
SAGAS 

Hector Garcaa-Molrna 
Kenneth Salem 

Department of Computer Science 
Princeton University 

Princeton, N J 08544 

Abstract 

Long lived transactions (LLTs) hold on to 
database resources for relatively long periods of 
time, slgmficantly delaymg the termmatlon of 
shorter and more common transactions To 
alleviate these problems we propose the notion of 
a saga A LLT 1s a saga if it can be written as a 
sequence of transactions that can be interleaved 
with other transactions The database manage- 
ment system guarantees that either all the tran- 
sactions m a saga are successfully completed or 
compensatmg transactions are run to amend a 
partial execution Both the concept of saga and 
its lmplementatlon are relatively simple, but they 
have the potential to improve performance 
slgmficantly We analyze the various lmplemen- 
tatron issues related to sagas, including how they 
can be run on an exlstmg system that does not 
directly support them We also discuss tech- 
niques for database and LLT design that make it 
feasible to break up LLTs mto sagas 

1. INTRODUCTION 
As its name indicates, a long lived transac- 

tron 1s a transactlon whose execution, even 
without interference from other transactions, 
takes a substantial amount of time, possibly on 
the order of hours or days A long lived transac- 
tion, or LLT, has a long duration compared to 

Permlsslon to copy wlthout fee all or part of this material IS granted 
provided that the copies are not made or dlstrlbuted for direct 
commercial advantage, the ACM copyrlght notice and the title of 
the pubhcatlon and Its date appear, and notlce IS given that copymg 
IS by permlsslon of the Assoclatlon for Computmg Machmery To 
copy otherwlse, or to repubhsh, requires a fee and/or specfic 
permisslon 

0 1987 ACM O-89791-236-5/87/0005/0249 75@ 

the malorlty of other transactions either because 
it accesses many database obJects, it has lengthy 
computations, it pauses for inputs from the users, 
or a combmatlon of these factors Examples of 
LLTs are transactions to produce monthly 
account statements at a bank, transactions to 
process claims at an insurance company, and 
transactions to collect statrstlcs over an entire 
database [Graysla] 

In most cases, LLTs present serious perfor- 
mance problems Since they are transactions, the 
system must execute them as atomic actions, thus 
preserving the consistency of the 
database [DateSla,Ullm82a] To make a tran- 
saction atonuc, the system usually locks the 
objects accessed by the transaction until It com- 
mits, and this typically occurs at the end of the 
transactlon As a consequence, other transac- 
tions wishing to access the LLT’s objects suffer a 
long locking delay If LLTs are long because they 
access many database obJects then other transac- 
tions are likely to suffer from an mcreased block- 
mg rate as well, 1 e they are more likely to 
conflict with an LLT than with a shorter transac- 
tion 

Furthermore, the transaction abort rate can 
also be increased by LLTs As discussed 
m [Gray8lb], the frequency of deadlock 1s very 
sensitive to the “size” of transactions, that IS, to 
how many oblects transactions access (In the 
analysis of [GraySlb] the deadlock frequency 
grows with the fourth power of the transaction 
size ) Hence, since LLTs access many oblects, 
they may cause many deadlocks, and correspond- 
ingly, many abortions From the point of view of 
system crashes, LLTs have a higher probability of 
encountering a failure (because of their duration), 
and are thus more likely to encounter yet more 
delays and more likely to be aborted themselves 

249 



In general there 1s no solution that ehm- 
mates the problems of LLTs Even d we use a 
mechanism different from locking to ensure atom- 
lclty of the LLTs, the long delays and/or the high 
abort rate ~111 remam No matter how the 
mechanism operates, a transactlon that needs to 
access the objects that were accessed by a LLT 
cannot commit until the LLT commits 

However, for specific applreatsons lt may be 
possible to alleviate the problems by relaxing the 
requirement that an LLT be executed as an 
atormc actlon In other words, without sacrlficmg 
the consistency of the database, it may be possl- 
ble for certain LLTs to release their resources 
before they complete, thus permitting other walt- 
mg transactions to proceed 

To illustrate this idea, consider an alrhne 
reservation apphcatlon The database (or actu- 
ally a collection of databases from different air- 
lines) contams reservations for flights, and a tran- 
saction T wishes to make a number of reserva- 
tions, For this dlscusslon, let us assume that T IS 
a LLT (say It pauses for customer input after 
each reservation) In this apphcatlon It may not 
be necessary for T to hold on to all of its 
resources until it completes For instance, after 
T reserves a seat on flight Fl, it could lmmedl- 
ately allow other transactions to reserve seats on 
the same flight In other words, we can view T 
as a collection of “sub-transactions” T1, Tz, , 
T,, that reserve the mdlvldual seats 

However, we do not wish to submit T to the 
database management system (DBMS) simply as 
a collection of independent transactions because 
we still want T to be a unit that IS either suc- 
cessfully completed or not done at all We would 
not be satisfied with a DBMS that would allow T 
to reserve three out of five seats and then (due to 
a crash) do nothmg more On the other hand, we 
would be satisfied with a DBMS that guaranteed 
that T would make all of its reservations, or 
would cancel any reservations made If T had to 
be suspended 

This example shows that a control mechan- 
ism that 1s less rlgld than the conventional 
atomic-transaction ones but still offers some 
guarantees regardmg the execution of the com- 
ponents of an LLT would be useful In this paper 
we will present such a mechamsm 

