arXiv.cs.CR/0405066 vl 18 May 2004

A Logic for Reasoning about Digital Righits

Riccardo Pucella Vicky Weissman
Cornell University Cornell University
Ithaca, NY 14853 Ithaca, NY 14853

riccardo@cs.cornell.edu vickyw@cs.cornell.edu

Abstract

We present a logic for reasoning about licenses, which anmen4 of use” for digital re-
sources. The logic provides a language for writing both progs of licenses and specifications
that govern a client’s actions. We discuss the complexityhafcking properties and specifica-
tions written in our logic and propose a technique for veatiin. A key feature of our approach
is that it is essentially parameterized by the language iclwthe licenses are written, provided
that this language can be given a trace-based semanticson§&ler two license languages to
illustrate this flexibility.

1 Introduction

In the world of digital rights management, licenses are emgents between the distributors and
consumers of digital resources. A license is issued by areptena prospective client. It states the
exact conditions under which a particular resource may bd,lugacluding a complete description
of how compensation may be given. Licenses can be viewed alssatsof authorization policies,
policies that dictate what actions a system’s principal parform at any given time. Licenses are
an essential part of any rights management system, bedaegséet] the consumer, as well as the
enforcement mechanism, which uses are legitimate.

Licenses must be written in some language. Although mamndes are very simple (e.qg.,
“consumer must pay a fee before each access to an on-lingajdrmore complicated ones, in
particular ones involving time, are also common (e.g., #ach month from 1/1/01 to 1/1/02 the
mortgage requires either a $1500 payment between the fidstcamth of the month or a $1525
payment between the fourth and the fourteenth”). The lagguaust be expressive enough to
capture these types of licenses. Languages subliP&_[Ramanujapuram and Ram 1998}ML
[ContentGuard, Inc. 2000], amdDRL[IPR Systems Pty Ltd 2001] have been developed to state
a wide range of licenses. These languages, however, do wetftlanal semantics. Instead, they
rely on intuitions behind their syntax, and on informal dgstons of expected behavior. As a
consequence, licenses that “seem right” are enforced utithoyone knowing precisely what is
intended or exactly what is allowed.

Gunteret al. [2001] used techniques from programming language sensajiiicare 1985] to
remove these ambiguities. In their approach, the meanigdioénse is a set of traces. Each trace

*This paper is essentially the same as one that appeared Probeedings of the 15th IEEE Computer Security
Foundations Workshqmpp. 282-294, 2002.

represents a sequence of actions allowed by the licensetréct@nforcement mechanism permits
any sequence of action specified by the license and forbigdetaer. To illustrate their idea, Gunter
et al. defined a simple language with semantics that could be usstht® a number of licenses
precisely.

In addition to unambiguously expressing licenses, we wdikkelto reason about them. In
general, we are interested in two classes of questions: alsesof licenses have certain properties
and does a client’s actions with respect to a set of licensaxt particular specifications. Note that
we make a distinction between the characteristics inhémenset of licenses (properties, sometimes
referred to as license properties for emphasis). and thbssenruth depends on the client’s actions
(specifications, sometimes referred to as client behayiecifcations for emphasis) Examples of
properties include “a religious work may only be viewed dgrthe hour before sunset” and “if a
user accesses a work, then the user is obligated to pay factiess at some time.” Depending on
the licenses, each property may or may not be easy to checkin@img the last example, an owner
may allow a client to defer payment in so many situations thist not clear that there will ever
be an occasion when the client must pay. Alternatively, ense may permit free access to some
resources, however, the license has so much “red tape’hiatient cannot determine if the desired
resource actually is free. As for specifications, exampiekide “the client never uses a resource
illegally” and “the client is never obligated to pay interes her credit card debt”. The difficulty
of specification checking is based on the licenses and taetsliactions. Verifying properties and
specifications is important, because it increases our amdfthat the licenses match the informal
requirements and that the informal requirements matchvimeds intent.

In this paper we present a logic for reasoning about licetissprovides us with a language
in which we can state properties and specifications pregciSdte logic is essentially a temporal
logic. It allows us to make statements about issued licerassaiming the licenses are written in
some patrticular language that is distinct from our logicr &ase of exposition, we assume until
Section 4 that licenses are written in a very simple, reglalaguage and that the application has
only one client and one provider. Our framework can be matlifiea straightforward manner to
reason about different license languages. It is also easytémd the logic to multiple clients and
providers.

As the examples suggest, license properties and clienvimelspecifications typically involve
the client’s permissions and obligations to do certainoasti We take a very simple view of per-
missions and obligations. In particular, we focus exclelgivon the client’s viewpoint. Inspired
by Gunteret al,, we interpret licenses as describing a set of legal seqaesfcactions. A client is
permitted to do an action if that action is part of a sequeri@eions that is legal according to the
actions she has already done and the licenses issued.dfishanly one such action for a particular
license, then the client is obligated to do that action.

