
ar
X

iv
:c

s.
C

R
/0

40
50

66
 v

1
 1

8
M

ay
 2

00
4

A Logic for Reasoning about Digital Rights∗

Riccardo Pucella
Cornell University
Ithaca, NY 14853

riccardo@cs.cornell.edu

Vicky Weissman
Cornell University
Ithaca, NY 14853

vickyw@cs.cornell.edu

Abstract

We present a logic for reasoning about licenses, which are “terms of use” for digital re-
sources. The logic provides a language for writing both properties of licenses and specifications
that govern a client’s actions. We discuss the complexity ofchecking properties and specifica-
tions written in our logic and propose a technique for verification. A key feature of our approach
is that it is essentially parameterized by the language in which the licenses are written, provided
that this language can be given a trace-based semantics. We consider two license languages to
illustrate this flexibility.

1 Introduction

In the world of digital rights management, licenses are agreements between the distributors and
consumers of digital resources. A license is issued by an owner to a prospective client. It states the
exact conditions under which a particular resource may be used, including a complete description
of how compensation may be given. Licenses can be viewed as a subset of authorization policies,
policies that dictate what actions a system’s principal canperform at any given time. Licenses are
an essential part of any rights management system, because they tell the consumer, as well as the
enforcement mechanism, which uses are legitimate.

Licenses must be written in some language. Although many licenses are very simple (e.g.,
“consumer must pay a fee before each access to an on-line journal”), more complicated ones, in
particular ones involving time, are also common (e.g., “foreach month from 1/1/01 to 1/1/02 the
mortgage requires either a $1500 payment between the first and fourth of the month or a $1525
payment between the fourth and the fourteenth”). The language must be expressive enough to
capture these types of licenses. Languages such asDPRL[Ramanujapuram and Ram 1998],XrML
[ContentGuard, Inc. 2000], andODRL [IPR Systems Pty Ltd 2001] have been developed to state
a wide range of licenses. These languages, however, do not have formal semantics. Instead, they
rely on intuitions behind their syntax, and on informal descriptions of expected behavior. As a
consequence, licenses that “seem right” are enforced without anyone knowing precisely what is
intended or exactly what is allowed.

Gunteret al. [2001] used techniques from programming language semantics [Hoare 1985] to
remove these ambiguities. In their approach, the meaning ofa license is a set of traces. Each trace

∗This paper is essentially the same as one that appeared in theProceedings of the 15th IEEE Computer Security
Foundations Workshop, pp. 282–294, 2002.

1

represents a sequence of actions allowed by the license. A correct enforcement mechanism permits
any sequence of action specified by the license and forbids any other. To illustrate their idea, Gunter
et al. defined a simple language with semantics that could be used tostate a number of licenses
precisely.

In addition to unambiguously expressing licenses, we wouldlike to reason about them. In
general, we are interested in two classes of questions: doesa set of licenses have certain properties
and does a client’s actions with respect to a set of licenses meet particular specifications. Note that
we make a distinction between the characteristics inherentin a set of licenses (properties, sometimes
referred to as license properties for emphasis). and those whose truth depends on the client’s actions
(specifications, sometimes referred to as client behavior specifications for emphasis) Examples of
properties include “a religious work may only be viewed during the hour before sunset” and “if a
user accesses a work, then the user is obligated to pay for theaccess at some time.” Depending on
the licenses, each property may or may not be easy to check. Continuing the last example, an owner
may allow a client to defer payment in so many situations thatit is not clear that there will ever
be an occasion when the client must pay. Alternatively, a license may permit free access to some
resources, however, the license has so much “red tape” that the client cannot determine if the desired
resource actually is free. As for specifications, examples include “the client never uses a resource
illegally” and “the client is never obligated to pay interest on her credit card debt”. The difficulty
of specification checking is based on the licenses and the client’s actions. Verifying properties and
specifications is important, because it increases our confidence that the licenses match the informal
requirements and that the informal requirements match the owner’s intent.

In this paper we present a logic for reasoning about licensesthat provides us with a language
in which we can state properties and specifications precisely. The logic is essentially a temporal
logic. It allows us to make statements about issued licenses, assuming the licenses are written in
some particular language that is distinct from our logic. For ease of exposition, we assume until
Section 4 that licenses are written in a very simple, regularlanguage and that the application has
only one client and one provider. Our framework can be modified in a straightforward manner to
reason about different license languages. It is also easy toextend the logic to multiple clients and
providers.

As the examples suggest, license properties and client behavior specifications typically involve
the client’s permissions and obligations to do certain actions. We take a very simple view of per-
missions and obligations. In particular, we focus exclusively on the client’s viewpoint. Inspired
by Gunteret al., we interpret licenses as describing a set of legal sequences of actions. A client is
permitted to do an action if that action is part of a sequence of actions that is legal according to the
actions she has already done and the licenses issued. If there is only one such action for a particular
license, then the client is obligated to do that action.

To illustrate our notions of permission and obligation, consider the mortgage example in which
the client must pay either $1500 between the first and fourth or $1525 between the fourth and the
fourteenth of every month from 1/1/01 to 1/1/02. For the firstmonth, there are two legal action
sequences. The client could pay $1500 before the fourth. Alternatively, the client could pay $1525
between the fourth and the fourteenth. Since there is a legalaction sequence in which the client pays
before the fourth and one in which the client does not, we say that the client is permitted, but not
obligated, to make the earlier payment. If the client doesn’t make the earlier payment, then the only
legal sequence she can be following is the second one. In thiscase, she is obligated to complete that
sequence by paying $1525 before the fourteenth.

2

Why are we designinga logic for reasoning about licenses? A logic provides us with a formal
language in which to write properties and specifications. Inaddition, it allows us to check in a
provably correct way that a property or specification holds for a particular set of licenses and, in
the case of specification, a client’s behavior. We can automate the analysis, by developing model
checking techniques. It turns out that standard model checking procedures (as given in [Clarke,
Grumberg, and Peled 1999]) apply to our framework. These procedures can form the foundation of
enforcement mechanisms that are well-grounded in formal methods.

The design of our logic was strongly influenced by the work of Halpern and van der Meyden
[2001a, 2001b] on reasoning about SPKI/SDSI. It is also reminiscent of deontic logic approaches,
which aim at reasoning about ideal and actual behavior [Meyer and Wieringa 1993]. Deontic logic
has been used extensively to analyze the structure of normative law and normative reasoning in law.
(For examples, please see [Wieringa and Meyer 1993] and the references therein.)

In the next section, we introduce our logic. Section 3 examines the complexity of checking
that a license property or client behavior specification holds. In Section 4, we show that our logic
can be adapted to different license languages, by replacingour regular language with a variant of
DigitalRights [Gunter, Weeks, and Wright 2001]. We discuss related work inSection 5. Proofs of
our technical results can be found in the appendix.

2 The logic

We want to reason about licenses and client’s actions with respect to licenses. To do this, we in-
troduce a logic,Llic , that allows us to talk about licenses and actions. Formulasin Llic include
permission and obligation operators, as well as temporal operators, because we want to write for-
mulas that represent interesting properties and specifications; the ones that state the conditions under
which actions are permitted or obligatory. In this section,we give the syntax for our logic, followed
by its semantics.

2.1 Syntax

The syntax ofLlic has three categories; formulas (ϕ,ψ, . . .), actions (α, . . .), and licenses (ℓ, . . .).
Their definitions assume a setNames of license names, a setWorks of works (i.e. resources),
and a setDevices of devices (i.e. ways to access resources). Actions are taken from a setAct =
{render[w, d] : w ∈ Works , d ∈ Devices} ∪ {pay[x] : x ∈ R} ∪ {⊥}, where⊥ represents the
null or “do nothing” action. (For simplicity, we consider only render and pay actions, as was done
in [Gunter, Weeks, and Wright 2001].) Also, we letLic be the set of licensesℓ. In the following
formal description,n ∈ Names anda ∈ Act .