Let us use the term eaga to refer to a LLT 
that can be broken up mto a collection of sub- 
transactions that can be mterleaved m any way 
with other transactlons Each sub-transactlon m 

this case 1s a real transaction m the sense that it, 
preserves database consistency However, unlike 
other transactions, the transactions m a saga are 
related to each other and should be executed as a 
(non-atomic) unit any partial executions of the 
saga are undesirable, and if they occur, must be 
compensated for 

To amend partial executions, each saga 
transaction T, should be provided with a com- 
pensating transaction C, The compensatmg 
transaction undoes, from a semantic point of 
view, any of the actions performed by T,, but 
does not necessarily return the database to the 
state that existed when the execution of T, 
began In our airline example, if T, reserves a 
seat on a flight, then C, can cancel the resewa- 
tlon (say by subtracting one from the number of 
reservations and performing some other checks) 
But C, cannot simply store m the database the 
number of seats that existed when T, ran because 
other transactions could have run between the 
time T, reserved the seat and C, canceled the 
reservation, and could have changed the number 
of reservations for this flight 

Once compensating transactions Cl, Cs, 
c n-1 are defined for saga T1, Tz, T,,, then 
the system can make the followmg guarantee 
Either the sequence 

Tl, T2, T?8 

(which 1s the preferable one) or the sequence 

TI, T29 T,, C,, c2, Cl 

for some 0 < J < 12 ~111 be executed (Note that 
other transactions might see the effects of a par- 
tial saga execution When a compensatmg tran- 
saction C, 1s run, no effort 1s made to notify or 
abort transactions that nught have seen the 
results of T, before they were compensated for by 

c, 1 
Sagas appear to be a relatively common 

type of LLT They occur when a LLT consists of 
a sequence of relatively independent steps, where 
each step does not have to observe the eame con- 
sistent database state For Instance, m a bank It 
1s common to perform a fixed operation (e g , 
compute interest) on all accounts, and there 1s 
very little interaction between the computations 
for one account and the next In an office mfor- 
matlon system, It IS also common to have LLTs 
with independent steps that can be Interleaved 
with those of other transactions For example, 
receiving a purchase order mvolves entering the 

250 



mformatlon into the database, updating the 
inventory, notlfymg accounting, prmtmg a shlp- 
pmg order, and so on Such office LLTs mimic 
real procedures and hence can cope with mter- 
leaved transactions In reality, one does not phy- 
sically lock the warehouse until a purchase order 
1s fully processed Thus there 1s no need for the 
computerized procedures to lock out the mven- 
tory database until they complete 

Once again, the bank and office LLTs we 
have presented are not Just collections of normal 
transactions, they are sagas There IS an apphca- 
tlon “constramt” (not representable by the data- 
base consistency constraints) that the steps of 
these actlvltles should not be left unfinished The 
apphcatlons demand that all accounts be pro- 
cessed or that the purchase order 1s fully pro- 
cessed If the purchase order 1s not successfully 
completed, then the records must be straightened 
(e g , inventory should not reflect the departure of 
the Item) In the bank example, It may always 
be possible to move forward and finish the LLT 
In this case, It may not be necessary to ever com- 
pensate for an unfinished LLT 

The notion of saga 1s related to several 
exlstmg concepts For example, a saga 1s like a 
nested transaction [Mossa, LyncSSa, Lync86a], 
except that 

(a) A saga only permits two levels of nesting 
the top level saga and simple transactions, 
and 

(b) At the outer level full atonuclty 1s not pr+ 
vlded That IS, sagas may view the partial 
results of other sagas 

Sagas can also be viewed as special types of tran- 
sactlons running under the mechanisms described 
m [Garc83a] The restrlctlons we have placed on 
the more general mechanisms make It much 
simpler to implement (and understand) sagas, m 
consequence making It more likely that they be 
used m practice 

Other related ideas include [GlfT85a], which 
describes “independent atomic actions”, similar to 
sagas, and [Kort85a] which considers long tran- 
sactions m a CAD environment EMPACT, a dls- 
trlbuted database application described 
m [Norm83a], uses “suspense files” containing 
update transactions to be run at remote systems 
to implement updates of replicated distributed 
data 

Two ingredients are necessary to make 
sagas feasible a DBMS that supports sagas, and 

LLT’s that are broken mto sequences of transac- 
tions In this paper we focus on how to obtain 
these ingredients m a centralized database sys- 
tem Note that smce the concept of saga 1s quite 
simple, one does not require complex or novel 
lmplementatlon mechanisms (As a matter of 
fact, as discussed m Section 7, sagas can be fully 
implemented on top of an exlstmg DBMS ) Thus, 
the emphasis m this paper 1s not on presenting 
novel lmplementatlon techniques but on suggest 
mg the appropriate ones for a simple, clean, and 
efficient implementation of sagas 

In Section 2 through 7 we study the ample- 
mentatlon of a saga processmg mechamsm We 
start by dlscussmg how an apphcatlon program- 
mer can define sagas, and then how the system 
can support them We mltlally assume that com- 
pensating transactions can only encounter system 
failures Later on, m Section 6, we study the 
effects of other failures (e g , program bugs) m 
compensatmg transactions Due to space hmlta- 
tlons, we only discuss sagas m a centralized sys- 
tem, although clearly they can be implemented m 
a distributed database system 

In Sections 8 and 9 we address the design of 
LLTs We first show that our model of sequential 
transaction execution for a saga can be general- 
ized to include parallel transaction execution and 
hence a wider range of LLTs Then we discuss 
some strategies that an apphcatlon programmer 
may follow m order to write LLTs that are 
indeed sagas and can take advantage of our pro- 
posed mechamsm 

