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ABSTRACT
Suppose there are many clients, each having some personal
information, and one server, which is interested only in ag-
gregate, statistically significant, properties of this informa-
tion. The clients can protect privacy of their data by per-
turbing it with a randomization algorithm and then submit-
ting the randomized version. The randomization algorithm
is chosen so that aggregate properties of the data can be
recovered with sufficient precision, while individual entries
are significantly distorted. How much distortion is needed
to protect privacy can be determined using a privacy mea-
sure. Several possible privacy measures are known; finding
the best measure is an open question. This paper presents
some methods and results in randomization for numerical
and categorical data, and discusses the issue of measuring
privacy.

1. INTRODUCTION
Suppose that some company needs to construct an aggre-
gate model of its customers’ personal data. For example,
a retail store wants to know the age and income of its cus-
tomers who are more likely to buy DVD players or mountain
ski equipment; a movie recommendation system would like
to learn users’ movie preferences in order to make adver-
tisements more targeted; or an on-line business arranges its
webpages according to an aggregate model of its website
visitors. In all these cases, there is one central server (the
company), and many clients (the customers), each having
a piece of information. The server collects this information
and builds its aggregate model using, for example, a clas-
sification algorithm or an algorithm for mining association
rules. Often the resulting model no longer contains person-
ally identifiable information, but contains only averages over
large groups of clients.

The usual solution to the above problem consists in hav-
ing all clients send their personal information to the server.
However, many people are becoming increasingly concerned
about the privacy of their personal data. They would like
to avoid giving out much more about themselves than is re-
quired to run their business with the company. If all the
company needs is the aggregate model, a solution is pre-
ferred that reduces the disclosure of private data while still
allowing the server to build the model. One possibility is as
follows: before sending its piece of data, each client perturbs
it so that some true information is taken away and some false

information is introduced. This approach is called random-
ization. Another possibility is to decrease precision of the
transmitted data by rounding, suppressing certain values,
replacing values with intervals, or replacing categorical val-
ues by more general categories up the taxonomical hierarchy,
see [8; 14; 23; 24].

The usage of randomization for preserving privacy has
been studied extensively in the framework of statistical
databases [9; 10; 12; 13; 20]. In that case, the server has
a complete and precise database with the information from
its clients, and it has to make a version of this database
public, for others to work with. One important example is
census data: the government of a country collects private
information about its inhabitants, and then has to turn this
data into a tool for research and economic planning. How-
ever, it is assumed that private records of any given per-
son should not be released nor be recoverable from what is
released. In particular, a company should not be able to
match up records in the publicly released database with the
corresponding records in the company’s own database of its
customers.

In the case of statistical databases, however, the database is
randomized when it is already fully known. This is differ-
ent from our problem, where the randomization procedure
is run on the client’s side, and must be decided upon be-
fore the data is collected. A randomization for a statisti-
cal database is usually chosen so that it preserves certain
aggregate characteristics (averages and covariance matrices
for numerical data, or marginal totals in contingency tables
for categorical data), or changes them in a predetermined
way [12; 15]. Besides randomization, other privacy preserv-
ing transformations are used such as sampling and swapping
values among records [15; 27]. Our choice is more limited
due to the nature of our problem.

2. NUMERICAL RANDOMIZATION
Let each client Ci, i = 1, 2, . . . , N , have a numerical at-
tribute xi. Assume that each xi is an instance of random
variable Xi, where all Xi are independent and identically
distributed. The cumulative distribution function (the same
for every Xi) is denoted by FX . The server wants to learn
the function FX , or its close approximation; this is the ag-
gregate model which the server is allowed to know. The
server can know anything about the clients that is derivable
from the model, but we would like to limit what the server
knows about the actual instances xi.

The paper [4] proposes the following solution. Each client
randomizes its xi by adding to it a random shift yi. The shift
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values yi are independent identically distributed random
variables with cumulative distribution function FY ; their
distribution is chosen in advance and is known to the server.
Thus, client Ci sends randomized value zi = xi + yi to the
server, and the server’s task is to approximate function FX

given FY and values z1, z2, . . . , zN . Also, it is necessary to
understand how to choose FY so that

• the server can approximate FX reasonably well, and

• the value of zi does not disclose too much about xi.