ϕ ::= n : ℓ | α | Pα | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | 2ϕ | ϕ1 Uϕ2

α ::= (a, n) | (a, n)

ℓ ::= a | ℓ1 ℓ2 | ℓ
∗ | ℓ1 ∪ ℓ2

Intuitively, n : ℓ means “the license whose legitimate action sequences are described by the regular
expressionℓ is being issued now and will be referred to by the namen.” The primitive action(a, n)
means “actiona is performed with respect to license namedn”. The action(a, n) represents any
action-name pair where the action is nota, but the license name isn. Pα indicates that the action

3

expressionα is permitted. The set of formulas are closed under∧, ¬, 2, © and U , which are
well-known operators from classical and temporal logic [Goldblatt 1992].1 We use the standard
abbreviationsϕ ∨ ψ for ¬(¬ϕ ∧ ¬ψ), ϕ⇒ ψ for ¬ϕ ∨ ψ, and3ϕ for ¬2¬ϕ. Also, we abbreviate
the action(a, n) asan. For instance,(render[w, d], n) is writtenrendern[w, d], and(⊥, n) is written
⊥n.

We use the abbreviationO(a, n) to stand for¬P (a, n). As we shall see later, the interpretation
of O(a, n) is that the client is obligated to perform actiona with respect to the license namedn.

To illustrate how our logic can be used in practice, considerthe following scenario. Suppose
an owner of an on-line journal requires a fee to be paid beforeeach access. This licenseℓ can be
written in our logic as:

ℓ = ((pay[fee](⊥)∗render[journal, d]) ∪⊥)∗,

whered is the device that the client uses to access the journal. Assuming the license is labeledn,
the property that the client is not obligated to access the journal immediately after paying the fee
can be written as:

payn[fee] ⇒ ©(¬Orendern[journal, d]).

The specification that the client doesn’t violate the license can be written as the family of formulas:

n : ℓ⇒ 2[(α⇒ (Pα)) ∧ ((Oα) ⇒ α)],

whereα ∈ {payn[fee], rendern[journal, d],⊥n}. In other words, the client only does legitimate
actions and does every action that is required by the licenseonce it is issued. As a final example, we
can write that, during one time period, the client pays $1500on the mortgagem, but doesn’t pay
the journal fee as:

paym[1500] ∧ payn[fee].

2.2 Semantics

To formalize the intuitions given above, we base our semantics on the notion of a run. When
defining a run, we make the standard assumption that time is discrete and can, in fact, be represented
using nonnegative integers. A runr associates each timet with a pair(L,A), whereL is the set
of named licenses issued at that time (a named license is a pair (n, ℓ) of a namen and a license
ℓ), andA is a function giving, for each license namen, an actionA(n) performed by the client
at that time (or⊥ if no action was performed with respect ton). Formally, a run is a function
r : N −→ ℘(Names × Lic) × ActNames such that no name is paired with more than one license
throughout the entire run. Recall thatActNames is the set of all functions fromNames to Act . Our
approach imposes the restriction that, at most, one action per timeper named licensecan occur. We
do not need this limitation, but it simplifies the exposition. In essence, we are trading the ability
to handle the class of licenses where a client must do multiple actions simultaneously for a simple
definition of a license where concurrent actions are not handled. For notational convenience, given
a runr and timet with r(t) = (L,A), we definelic(r, t) to be the set of named licenses issued
in run r at timet, that is,lic(r, t) = L; similarly, we defineact(r, t) to be the set of action and
license name pairs performed in runr at timet, that is,act(r, t) = {(A(n), n) : n ∈ Names}.

1Recall that2ϕ means “ϕ holds now and at all future times”,©ϕ means “ϕ holds at the next time”, andϕ1 Uϕ2

means “ϕ2 eventually holds and, until it does,ϕ1 holds”.

4

Finally, we say that a license(n : ℓ) is activeat timet in run r if there exists a timet′ ≤ t such that
(n : ℓ) ∈ lic(r, t′)

While a run captures the client’s actions, an interpretation states what is permitted. Formally, a
permission interpretationP is a functionP : N −→ ℘(Act×Names) that is used to give a meaning
to permissions. Intuitively, if(a, n) ∈ P (t) then at timet, the client is permitted to perform action
a with respect to license namen. In other words, the client is allowed to do anan action.

We want the interpretation of permissions to match the permissions implied by the run. To
define this requirement formally, we first give a mapping thatrelates licenses to action sequences.
We then use this mapping to find the permission interpretation that permits an action if and only if
the run implies the permission.

Following the lead of Gunteret al. [2001], we associate each license with a set of traces. In our
discussion, atrace refers to a sequence of actions.2 The notations1 · s2 denotes the concatenation
of two sequences of actionss1 ands2 wheres1 · s2 = s1 if s1 is infinite. A traces1 is said to be a
prefixof traces2 if there is some traces such thats1 · s = s2.

We construct a functionL[[ℓ]] by induction on the structure of a given licenseℓ:

L[[a]] = {a}

L[[ℓ1 ℓ2]] = {s1 · s2 : s1 ∈ L[[ℓ1]] ands2 ∈ L[[ℓ2]]}

L[[ℓ1 ∪ ℓ2]] = L[[ℓ1]] ∪ L[[ℓ2]]

L[[ℓ∗]] =
⋃

n≥0

{s1 · . . . · sn : si ∈ L[[ℓ]]}.

The functionL[[ℓ]] gives the set of traces allowed by the license. We define the functionI[[ℓ]] to pro-
vide the infinitary version of the sequences corresponding to ℓ, by essentially appending infinitely
many⊥ actions at the end of each sequence. Formally,I[[ℓ]] = {s · ⊥∞ : s ∈ L[[ℓ]]}. Finally, a
sequence of actions is said to beviable for ℓ if s is a prefix of some trace inI[[ℓ]].

We are now ready to define the interpretationPr corresponding to runr. Given a named license
(n, ℓ) issued at timet1 in a runr, theaction-sequenceof n up to timet2, denotedr[n, t2], is the
sequencea0a1 · · · at2−t1−1 such that:

ai =

{
a if (a, n) ∈ act(r, t1 + i)
⊥ otherwise.

Since we restricted a run to only allow one action per licenseper time unit, the notion of an action-
sequence is well-defined. The interpretationPr corresponding to a runr is defined as follows. For
all timest ≥ 0, Pr(t) is the smallest set such that for all license namesn ∈ Names and actions
a ∈ Act , (⊥, n) ∈ P (t) if the license(n, ℓ) is not active and(a, n) ∈ P (t) if the license is active
andr[n, t] · a is viable forℓ.

To understand the meaning of an action expression,α, we need a way to associate it with name-
action pairs. We do this by defining a mappingA[[α]] from expressions to sets of pairs. Clearly,
an action expression(a, n) should be mapped to the pair(a, n). The complement action(a, n) is
mapped to the set of actions different froma, but associated with the same license namen. Formally,

A[[(a, n)]] = {(a, n)}

A[[(a, n)]] = {(b, n) | b 6= a}.
2Gunteret al. use the termreality for this concept, although their formal definition is different.

5

Contrary to intuition, we do not associate the complement ofa name-action pair with the largest set
of name action pairs that does not include it. This mapping has unfortunate consequences, because
it ignores the intuitive independence between licenses. For example, it allows us to deduce that the
client can do any action with respect to any license other than the mortgage, if the client is permitted
to not make a mortgage payment. Statements concerning one set of licenses should not be used to
deduce anything about any other license.

As an example of our approach, recall the situation in which the client pays $1500 on the
mortgage, but doesn’t pay the journal fee. The action expressionsα1 andα2 used to express these
actions arepaym[1500] and¬payn[fee], respectively. Applying the above definition,A[[α1]] =
{(pay[1500],m)}, andA[[α2]] = {(a, n) : a 6= pay[fee]}. Hence, the actionsα1 andα2 mean that
“the client is paying $1500 with respect tom and doing some action other than paying the fee with
respect ton”.