To illustrate our notions of permission and obligation, sider the mortgage example in which
the client must pay either $1500 between the first and fourhil625 between the fourth and the
fourteenth of every month from 1/1/01 to 1/1/02. For the finginth, there are two legal action
sequences. The client could pay $1500 before the fourtkerddtively, the client could pay $1525
between the fourth and the fourteenth. Since there is adafjain sequence in which the client pays
before the fourth and one in which the client does not, we Baythe client is permitted, but not
obligated, to make the earlier payment. If the client daesigike the earlier payment, then the only
legal sequence she can be following is the second one. Inakés she is obligated to complete that
sequence by paying $1525 before the fourteenth.

Why are we designing logic for reasoning about licenses? A logic provides us with a &rm
language in which to write properties and specifications.addition, it allows us to check in a
provably correct way that a property or specification holose particular set of licenses and, in
the case of specification, a client's behavior. We can auteriee analysis, by developing model
checking techniques. It turns out that standard model ¢éhggkrocedures (as given in [Clarke,
Grumberg, and Peled 1999]) apply to our framework. Thesegahares can form the foundation of
enforcement mechanisms that are well-grounded in forméhoas.

The design of our logic was strongly influenced by the work afgérn and van der Meyden
[2001a, 2001b] on reasoning about SPKI/SDSI. It is also mé&soént of deontic logic approaches,
which aim at reasoning about ideal and actual behavior [Magd Wieringa 1993]. Deontic logic
has been used extensively to analyze the structure of nwenatv and normative reasoning in law.
(For examples, please see [Wieringa and Meyer 1993] ancttbeences therein.)

In the next section, we introduce our logic. Section 3 exasithe complexity of checking
that a license property or client behavior specificatiordbolln Section 4, we show that our logic
can be adapted to different license languages, by replatingegular language with a variant of
DigitalRights[Gunter, Weeks, and Wright 2001]. We discuss related wor&ention 5. Proofs of
our technical results can be found in the appendix.

2 The logic

We want to reason about licenses and client’s actions wgpee to licenses. To do this, we in-
troduce a logic,£"¢, that allows us to talk about licenses and actions. Forminla&® include
permission and obligation operators, as well as temporatadprs, because we want to write for-
mulas that represent interesting properties and spedificatthe ones that state the conditions under
which actions are permitted or obligatory. In this sectie,give the syntax for our logic, followed
by its semantics.

2.1 Syntax

The syntax of£" has three categories; formulas, {, . ..), actions §, . ..), and licenses/(. . .).
Their definitions assume a s8lumes of license names, a séVorks of works (i.e. resources),
and a setDevices of devices (i.e. ways to access resources). Actions ara tiakm a setdct =
{render[w,d] : w € Works,d € Devices} U {pay[z] : = € R} U{L}, wherel represents the
null or “do nothing” action. (For simplicity, we consider lgrrender and pay actions, as was done
in [Gunter, Weeks, and Wright 2001].) Also, we [Bic be the set of licenses In the following
formal descriptionp, € Names anda € Act.

¢ = nilla|PaleiApa| =9 | Op|Op | p1Ups
a == (a,n)](a,n)
{ = a|€1£2|€*|€1U€2

Intuitively, n : £ means “the license whose legitimate action sequences scelued by the regular
expressiort is being issued now and will be referred to by the nanierhe primitive action(a, n)

means “actior: is performed with respect to license nameéd The action(a, n) represents any
action-name pair where the action is mptout the license name is. P« indicates that the action

3

expressionx is permitted. The set of formulas are closed under, O, O and U, which are
well-known operators from classical and temporal logic [fiBéatt 1992]' We use the standard
abbreviationsp \ 1 for =(—¢ A =), ¢ = 1 for = Vv ¢, and< e for -O-¢p. Also, we abbreviate
the action(a, n) asa,,. For instance(render|w, d], n) is writtenrender,, [w, d], and(_L, n) is written
Ln.

We use the abbreviatiof(a, n) to stand for-P(a, n). As we shall see later, the interpretation
of O(a,n) is that the client is obligated to perform actienvith respect to the license named

To illustrate how our logic can be used in practice, constterfollowing scenario. Suppose
an owner of an on-line journal requires a fee to be paid befadh access. This licengéean be
written in our logic as:

¢ = ((pay|[fe€|(_L)"render[journal d]) U L)*,

whered is the device that the client uses to access the journal. misguthe license is labeled,
the property that the client is not obligated to access thenm immediately after paying the fee
can be written as:

pay,,[fed = O(—Orender,[journal, dJ).

The specification that the client doesn't violate the li@eoan be written as the family of formulas:
n:{ = 0[(a= (Pa)) A ((Oa) = a)],

wherea € {pay,[fed, render,[journal d], L, }. In other words, the client only does legitimate
actions and does every action that is required by the license it is issued. As a final example, we
can write that, during one time period, the client pays $1860@he mortgagen, but doesn’t pay
the journal fee as:

pay,, [1500] A pay,,[fe€].

