Contributions

- Identify a central notion of dependency
- Connection between secure information flow and 3 types of program analyses
 - Program slicing
 - Binding-time analysis
 - Call-tracking
- Develop dependency core calculus (DCC) and translate calculi into DCC
- Define a semantic model for DCC that simplifies noninterference proofs

Outline

- Why information flow (SLam), slicing, binding-time, call-tracking are all dependency analyses
- SLam proof of noninterference
 - uses a logical-relations argument and denotational semantics
 - Heintze and Riecke, POPL ’98
- Dependency Core Calculus

Information Flow – SLam

- Heintze and Riecke, POPL ’98
- Lambda calculus with security annotations on types
- Well-typed programs have noninterference property:
 - No information flows from high-security values to low-security ones
 - Low-security data does not depend on high-security data.

Information Flow – SLam

Types

\[s ::= (t, \kappa) \]
\[t ::= \text{bool} \mid s \rightarrow s \mid s 	imes s \]
\[\kappa \in \text{Security Lattice} \]

Exprs

\[\text{bv ::= true} \mid \text{false} \mid \lambda x.e \]
\[v ::= \text{bv}_\kappa \]
\[e ::= x \mid v \mid (e \ e') \mid \text{protect}_\kappa e \mid \text{if } e \text{ then } e_1 \text{ else } e_2 \]

SLam – Typing Rules

- [True] \[\Gamma \vdash \text{true}_\kappa : (\text{bool}, \kappa) \]
- [False] \[\Gamma \vdash \text{false}_\kappa : (\text{bool}, \kappa) \]
- [Lam] \[\Gamma, x : s_1 \vdash e : s_2 \]
 \[\Gamma \vdash (\lambda x : s_1 . e)_\kappa : (s_1 \rightarrow s_2, \kappa) \]
- [If] \[\Gamma \vdash e : (\text{bool}, \kappa) \quad \Gamma \vdash e_1 : s \quad \Gamma \vdash e_2 : s \]
 \[\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : s \]
SLam – Typing Rules

Example
if trueH then trueL else falseL : (bool,L)
Wrong!

Increase security level of result type to security level of “trueH”. Let (t,κ1)•κ2 = (t,κ1⊕κ2)

[If] Γ|− e:(bool,κ) Γ|− e1:s Γ|− e2:s
Γ|− if e then e1 else e2 : s•κ

if trueH then trueL else falseL : (bool,L)
(booleL)•H = (bool,L⊕H) = (bool,H)

SLam – Subtyping

[Protect] Γ|− e:s
Γ|− (protectκ,e) : s•κ

[Sub] Γ|− e : s s ≤ s'
Γ|− e : s'

SLam – Typing Rules

Principle: At every elimination rule, properties (security level) of the destructed constructor are transferred to the result type of the expression.

[App] Γ|− e:(s1Æs2,κ) Γ|− e':s1
Γ|− (ee') : s2•κ

Slicing

Determine which parts of the program (subterms) may contribute to the output
Parts that do not contribute may be replaced by any expression of the same type
Idea: label each part of the program and track dependency using type system

Slicing Calculus

Types s ::= (t,κ)
t ::= bool | s+s | ...
κ ∈ Security Lattice

Example: (ix.true)false

(ix:(bool, {n3}),true{h1},n3)(false{h3})

Func: ((bool, {n3})Æ(bool, {n2}), {n1})

Prog: (bool, {n2})Æ{n1} = (bool, {n1,n2})
Binding-Time Calculus

- Separate static from dynamic computation
- Dynamic values may be replaced by any expr of same type without affecting static results
- Types:
 \[t ::= \text{bool} | s \rightarrow s | \ldots \]
- Example: \((\lambda x:(\text{bool},\text{dyn}).\text{true}_{\text{sta}}) e_{\text{dyn}}\)
- Func: \(((\text{bool},\text{dyn}) \rightarrow (\text{bool},\text{sta}),\text{sta})\)
- Prog: \((\text{bool},\text{sta}) - \text{i.e.},\text{ result cannot depend on } e\)

Call-tracking Calculus

- Determine which functions are called during evaluation; others may be replaced
- Types:
 \[s ::= \text{bool} | s \rightarrow s | \ldots \]
- Example: \(((\lambda x:(\text{bool},\text{dyn}).\text{true}_{\text{sta}}) e_{\text{dyn}})\)
- Func: \(((\text{bool},\text{dyn}) \rightarrow (\text{bool},\text{sta}),\text{sta})\)
- Prog: \((\text{bool},\text{sta}) - \text{i.e., result cannot depend on } e\)

SLam

- **Operational Semantics**

 \[
 (\lambda x:s.e) v \rightarrow (\text{protect}_\kappa e[v/x])
 \]

 \[
 (\text{if }\text{true}_\kappa \text{ then } e_1 \text{ else } e_2) \rightarrow (\text{protect}_\kappa e_1)
 \]

 \[
 (\text{protect}_\kappa v) \rightarrow v \cdot \kappa
 \]

SLam – Specifying Views

- Views can be specified using binary relations
- If \((x,y) \in R\) then \(x\) and \(y\) “look the same”

<table>
<thead>
<tr>
<th>Concrete View</th>
<th>Abstract View</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>(A)</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concrete View</th>
<th>Abstract View</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>(A)</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