We now define what it means for a formulaϕ to be true (or satisfied) at a runr at timet, written
r, t |= ϕ, by induction on the structure ofϕ:

r, t |= n : ℓ if (n, ℓ) ∈ lic(r, t),

r, t |= α if ∃(a, n) ∈ A[[α]] s.t. (a, n) ∈ act(r, t),

r, t |= Pα if ∃(a, n) ∈ A[[α]] s.t. (a, n) ∈ Pr(t),

r, t |= ©ϕ if r, t+ 1 |= ϕ,

r, t |= 2ϕ if for all t′ ≥ t, r, t′ |= ϕ,

r, t |= ϕUψ if ∃t′ ≥ t s.t. r, t′ |= ψ andr, t′′ |= ϕ for all t′′ with t′ > t′′ ≥ t,

r, t |= ¬ϕ if r, t 6|= ϕ,

r, t |= ϕ ∧ ψ if r, t |= ϕ andr, t |= ψ.

If a formulaϕ is true at all times in a runr, we sayϕ is valid in r and writer |= ϕ. If ϕ is valid
in all runsr, we simply sayϕ is valid and write|= ϕ. 3

Various properties of permission (P) and obligation (¬P (a, n)) follow from the above seman-
tics. In particular, we can see thatO(a, n) is true in a runr at timet if and only if (a, n) is the
only action-name pair inPr(t). In other words, an action is obligated if and only if it is theonly
permitted action. This is a consequence of the following proposition:

Proposition 2.1: For all action expressions(a, n), the formulaP (a, n) ∨ P (a, n) is valid.
3In an earlier version of this paper [Pucella and Weissman 2002], we considered two related semantics for formulas,

in the spirit of the logics presented by Halpern and van der Meyden [2001a, 2001b]. The first semantics, called the open
semantics, was defined with respect to an arbitrary interpretationP . The second semantics, called the closed semantics,
was defined from the open semantics by taking the minimal interpretation, as we do in this paper. Intuitively, the closed
semantics assumes that the run contains all the informationrelevant to interpret the formulas. This is often referred to
as theclosed-world assumption. In other words, if a permission is not implied by the run, then it is not permitted. In
contrast, the open semantics admits that the run may not encode all the information, and therefore one cannot infer that
an action is not permitted simply because it is not implied bythe run.

6

Hence, ifP (a, n) is not true at a point,P (a, n) must be true. Another consequence of the above
proposition is thatO(a, n) ⇒ P (a, n) is valid. These properties show that our operatorsP andO,
although defined exclusively from the traces of the licensesissues in a run, satisfy some of the clas-
sical properties of deontic logic operators, as given for instance in [Follesdal and Hilpinen 1981].
These properties are a consequence of our prescribed semantics and, as such, suggest a certain deon-
tic interpretation. In particular, the validity ofO(a, n) ⇒ P (a, n) indicates that obligation should
be read as “must” and not as “ought”. It also reflects the fact that we cannot express conflicting
prohibitions and obligations in our framework.

2.3 Encoding finite runs and licenses

In this section, we show that any run can be “encoded” as a formula in our logic, provided that the
run is finite. By finite, we intuitively mean that nothing happens after a given time, and each time
instant, only finitely many licenses are issued and non-⊥ actions are performed. Formally, a runr
is finite if there exists a natural numbertf such that :

• for all t ≤ tf , lic(r, t) is finite,

• for all t ≤ tf , {n : (a, n) ∈ act(r, t), a 6= ⊥} is finite,

• for all t > tf , lic(r, t) = ∅, and

• for all t > tf , (a, n) ∈ act(r, t) impliesa = ⊥.

For convenience, we write©kϕ for the formula© · · ·©ϕ that has k occurences of the©
operator beforeϕ. Given a finite runr, defineNr to be the set of license names issued inr.
Formally,Nr = {n : ∃t, ℓ.(n, ℓ) ∈ lic(r, t)}. Define

ψr = ψ0 ∧©ψ1 ∧©2ψ2 ∧ · · · ∧©tfψtf ∧©tf +1
2ψe,

where tf is the last time “something happened” in the run,ψe is
∧

n∈Nr
(⊥, n), andψt, which

encodes the state of the run at timet, is:

ψt =
∧

(a,n)∈act(r,t)
n∈Nr

(a, n) ∧
∧

(n,ℓ)∈lic(r,t)

n : ℓ.

Finally, letNϕ be the set of license names appearing in formulaϕ, defined in the obvious way. The
following proposition formalizes the fact thatψr captures the important aspects of the runr.

Proposition 2.2: If r is a finite run andNϕ ⊆ Nr, thenr, t |= ϕ iff |= ψr ⇒ ©tϕ.

It is interesting to note thatψr does not specify explicitly the permissions implied by the run.
Intuitively, this is because the information encoded inψr is sufficient for the permissions to be
uniquely determined. To formalize this intuition, we show the more general result that issuing a
license results in the client’s actions implying a particular set of permissions.

We use some notation from the theory of regular languages to formalize the general result.
Specifically, we letǫ represent the empty action sequence and we extend the set of licenses to
include 0 and 1 whereL[[0]] = ∅ andL[[1]] = {ǫ}. We also define complementary functions
S(ℓ) andDa(ℓ) whereℓ is a regular expression. For any action sequencea0, a1, . . . , an ∈ L[[ℓ]],

7

S(ℓ) is the set of actions containinga0 andDa0(ℓ) is a regular expression such thata1, . . . , an ∈
L[[Da0(ℓ)]]. Formally,S(0) = ∅, S(1) = ∅, S(a) = {a}, S(ℓ1ℓ2) = S(ℓ1) if ǫ 6∈ L[[ℓ1]] and
S(ℓ1) ∪ S(ℓ2) otherwise,S(ℓ1 ∪ ℓ2) = S(ℓ1) ∪ S(ℓ2), andS(ℓ∗) = S(ℓ). Da(ℓ) is called the
Brzozowski derivative ofℓwith respect toa [Brzozowski 1964]. Its formal definition is:Da(a) = 1,
Da(b) = 0,Da(ℓ1ℓ2) = Da(ℓ1)ℓ2 if ǫ 6∈ L[[ℓ1]] and(Da(ℓ1)ℓ2)∪(Da(ℓ2)) otherwise,Da(ℓ1∪ℓ2) =
Da(ℓ1) ∪Da(ℓ2), andDa(ℓ

∗) = Da(ℓ)ℓ.
Given these definitions, we inductively define a family of formulas for each named license

(n, ℓ). For any action sequencea0a1 · · · an ∈ L[[ℓ]], the formulas say thata0 is permitted and if
the client does the action sequencea0 · · · ai−1, then the client is permitted to doai in i time steps.
Formally:

ϕ0
n,ℓ =

∧

a∈S(ℓ)

P (a, n)

ϕi+1
n,ℓ =

∧

a∈S(ℓ)

(

P (a, n) ∧
(

(a, n) ⇒ ©ϕi
n,Da(ℓ)

))

.

The following proposition formalizes the intuition that byissuing a license, we force the client’s
actions to imply a particular set of permissions.

Proposition 2.3: For any licenseℓ, the formulasn : ℓ⇒ ϕi
n,ℓ are valid, fori = 0, 1, 2,

Hence, if the formulaψr represents the finite runr in the sense of Proposition 2.2, then every
named license(n, ℓ) issued in runr will imply the formulasϕi

n,ℓ, as per Proposition 2.3. Because
the conjunction of the actions specified inψr and the formulaϕi

n,ℓ implies the permissions that
hold for runr for i time steps, Proposition 2.2 is true even thoughψr does not specify permissions
explicitly.

3 Satisfiability and verification

In this section, we examine the complexity of reasoning usingLlic and discuss a technique for auto-
matically checking if a client behavior specification is satisfied in a given run. As we mentionned in
the introduction, we are fundamentally interested in two classes of questions does a set of licenses
have certain properties and does a client’s actions with respect to a set of licenses meet particular
specifications. The first question can be rephrased as “does aset of licenses imply a property, re-
gardless of what the client does, which licences are issued,and when the licenses are issued?”. In
other words, the first question corresponds to asking if a formula in our logic is valid (i.e., true in
all runs). The second question can be rephrased as “does a specification hold for a given sequence
of client actions and licenses issued?” In other words, the second question corresponds to asking if
a formula in our logic is true in a given run.