2.2 Semantics

To formalize the intuitions given above, we base our seroartn the notion of a run. When
defining a run, we make the standard assumption that timegsade and can, in fact, be represented
using nonnegative integers. A runassociates each timewith a pair (L, A), whereL is the set

of named licenses issued at that time (a named license ig &pdj of a namen and a license
¢), and A is a function giving, for each license name an actionA(n) performed by the client
at that time (orL if no action was performed with respect #). Formally, a run is a function
r: N — p(Names x Lic) x ActY®™ such that no name is paired with more than one license
throughout the entire run. Recall that:V*™¢ s the set of all functions fromVames to Act. Our
approach imposes the restriction that, at most, one acéotirpeper named licensean occur. We
do not need this limitation, but it simplifies the expositiom essence, we are trading the ability
to handle the class of licenses where a client must do melléiptions simultaneously for a simple
definition of a license where concurrent actions are not leaind-or notational convenience, given
arunr and timet with »(t) = (L, A), we definelic(r,t) to be the set of named licenses issued
in run r at timet, that is, lic(r,t) = L; similarly, we defineact(r,t) to be the set of action and
license name pairs performed in rurat timet, that is,act(r,t) = {(A(n),n) : n € Names}.

'Recall thatdp means & holds now and at all future times?,)¢ means { holds at the next time”, ang; >
means - eventually holds and, until it doeg; holds”.

Finally, we say that a licende : /) is activeat timet in run r if there exists a tim¢’ < ¢ such that
(n:2) € lic(r,t")

While a run captures the client’s actions, an interpretasitates what is permitted. Formally, a
permission interpretatiof? is a functionP : N — p(Act x Names) that is used to give a meaning
to permissions. Intuitively, ifa,n) € P(t) then at time,, the client is permitted to perform action
a With respect to license name In other words, the client is allowed to do ap action.

We want the interpretation of permissions to match the mEgimms implied by the run. To
define this requirement formally, we first give a mapping tieddites licenses to action sequences.
We then use this mapping to find the permission interpretdtiat permits an action if and only if
the run implies the permission.

Following the lead of Guntest al. [2001], we associate each license with a set of traces. In our
discussion, dracerefers to a sequence of actiohd.he notations; - s, denotes the concatenation
of two sequences of actions andss wheres; - s = 37 if s1 is infinite. A traces; is said to be a
prefix of tracess if there is some trace such thats; - s = s,.

We construct a functio£[¢] by induction on the structure of a given licerse

Lla] = {a}
E[Ml €2H = {81 89 I 81 € ﬁ[[fl]] andsy € E[[gg]]}
L[Uls] = L[6]U L[]
el = Ylsreooosa s si€ LI

n>0

The functionL[¢] gives the set of traces allowed by the license. We define thetinZ [¢] to pro-
vide the infinitary version of the sequences correspondirg by essentially appending infinitely
many L actions at the end of each sequence. Formally] = {s- L> : s € L[{]}. Finally, a
sequence of actionis said to beviablefor /¢ if s is a prefix of some trace A[/¢].

We are now ready to define the interpretatigncorresponding to run. Given a named license
(n,¢) issued at time; in a runr, the action-sequencef n up to timety, denotedr|n, t2], is the
sequenceyay - - - ar,—t, —1 such that:

N if (a,n) € act(r,ty + 1)
1 L otherwise.

Since we restricted a run to only allow one action per licgresetime unit, the notion of an action-
sequence is well-defined. The interpretatigncorresponding to a runis defined as follows. For
all timest > 0, P.(t) is the smallest set such that for all license names Names and actions
a € Act, (L,n) € P(t) if the license(n, £) is not active anda,n) € P(t) if the license is active
andr[n,t] - a is viable for¢.

To understand the meaning of an action expressiome need a way to associate it with name-
action pairs. We do this by defining a mappidda] from expressions to sets of pairs. Clearly,
an action expressiofu, n) should be mapped to the pdit, n). The complement actio(@, n) is
mapped to the set of actions different franbut associated with the same license namEormally,

A[[(a’n)]] = {(a7n)}
A[[(E,n)]] = {(b’n)‘b#a}

2Gunteret al. use the termeality for this concept, although their formal definition is diféex.

Contrary to intuition, we do not associate the complemeiat mdme-action pair with the largest set
of name action pairs that does not include it. This mappirgurdortunate consequences, because
it ignores the intuitive independence between licensesekample, it allows us to deduce that the
client can do any action with respect to any license othar tha mortgage, if the client is permitted
to not make a mortgage payment. Statements concerning boéleenses should not be used to
deduce anything about any other license.

As an example of our approach, recall the situation in whigh tlient pays $1500 on the
mortgage, but doesn’t pay the journal fee. The action es@esa; andas used to express these
actions arepay,,,[1500] and —pay,, [fe€], respectively. Applying the above definitio[a;] =
{(pay[1500],m)}, andAJaz] = {(a,n) : a # pay[fe€}. Hence, the actions; andas mean that
“the client is paying $1500 with respect#o and doing some action other than paying the fee with
respect ton”.

We now define what it means for a formuytao be true (or satisfied) at a rurat timet, written
r,t = ¢, by induction on the structure qf.

r,t =n:l if (n,l) € lic(r,t),

r,t = a if 3(a,n) € Ala] s.t.(a,n) € act(r,t),

r,t = Pa if 3(a,n) € Ala] s.t.(a,n) € P.(t),

rtEQp ifrt+1kE ¢,

r,t = Op ifforall ¢ >t rt E ¢,

rtE Uy if I >tstrt’ Eandrt’ = pforallt” witht' >t" >t
rt e ifrtE e,

rtEeANYy if ritE pandrt = .