2. USER FACILITIES 

From the point of view of an apphcatlon 
programmer, a mechanism IS required for mform- 
mg the system of the beginning and end of a 
saga, the begmnmg and end of each transaction, 
and the compensating transactions This 
mechanism could be slmllar to the one used m 
conventional systems to manage 
transactions [Gray78a] 

In particular, when an apphcatlon program 
wishes to m&late a saga It issues a began-saga 
command to the system This 1s followed by a 
series of begwtran8actron, end-tranaactton com- 
mands that indicate the boundaries of each tran- 
saction Between transactions the application 
can perform operations that do not involve access 
to the database, such as manipulation of local 
variables Wlthm a transaction the application 
can issue conventional database access com- 

251 



mands In addition, it can optionally start a 
user-mitlated abort by lssumg an abort- 
transaction command This termmates the 
current transaction, but not the saga Slmlarly, 
there is an abort-saga command to abort first the 
currently executmg transaction and second the 
entire saga (by running compensatmg transac- 
tions) Finally, there is an end-saga command to 
comnnt the currently executing transaction (if 
any) and to complete the saga 

Most of these commands will include van- 
ous parameters The begin-saga command can 
return a saga identifier to the program This 
identifier can then be passed to the system on 
subsequent calls made by the saga An abort- 
transaction command will include as a parameter 
the address where saga execution is to continue 
after the abortion Each end-transaction call 
mcludes the identification of the compensatmg 
transaction that must be executed m case the 
currently ending transaction must be rolled back 
The identification mcludes the name and entry 
point of the compensatmg program, plus any 
parameters that the compensatmg transaction 
may need (We assume that each compensatmg 
program mcludes its own begin-transaction and 
end-transaction calls Abort-transaction and 
abort-saga commands are not allowed withm a 
compensatmg transaction ) Finally, the abort- 
saga command may mclude as a parameter a 
save-pomt identifier, as described below 

Note that it is possible to have each tran- 
saction store m the database the parameters that 
its compensatmg transaction may need m the 
future In this case, the parameters do not have 
to be passed by the system, they can be read by 
the compensatmg transaction when it starts 
Also note that if an end-saga command ends both 
the last transaction and the saga, there is no 
need to have a compensatmg transaction for the 
last transaction If instead a separate end- 
transaction is used, then it will have to mclude 
the identification of a compensatmg transaction 

In some cases it may be desirable to let the 
application programmer mdicate through the 
save-pomt command where saga check points 
should be taken This command can be issued 
between transactions It forces the system to 
save the state of the runnmg application program 
and returns a save-pomt dent:fier for future 
reference The save pomts could then be useful m 
reducing the amount of work after a saga failure 
or a system crash instead of compensatmg for all 

of the outstandmg transactions, the system could 
compensate for transactions executed since the 
last save point, and then restart the saga 

Of course, this means that we can now have 
executions of the type T1, Ts, C’s, Tz, T3, Tq, 
Tg, Cg, Cq, Td, Tg, T~J (After successfully 
executmg T2 the first time, the system crashed 
A save-pomt had been taken after T1, but to res- 
tart here, the system first undoes T2 by runnmg 
C2 Then the saga can be restarted and T2 
reexecuted A second failure occurred after the 
execution of T5 ) This means that our defimtion 
of valid execution sequences given above must be 
modified to include such sequences If these par- 
tial recovery sequences are not valid, then the 
system should either not take save-pomts, or it 
should take them automatically at the begmnmg 
(or end) of every transaction 

The model we have described up to now IS 
the quite general, but m some cases it may be 
easier to have a more restrictive one We will 
drscuss such a restrrctive model later on m Sec- 
tion 5 

3. SAVING CODE RELIABLY 
In a conventional transaction processing 

system, application code is not needed to restore 
the database to a consistent state after a crash 
If a failure destroys the code of a runnmg tran- 
saction, the system logs contams enough mforma- 
tion to undo the effects of the transaction In a 
saga processmg system, the situation is different 
To complete a running saga after a crash it is 
necessary to either complete the missmg transac- 
tions or to run compensating transactions to 
abort the saga In either case it is essential to 
have the required application code 

Transaction systems that use abstract data 
types face a similar problem Recovering an 
abstract data oblect can mvolve logging opera- 
tions (and inverse operations) on that data type, 
rather than old and new values [Spec83a] Thus 
code to implement these operations must survive 
if the database is to be restored to a consistent 
state after a crash 

There are various possible solutions to this 
problem One is to handle apphcation code as 
system code is handled m conventional systems 
Note that even though a conventional DBMS 
need not save applrcatton code reliably, it must 
save system code That is, a conventional DBMS 
cannot restart if a failure destroys the code 
required to run the system Thus, conventional 

252 



systems have manual or automatic procedures, 
outside the DBMS itself, for updating and storing 
backup copies of the system 

In a saga processing system we could then 
require that apphcatlon code for sagas be defined 
and updated m the same fashion Each new ver- 
sion of a program created would be stored m the 
current system area, as well as m one or more 
backup areas Since the updates would not be 
under the control of the DBMS, they would not 
be atonuc operations and would probably reqmre 
manual mterventlon m case a crash occurs durmg 
the update When a saga starts runnmg, It 
would assume that all Its transactions and com- 
pensatmg transactlons have been predefined, and 
It would simply make the appropriate calls 