To answer the first question, we investigate the complexity of our satisfiability problem (i.e. the
problem of determining for any givenLlic formulaϕ if there exists a runr and a timet such that
r, t |= ϕ). We can reduce the satisfiability problem for our logic to the satisfiability problem for
a “simpler” logic, Linear Temporal Logic (LTL), which is well-known in the formal verification
community. LTL is essentially a propositional logic with temporal operators. To distinguish the

8

LTL operators from the temporal operators inLlic , we use CTL syntax for LTL. Specifically, an
LTL formula F is defined as:

F ::= p | F1 ∧ F2 | ¬F | XF | GF | F1UF2

wherep is a primitive proposition,XF means thatF holds at the next time,GF means thatF
holds now and at all future times, andF1UF2 means thatF2 eventually holds and, until it does,F1

holds. Models for LTL are linear structures of the formM = (S,L), whereS = {s0, s1, s2, . . . } is
a set of states andL assigns to every state inS the primitive propositions that are true in that state.
The definition of the satisfiability of an LTL formulaF in a linear structureM at states, written
M,s |=L F , is straightforward. We refer to [Clarke, Grumberg, and Peled 1999] for more detail.
The key property of LTL that we will use is that the satisfiability problem for LTL is PSPACE-
complete [Sistla and Clarke 1985].

It is straightforward to encode a formulaF in LTL as a formulaϕ in Llic in such a way thatF
is satisfiable if and only ifϕ is satisfiable. Therefore, the satisfiability problem forLlic is PSPACE-
hard. What is more interesting is that there is a polynomial reduction from the satisfiability problem
for Llic to the satisfiability problem for LTL. At the heart of this reduction is a way to encode our
logic into LTL.

The first step of the reduction is to show that if a formulaϕ is satisfiable inLlic , then it can
be translated into a satisfiable formulaϕT in LTL. We will do this directly, by showing that we
can in fact transform the runr in which ϕ is true into a linear structureMr in which ϕT is true.
Let Φ0 be the set of primitive propositions that we will use in our formula encoding, inclduing
primitive propositionsissued(n, ℓ) for every namen and licenseℓ, anddone(a, n), permitted(a, n)
andobligated(a, n) for each actiona and namen.

Given a runr, we construct a linear modelMr = (S,L) whereS = {s0, s1, s2, . . . }. For each
statest, which corresponds to the run at timet, L(st) is defined as the smallest set such that:

• if (n, ℓ) ∈ lic(r, t), thenissued(n, ℓ) ∈ L(st),

• if (a, n) ∈ act(r, t), thendone(a, n) ∈ L(st),

• if (a, n) ∈ Pr(t), thenpermitted(a, n) ∈ L(st),

• if (a, n) ∈ Pr(t) is the only action associated with license namen in Pr(t), thenobligated(a, n) ∈
L(st).

Given this structureMr, it should be clear how to translate aLlic formulaϕ true inr into a formula
ϕT true inMr. In particular, the following translation works:

• (n : ℓ)T = issued(n, ℓ).

• (a, n)T = done(a, n) and(a, n)T = ¬done(a, n).

• (P (a, n))T = permitted(a, n) and(P (a, n))T = ¬obligated(a, n).

• (ϕ1 ∧ ϕ2)
T = ϕT

1 ∧ ϕT
2 and(¬ϕ)T = ¬ϕT .

• (©ϕ)T = XϕT , (2ϕ)T = GϕT , and(ϕ1 Uϕ2)
T = ϕT

1 UϕT
2 .

9

It is straightforward to see that the above translations preserve the truth of the formula. In fact,
something stronger holds, which will be useful later in thissection:

Proposition 3.1: r, t |= ϕ iff Mr, st |=L ϕ
T .

This means that ifϕ is satisfiable in our logic, thenϕT is satisfiable in LTL. However, the converse
does not hold. In particular,ϕT may be satisfiable in an LTL structure that does not correspond
to any run. We somehow need a way to restrict the LTL structures considered, to ensure that they
correspond to runs inLlic. Intuitively, we need to account in LTL for the notions that are implicit
in theLlic semantics. In particular, we must enforce our requirementsthat two actions are never
done for the same license at the same time, two licenses are never labeled with the same name, an
obligation implies exactly one action is permitted for the license, a client is only permitted to do
actions other than⊥ for active licenses, and issuing a license implies various facts as discussed in
Section 2.3. It is easy to state all but the last of these in LTL.

Since we will only need to satisfy the above restrictions as they pertain to a given formulaϕ, we
enforce those restrictions over the actions, license names, and licenses appearing inϕ. In general,
let A be a finite set of actions,N be a finite set of license names, andL be a finite set of named
licenses. The restriction that at most one action is done perlicense name per time is expressed by
the following LTL formulaDoneA,N :

G

∧

a∈A
n∈N

done(a, n) ⇒

∧

a′∈A
a′ 6=a

¬
(
done(a′, n)

)

 .

The restriction that a license name inN is never associated with more than one license inL is
expressed by the LTL formulaIssuedL:

G

∧

(n,ℓ)∈L

issued(n, ℓ) ⇒

∧

(n′,ℓ′)∈L

n′=n

G¬(issued(n′, ℓ′))

 .

The restriction that obligation is an abbreviation for onlybeing allowed to do one action with respect
to a license is expressed by the LTL formulaOblA,N :

G

∧

a∈A
n∈N

obligated(a, n) ⇔

permitted(a, n)∧
∧

a′∈A
a′ 6=a

¬(permitted(a′, n)))

.

The restriction that a client can only do⊥ actions with respect to an unissued license is expressed
by the LTL formulaUnissuedL:

∧

(n,ℓ)∈L

(obligated(⊥, n) U issued(n, ℓ)) .

To state the consequences of issuing a named license(n, ℓ), we first construct a nondetermin-
istic finite automaton (NFA) that accepts the same language as ℓ (when ℓ is viewed as a regular

10

expression), and encode the transition relation of the automaton as an LTL formula. Formally, we
construct theǫ-free NFA representingℓ asAn = (Qn,∆n, Sn, Fn) whereQn is the set of states,
∆n is the transition function,Sn are the start states, andFn are the final states. For convenience, we
will write ∆n(q) for {a : ∃q′ ∈ Qn.(q, a, q

′) ∈ ∆n} and∆n(q, a) for {q′ : (q, a, q′) ∈ ∆n}. We
assume that we have primitive propositions inΦ0 to represent the states of the automaton, namely
instate(n, q) for all q ∈ Qn, and a primitive propositionover(n) to represent the fact that we have
stopped taking transitions in the automaton (for instance,because the client performed an action
that was not permitted). The “effect” of taking a transition(from a finite setA of actions) in a state
q of An can be represented by the following LTL formulaTransA,q:

instate(n, q) ⇒

∧

a∈∆n(q)

(permitted(a, n))∧

∧

a∈∆n(q)

done(a, n) ⇒
∨

q′∈∆(q,a)

X(instate(n, q′))

∧

∧

a∈A
a 6∈∆n(q)

(¬permitted(a, n))∧

∧

a∈A
a 6∈∆n(q)

done(a, n) ⇒ X(over(n))

.

We also need a statement to the effect that the automatonAn can only be in one state at any
given time, or in a state satisfyingover. This is expressed by the following LTL formulaStates:

(

over(n) ⇒
∧

q∈Qn

¬instate(n, q)

)

∧

∧

q∈Qn

instate(n, q) ⇒

¬over(n) ∧

∧

q′∈Qn
q′ 6=q

¬instate(n, q′)

.

The encoding of the NFAAn is then expressed by the following LTL formulaNFAn,ℓ,A, which
asserts the initial states of the automaton, as well as encoding all the transitions, including the
transitions from the states whereover(n) holds:

(

∨

q∈Sn

instate(n, q)

)

∧ G(States)∧

G

(∧

q∈Qn

TransA,q∧

(over(n) ⇒ (obligated(⊥, n) ∧ X(over(n))))

)

.

The restriction that issuing a license implies the consequences described by the corresponding
NFA is therefore expressed by the LTL formulaLicL,A:

G

∧

(n,ℓ)∈L

(issued(n, ℓ) ⇒ NFAn,ℓ,A).

11

Note that the formula corresponding to the NFA constructionguarantees that only the⊥ action is
allowed for a completed license.