If a formulay is true at all times in a run, we sayy is valid in » and writer = ¢. If ¢ is valid
in all runsr, we simply sayp is valid and write= . 3

Various properties of permissio} and obligation ¢ P(a, n)) follow from the above seman-
tics. In particular, we can see th@a,n) is true in a run- at timet if and only if (a,n) is the
only action-name pair itP-(t). In other words, an action is obligated if and only if it is thely
permitted action. This is a consequence of the followingpsition:

Proposition 2.1: For all action expressionéa, n), the formulaP(a,n) v P(a,n) is valid.

%In an earlier version of this paper [Pucella and Weissmar2R@@e considered two related semantics for formulas,
in the spirit of the logics presented by Halpern and van deydéa [2001a, 2001b]. The first semantics, called the open
semantics, was defined with respect to an arbitrary inteafiom P. The second semantics, called the closed semantics,
was defined from the open semantics by taking the minimatpregation, as we do in this paper. Intuitively, the closed
semantics assumes that the run contains all the informagiemant to interpret the formulas. This is often referred t
as theclosed-world assumptionin other words, if a permission is not implied by the run,rthieis not permitted. In
contrast, the open semantics admits that the run may notleralbthe information, and therefore one cannot infer that
an action is not permitted simply because it is not impliedhgyrun.

Hence, if P(a,n) is not true at a pointP(a,n) must be true. Another consequence of the above
proposition is thatD(a,n) = P(a,n) is valid. These properties show that our operat®randO,
although defined exclusively from the traces of the licemsases in a run, satisfy some of the clas-
sical properties of deontic logic operators, as given fetance in [Follesdal and Hilpinen 1981].
These properties are a consequence of our prescribed $esraamd, as such, suggest a certain deon-
tic interpretation. In particular, the validity @(a,n) = P(a,n) indicates that obligation should
be read as “must” and not as “ought”. It also reflects the flaat tve cannot express conflicting
prohibitions and obligations in our framework.

2.3 Encoding finite runs and licenses

In this section, we show that any run can be “encoded” as aufarin our logic, provided that the
run is finite. By finite, we intuitively mean that nothing hams after a given time, and each time
instant, only finitely many licenses are issued and noaetions are performed. Formally, a run
is finite if there exists a natural numbgrsuch that :

o forallt <ty, lic(r,t) is finite,

o forallt <ts, {n : (a,n) € act(r,t),a # L} isfinite,
o forallt > ty, lic(r,t) = 0, and

o forallt >ty (a,n) € act(r,t) impliesa = L.

For convenience, we writ€)*y for the formula(Q - -- Oy that has k occurences of the
operator beforep. Given a finite runr, define N,. to be the set of license names issuedrin
Formally, N, = {n : 3t,{.(n,{) € lic(r,t)}. Define

Pr =1ho A OY1 A QY2 A--- AOY by, A QYT O,

wheret; is the last time “something happened” in the run, is A\, cy, (1,7), and¢y, which
encodes the state of the run at timés:

Yy = /\ (a,m) A /\ n: L.

(a,n)fe';\?i(ht) (n,€)Elic(r,t)
Finally, let N, be the set of license names appearing in formyldefined in the obvious way. The
following proposition formalizes the fact that. captures the important aspects of the run

Proposition 2.2: If r is a finite run andV,, C N,, thenr, ¢ = ¢ iff = ¢, = Ofep.

It is interesting to note thap,. does not specify explicitly the permissions implied by tha.r
Intuitively, this is because the information encodedyinis sufficient for the permissions to be
uniquely determined. To formalize this intuition, we shdve tmore general result that issuing a
license results in the client’s actions implying a partadet of permissions.

We use some notation from the theory of regular languagesrtodlize the general result.
Specifically, we lete represent the empty action sequence and we extend the dSeemdds to
include 0 and 1 where £L[0] = 0 and L[1] = {e}. We also define complementary functions
S(¢) and D, (¢) where/ is a regular expression. For any action sequencer,...,a, € L[],

7

S(¢) is the set of actions containing, and D, (¢) is a regular expression such that ..., a, €

L[Dg,(¢)]. Formally, S(0) = 0, S(1) = 0, S(a) = {a}, S(t1ls) = S(ty) if ¢ ¢ L]¢1] and
S(£1) U S(¢2) otherwise,S(¢; U £e) = S(¢1) U S(l2), andS(¢*) = S(¢). D,(¢) is called the
Brzozowski derivative of with respect ta: [Brzozowski 1964]. Its formal definition isD, (a) = 1,

Da(b) =0, Da(£1£2) = Da(gl)gg if € ¢ ﬁ[wl]] and(Da(ﬁl)Eg)U(Da(Eg)) othen/vise,Da(El UEQ) =

Dy (1) U Dg(f2), andD, (¢*) = D, (¢)L.

