes the object to be registered as the
well-known object named.

The list of well-known objects and their purposes, at this time of this writing, is as follows. In addition
to the objects in this list, all prototype objects and built-in methods described earlier are also well-known
objects.

invertible determines invertibility of a property. Must be T or F.

immutable determines mutability of a property. Must be T or F. The evaluator automatically sets immutable.immutable
= T when this property is created. If a property is immutable, it cannot be written.

parent The property containing an object’s parent object, from which it inherits properties.

endorse controls whether a property endorses execution with its own authority when invoked as a method.
Must be T or F.
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lookup The property that is executed to look up unresolved identifiers in an object environment.

mayInvoke controls whether a property may be invoked as a method.

mayRead controls whether a property may be read.

mayWrite controls whether a property may be written.

value A property that is used to attach information to the login and heartbeat objects.

dispatch A property that is used to attach information to the well-known login and heartbeat objects.

properties The property that contains the list of properties of an object.

login This object contains information about how to start up the multi-user environment. See section 9 for
more details.

heartbeat This object controls periodic behavior of the ALSO system. See section 9 for more details.

could-not-open Exception generated when ALSO is unable to open a file.

divide-by-zero Exception generated when ALSO tries to use zero as a divisor or modulus.

typecheck-error Exception generated when an operator or statement encounters an argument of an unex-
pected type.

immutable-property Exception generated when an assignment is performed to an immutable property.

not-implemented Exception generated when an unimplemented language feature is used. Nothing de-
scribed in this document should result in this failure.

overflow Exception generated when an arithmetic overflow occurs.

parse-error Exception generated when the compiler is unable to parse a string.

range-error Exception generated when a string or array index is out of range.

nested-eval Exception generated when eval is invoked during an eval.

bottom-error Exception generated when a loop iterates more than some maximum number of times (de-
fault: 100,000), or the function stack grows to more than some maximum depth (default: 300).
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