We now associate with everyLlic formulaϕ the LTL formulaϕI that captures all the implicit
restrictions required for our treatment ofϕ. Recall from Section 2.3 thatNϕ represents the set
of license names appearing inϕ. In a similar way, defineAϕ to be the set of actions explicitely
appearing inϕ, and defineLϕ to be the set of named licenses appearing inϕ (i.e., occurrences of
then : ℓ formula). We takeϕI to be:

DoneAϕ,Nϕ ∧ IssuedLϕ ∧ OblAϕ,Nϕ ∧ UnissuedLϕ ∧ LicLϕ,Aϕ.

We can formally verify that the formulaϕI does indeed capture the implicit restrictions imposed by
the semantics ofLlic, as far as they pertain to formulaϕ. We can show:

Proposition 3.2: If M,s |=L ϕ
T ∧ ϕI , then there exists a runr such thatr, 0 |= ϕ.

Propositions 3.1 and 3.2 can be used to derive the following characterization of the complexity
of the logic:

Theorem 3.3:The satisfiability problem forLlic is PSPACE-complete.

Since a formulaϕ is valid if and only if¬ϕ is not satisfiable, a corollary of Theorem 3.3 is that
determining if a formulaϕ of our logic is valid is also a PSPACE-complete problem.

It is much easier to answer our second question. The above discussion in fact hints at a suitable
approach: we reduce the model-checking problem for our logic to one for LTL and then apply
existing verification technology developed for LTL. More specifically, we translate the run (and
associated minimial interpretationPr) into a linear structure with a state for each time and atomic
propositions for the licenses issued, client actions, permissions and obligation.

We restrict our attention to finite runs, as defined in Section2.3, because we want to give an
algorithm for deciding if a formula holds in a given model. (In practice, we expect to have a de-
scription of client behavior for a period of time and we want to establish permissions or obligations
given that behavior; this can be modeled with a finite run.) The idea is simply to use the construc-
tion of the LTL structureMr as given earlier, and use Proposition 3.1. The only problem is that
the construction ofMr assumes that we have the permission interpretationPr. To constructMr

efficiently, we need a way to computePr efficiently. For each named license(n, ℓ) (finitely many
by assumption), we construct an NFA that accepts the language represented byℓ. We associate a
subset of the NFA’s states with every timet after the license is issued. Specifically, the NFA’s initial
states are associated with the time when the license is issued. The states associated with any later
timet+1 is the set of states that can be reached by one transition froma state associated with timet.
For every timet after the license is issued, the set of permitted actionsPr,n(t) is the set of possible
transitions from the states associated witht. Finally, for any timet, Pr(t) is the union ofPr,n(t) for
all licenses namedn issued by timet. This procedure constructsPr,n(t) in polynomial time with
respect to the size of the run.

Proposition 3.4: There exists a polynomial time algorithm for computing the interpretationPr

corresponding to a finite runr.

Combining the computation ofPr from r with the construction of the modelMr given ear-
lier and applying known LTL model-checking techniques, model checking can be done reasonably
efficiently, at least for a small specificationϕ:

12

Theorem 3.5: There exists an algorithm for deciding if a formulaϕ is true in a finite runr at time
t. Furthermore, the algorithm runs in polynomial time with respect to the size of the modelr and in
exponential time with respect to the size of the formulaϕ.

A straightforward modification to the above procedure wouldallow us to check the validity of a
formulaϕ in a runr (i.e., check thatϕ holds throughout the run).

Proposition 3.6: r |= ϕ iff Mr, s0 |=L G(ϕT).

Finally, note that the modelMr is constructed without regard to the formulaϕ whose truth
value we want to check. Therefore, we can constructMr once and use it to model-check different
formulas, each translated to LTL, against the runr.

4 Handling different license languages

In discussing our logic thus far, we have assumed that the licenses are written in a regular language.
Although a regular language has the benefits of being well-known, simple, and fairly expressive,
it is not difficult to imagine settings in which another license language is more appropriate. A key
feature of our logic is that it can be adapted in a straight-forward way to reason about licenses that
are written in any language that has trace-based semantics.To illustrate this flexibility, we will
modify our logic to handle the licenses presented in Gunteret al. [2001].

For ease of exposition, we consider a restricted version ofDigitalRights [Gunter, Weeks, and
Wright 2001].4 The syntax of licenses is given by the following grammar:

e ::= (for p | for [upto] m p)

pay x (upfront | flatrate | peruse)

for W on D

wherep is a period of time (a number of time units),x is a payment amount,W is a subset of works
andD is a subset of devices. The termsupfront, flatrate andperuse refer to the payment schedule.
Theupfront schedule requires payment at the beginning of the time period. Theflatrate andperuse

schedules require payment at the end of the time period. The difference between the two is that
the payment forflatrate does not depend on the number of renderings, while the one forperuse

does. If we letH be a payment schedule (upfront, flatrate or peruse), then a license of the form
for p pay x H for W on D means that for the time period indicated byp, the client is required to
payx, according to scheduleH, in order to render any of the works inW on a device inD. Instead
of beginning withfor p , a license can start withfor m p. If the license starts withfor m p, then the
body of the license is valid form time periods of lengthp, but can be canceled at the end of any
period.

As an example, consider the license

for 3 100 pay 10.00 flatrate for W on D

4The originalDigitalRightsallows one to specify the time at which a client can activate alicense. Roughly speaking,
we could capture this in our model by adding license activation as an action.

13

whereW is a set of works andD is a set of devices. This license allows the client to render any
work inW on a device inD by paying a flat rate of10.00 at the end of every100 time units, for3
such time periods.

We can incorporate this license language in our logic by replacing our syntax for licenses (ℓ)
with expressions in the above language. To define the function L[[−]], which interprets licenses as
sets of traces in the semantics of our logic, we adapt the semantics of [Gunter, Weeks, and Wright
2001]. (The main difference is that we have a fixed time granularity, whereas the original semantics
uses real numbers as time stamps for events.)

To build up the functionL[[−]], we first assign sets of traces to the simplest licenses, those that
are valid for a single period. The set of traces that allow fora payment ofx to view works fromW
on devices fromD, for a period ofp time units depends on the payment schedule. The traces for an
up front schedule is defined as:

UpFront(x, p,W,D) = {pay[x]a1 · · · ap−1 | ai is either⊥ or render[w, d]

for somew ∈W andd ∈ D}.

The traces for a flat rate schedule is defined as:

FlatRate(x, p,W,D) = {a0 · · · ap−2pay[x] | ai is either⊥ or render[w, d]

for somew ∈W andd ∈ D}.

The set of traces for a per use schedule is defined as:

PerUse(x, p,W,D) = {a0 · · · ap−2pay[nx] | ai is either⊥ or render[w, d]

for somew ∈W andd ∈ D,

andn = |{ai | ai 6= ⊥}|}.

Given two sets of tracesS1 andS2, we defineS1 ·S2 as the set{s1 · s2 | s1 ∈ S1, s2 ∈ S2}. In other
words,S1 ·S2 is the set of all concatenation of traces fromS1 andS2. We writeSn for S · S · . . . · S

︸ ︷︷ ︸

n

.

Using the above definitions, we define the functionL[[−]] as:

L[[for p z]] = M[[z]](p)

L[[for m p z]] = (M[[z]](p))m

L[[for upto m p z]] =
m⋃

n=0

(M[[z]](p))n,

whereM[[−]] generates the traces for a single time period:

M[[pay x upfront for W on D]](p) = UpFront (x, p,W,D)
M[[pay x flatrate for W on D]](p) = FlatRate(x, p,W,D)
M[[pay x peruse for W on D]](p) = PerUse(x, p,W,D).

As expected, the semantics of the logic defined in Section 2 carries over verbatim with the above
changes.