The amount of disclosure is measured in [4] in terms of con-
fidence intervals. Given confidence c%, for each randomized
value z we can define an interval [z − w1, z + w2] such that
for all nonrandomized values x we have

P [Z − w1 6 x 6 Z + w2 | Z = x + Y, Y ∼ FY ] > c%.

In other words, here we consider an “attack” where the
server computes a c%-likely interval for the private value x
given the randomized value z that it sees. The shortest
width w = w1 + w2 for a confidence interval is used as the
amount of privacy at c% confidence level.

Once the distribution function FY is determined and the
data is randomized, the server faces the reconstruction prob-
lem: Given FY and the realizations of N i.i.d. random sam-
ples Z1, Z2, . . . , ZN , where Zi = Xi + Yi, estimate FX .
In [4] this problem is solved by an iterative algorithm based
on Bayes’ rule. Denote the density of Xi (the derivative
of FX) by fX , and the density of Yi (the derivative of FY )
by fY ; then the reconstruction algorithm is as follows:

1. f0
X := Uniform distribution;

2. j := 0 // Iteration number;

3. repeat

(a) f j+1
X (a) :=

1

N

N∑
i=1

fY (zi − a) f j
X(a)∫∞

−∞ fY (zi − z) f j
X(z) dz

;

(b) j := j + 1;

until (stopping criterion met).

For efficiency, the density functions f j
X are approximated by

piecewise constant functions over a partition of the attribute
domain into k intervals I1, I2, . . . , Ik. The formula in the
algorithm above is approximated by (m(It) is the midpoint
of It):

f j+1
X (Ip) :=

1

N

N∑
i=1

fY (m(zi)−m(Ip)) f j
X(Ip)∑k

t=1 fY (m(zi)−m(It)) f j
X(It) |It|

(1)

It can also be written in terms of cumulative distribution
functions, where ∆FX((a, b]) = FX(b) − FX(a) = P [a <
X 6 b] and N(Is) is the number of randomized values zi

inside interval Is:

∆F j+1
X (Ip) :=

k∑
s=1

N(Is)

N

fY (m(Is)−m(Ip))∆F j
X(Ip)∑k

t=1 fY (m(Is)−m(It)) ∆F j
X(It)

In paper [1] it has been shown that if the formula (1) is
replaced with formula

f j+1
X (Ip) :=

1

|Ip|N

N∑
i=1

∆FY (zi − Ip) f j
X(Ip)∑k

t=1 ∆FY (zi − It) f j
X(It)

,

where z − (a, b] = [z − b, z − a), then the quality of ap-
proximation is somewhat better. This formula is derived
using the framework of Expectation-Maximization (EM) al-
gorithms [7; 19], which allows to consider a more general
randomization setting. Suppose the server wants to approx-
imate density fX of nonrandomized (original) attribute dis-
tribution by some density from a parametric family {fX;Θ}.
If the server knew x1, x2, . . . , xN , it could find a maximum
likelihood parameter value Θ̂ by computing

Θ̂ = argmax
Θ

log

N∏
i=1

fX;Θ(xi)

However, the server knows only z1, z2, . . . , zN ; so this for-
mula is replaced by an iterative EM procedure:

Θk+1 = argmax
Θ

E
[
log

N∏
i=1

fX;Θ(Xi)
∣∣∣ fX = fX;Θk ,
∀i : Xi + Yi = zi

]
A similar approach has been described earlier for statisti-
cal databases [18]. Both papers [4; 1] consider two specific
examples of additive randomization: with a uniform (on a
segment) and a Gaussian density fY for the shift distribu-
tion.

In [4] it is shown how to use randomized numerical data in
classification, namely in building a decision tree [5]. The
main problem in decision tree construction is finding the
right split point at each node. The quality of a split point
depends on the frequency of records from each class in the
subsets to the left and to the right of the split point. So, the
tree building algorithm has to estimate the frequency distri-
butions for points of each class, split by different split points
for all numerical attributes. Several estimating strategies
are considered, which differ in how many times the iterative
reconstruction algorithm is applied:

• Global: once for each attribute, at root;

• ByClass: once for each class and attribute, at root;

• Local: once for each class and attribute at each node.