Given these definitions, we inductively define a family ofnfimlas for each named license
(n,£). For any action sequencga; --- a, € L[], the formulas say that, is permitted and if
the client does the action sequenge - - a;_1, then the client is permitted to dq in i time steps.
Formally:

e =\ Plan)

<pff} _ /\ (p(a,n) A ((a,n) = OQDZ,DG(Z))) :

aeS(¢)

The following proposition formalizes the intuition that Bsuing a license, we force the client’s
actions to imply a particular set of permissions.

Proposition 2.3: For any license, the formulas: : ¢ = cpjlé are valid, fori = 0,1,2,....

Hence, if the formula), represents the finite run in the sense of Proposition 2.2, then every
named licensén, ¢) issued in run- will imply the formula&pjw as per Proposition 2.3. Because
the conjunction of the actions specified«n and the formulapilz implies the permissions that
hold for runr for 4 time steps, Proposition 2.2 is true even thou:igrdoes not specify permissions
explicitly.

3 Satisfiability and verification

In this section, we examine the complexity of reasoning@igiff and discuss a technique for auto-
matically checking if a client behavior specification isisi&td in a given run. As we mentionned in
the introduction, we are fundamentally interested in tvasses of questions does a set of licenses
have certain properties and does a client’s actions witheesto a set of licenses meet particular
specifications. The first question can be rephrased as “deesd licenses imply a property, re-
gardless of what the client does, which licences are issarediwhen the licenses are issued?”. In
other words, the first question corresponds to asking if efe in our logic is valid (i.e., true in
all runs). The second question can be rephrased as “doesificgimn hold for a given sequence
of client actions and licenses issued?” In other words, ¢#oersd question corresponds to asking if
a formula in our logic is true in a given run.

To answer the first question, we investigate the complexityuo satisfiability problem (i.e. the
problem of determining for any gived’c formula ¢ if there exists a rum and a timet such that
r,t | ¢). We can reduce the satisfiability problem for our logic te gatisfiability problem for
a “simpler” logic, Linear Temporal Logic (LTL), which is weknown in the formal verification
community. LTL is essentially a propositional logic withmporal operators. To distinguish the

LTL operators from the temporal operators4#¢, we use CTL syntax for LTL. Specifically, an
LTL formula F is defined as:

F11:p|F1/\F2|—|F|XF|GF|F1UF2

wherep is a primitive proposition XF' means that" holds at the next time(zF means thatt”
holds now and at all future times, aiddU F>, means thaf, eventually holds and, until it doeg;
holds. Models for LTL are linear structures of the folth= (S, L), whereS = {sq, s1, S2,... } iS

a set of states anH assigns to every state fithe primitive propositions that are true in that state.
The definition of the satisfiability of an LTL formul®&’ in a linear structure\/ at states, written
M,s =1, F, is straightforward. We refer to [Clarke, Grumberg, andeBel999] for more detail.
The key property of LTL that we will use is that the satisfidbilproblem for LTL is PSPACE-
complete [Sistla and Clarke 1985].

It is straightforward to encode a formurin LTL as a formulay in £%¢ in such a way thaf’
is satisfiable if and only i is satisfiable. Therefore, the satisfiability problem £3¥ is PSPACE-
hard. What is more interesting is that there is a polynongduction from the satisfiability problem
for £%° to the satisfiability problem for LTL. At the heart of this raxtion is a way to encode our
logic into LTL.

The first step of the reduction is to show that if a formylas satisfiable inC’<, then it can
be translated into a satisfiable formutd in LTL. We will do this directly, by showing that we
can in fact transform the runin which ¢ is true into a linear structuré/, in which ¢’ is true.
Let &y be the set of primitive propositions that we will use in ournfmla encoding, inclduing
primitive propositiondssued(n, ¢) for every name: and license, anddone(a, n), permitted(a,n)
andobligated(a, n) for each actioru and names.

Given a runr, we construct a linear modal/, = (S, L) whereS = {sy, s1, s2, ... }. For each
states;, which corresponds to the run at timel.(s;) is defined as the smallest set such that:

o if (n,0) € lic(r,t), thenissued(n,) € L(s),

if

a,n) € act(r,t), thendone(a,n) € L(s;),
[]

(
(a,n)

e if (a,n) € P.(t), thenpermitted(a,n) € L(s),
if (a,n) €

a,n) € P,(t)isthe only action associated with license nanie P, (¢), thenobligated(a, n) €

L(St).

Given this structuré\/,, it should be clear how to translateC4¢ formulay true inr into a formula
©! true in M,. In particular, the following translation works:

o (n:0)T =issued(n,?).
a,n)T = done(a,n) and(@,n)’ = —done(a,n).

T

(
(
e (P(a,n))T = permitted(a,n) and(P(a@,n))” = —obligated(a,n).
(01 Ap2)T = o] Al and(=p)" = T
(

Op)" = X!, (Op)" = G, and(p1 Ues)" = ¢ Uy .