The DigitalRights language given above is not more expressive than the regularone that we
introduced in Section 2. It is easy to see that for any licensee in DigitalRights, the set of tracesL[[e]]

14

can be expressed by a regular language. Because the setsUpFront(x, p,W,D), FlatRate(x, p,W,D),
andPerUse(x, p,W,D) are finite for anyp, x,W andD, it is trivial to express them using a regular
language. The concatenation operationS1 · S2 preserves regularity, as does union, therefore it is
possible to express any license expressed inDigitalRights as a regular one. There are, however,
advantages to using theDigitalRights language. The translation of aDigitalRights license yields a
large regular expression that may be significantly less efficient to verify than the original license.
Another benefit is that theDigitialRights language is easier to understand.

It should be noted that every license language is not necessarily subsumed by the language of
regular expressions. To see this, consider a license in somelicense language that can be canceled
whenever the number of renderings equals the number of payments. The set of traces corresponding
to such a license is not regular, by a well-known result from formal language theory (see for instance
[Hopcroft and Ullman 1969]). Therefore, any language that can be used to state this license is not
equivalent to any sublanguage of the regular expressions.

5 Related work

The inspiration for our work comes from the field of program verification, where one finds logics
such as Hoare Logic [Hoare 1969] and Dynamic Logic [Harel, Kozen, and Tiuryn 2000] to reason
about properties of programs. Our logic is similar to those,in the sense that our formulas contain
explicit licenses, in much the same way that theirs contain explicit programs. Logics of this type are
often referred to asexogenous. In contrast,endogenouslogics do not explicitly mention programs;
to analyze a program with such a logic, one builds a model for that specific program, and uses
the logic to analyze the model. One advantage of using an exogenous logic is that it allows the
behavior of two programs to be compared within the logic. In our case, it allows us to compare the
effect of different licenses within the logic. An endogenous logic, however, permits more efficient
verification procedures. To get this benefit, our verification procedures in Section 3 essentially
convert formulas from our logic into formulas of an endogenous logic, viz. temporal logic.

Although our logic is an exogenous logic inspired by DynamicLogic, its models are quite
different. In Dynamic Logic, programs guide the state transitions in the model. Licenses, on the
other hand, do not affect states. Instead, they are used to specify permissions and obligations. The
models of our logic are primarily influenced by the work of Halpern and van der Meyden [2001b] on
formalizing SPKI [Ellison, Frantz, Lampson, Rivest, Thomas, and Ylonen 1999]. SPKI is used to
account for access rights based on certificates received. Similarly, we base the right to do actions on
the licenses received. In fact, we could imagine licenses being implemented with SPKI certificates.

Permissions and obligations are key concepts in our approach. These notions are typically stud-
ied in the philosophical literature under the heading ofdeontic logic[Meyer and Wieringa 1993].
Early accounts of deontic logic failed to differentiate between actions and assertions, leading to
many paradoxical and counterintuitive propositions (see for instance [Follesdal and Hilpinen 1981]).
The idea of separating actions from assertions has lead to a recasting of deontic logic as a variant of
Dynamic Logic [Meyer 1988; Meyden 1990]. Models for deonticdynamic logics specify explicitly
either which states represent the violation of an obligation or a permission or which transitions are
permitted or forbidden. In [Meyer 1988], a special formulaV is introduced in the logic, and any
state that satisfiesV is deemed a violation. Intuitively, an actiona is permitted in a state if it is pos-
sible to reach a state viaa whereV does not hold. Conversely, an action is obligatory if performing

15

any other action leads to a state whereV holds. In [Meyden 1990], it is the transitions between
states that are deemed permitted or forbidden.Llic is different from these approaches, because we
derive our permissions and obligations from the licenses issued in the run. This indirection means
that we do not have to explicitly model the permissions and obligations. In addition, we can easily
change the model to account for different licenses.

Finally, deontic logic has been used to reason about contracts. This is intriguing, because a
license can be viewed as a restricted form of contract. Research in this direction includes work by
Lee [1988], which focuses on developing a logical language based on predicate logic with temporal
operators. Deontic operators are handled using a specific predicate to represent a violation (in this
context, defaulting on a contract). Unfortunately, the logic is not meant to reason about contracts
written in some language. Instead, the models for the logicrepresentthe contracts to be analyzed. In
other words, for each contract that he wants to study, Lee builds a specific model encoding violations
at the appropriate states.

6 Conclusion

In this paper we have introduced a framework for precisely stating and rigorously proving properties
of licenses. We also have illustrated how our logic can be modified to reason about licenses that are
written in any language with a trace-based semantics. This flexibility provides us with a common
ground in which to compare different rights languages with trace-based semantics. We intend to
report on these comparisons in the future. While useful in its own right, the logic is a simple foun-
dation on which more expressive rights management logics can be built. For example, the logic can
be modified in a straightforward manner to support multiple clients and multiple providers. Multiple
providers is an especially interesting case, because it allows us to study the management of licensing
rights, the rights required for one provider to legitimately offer another provider’s work to a client.
We plan to examine various extension in the near future. There remain interesting questions about
the foundation ofLlic , such as axiomatizations for the logic. Finally, as mentioned previously, our
operatorsP andO have a distinctly deontic flavor. It would be interesting to establish a correspon-
dence between our approach and existing deontic frameworks, in particular deontic logics of actions
[Khosla and Maibaum 1987; Meyer 1988; Meyden 1990].

Acknowledgments

We would like to thank Joe Halpern, Carl Lagoze and Sandy Payette for their helpful comments.
Joshua Guttman and the CSFW anonymous referees made suggestions that greatly improved the
presentation. Support for this work came from the ONR under grants N00014-00-1-0341 and
N00014-01-1-0511, from the DoD Multidisciplinary University Research Initiative (MURI) pro-
gram administered by the ONR under grant N00014-01-1-0795,and from the NSF under grant
IIS-9905955 (Project Prism).

A Proofs

Proposition 2.1: For all action expressions(a, n), the formulaP (a, n) ∨ P (a, n) is valid.

16

Proof: The validity of this formula is a consequence of the fact thatPr(t) contains at least one
action corresponding to every license namen. Given a runr and a timet, and consider the action
expression(a, n). We know there must exist an action-name pair(b, n) in Pr(t). Two cases arise.
If a = b, then(a, n) is in bothA[[(a, n)]] andPr(t), and thusr, t |= P (a, n). If a 6= b, then(b, a) is
in bothA[[(a, n)]] andPr(t), and thusr, t |= P (a, n). Therefore, we haver, t |= P (a, n)∨P (a, n).
Since the above holds for allr andt, |= P (a, n) ∨ P (a, n).

Proposition 2.2: If r is a finite run andNϕ ⊆ Nr, thenr, t |= ϕ iff |= ψr ⇒ ©tϕ.

To simplify the proof, we introduce the following notation.Given runsr, r′, timest, t′, and a
subsetN of Names , define(r, t) ≤N (r′, t′) if for all i ≥ 0, lic(r, t + i) ⊆ lic(r′, t′ + i) and
(act(r, t + i) ∩ (Act ×N)) = (act(r′, t′ + i) ∩ (Act ×N)). Intuitively, (r, t) ≤N (r′, t′) if every
license issued byr (starting at timet) is also issued inr′ (starting at timet′), and moreover the
two runs agree on the actions corresponding to license namesin N . The following lemmas capture
the relevant properties of the≤N relation. Recall thatNϕ is the set of license names appearing in
formulaϕ.

Lemma A.1: For anyϕ such thatNϕ ⊆ Nr, if (r, 0) ≤Nr (r′, t′), thenr, i |= ϕ iff r′, t′ + i |= ϕ

for all i ≥ 0.

Proof: By induction on the structure ofϕ. We prove the nontrivial cases here. Considerϕ = n : ℓ.
If r, i |= n : ℓ, then(n, ℓ) ∈ lic(r, i) ⊆ lic(r′, t′ + i), and hencer′, t′ + i |= n : ℓ. Conversely,
if r′, t′ + i |= n : ℓ, then sinceNϕ ⊆ Nr, license namen must appear inr, and by definition of
(r, 0) ≤Nr (r′, t′) and the fact that license names can be associated with only one license in a run,
it must be the case that(n, ℓ) ∈ lic(r, i). Hence,r, i |= n : ℓ. The cases for(a, n) and (a, n)
follow from r andr′ agreeing on the actions for license namesn ∈ Nϕ ⊆ Nr. ForP (a, n) and
P (a, n), becauser andr′ agree on the licenses issued with namen ∈ Nϕ ⊆ Nr, and becauser
andr′ agree on the actions pertaining to license namen, Pr andPr′ agree on the permissions with
respect to license namen, from which the result follows. The remaining cases are a straightforward
application of the inductive hypothesis.