Since the reconstruction algorithm requires partitioning the
attribute domains into intervals, the only split points con-
sidered are the interval boundaries. To estimate the class
frequencies for a split at a non-root node, the records are
associated with attribute intervals as follows. The records
are sorted by each (randomized) attribute, and then, given
the reconstruction of distribution FX , they are associated
with an interval according to their order and so as to ob-
serve the distribution. Experimental results show that the
class prediction accuracy for decision trees constructed over
randomized data (using ByClass or Local) is reasonably
close (within 5%–15%) to the trees constructed over orig-
inal data, even with heavy enough randomization to have
95%-confidence intervals as wide as the whole range of an
attribute. The training set had 100,000 records.

3. ITEMSET RANDOMIZATION
Papers [22; 11] consider randomization of categorical data,
in the context of association rules. Suppose that each client
Ci has a transaction ti, which is a subset of a given finite
set of items I, |I| = n. For any subset A ⊂ I, its support
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in the dataset of transactions T = {ti}N
i=1 is defined as the

fraction of transactions containing A as their subset:

suppT (A) := |{ti | A ⊆ ti, i = 1 . . . N}| / N ;

an itemset A is frequent if its support is at least a certain
threshold smin. An association rule A ⇒ B is a pair of
disjoint itemsets A and B; its support is the support of A∪B,
and its confidence is the fraction of transactions containing
A that also contain B:

confT (A ⇒ B) := suppT (A ∪B) / suppT (A) .

An association rule holds for T if its support is at least smin

and its confidence is at least cmin, which is another threshold.
Association rules were introduced in [2], and [3] presents
efficient algorithm Apriori for mining association rules that
hold for a given dataset. The idea of Apriori is to make use
of antimonotonicity property:

∀A ⊆ B : suppT (A) > suppT (B) .

Conceptually, it first finds frequent 1-item sets, then checks
the support of all 2-item sets whose 1-subsets are frequent,
then checks all 3-item sets whose 2-subsets are frequent, etc.
It stops when no candidate itemsets (with frequent subsets)
can be formed. It is easy to see that the problem of finding
association rules can be reduced to finding frequent itemsets.

A natural way to randomize a set of items is by deleting
some items and inserting some new items. Paper [11] con-
siders a family of randomization operators called select-a-
size. A select-a-size randomization operator is defined for
a fixed transaction size |t| = m and has two parameters:
a randomization level 0 6 ρ 6 1 and a probability distri-
bution (p[0], p[1], . . . , p[m]) over set {0, 1, . . . , m}. Given a
transaction t of size m, the operator generates a randomized
transaction t′ as follows:

1. The operator selects an integer j at random from the
set {0, 1, . . . , m} so that P [j is selected] = p[j].

2. It selects j items from t, uniformly at random (without
replacement). These items, and no other items of t, are
placed into t′.

3. It considers each item a 6∈ t in turn and tosses a coin
with probability ρ of “heads” and 1− ρ of “tails”. All
those items for which the coin faces “heads” are added
to t′.

If different clients have transactions of different sizes, then
select-a-size parameters have to be chosen for each trans-
action size. So, this (nonrandomized) size has to be trans-
mitted to the server with the randomized transaction. The
randomization operator used in [22] does not have this draw-
back; it has only one parameter 0 6 p 6 1 which determines,
for each item independently, the probability of the item not
being “flipped” (discarded if present, or inserted if absent)
in the transaction. For any fixed transaction size m, this op-
erator becomes a special case of select-a-size, with ρ = 1− p
and p[j] =

(
m
j

)
pj(1− p)m−j .

In the set T ′ of randomized transactions available to the
server, itemsets have supports very different from their sup-
ports in the nonrandomized dataset T . Therefore, tech-
niques were developed that allow to estimate original sup-
ports given randomized supports. It is important to note

that randomized support of an itemset A is a random vari-
able that depends on the original supports of all subsets
of this itemset. Indeed, a transaction that contains all but
one item of A has a very different probability to contain A
after randomization than a transaction that contains no
items of A. So, in [11] the behavior of itemset A, |A| = k,
w.r.t. randomization is characterized by the (k + 1)-vector
of its partial supports ~s = (s0, s1, . . . , sk)T , where

sl := |{ti : |A ∩ ti| = l, i = 1 . . . N}| / N.