It is straightforward to see that the above translationseme the truth of the formula. In fact,
something stronger holds, which will be useful later in gastion:

Proposition 3.1: 7, t = ¢ iff M, s; =1, @7

This means that ip is satisfiable in our logic, thep” is satisfiable in LTL. However, the converse
does not hold. In particulaty” may be satisfiable in an LTL structure that does not corresspon
to any run. We somehow need a way to restrict the LTL strustaomsidered, to ensure that they
correspond to runs ig"c. Intuitively, we need to account in LTL for the notions tha¢ amplicit
in the £% semantics. In particular, we must enforce our requiremtatstwo actions are never
done for the same license at the same time, two licenses aee labeled with the same name, an
obligation implies exactly one action is permitted for timhse, a client is only permitted to do
actions other than for active licenses, and issuing a license implies variagssfas discussed in
Section 2.3. Itis easy to state all but the last of these in.LTL

Since we will only need to satisfy the above restrictionshay pertain to a given formula, we
enforce those restrictions over the actions, license naameslicenses appearing @n In general,
let A be a finite set of actionsy be a finite set of license names, ahde a finite set of named
licenses. The restriction that at most one action is dondigmrse name per time is expressed by
the following LTL formulaDone 4 n:

G /\ done(a,n) = /\ = (done(d’, n))
acA a’cA
neN a'#a
The restriction that a license name M is never associated with more than one licensd. iis
expressed by the LTL formullasued; :

G /\ issued(n, £) = /\ G (issued(n/, £'))

(n,0)eL (n',e"YeL
7L/:7L

The restriction that obligation is an abbreviation for obging allowed to do one action with respect
to a license is expressed by the LTL form@al 4 -

obligated(a,n) <
permitted(a, n)A
G A A —(permitted(d’, n)))

a’eA
a’#a

acA
neN

The restriction that a client can only doactions with respect to an unissued license is expressed
by the LTL formulaUnissuedy;:

/\ (obligated(L,n) U issued(n, {)) .
(n,)eL

To state the consequences of issuing a named licengg, we first construct a nondetermin-
istic finite automaton (NFA) that accepts the same language(ahen/ is viewed as a regular

10

expression), and encode the transition relation of thenaaton as an LTL formula. Formally, we
construct the:-free NFA representing as A,, = (Qn, Ay, Sn, Fr,) where@,, is the set of states,
A,, is the transition function§,, are the start states, ati¢] are the final states. For convenience, we
will write A,,(¢) for {a : 3¢ € Qn-(q,a,q") € A} andA,(q,a) for {¢' : (¢,a,q¢) € A, }. We
assume that we have primitive propositionsbinito represent the states of the automaton, namely
instate(n, ¢) for all ¢ € @y, and a primitive propositionver(n) to represent the fact that we have
stopped taking transitions in the automaton (for instabesause the client performed an action
that was not permitted). The “effect” of taking a transitifrom a finite set4 of actions) in a state

q of A,, can be represented by the following LTL formleans 4 ,:

instate(n, q) =
A\ (permitted(a,n))A

aEAn(CI)
done(a,n) =

A \/ X(instate(n,q')) | A
a€ln(q) ¢’ €A(g,a)

A\ (—permitted(a,n))A
a;AG:(cz)

/\ done(a,n) = X(over(n))
aezaAe:(q)

We also need a statement to the effect that the automéfocan only be in one state at any
given time, or in a state satisfyirgyer. This is expressed by the following LTL formufaates:

over(n) = /\ -instate(n,q) | A
qE€EQn
instate(n, q) =

qe/ézn —over(n) A /\ ~—instate(n,q’)
q'€Qn
a'#q

The encoding of the NFA4,, is then expressed by the following LTL formuNFA,, , 4, which
asserts the initial states of the automaton, as well as emgal the transitions, including the
transitions from the states wheseer(n) holds:

\/ instate(n,q) | A G(States)A
qESn

(A\ Transg oA)
G| ¢€On .
(over(n) = (obligated(L,n) A X(over(n))))

The restriction that issuing a license implies the consece® described by the corresponding
NFA is therefore expressed by the LTL formulay, 4:

G /\ (issued(n,£) = NFA, ¢ 4).
(n,)eL

11

Note that the formula corresponding to the NFA construcgoarantees that only the action is
allowed for a completed license.

We now associate with every formulay the LTL formulae! that captures all the implicit
restrictions required for our treatment of Recall from Section 2.3 tha¥,, represents the set
of license names appearing ¢n In a similar way, defined, to be the set of actions explicitely
appearing inp, and definel, to be the set of named licenses appearing ifre., occurrences of
then : £ formula). We takep! to be:

Donea, n, A lssuedr, A Obla, n, A Unissuedr,, A Licp, a,-

We can formally verify that the formula’ does indeed capture the implicit restrictions imposed by
the semantics of ", as far as they pertain to formula We can show:

Proposition 3.2:1f M, s =1, ¢ A ¢!, then there exists a runsuch that, 0 |= ¢.

Propositions 3.1 and 3.2 can be used to derive the followlragacterization of the complexity
of the logic:

Theorem 3.3: The satisfiability problem fo£ ' is PSPACE-complete.

Since a formulay is valid if and only if - is not satisfiable, a corollary of Theorem 3.3 is that
determining if a formulap of our logic is valid is also a PSPACE-complete problem.