Lemma A.2: r′, t′ |= ψr iff (r, 0) ≤Nr (r′, t′).

Proof: We know by definition thatr′, t′ |= ψr if and only if r′, t′ |= ψ0, r′, t′ + 1 |= ψ1, . . . ,
r′, t′ + tf |= ψtf , andr, t′ + t |= ψe for all t > tf . Given the definition ofψ0, . . . , ψtf andψe, this
is equivalent tolic(r, 0) ⊆ lic(r′, t′), . . . , lic(r, tf) ⊆ lic(r′, t′ + tf), lic(r, t) = ∅ ⊆ lic(r′, t′ + t)
for t > tf , and moreoverr(i) andr′(t′ + i) agree on the actions pertaining to license namesn ∈ Nr

for all i ≥ 0. This just says that(r, 0) ≤Nr (r′, t′).

Proof: (Proposition 2.2) Note thatr, t |= ϕ iff r, 0 |= ©tϕ. Thus, it is sufficient to show that
r, 0 |= ϕ iff |= ψr ⇒ ϕ.

First, assume that(r, 0) |= ϕ. Let r′, t′ be an arbitrary run and time. Ifr′, t′ |= ψr, then
by Lemma A.2,(r, 0) ≤Nr (r′, t′). SinceNϕ ⊆ Nr, Lemma A.1 implies thatr′, t′ |= ϕ. This
establishes thatr′, t′ |= ψr ⇒ ϕ. Sincer′, t′ was arbitrary,|= ψr ⇒ ϕ holds.

For the converse direction, assume that|= ψr ⇒ ϕ. In particular,r, 0 |= ψr ⇒ ϕ. Since
(r, 0) ≤Nr (r, 0), Lemma A.2 implies thatr, 0 |= ψr, and hencer, 0 |= ϕ.

17

Proposition 2.3: For any licenseℓ, the formulasn : ℓ⇒ ϕi
n,ℓ are valid, fori = 0, 1, 2,

Proof: The proof relies on a suitable application of standard properties of regular expressions, and
much formal symbolic manipulation. We sketch the argument here. First, extend the definition of
S to handle more than a single action. LetSk(ℓ) (for k ≥ 1) be the function that returns the set
of all prefixes of lengthk of action sequences associated withℓ. Formally,S1(ℓ) = S(ℓ), and
Sk+1 = {aσ : a ∈ S(ℓ), σ ∈ Sk(Da(ℓ))}.

Given this definition, we can verify that the formulaϕi+1
n,ℓ is equivalent toϕi

n,ℓ ∧ϕ
i7→i+1
n,ℓ , where

ϕi7→i+1
n,ℓ is the formula

∧

a0···ai+1∈

Si+2(ℓ)

(
((a0, n) ∧©(a1, n) ∧ · · ·
∧©i(ai, n)

)
⇒ ©i+1P (ai+1, n)

)

.

Let r, t be an arbitrary run and time. We show by induction thatr, t |= n : ℓ⇒ ϕi
n,ℓ for all i ≥ 0.

Assumer, t |= n : ℓ, that is,(n, ℓ) ∈ lic(r, t). The base case of the induction is verified by noticing
that ϕ0

n,ℓ =
∧

a∈S(ℓ) P (a, n), and by the definition ofPr(t), for all a ∈ S(ℓ), (a, n) ∈ Pr(t),

so thatr, t |= P (a, n). The induction step follows by a similar reasoning. Assumer, t |= ϕi
n,ℓ.

Given the above equivalence, it is sufficient to show thatr, t |= ϕi7→i+1
n,ℓ to establish the result. For

any a0 · · · ai+1 ∈ Si+2(ℓ), if r, t |= (a0, n) ∧ ©(a1, n) ∧ · · · ∧ ©i(ai, n), thenr, t |= (a0, n),
r, t+1 |= (a1, n), . . . , r, t+ i |= (ai, n). Sincea0 · · · aiai+1 ∈ Si+2(ℓ), it is viable forℓ, and hence
(ai+1, n) ∈ Pr(t+ i+1), that is,r, t+ i+1 |= P (ai+1, n), or r, t |= ©i+1P (ai+1, n), as required.
Since this is true for all sequences inSi+2(ℓ), we haver, t |= ϕi7→i+1

n,ℓ , establishing our result.

Proposition 3.1: r, t |= ϕ iff Mr, st |=L ϕ
T .

Proof: We prove by induction on the structure ofϕ that for all t, r, t |= ϕ iff Mr, st |=L ϕT . We
give a few representative cases here, the remaining cases being similar.

Considerϕ = n : ℓ. For anyt, we haver, t |= n : ℓ iff (n, ℓ) ∈ lic(r, t) iff issued(n, ℓ) ∈ L(st)
(by construction ofL(st)) iff Mr, st |=L issued(n, ℓ).

Considerϕ = P (a, n). For anyt, we haver, t |= P (a, n) iff (b, n) ∈ Pr(t) for someb 6= a

iff obligated(a, n) is not in L(st) (since(a, n) cannot be the unique action inPr(t)) iff Mr, st |=L

¬obligated(a, n).
Considerϕ = ©ϕ′. For anyt, we haver, t |= ©ϕ′ iff r, t+ 1 |= ϕ′ iff Mr, st+1 |=L (ϕ′)T (by

hypothesis) iffMr, st |=L X(ϕ′)T , andX(ϕ′)T = ϕT .

Proposition 3.2: If M,s |=L ϕ
T ∧ ϕI , then there exists a runr such thatr, 0 |= ϕ.

Proof: Without loss of generality,M = (S,L) with S = {s0, s1, . . . }, ands = s0. (If not, s = st

for somet, and takeM ′ = (S′, L) whereS′ = {st, st+1, . . . }, and we can check thatM ′, s0 |=L

ϕT∧ϕI .) Construct the runrM as follows: for allt ≥ 0, rM (t) = (LM (t), AM (t)), whereLM (t) =
{(n, ℓ) : issued(n, ℓ) ∈ L(st)}, andAM (t)(n) = a if done(a, n) ∈ L(st), andAM (t)(n) = ⊥
otherwise. This is a well-defined run, becauseMr, s0 satisfiesDoneAϕ,Nϕ andIssuedLϕ . We next
check that for allt ≥ 0, PrM

(t) = {(a, n) : permitted(a, n) ∈ LM (st)}. The details are routine,
if tedious. Essentially, every path through the automaton encoded inNFAn,ℓ,Aϕ corresponds to a
viable trace of the licenseℓ from the point where the license is issued. A straightforward proof by
induction establishes thatrM , 0 |= ϕ.

18

Theorem 3.3: The satisfiability problem forLlic is PSPACE-complete.

Proof: For the lower bound, we show that we can reduce the satisfiability problem for LTL to
the satisfiability problem forLlic. Let F be a formula of LTL, over primitive propositionsΦf =
{p1, . . . , pn}. We first rewriteF into a formulaϕF of Llic, by picking an arbitrary non-⊥ action in
Act (call it ⋆) and a namenp for everyp ∈ Φf , and replacing every primitive propositionp in F
by the action expression(⋆, np), and replacingG, X, andU by 2, ©, andU respectively. Assume
F is satisfiable in a linear structureM = (S,L) at statesi, whereS = (s0, s1, . . .). Let rM be
the run defined byrM (t) = (∅, A(t)), whereA(t) maps namenp to action⋆ if p ∈ L(st), and
to ⊥ otherwise, and maps all other names to⊥. It is easy to check thatϕF is satisfiable inrM at
time i. Similarly, if ϕF is satisfiable in a runr at timet, we can convertr into a linear structure
Mr = (S,L), wherep ∈ L(st) iff (⋆, np) ∈ act(r, t), and it is easy to check thatF is satisfiable in
Mr at statest. Since the satisfiability problem for LTL is PSPACE-complete, the above reduction
means that the satisfiability problem forLlic is PSPACE-hard.