It is shown that the vector ~s ′ of randomized partial supports
is distributed as 1/N times a sum of multinomial distribu-
tions, with its expectation and covariance matrix being

E ~s ′ = P · ~s, Cov ~s ′ =
1

N
·

k∑
l=0

sl D[l],

for (k+1)× (k+1) matrices P and D[0], D[1], . . . , D[k] that
depend on the parameters of the randomization operator.
Matrix P is defined as

Pl l′ = P [ |R(t) ∩A| = l | |t ∩A| = l′ ]

where R is the randomization operator. Computing the in-
verse matrix Q = P−1 gives an unbiased estimator ~sest for ~s,
as well as the estimator’s covariance matrix and its unbiased
estimator:

~sest = Q · ~s ′; (Cov ~sest)est =
1

N
·

k∑
l=0

(~sest)l Q D[l] QT .

In particular, it lets us estimate the nonrandomized sup-
port s of A and its variance:

sest =

k∑
l=0

s′l Qk l ; (Var sest)est =
1

N
·

k∑
l=0

s′l(Q
2
k l −Qk l).

The support estimator formula can be used inside Apriori al-
gorithm for mining frequent itemsets, so that the algorithm
works over randomized dataset. However, since the estima-
tor is a random variable, it may violate the antimonotonicity
property. This may cause an itemset to be discarded even
though its estimated support, as well as its true support,
is above threshold. This effect can be reduced by lowering
the threshold by an amount proportional to the standard
deviation of the estimator.

4. LIMITING PRIVACY BREACHES
Consider the following simple randomization R: given a
transaction t, we consider each item in turn, and with prob-
ability 80% replace it with a new random item; with proba-
bility 20% we leave the item unchanged. Since most of the
items get replaced, we may suppose that this randomization
preserves privacy well. However, it is not so, at least not
all the time. Indeed, let A = {x, y, z} be a 3-item set with
partial supports

s3 = suppT (A) = 1%; s2 = 5%; s1 + s0 = 94%.

Assume that overall there are 10,000 items and 10 million
transactions, all of size 10. Then 100,000 transactions con-
tain A, and 500,000 more transactions contain all but one
items of A. How many of these transactions contain A af-
ter they are randomized? The following is a rough average
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estimate:

A ⊂ t and A ⊂ R(t) : 100,000 · 0.23 = 800

|A ∩ t| = 2 and A ⊂ R(t) : 500,000 · 0.22 · 8 · 0.8

10,000
= 12.8

|A ∩ t| 6 1 and A ⊂ R(t) : < 107 · 0.2 ·
(

9 · 0.8

10,000

)2

≈ 1.04

So, there will be about 814 randomized transactions con-
taining A, out of which about 800, or 98%, contained A
before randomization as well. Now, suppose that the server
receives from client Ci a randomized transaction R(t) that
contains A. The server now knows that the actual, non-
randomized transaction t at Ci contains A with probability
about 98%. On the other hand, the prior probability of
A ⊂ t is just 1%. The disclosure of A ⊂ R(t) has caused
a probability jump from 1% to 98%. Paper [11] calls this
situation a privacy breach.

Intuitively, a privacy breach with respect to some property
P (t) occurs when, for some possible outcome of random-
ization (= some possible view of the server), the posterior
probability of P (t) is higher than a given threshold called
the privacy breach level. Of course, there are always some
properties that are likely; so, we have to only look at “in-
teresting” properties, such as the presence of a given item
in t. Statistical database literature considers a similar notion
(pessimistic risk) for record identification [17]. In [11], the
following special case of breaches is considered: Itemset A
causes a privacy breach of level pb if for some item a ∈ A
and some transaction t we have P [a ∈ t | A ⊆ R(t)] > pb.
It is assumed here that the transaction at each client is an
independent instance of a distribution over transactions.

In order to prevent privacy breaches from happening, pa-
per [11] suggests to randomize transactions by inserting
many “false” items, as well as deleting some “true” items.
So many “false” items should be inserted into a transaction
that one is as likely to see a “false” itemset as a “true” one.
In select-a-size randomization operator, it is the randomiza-
tion level ρ that determines the probability of a “false” item
to be inserted. The other parameters, namely the distribu-
tion (p[0], p[1], . . . , p[m]), are set in [11] so that, for a cer-
tain “cutoff” integer K, any number of items from 0 to K
is retained from the original transaction with probability
1/(K + 1), while the rest of the items are inserted indepen-
dently with probability ρ. The question of optimizing all
select-a-size parameters to achieve maximum recoverability
for a given breach level is left open.