Such an approach may be acceptable if 
sagas are written by trusted apphcatlon pro- 
grammers and not updated frequently If this 1s 
not the case, it may be best to handle saga code 
as part of the database If saga code IS simply 
stored as one or more database objects, then its 
recovery would be automatic The only draw- 
back 1s that the DBMS must be able to handle 
large objects, 1 e , the code Some systems would 
not be able to do this, because their data model 
does not pernut large “unstructured” obJects, the 
buffer manager cannot manage obJects that span 
more than one buffer, or some other reason 

If the DBMS can manage code, then reliable 
code storage for sagas becomes quite simple The 
first transactlon of the saga, T1, enters mto the 
database all further transactions (compensatmg 
or not) that may be needed m the future When 
T1 cornnuts, the rest of the saga 1s ready to 
start The compensatmg transaction for T1, Cl 
would simply remove these oblects from the data- 
base It IS also possible to define transactlons 
incrementally For example, a compensating 
transactlon C, need not be entered mto the data- 
base until its correspondmg transaction T, IS 
ready to commit This approach 1s slightly more 
comphcated but saves unnecessary database 
operations 

4. BACKWARD RECOVERY 
When a failure interrupts a saga, there are 

two choices compensate for the executed transac- 
tlons, backward recovery, or execute the nussmg 
transactions, forward recovery (Of course, for- 
ward recovery may not be an optlon m all sltua- 
tlons ) For backward recovery the system needs 
compensatmg transactlons, for forward recovery 

it needs save-points In this section we will 
describe how pure backward recovery can be 
implemented, the next will discuss muted 
backward/forward and pure forward recovery 

Within the DBMS, a eago ezecutson com- 
ponent (SEC) manages sagas This component 
calls on the conventional transaetron ezecutton 
component (TEC), which manages the execution 
of the mdlvldual transactions The operation of 
the SEC 1s similar to that of the TEC the SEC 
executes a series of transactlons as a umt, while 
the TEC executes a series of actions as an 
(atonuc) umt Both components require a log to 
record the activities of sagas and transactions 
As a matter of fact, It is convenient to merge 
both logs mto a smgle one, and we will assume 
that this 1s the case here We will also assume 
that the log 1s duplexed for rehablhty Note that 
the SEC needs no concurrency control because 
the transactions it controls can be interleaved 
with other transactlons 

All saga commands and database actlons 
are channeled through the SEC Each saga com- 
mand (e g , begin-saga) 1s recorded m the log 
before any action 1s taken Any parameters con- 
tamed m the commands (e g , the compensatmg 
transaction ldentlficatlon m an end-transaction 
command) are also recorded m the log The 
begin-transaction and end-transactlon commands, 
as well as all database actions, are forwarded to 
the TEC, which handles them m a conventional 
way [Gray78a] 

When the SEC receives an abort-saga com- 
mand it mltlates backward recovery To lllus- 
trate, let us consider a saga that has executed 
transactions T1 and Ts, and that halfway 
through the execution of T3 18sues an abort-saga 
command to the SEC The SEC records the com- 
mand m the log (to protect against a crash dur- 
mg roll back) and then instructs the TEC to 
abort the current transaction T3 This transac- 
tion 1s rolled back using conventional techniques, 
e g , by storing the “before” values (found m the 
log) back mto the database 

Next the SEC consults the log and orders 
the execution of compensatmg transactlons c2 
and C1 If the parameters for these transactions 
are m the log, they are extracted and passed m 
the call The two transactions are executed JUSt 

hke other transactions, and of course, the mfor- 
matlon as to when they begin and commit IS 
recorded m the log by the TEC (If there 1s a 
crash during this time, the system wdl then be 

253 



able to know what work remams to be done ) 
When Cl commits, the saga terminates An 
entry is made m the log, similar to the one 
created by the end-saga command 

The log is also used to recover from crashes 
After a crash, the TEC is first invoked to clean 
up pending transactions Once all transactions 
are either aborted or committed, the SEC evalu- 
ates the status of each saga If a saga has 
correspondmg begin-saga and end-saga entries m 
the log, then the saga completed and no further 
action is necessary If there is a missmg end-saga 
entry, then the saga is aborted By scannmg the 
log the SEC discovers the identity of the last suc- 
cessfully executed and uncompensated transac- 
tion Compensatmg transactions are run for this 
transaction and all preceedmg ones 

6. FORWARD RECOVERY 
For forward recovery, the SEC requires a 

reliable copy of the code for all missing transac- 
tions plus a save-point The save point to be 
used may be specified by the application or by 
the system, depending on which aborted the saga 
(Recall that a save-pomt identifier can be 
included as a parameter to the abort-saga com- 
mand ) In the case of a system crash, the 
recovery component can specify the most recent 
save point for each active saga 

To illustrate the operation of the SEC m 
this case, consider a saga that executes transac- 
tions T1, Tt, a save-point command, and tran- 
saction T3 Then during the execution of tran- 
saction Td the system crashes Upon recovery, 
the system must first perform a backward 
recovery to the save-pomt (aborting T4 and run- 
ning C,) After ensuring that the code for run- 
ning T3, T4, is available, the SEC records m 
the log it decision to restart and restarts the 
saga We call this backward/forward recovery 