It is much easier to answer our second question. The abosesdion in fact hints at a suitable
approach: we reduce the model-checking problem for ourcltgione for LTL and then apply
existing verification technology developed for LTL. Moreesfically, we translate the run (and
associated minimial interpretatia®.) into a linear structure with a state for each time and atomic
propositions for the licenses issued, client actions, g=ions and obligation.

We restrict our attention to finite runs, as defined in Secld) because we want to give an
algorithm for deciding if a formula holds in a given modeln firactice, we expect to have a de-
scription of client behavior for a period of time and we wanestablish permissions or obligations
given that behavior; this can be modeled with a finite run.g ea is simply to use the construc-
tion of the LTL structureM,. as given earlier, and use Proposition 3.1. The only probkethat
the construction ofi/, assumes that we have the permission interpretationTo constructM,.
efficiently, we need a way to compute efficiently. For each named licens$e, ¢) (finitely many
by assumption), we construct an NFA that accepts the lamgteyesented by, We associate a
subset of the NFA's states with every timafter the license is issued. Specifically, the NFA's initial
states are associated with the time when the license isdisSle states associated with any later
timet+ 1 is the set of states that can be reached by one transitiondisiate associated with tinie
For every time after the license is issued, the set of permitted actigngt) is the set of possible
transitions from the states associated witRinally, for any timet, P, (¢) is the union ofP, ,,(¢) for
all licenses named issued by time. This procedure construct3. ,,(¢) in polynomial time with
respect to the size of the run.

Proposition 3.4: There exists a polynomial time algorithm for computing thisripretation P,
corresponding to a finite run.

Combining the computation o, from r with the construction of the model/, given ear-
lier and applying known LTL model-checking techniques, elathecking can be done reasonably
efficiently, at least for a small specificatign

12

Theorem 3.5: There exists an algorithm for deciding if a formuleis true in a finite run- at time
t. Furthermore, the algorithm runs in polynomial time witlspect to the size of the modeand in
exponential time with respect to the size of the formula

A straightforward modification to the above procedure walldw us to check the validity of a
formulay in arunr (i.e., check that holds throughout the run).

Proposition 3.6:r |= o iff M, s =1, G(p7).

Finally, note that the model/, is constructed without regard to the formuylawhose truth
value we want to check. Therefore, we can constidgtonce and use it to model-check different
formulas, each translated to LTL, against the run

4 Handling different license languages

In discussing our logic thus far, we have assumed that thasies are written in a regular language.
Although a regular language has the benefits of being wellvkn simple, and fairly expressive,
it is not difficult to imagine settings in which another lisenlanguage is more appropriate. A key
feature of our logic is that it can be adapted in a straight#wd way to reason about licenses that
are written in any language that has trace-based semarfixdlustrate this flexibility, we will
modify our logic to handle the licenses presented in Guettat. [2001].

For ease of exposition, we consider a restricted versiobigitalRights [Gunter, Weeks, and
Wright 2001]* The syntax of licenses is given by the following grammar:

e u= (for p | for [upto] m p)
pay x (upfront | flatrate | peruse)
for WonD

wherep is a period of time (a number of time units)js a payment amounty is a subset of works
andD is a subset of devices. The termsfront, flatrate andperuse refer to the payment schedule.
Theupfront schedule requires payment at the beginning of the time ghefibeflatrate andperuse
schedules require payment at the end of the time period. Tfeeethce between the two is that
the payment fofflatrate does not depend on the number of renderings, while the ongefase
does. If we letH be a payment schedulepfront, flatrate or peruse), then a license of the form
for p pay H for W on D means that for the time period indicated faythe client is required to
payx, according to schedul®, in order to render any of the works 7 on a device inD. Instead
of beginning withfor p , a license can start witfor m p. If the license starts witfor m p, then the
body of the license is valid fom time periods of lengtlp, but can be canceled at the end of any
period.

As an example, consider the license

for 3 100 pay 10.00 flatrate for W on D

“The originalDigitalRightsallows one to specify the time at which a client can activdieemse. Roughly speaking,
we could capture this in our model by adding license activasis an action.

13

whereW is a set of works and is a set of devices. This license allows the client to rendgr a
work in W on a device inD by paying a flat rate 0f0.00 at the end of every00 time units, for3
such time periods.

We can incorporate this license language in our logic bya@ply our syntax for licenseg)(
with expressions in the above language. To define the fumgije-], which interprets licenses as
sets of traces in the semantics of our logic, we adapt the rsraaf [Gunter, Weeks, and Wright
2001]. (The main difference is that we have a fixed time granity| whereas the original semantics
uses real numbers as time stamps for events.)

To build up the functionC[—], we first assign sets of traces to the simplest licensese tinas
are valid for a single period. The set of traces that allowafpayment of: to view works fromiW/
on devices fronD, for a period ofp time units depends on the payment schedule. The traces for an
up front schedule is defined as:

UpFront(x,p, W, D) = {pay[z]a; - - - ap—1 | a; is either_L or render|w, d]
for somew € W andd € D}.

The traces for a flat rate schedule is defined as:

FlatRate(x,p, W, D) = {ag - - - ap—2pay[z] | a; is either_L or render[w, d]
for somew € W andd € D}.