The parameters of randomization are checked for privacy
as follows. It is assumed that the server knows the maxi-
mum possible support of an itemset for each itemset size,
among transactions of each transaction size, or their upper
bounds. Based on this knowledge, the server computes par-
tial supports for (imaginary) privacy-challenging itemsets,
and tests randomization parameters by computing posterior
probabilities P [a ∈ t | A ⊆ R(t)] from the definition of pri-
vacy breaches. The randomization parameters are selected
to keep variance low while preventing privacy breaches for
privacy-challenging itemsets.

Graphs and experiments with real-life datasets show that,
given several million transactions, it is possible to find ran-
domization parameters so that the majority of 1-item, 2-
item, and 3-item sets with support at least 0.2% can be
recovered from randomized data, for privacy breach level

of 50%. However, long transactions (longer than about 10
items) have to be discarded, because the privacy-preserving
randomization parameters for them must be “too random-
izing,” saving too little for support recovery; in both real-
life datasets used in [11] most transactions had 5 items or
less. Those itemsets that were recovered incorrectly (“false
drops” and “false positives”) were usually close to the sup-
port threshold, i.e. there were few outliers. The standard
deviation for 3-itemset support estimator was at most 0.07%
for one dataset and less than 0.05% for the other; for 1-item
and 2-item sets it is smaller still.

5. MEASURES OF PRIVACY
Each of the papers [4; 1; 22; 11] suggests its own way of
measuring privacy, and there are other suggestions in the lit-
erature. In [4] (see Section 2) privacy is measured in terms
of confidence intervals. The nonrandomized numerical at-
tribute xi is treated as an unknown parameter of the dis-
tribution of the randomized value Zi = xi + Yi. Given an
instance zi of the randomized value Zi, the server can com-
pute an interval I(zi) = [x−(zi), x+(zi)] such that xi ∈ I(zi)
with at least certain probability c%; this should be true for
all xi. The length |I(zi)| of this confidence interval is treated
as a privacy measure of the randomization.

Unfortunately, as pointed out in [1], this measure can be
misleading. One problem is that the domain of the nonran-
domized value and its distribution are not specified. Con-
sider an attribute X with the following density function:

fX(x) =

{
0.5 if 0 6 x 6 1 or 4 6 x 6 5
0 otherwise

(2)

Assume that the perturbing additive Y is distributed uni-
formly in [−1, 1]; then, according to the confidence interval
measure, the amount of privacy is 2 at confidence level 100%.
However, if we take into account the fact that X must be
within [0, 1]∪ [4, 5], we can always compute a confidence in-
terval of size 1 (not 2). The interval is computed as follows:

I(z) =

{
[0, 1] if −1 6 z 6 2
[4, 5] if 3 6 z 6 6

Moreover, in many cases the confidence interval can be even
shorter: for example, for z = −0.5 we can give interval
[0, 0.5] of size 0.5.

Paper [1] suggests to measure privacy using Shannon’s infor-
mation theory [26; 25]. The average amount of information
in the nonrandomized attribute X depends on its distribu-
tion and is measured by its differential entropy

h(X) = E
x∼X

(− log2 fX(x)) = −
∫

ΩX

fX(x) log2 fX(x) dx.

The average amount of information that remains in X after
the randomized attribute Z is disclosed can be measured by
the conditional differential entropy

h(X|Z) = E
(x,z)∼(X,Z)

(− log2 fX|Z=z(x))

= −
∫

ΩX,Z

fX,Z(x, z) log2 fX|Z=z(x) dx dz.

The average information loss for X that occurs by disclos-
ing Z can be measured in terms of the difference between
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the two entropies:

I(X; Z) = h(X)− h(X|Z) = E
(x,z)∼(X,Z)

log2

fX|Z=z(x)

fX(x)
.