As mentioned m Section 2, if save-pomts 
are automatically taken at the begmnmg of every 
transaction, then pure forward recovery is feasi- 
ble If we m addition prohibit the use of abort- 
saga commands, then it becomes unnecessary to 
ever perform backward recovery + (Abort- 
transaction commands would still be acceptable ) 
This has the advantage of ehmmatmg the need 

t In this case we must also assume that every sub- 
transactlon IU the saga ~111 eventually succeed lf 
It 1s retned enough times 

for compensatmg transactions, which may be 
difficult to write in some apphcations (see Section 
9) 

In this case the SEC becomes a simple “per- 
sistent” transaction executor, similar to per- 
sistent message transmission 
mechamsms [Hamm80a] After every crash, for 
every active saga, the SEC mstructs the TEC to 
abort the last executmg transaction, and then 
restarts the saga at the point where this transac- 
tion had started 

We can simphfy this further if we simply 
view a saga as a file containing a sequence of 
calls to mdividual transaction programs Here 
there is no need for explicit begin or end saga nor 
begin or end transaction commands The saga 
begins with the first call m the file and ends with 
the last one Furthermore, each call is a transac- 
tion The state of a runnmg saga is simply the 
number of the transaction that is executmg This 
means that the system can take save-points after 
each transaction with very little cost 

Such pure forward recovery methods would 
be useful for simple LLTs that always succeed 
The LLT that computes mterest payments for 
back accounts may be an example of such a LLT 
The interest computation on an mdividual 
account may fail (through an abort-transaction 
command), but the rest of the computations 
would proceed unaffected 

Using operating system termmology, the 
transaction file model described above could be 
called an EXEC (or a SCRIPT or a BATCH) 
However, all EXEJC facihties we know of are not 
persistent m our sense (e g , a failed EXEC may 
simply be restarted at the begmnmg, without 
compensation) 

6. OTHER ERRORS 
Up to this point we have assumed that the 

user-provided code in compensatmg transactions 
does not have bugs But what happens if a com- 
pensating transaction cannot be successfully com- 
pleted due to errors (e g , it tries to read a file 
that does not exist, or there is a bug m the code)? 
The transaction could be aborted, but if it were 
run again it would probably encounter the same 
error In this case, the system is stuck it cannot 
abort the transaction nor can it complete it A 
similar situation occurs if m a pure forward 
scenario a transaction has an error 

254 



One possible solution 1s to make use of 
software fault tolerant techniques along the lmes 
of recovery blocks [Ande8la,Horn74a] A 
recovery block 1s an alternate or secondary block 
of code that 1s provided m case a failure 1s 
detected m the primary block If a failure IS 
detected the system 1s reset to Its pre-primary 
state and the secondary block 1s executed The 
secondary block 1s designed to achieve the same 
end as the primary usmg a different algorithm or 
technique, hopefully avoiding the primary’s 
failure 

The recovery block idea translates very 
easily mto the framework of sagas Transactlons 
are natural program blocks, and rollback capabll- 
lty for falled transactions 1s provided by the 
TEC The saga apphcatlon can control recovery 
block execution After lt aborts a transaction (or 
1s notified that Its transactlon has been aborted), 
the apphcatlon either aborts the saga, tries an 
alternative transactlon, or retries the primary 
Note that compensatmg transactlons can be 
given alternates as well to make abortmg sagas 
more reliable 

The other possible solution to this problem 
1s manual mterventlon The erroneous transac- 
tion 1s first aborted Then It 1s given to an apph- 
cation programmer who, given a descrlptlon of 
the error, can correct it The SEC (or the apph- 
cation) then reruns the transactlon and contmues 
processing the saga 

Fortunately, while the transaction 1s bemg 
manually repalred the saga does not hold any 
database resources (1 e , locks) Hence, the fact 
that an already long saga ~111 take even longer 
will not slgmficantly affect performance of other 
transactions 

Relying on manual mterventlon 1s defimtely 
not an elegant solution, but It IS a practical one 
The remammg alternative 1s to run the saga as a 
long transaction When this LLT encounters an 
error It will be aborted m Its entirety, potentially 
wasting much more effort Furthermore, the bug 
will still have to be corrected manually and the 
LLT resubnutted The only advantage 1s that 
during the repalr, the LLT ~111 be unknown to 
the system In the case of a saga, saga will con- 
tmue to be pendmg m the system until the 
repaired transaction 1s installed 

7. IMPLEMENTING SAGAS ON TOP OF 
AN EXISTING DBMS 

In our dlscusslon of saga management we 
have assumed that the SEC 1s part of the DBMS 
and has direct access to the log However, m 
some cases It may be desirable to run sagas on an 
exlstmg DBMS that does not directly support 
them This 1s possible as long as the database 
can store large unstructured oblects (1 e , code 
and save-points) However, It mvolves glvmg the 
apphcatlon programmer more responslblhtles and 
possibly hurting performance 

There are baslcally two things to do to run 
sagas without modlfymg the DBMS internals at 
all First, the saga commands embedded m the 
apphcatlon code become subroutine calls (as 
opposed to system calls) (The subroutmes are 
loaded together w&h the apphcatlon code ) Each 
subroutme stores wlthm the database all the 
mformatlon that the SEC would have stored m 
the log For example, the begin-saga subroutine 
would enter an ldentlficatlon for the saga m a 
database table of active sagas The save-pomt 
subroutine would cause the apphcatlon to save Its 
state (or a key portion of its state) m a similar 
database table Slmllarly, the end-transaction 
subroutine enters mto some other table(s), the 
ldentlficatlon of the endmg transaction and Its 
compensatmg transactlon before executmg an 
end-transaction system call (to be processed by 
the TEC) 