SLam – Semantics of Types

- \([\text{bool},\kappa]\) = \{\text{true},\text{false}\}
- \([s_1 \rightarrow s_2,\kappa]\) = \([s_1] \rightarrow [s_2]\)
- all partial continuous functions from \([s_1]\) to \([s_2]\)

- \(R[s,\kappa] = \text{“view of } s\text{ at level } \kappa\”\)

- \(R[s,\kappa] \subseteq [s] \times [s]\)
SLam – Views of Types

- If \(s = (t, \kappa) \), then for all lower \(\kappa' \) (\(\kappa \not\subseteq \kappa' \))
 \[
 R[\langle t, \kappa \rangle] = |s| \times |s| = A
 \]
- If \(s = (\text{bool}, \kappa) \) and \(\kappa \not\subseteq \kappa' \)
 \[
 R[\langle \text{bool}, \kappa \rangle] = C
 \]
- If \(s = (s_1 \rightarrow s_2, \kappa) \) and \(\kappa \not\subseteq \kappa' \)
 \[
 R[\langle s_1 \rightarrow s_2, \kappa \rangle] = \{(f,g) | \forall (x,y) \in R[\langle s_1, \kappa' \rangle]. (f(x),g(y)) \in R[\langle s_2 \cdot \kappa, \kappa' \rangle]\}
 \]

Equivalence, Related Environments

- Type context \(\Gamma = \lambda x.e : t \) and \(\kappa \not\subseteq \kappa' \)
 \[
 R[\langle t, \kappa \rangle] = \text{abstract}
 \]
- Theorem (Equivalence):
 \[
 \text{If } \emptyset \vdash e : t \text{ then } [[[\emptyset \vdash e : t]]]_{\eta} \text{ is defined iff } e \rightarrow^* v
 \]
- Theorem (Related Environments):
 \[
 \text{Suppose } \emptyset \vdash e : t \text{ and } \eta, \eta' \in [[\Gamma]] \text{ are related environments at } \kappa, \text{ then }([[\emptyset \vdash e : t]]_{\eta}, [[\emptyset \vdash e : t]]_{\eta'}) \in R[\langle t, \kappa \rangle]
 \]

Proof

- Consider open term: \(y(t,\kappa) \rightarrow C[y] : (\text{bool}, \kappa') \)
 \[
 d_{\Gamma} = [[[\emptyset \vdash y(t,\kappa)]](\kappa)]
 \]
- We must show \((d_1, d_2) \in R[\langle t, \kappa \rangle] \)
 \[
 \text{Proof: } \kappa \not\subseteq \kappa' \text{ is abstract.}
 \]
- \(f_{\kappa} = [[[y(t,\kappa) \rightarrow C[y] : (\text{bool}, \kappa')]]](\kappa) \)
- By Related Environments theorem, we have:
 \[
 (f_1, f_2) \in R[\langle \text{bool}, \kappa' \rangle] \]
- Thus, \(f_1 \approx f_2 \). Easy to show that
 \[
 f_{\kappa} = [[[\emptyset \vdash \lambda x.e : (\text{bool}, \kappa')]]](\kappa). \text{ Since } v_1 \approx v_2, \text{ done.}
 \]

Recursion

- Need to deal with termination issues
- Call-by-name vs. Call-by-value
 - Strong vs. Weak noninterference
- Strong Noninterference: if a program terminates with one input and produces result \(v \), then it also terminates with any other “related” input and the result is related to \(v \)
- Weak Noninterference: if 2 related inputs cause a program to terminate the outputs are related

Dependency Core Calculus

- Types \(s ::= \text{unit} | s + s | \lambda x.e \) \(\kappa \in \text{Security Lattice} \)
- Expressions \(e ::= x | b_v \cdot e | \lambda x.e | \text{lift } e | \text{eta } e | ... \)
- Pointed types – to deal with termination
- Protected types
 - if \(\kappa \subseteq \kappa_1 \), then \(T_{\kappa_1}(s) \) is protected at level \(\kappa \)
DCC – Protected Types

- Protected types
 - if $\kappa \subseteq \kappa_1$, then $T_{\kappa_1}(s)$ is protected at level κ
 - T_{κ_1} adjusts the views: makes views of lower security levels abstract
- Semantics of protected types
 - $|T_{\kappa}(s)| = |s|$
 - $R[T_{\kappa}(s), \kappa'] = R[s, \kappa']$ if $\kappa \subseteq \kappa'$
 otherwise $|s| \times |s|$

DCC

- DCC: CBN operational semantics
 - easy to translate CBN calculi to DCC and prove strong interference
 - hard to translate CBV calculi to DCC
- vDCC: CBN operational semantics, but definition of protected types is slightly different
 - if t is protected at level κ then t_1 is protected at level κ
 - can translate CBV calculi to vDCC and prove weak noninterference

Discussion

- Limitations?
 - Cannot translate Davies and Pfenning’s binding-time analysis into DCC – cannot model coercion of run-time objects to compile-time objects
 - Can DCC help with other analyses?
 - semantic dependencies in optimizing compilers
 - region-based memory management
 - How about a call-by-value DCC?
 - Uniform Type Structure for Secure Information Flow – Honda, Yoshida, POPL 02
 - Translate DCCv into linear/affice Pi-calcul for info flow
 - Extensions: imperative features, concurrency, …