This quantity is also known as mutual information between
random variables X and Z. It is proposed in [1] to use the
following functions to measure amount of privacy (Π(X))
and amount of privacy loss (P(X|Z)):

Π(X) := 2h(X); P(X|Z) := 1− 2−I(X;Z).

In the example above (see (2)) we have

Π(X) = 2; Π(X|Z) = 2h(X|Z) ≈ 0.84; P(X|Z) ≈ 0.58.

A possible interpretation of these numbers is that, without
knowing Z, we can localize X within a set of size 2; when Z
is revealed, we can (on average) localize X within a set of
size 0.84, which is less than 1.

However, even this information-theoretic measure of privacy
is not without some difficulties. To see why, we have to turn
to the notion of privacy breaches from [11]. In the example
above, suppose that clients would not like to disclose the
property “X 6 0.01.” The prior probability of this property
is 0.5%; however, if the randomized value Z happens to be in
[−1,−0.99], the posterior probability P [X 6 0.01 | Z = z]
becomes 100%. Of course, Z ∈ [−1,−0.99] is unlikely:

P [−1 6 Z 6 −0.99] =

−0.99∫
−1

dz

+∞∫
−∞

fX(x) fY (z − x) dx

=

−0.99∫
−1

dz

z+1∫
0

0.5 · 0.5 dx = 0.0000125

Therefore, Z ∈ [−1,−0.99] occurs for about 1 in 100,000
records. But every time it occurs the property “X 6 0.01”
is fully disclosed, becomes 100% certain. The mutual infor-
mation, being an average measure, does not notice this rare
disclosure. Nor does it alert us to the fact that whether
X ∈ [0, 1] or X ∈ [4, 5] is fully disclosed for every record;
this time it is because the prior probability of each of these
properties is high (50%).

The notion of privacy breaches, on the other hand, cap-
tures these disclosures. Indeed, for any privacy breach level
ρ < 100% and for some randomization outcome (namely,
for Z 6 −0.99) the posterior probability of property “X 6
0.01” is above the breach level. The problem with the defi-
nition of privacy breaches from [11] is that we have to spec-
ify which properties are privacy-sensitive, whose probabili-
ties must be kept below breach level. Specifying too many
privacy-sensitive properties may require too destructive a
randomization, leading to a very imprecise aggregate model
at the server. Thus, the question of the right privacy mea-
sure is still open.

A completely different approach to measuring privacy is sug-
gested in [16]. This paper measures private information in
terms of its monetary value, as a form of intellectual prop-
erty. The cost of each piece of information must be deter-
mined in a “fair” way, so as to reflect the contribution of
this piece in the overall profit. Two notions of fairness are
analysed in [16], both coming from the theory of coalitional
games: the core and the Shapley value. Let S be the set
of potential participants in a business, and for every subset

S′ ⊆ S we know the payoff v(S′) that occurs if only the par-
ticipants in S′ actually cooperate. Then the core consists of
all possible ways to divide the total payoff v(S) between all
participants so that, for all S′ ⊆ S, the share given to S′ is at
least v(S′). In other words, the core contains all “fair” ways
of dividing the total payoff, in the sense that no group of
participants has an incentive to secede. The Shapley value
is a way to divide the payoff so that each participating agent
is awarded an amount equal to the average contribution of
this agent to the payoff of the group at the time of his or
her arrival, where the average is taken over all arrival orders
of the agents. In our case, participating clients disclose cer-
tain private information to the server and then benefit from
the data model built by the server. The paper analyses the
core and the Shapley value for several simplified scenarios
involving private information.

6. CONCLUDING REMARKS
The research in using randomization for preserving privacy
has shown promise and has already led to interesting and
practically useful results. It gives an impression of being
a part of some deeper statistical approach to security and
privacy, providing a connection to the groundbreaking work
of Claude Shannon on secrecy systems [25], and allows us
to look at privacy under a different angle than the conven-
tional cryptographic approach [6; 21]. It raises an important
question of measuring privacy, which should be addressed in
the purely cryptographic setting as well since the disclosure
through legitimate query answers must also be measured.
Randomization does not rely on intractability hypotheses
from algebra or number theory, and does not require costly
cryptographic operations or sophisticated protocols. It is
possible that future studies will combine statistical approach
to privacy with cryptography and secure multiparty compu-
tation, to the mutual benefit of all of them.
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