The commands to store saga mformatlon 
(except save-point) m the database must always 
be performed wlthm a transactlon, else the mfor- 
matlon may be lost m a crash Thus, the saga 
subroutmes must keep track of whether the saga 
1s currently executing a transactlon or not This 
can easily be achieved If the begin-transaction 
subroutine sets a flag that 1s reset by the end- 
transaction one All database storage actions 
would be disallowed if the flag 1s not set Note 
that the subroutme approach only works If the 
apphcatlon code never makes system calls on Its 
own For instance, If a transactlon 1s termmated 
by an end-transactlon system call (and not a sub- 
routme call), then the compensatmg mformatlon 
will not be recorded and the transaction flag will 
not be reset 

Second, a special process must exist to 
implement the rest of the SEC functions This 
process, the saga daemon (SD) would always be 
active It would be restarted after a crash by the 
operating system After a crash It would scan 

255 



the saga tables to discover the status of pendmg 
sagas This scan would be performed by submlt- 
tmg a database transactlon The TEC will only 
execute this transaction after transaction 
recovery 1s complete, hence the SD will read con- 
sistent data Once the SD knows the status of 
the pending sagas, It Issues the necessary compen- 
sating or normal transactlons, Just as the SEC 
would have after recovery Care must be taken 
not to interfere with sagas that started right 
after the crash, but before the SD submitted Its 
database query 

After the TEC aborts a transaction (e g , 
because of a deadlock or a user mltlated abort), 
it may simply kill the process that initiated the 
transaction In a conventional system this may 
be fine, but with sagas this leaves the saga 
unfinished If the TEC cannot signal the SD 
when this occurs, then the SD will have to penod- 
lcally scan the saga table searchmg for such a 
sltuatlon If found, the corrective action 1s 
lmmedlately taken 

A running saga can also directly request 
services from the SD For instance, to perform an 
abort-saga, the abort-saga subroutine sends the 
request to the SD and then (if necessary) executes 
an abort-transaction 

8. PARALLEL SAGAS 

Our model for sequential transactlon execu- 
tlon wlthm a saga can be extended to include 
parallel transactlons This could be useful m an 
apphcatlon where the transactions of a saga are 
naturally executed concurrently For example, 
when processing a purchase order, it may be best 
to generate the shlppmg order and update 
accounts receivable at the same time 

We ~111 assume that a saga process (the 
parent) can create new processes (children) with 
which it will run m parallel, with a request slml- 
lar to a fork request m UNIX The system may 
also provide a Jam capability to combme 
processes wlthm a saga 

Backward crash recovery for parallel sagas 
IS slmllar to that for sequential sagas Wlthm 
each process of the parallel saga, transactions are 
compensated for (or undone) m reverse order Just 
as with sequential sagas In addition, all compen- 
sations m a child process must occur before any 
compensations for transactions m the parent that 
were executed before the child was created 
(forked) (Note that only transactlon execution 
order wcthrn a process and fork and Jam mforma- 

tlon constram the order of compensation If T1 
and Tg have executed m parallel processes and 
T2 has read data wrltten by T1, compensatmg 
for T1 does not force us to compensate for Tz 
first ) 

Unhke backward crash recovery, backward 
recovery from a saga failure 1s more comphcated 
with parallel sagas because the saga may consist 
of several processes, all of which must be ter- 
mmated For this, It 1s convenient to route all 
process fork and Jam operations through the SEC 
so It can keep track of the process structure of 
the saga When one of the saga processes 
requests an abort-saga, the SEC kills all processes 
involved m the saga It then aborts all pending 
transactions and compensates all committed ones 

Forward recovery 1s even more comphcated 
due to the posslblhty of “mconslstent” save- 
points To Illustrate, consider the saga of Figure 
8 1 Each box represents a process, wlthm each 
box 1s the sequence of transactions and save- 
points (sp) executed by the process The lower 
process was forked after Tl commltted Suppose 
that T3 and T5 are the currently executmg tran- 
sactions and that save-pomts were executed 
before Tl and T5 

TO --++ Tl a T2 ---) T3 

-a T4 + T5 

Figure 8 1 - Parallel Saga 

At this pomt the system falls The top pro- 
cess will have to be restarted before Tf There- 
fore, the save-point made by the second process 1s 
not useful It depends on the execution of Tl 
which 1s being compensated for 

This problem 1s known as cascading roll 
backs It has been analyzed m a scenario where 
processes commumcate via messages or shared 
data oblects padz82a, Rand78a] There it 1s 
possible to analyze save-point dependencies to 
arrive at a consistent set of save-pomts (lf It 
exists) The consistent set can then be used to 
restart the processes With parallel sagas, the 
sltuatlon 1s even simpler since save-pomt depen- 
dencies arise only through forks and Jams, and 

256 



transaction and save-pomt order wlthm a pro- 
cess 

To arrive at a consistent set of save-points, 
the SEC must again be informed of process fork- 
mg and Jommg The mformatlon must be stored 
on the log and analyzed at recovery time The 
SEC chooses the latest save-point within each 
process of the saga such that no earlier transac- 
tion has been compensated for (A transaction is 
earlier than a save-point if it would have to be 
compensated for after a transaction that had 
executed m place of that save-point) If there is 
no such save-point m a process, that entire pro- 
cess must be rolled back For those processes 
with save-points, the necessary backward 
recoveries can be conducted and the processes 
restarted 