For the upper bound, we show that we can reduce the satisfiability problem forLlic to the
satisfiability problem for LTL in polynomial time. In particular, we show thatϕ is satisfiable inLlic

iff ϕT ∧ ϕI is satisfiable in LTL. Letϕ be a formula satisfied in runr at timet. By Proposition 3.1,
Mr, st |=L ϕT . By construction, it is clear thatMr, st |=L ϕI (only one action per license per
time, no two licenses with the same name ever issued, and so on). Hence,Mr, st |=L ϕT ∧ ϕI .
Conversely, assume thatϕT ∧ ϕI is satisfiable in a linear structureM . By Proposition 3.2, there
exists a runr such thatr, 0 |= ϕ, i.e.,ϕ is satisfiable inLlic . Finally, one can check that the size of
the formulaϕT ∧ ϕI is polynomial in the size ofϕ.

Proposition 3.4: There exists a polynomial time algorithm for computing the interpretationPr

corresponding to a finite runr.

Proof: It is clearly sufficient to definePr for non-⊥ actions only, by taking⊥ to be the default
value ofPr. LetLr be the set of named licenses issued in runr. We define, for every named license
(n, ℓ) ∈ Lr, a functionPr,n that gives for every timet the set of actions permitted by the named
license(n, ℓ) at timet. Clearly, we can then takePr(t) =

⋃

(n,ℓ)∈Lr
Pr,n(t).

Consider a named license(n, ℓ) ∈ Lr, and assume(n, ℓ) is issued at timet0 in r. Let A =
(Q, I,∆, F) be theǫ-free NFA corresponding to the regular expressionℓ, whereQ is the set of
states,I is the set of initial states,∆ is the transition relation, andF is the set of final states. We can
constructA in time polynomial in the size ofℓ, using [Hromkovic, Seibert, and Wilke 1997], where
|Q| is linear in the size ofℓ and|∆| is less than quadratic.

We can now define the functionPr,n. For t < t0, we can takePr,n(t) = {⊥}. For t ≥ t0,
we need to take the license into consideration. First, definethe sequence of setsS0, S1, . . . , Sm−t0

wherem is the length of runr. These sets represents the sets of states of the NFA obtainedby
following the actions related to license namen prescribed by the run. Formally, defineSi inductively
as:

S0 = I

Si+1 = {s′ : (s, a, s′) ∈ ∆ for some

s ∈ Si and(a, n) ∈ act(r, t0 + i)}.

With these sets, we definePr,n(t0 + i) =
⋃

s∈Si
{a : ∃s′.(s, a, s′) ∈ ∆}, that is, the set of actions

that can be performed according to licenseℓ starting from any of the states inSi. One can check

19

that the setsSi can be constructed in polynomial time, and therefore thatPr,n, and hencePr, can be
constructed in polynomial time.

Theorem 3.5: There exists an algorithm for deciding if a formulaϕ is true in a finite runr at time
t. Furthermore, the algorithm runs in polynomial time with respect to the size of the modelr and in
exponential time with respect to the size of the formulaϕ.

Proof: Given a runr, we can computePr in polynomial time by Proposition 3.4, and construct the
modelMr in time polynomial in the size ofr. We can translateϕ intoϕT in time polynomial in the
size of the formula. We use Proposition 3.1 to reduce the problem to the model-checking problem
for LTL, which can be solved in time polynomial in the size of theMr and exponential in the size
of ϕ (see, for instance, [Vardi 1997]).

Proposition 3.6: r |= ϕ iff Mr, s0 |=L G(ϕT).

Proof: By definition, r |= ϕ iff for all times t, r, t |= ϕ. By Proposition 3.1, this holds iff for all
statesst of Mr,Mr, st |= ϕT , which just means thatMr, s0 |= GϕT .

References

Brzozowski, J. A. (1964). Derivatives of regular expressions. Journal of the ACM 11(4), 481–
494.

Clarke, E. M., O. Grumberg, and D. Peled (1999).Model Checking. The MIT Press.

ContentGuard, Inc. (2000). XrML: Extensible rights MarkupLanguage. Available fromhttp:
//www.xrml.org.

Ellison, C., B. Frantz, B. Lampson, R. Rivest, B. Thomas, andT. Ylonen (1999). Simple public
key certificate. At http://world.std.com/∼cme/spki.txt. Internet RFC 2693.

Follesdal, D. and R. Hilpinen (1981). Deontic logic: An introduction. In R. Hilpinen and D. Rei-
del (Eds.),Deontic Logic: Introductory and Systematic Readings, pp. 1–35. Dordrecht.

Goldblatt, R. (1992).Logics of Time and Computation. CSLI Lecture Notes, No. 7. CSLI.

Gunter, C. A., S. T. Weeks, and A. K. Wright (2001). Models andlanguages for digital rights. In
Hawaii International Conference on Systems Sciences.

Halpern, J. Y. and R. van der Meyden (2001a). A logic for SDSI’s linked local name spaces.
Journal of Computer Security 9(1,2), 47–74.

Halpern, J. Y. and R. van der Meyden (2001b). A logical reconstruction of SPKI. InProceedings
of the 14th IEEE Computer Security Foundations Workshop, pp. 59–70. IEEE Computer
Society Press.

Harel, D., D. Kozen, and J. Tiuryn (2000).Dynamic Logic. Cambridge, Massachusetts: The MIT
Press.

Hoare, C. (1985).Communicating Sequential Processes. Prentice-Hall.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming.Communications of the
ACM 12, 576–580, 583.

20

Hopcroft, J. E. and J. D. Ullman (1969).Formal languages and their relation to automata. Read-
ing Mass.: Addison Wesley.

Hromkovic, J., S. Seibert, and T. Wilke (1997). Translatingregular expressions into small
epsilon-free nondeterministic finite automata. InSymposium on Theoretical Aspects of Com-
puter Science, Volume 1200 ofLecture Notes in Computer Science, pp. 55–66.

IPR Systems Pty Ltd (2001). Open Digital Rights Language (ODRL). Available fromhttp:

//odrl.net.

Khosla, S. and T. S. E. Maibaum (1987). The prescription of description of state based systems.
In B. Banieqbal, H. Barringer, and A. Pnueli (Eds.),Temporal Logic in Specification, Volume
398 ofLecture Notes in Computer Science, pp. 243–294. Springer.

Lee, R. M. (1988). A logic model for electronic contracting.Decision Support Systems 4, 27–44.

Meyden, R. van der (1990). The dynamic logic of permission. In Proceedings of the Fifth IEEE
Conference on Logic in Computer Science (LICS’90), pp. 72–78.

Meyer, J.-J. C. (1988). A different approach to deontic logic: Deontic logic viewed as a variant
of dynamic logic.Notre Dame Journal of Formal Logic 29(1), 109–136.

Meyer, J.-J. C. and R. J. Wieringa (1993). Deontic logic: A concise overview. In J.-J. C. Meyer
and R. J. Wieringa (Eds.),Deontic Logic in Computer Science: Normative System Specifica-
tion, Chapter 1, pp. 3–16. John Wiley & Sons.

Pucella, R. and V. Weissman (2002). A logic for reasoning about digital rights (extended ab-
stract). InProceedings of the Workshop on Issues in Computer Security (WITS’02).

Ramanujapuram, A. and P. Ram (1998). Digital content and intellectual property rights.Dr.
Dobb’s Journal 23(12), 20–27.

Sistla, A. and E. Clarke (1985). The complexity of propositional linear temporal logic.Journal
of the ACM 32, 733–749.

Vardi, M. Y. (1997). Alternating automata: Checking truth and validity for temporal logics. In
Proceedings of the 14th International Conference on Automated Deduction, Volume 1249 of
Lecture Notes in Computer Science, pp. 191–206. Springer.

Wieringa, R. J. and J.-J. C. Meyer (1993). Applications of deontic logic in computer science: A
concise overview. In J.-J. C. Meyer and R. J. Wieringa (Eds.), Deontic Logic in Computer
Science: Normative System Specification, Chapter 2, pp. 17–40. John Wiley & Sons.

21