9. DESIGNING SAGAS 
The saga processing mechamsms we have 

described will only be of use if apphcation pro- 
grammers write their LLTs as sagas Thus the 
followmg questions immediately arise How can a 
programmer know if a given LLT can be safely 
broken up mto a sequence of transactions? How 
does the programmer select the break pomts? 
How difficult is it to write compensatmg transac- 
tions? In this section we will address some of 
these issues 

To identify potential sub-transactions 
within a LLT, one must search for natural dlvi- 
sions of the work bemg performed In many 
cases, the LLT models a series of real world 
actions, and each of these actions IS a candidate 
for a saga transaction For example, when a 
umversity student graduates, several actions 
must be performed before his or her diploma can 
be issued the library must check that no books 
are out, the controller must check that all hous- 
mg bills and tuition bills are checked, the 
student’s new address must be recorded, and so 
on Clearly, each of these real world actions can 
be modeled by a transaction 

In other cases, it is the database itself that 
is naturally partitioned mto relatively mdepen- 
dent components, and the actions on each com- 
ponent can be grouped mto a saga transaction 
For example, consider the source code for a large 
operating system Usually the operating system 
and its programs can be divided mto components 
like the scheduler, the memory manager, the 
interrupt handlers, etc A LLT to add a tracing 
facihty to the operating system can be broken up 

so that each transaction adds the tracing code to 
one of the components Similarly, if the data on 
employees can be split by plant location, then a 
LLT to give a cost-of-hvmg raise to all employees 
can be broken up by plant location 

Designing compensatmg transactions for 
LLTs is a difficult problem rn general (For 
instance, if a transaction fires a missile, it may 
not be possible to undo this action ) However, for 
many practical apphcatlons It may be as simple 
(or difficult) as writing the transactions them- 
selves In fact, Gray notes m [Gray8la] that, 
transactions often have correspondmg compensat- 
mg transactions wlthm the apphcatlon transac- 
tion set This is especially true when the transac- 
tion models a real world action that can be 
undone, hke reserving a rental car or issuing a 
shlppmg order In such cases, writing either a 
compensating or a normal transaction is very 
smular the programmer must write code that 
performs the action and preserves the database 
consistency constraints 

It may even be possible to compensate for 
actions that are harder to undo, like sending a 
letter or prmtmg a check For example, to com- 
pensate for the letter, send a second letter 
explaining the problem To compensate for the 
check, send a stop-payment message to the bank 
Of course, It would be desirable not to have to 
compensate for such actions However, the price 
of running LLTs as regular transactions may be 
so high that one 1s forced to write sagas and their 
compensating transactions 

Also recall that pure forward recovery does 
not require compensating transactions (see Sec- 
tion 5) So if compensatmg transactions are hard 
to write, then one has the choice of tailoring the 
application so that LLTs do not have user ml- 
tiated aborts Without these aborts, pure for- 
ward recovery 1s feasible and compensation 1s 
never needed 

As has become clear from our discussion, 
the structure of the database plays an important 
role m the design of sagas Thus, it is best not to 
study each LLT m isolation, but to design the 
entire database with LLTs and sagas m mmd 
That is, If the database can be laid out mto a set 
of loosely-coupled components (with few and slm- 
ple mter-component consistency constraints), then 
it is likely that the LLT will naturally break up 
mto sub-transactions that can be interleaved 

Another technique that could be useful for 
convertmg LLTs mto sagas mvolves storing the 

257 



temporary data of an LLT m the database Itself 
To illustrate, consider a LLT L with three sub- 
transactions T1, Tz, and T3 In T1, L performs 
some actlons and then wlthdraws a certam 
amount of money from an account stored m the 
database This amount 1s stored m a temporary, 
local variable until durmg T3 the funds are 
placed m some other account(s) After T1 com- 
pletes, the database IS left m an mconslstent 
state because some money 1s “mlssmg,” 1 e , It 
cannot be found m the database Therefore, L 
cannot be run as a saga If It were, a transactlon 
that needed to see all the money (say an audit 
transaction) could run sometlme between T1 and 
T3 and would not find all the funds If L 1s run 
as a regular transactlon, then the audit 1s 
delayed until L completes This guarantees con- 
slstency but hurts performance 

However, if Instead of stormg the mlssmg 
money m local storage L stores It m the data- 
base, then the database would be consistent, and 
other transactions could be interleaved To 
achieve this we must incorporate mto the data- 
base schema the “temporary” storage (e g , we 
add a relation for funds m transit or for pendmg 
insurance claims) Also, transactlons that need 
to see all the money must be aware of this new 
storage Hence It 1s best d this storage 1s defined 
when the database 1s first designed and not added 
as an afterthought 

Even if L had no T2 transaction, wrltmg 
the nussmg funds m the database may be con- 
vement Notice that m this case L would release 
the locks on the temporary storage after T1, only 
to immediately request them again m T3 This 
may add some overhead to L, but m return for 
this transactions that are waltmg to see the 
funds will be able to proceed sooner, after T1 
This 1s analogous to havmg a person with a huge 
photocopmg Job perlodlcally step aslde and let 
shorter Jobs through For this the coveted 
resources, I e , the coping machme or the funds, 
must be temporarily released 

We believe that what we have stated m 
terms of money and LLT L holds m general The 
database and the LLTs should be designed so 
that data passed from one sub-transactlon to the 
next via local storage 1s mmlmlzed This tech- 
mque, together with a well structured database, 
can make it possible to write LLT’s as sagas 

10. CONCLUSIONS 
We have presented the notlon of saga, a 

long lived transactlon that can be broken up mto 
transactions, but still executed as a unit Both 
the concept and Its lmplementatlon are relatively 
ample, but m its slmphclty lies its usefulness We 
believe that a saga processmg mechanism can be 
implemented with relatively httle effort, either as 
part of the DBMS or as an added-on facdlty 
The mechanism can then be used by the large 
number of LLTs that are sagas to Improve per- 
formance sigmficantly 

ACKNOWLEDGMENTS 
Bruce Lindsay provided several useful 

suggestions, mcludmg the name “saga ” Rafael 
Alonso, Rlcardo Cordon, and the anonymous 
referees also contributed a number of ideas 

This research was supported by the Defense 
Advanced Research Projects Agency of the 
Department of Defense and by the Office of 
Naval Research under Contracts Nos N00014- 
85-C-0456 and NOO014-85-K-0465, by the 
National Science Foundation under Cooperative 
Agreement No DCR-8420948, and by an IBM 
Graduate Fellowship The views and conclusions 
contained m this document are those of the 
authors and should not be mterpreted as neces- 
sarily representing the official pohcles, either 
expressed or implied, of the Defense Advanced 
Research ProJects Agency or the US Govern- 
ment 

References 

Ande8la 
Anderson, T and P A Lee, Fault Toler- 
ance, Prtnccplee and Practtce, Prentice-Hall 
International, London, 1981 

Date8la 
Date, C J, An Introductron to Database 
Systems, (3rd Edstron), Addison-Wesley, 
Readmg, MA, 1981 

Garc83a 
Garcia-Molma, Hector, “Usmg Semantic 
Knowledge for Transactlon Processmg m a 
Dlstrlbuted Database,” ACM Transactrona 
on Database Systems, vol 8, no 2, pp 186- 
213, June 1983 

GdT85a 
Glfford, David K and James E Donahue, 
“Coordmatmg Independent Atomic 

258 



Actions,” Proceedings of IEEE COMPCON, 
San Francisco, CA, February, 1985 

Gray78a 
Gray, Jim, “Notes on Data Base Operatmg 
Systems,” in Operatrng Syatema An 
Advanced Course, ed G Seegmllller, pp 
393-481, Sprmger-Verlag, 1978 

Gray8la 
Gray, Jim, “The Transaction Concept Vlr- 
tues and Llmltatlons,” Proceedrnge of the 
Seventh Int? Conference on Very Large 
Databases, pp 144-154, IEEE, Cannes, 
France, Sept , 1981 

Gray8lb 
Gray, Jim, Pete Homan, Ron Obermarck, 
and Hank Korth, “A Straw Man Analysis of 
Probablhty of Waltmg and Deadlock,” IBM 
Research Report RJ3066 (38112), IBM 
Research Laboratory, San Jose, Cahforma, 
Feb , 1981 

Hadz82a 
Hadzllacos, Vassos, “An Algorithm for 
Mmmuzmg Roll Back Cost,” Proc ACM 
Symp on PODS, pp 93-97, Los Angeles, 
CA, March, 1982 

Hamm80a 
Hammer, Michael and David Shlpman, 
“Rehablhty Mechanisms for SDD-1 A Sys- 
tem for Distributed Databases,” ACM Tran- 
eactrons on Database Syetems, vol 5, pp 
431-466, December, 1980 

Horn74a 
Horning, J J , H C Lauer, P M Melhar- 
South, and B Randell, “A Program Struc- 
ture for Error Detection and Recovery,” m 
Lecture Notes rta Computer Scrence 16, ed 
C Kaiser, Sprmger-Verlag, Berlin, 1974 

Kort85a 
Korth, Henry F and Won Kim, “A Con- 
currency Control Scheme for CAD Transac- 
tions,” Technical Report TR-85-34, Dept of 
Computer Science, Umv of Texas at Aus- 
tin, December, 1985 

Lync83a 
Lynch, Nancy, “Multilevel Atomlclty - A 
New Correctness Crlterlon for Database 
Concurrency Control,” ACM Transactrone 
on Database Syeteme, vol 8, no 4, pp 484- 
502, December, 1983 

Lync86a 
Lynch, Nancy and Michael Merritt, “Intre 

ductlon to the Theory of Nested Transac- 
tlons,” unpubhshed, M I T , June, 1986 

Mossa Moss, J Elliot B , “Nested Transactions 
An Introduction,” unpublished, US Army 
War College 

Norm83a 
Norman, Alan and Mark Anderton, 
“EMPACT A dlstrlbuted database apphca- 
tlon,” Proe Natronal Computer Conference, 
pp 203-217, AFIF’S Press, 1983 

Rand78a 
Randell, B , P A Lee, and P C Treleaven, 
“Rehablhty m Computmg System Design,” 
Computtng Surveye, vol 10, no 2, pp 123- 
165, ACM, June, 1978 

Spec83a 
Spector, Alfred Z and Peter M Schwarz, 
“Transactions A Construct for Rehable 
Dlstrlbuted Computmg,” Operatang Systems 
Revrew, vol 17, no 2, pp 18-35, ACM 
SIGOPS, April, 1983 

Ullm82a 
Ullman, Jeffrey D , Prrncaples of Databaee 
Spsteme, (2nd Edatron), Computer Science 
Press, Rockvllle, MD, 1982 

259 