The set of traces for a per use schedule is defined as:

PerUse(z,p,W,D) = {ag - - - ap—2pay[nz] | a; is either_L or render|w, d]
for somew € W andd € D,
andn = [{a; | a; # L}|}.

Given two sets of traceS; and.Sy, we defineS; - S, as the sefs; - so | s1 € S1, 52 € Sao}. In other
words,S; - S5 is the set of all concatenation of traces fréfnand.S,. We writeS™ for S-S -...- S.
~—————

n

Using the above definitions, we define the functidjp-] as:

Llforpz] = M[2](p)
Llformpz] = (M[](p)™

m

L[foruptompz] = U(M[[z]](p))",

n=0

where M[—] generates the traces for a single time period:

M (pay x upfront for W on D](p) = UpFront(xz,p, W, D)
M (pay z flatrate for W on D](p) = FlatRate(x,p, W, D)
M (pay x peruse for W on D](p) = PerUse(x,p, W, D).

As expected, the semantics of the logic defined in Sectiorrf®esaover verbatim with the above
changes.

The DigitalRights language given above is not more expressive than the regn&athat we
introduced in Section 2. Itis easy to see that for any licerindDigitalRights the set of tracef [e]

14

can be expressed by a regular language. Because thgigéisit(x, p, W, D), FlatRate(x,p, W, D),
andPerUse(x,p, W, D) are finite for any, =, W andD, itis trivial to express them using a regular
language. The concatenation operatiyn- S, preserves regularity, as does union, therefore it is
possible to express any license expressebigitalRights as a regular one. There are, however,
advantages to using thgigitalRightslanguage. The translation ofZigitalRightslicense yields a
large regular expression that may be significantly lessieffido verify than the original license.
Another benefit is that thBigitialRights language is easier to understand.

It should be noted that every license language is not neglyssabsumed by the language of
regular expressions. To see this, consider a license in §oemse language that can be canceled
whenever the number of renderings equals the number of pagimEhe set of traces corresponding
to such a license is not regular, by a well-known result fronmfal language theory (see for instance
[Hopcroft and Ullman 1969]). Therefore, any language ttzat be used to state this license is not
equivalent to any sublanguage of the regular expressions.

5 Related work

The inspiration for our work comes from the field of programifigation, where one finds logics
such as Hoare Logic [Hoare 1969] and Dynamic Logic [Harelzédg and Tiuryn 2000] to reason
about properties of programs. Our logic is similar to thasehe sense that our formulas contain
explicit licenses, in much the same way that theirs contgiti@t programs. Logics of this type are
often referred to aexogenousin contrastendogenou$ogics do not explicitly mention programs;
to analyze a program with such a logic, one builds a modeltat $pecific program, and uses
the logic to analyze the model. One advantage of using aneexag logic is that it allows the
behavior of two programs to be compared within the logic. Un@ase, it allows us to compare the
effect of different licenses within the logic. An endogeadagic, however, permits more efficient
verification procedures. To get this benefit, our verifiaatiyocedures in Section 3 essentially
convert formulas from our logic into formulas of an endogentogic, viz. temporal logic.
Although our logic is an exogenous logic inspired by Dynamdgic, its models are quite
different. In Dynamic Logic, programs guide the state tit@mss in the model. Licenses, on the
other hand, do not affect states. Instead, they are usecgtihgpermissions and obligations. The
models of our logic are primarily influenced by the work of pkin and van der Meyden [2001b] on
formalizing SPKI [Ellison, Frantz, Lampson, Rivest, Thanand Ylonen 1999]. SPKI is used to
account for access rights based on certificates receivedlaBy, we base the right to do actions on
the licenses received. In fact, we could imagine licenseglimplemented with SPKI certificates.
Permissions and obligations are key concepts in our apprddwse notions are typically stud-
ied in the philosophical literature under the headingledntic logic[Meyer and Wieringa 1993].
Early accounts of deontic logic failed to differentiate vbegén actions and assertions, leading to
many paradoxical and counterintuitive propositions (se@stance [Follesdal and Hilpinen 1981]).
The idea of separating actions from assertions has leadsttaating of deontic logic as a variant of
Dynamic Logic [Meyer 1988; Meyden 1990]. Models for deomtymamic logics specify explicitly
either which states represent the violation of an obligatipa permission or which transitions are
permitted or forbidden. In [Meyer 1988], a special formiias introduced in the logic, and any
state that satisfieg is deemed a violation. Intuitively, an actiaris permitted in a state if it is pos-
sible to reach a state viawhereV does not hold. Conversely, an action is obligatory if perfimg

15

any other action leads to a state whéféholds. In [Meyden 1990}, it is the transitions between
states that are deemed permitted or forbiddéfr. is different from these approaches, because we
derive our permissions and obligations from the licens&sed in the run. This indirection means
that we do not have to explicitly model the permissions arayations. In addition, we can easily
change the model to account for different licenses.

Finally, deontic logic has been used to reason about cdstrakhis is intriguing, because a
license can be viewed as a restricted form of contract. Relséathis direction includes work by
Lee [1988], which focuses on developing a logical languaaget on predicate logic with temporal
operators. Deontic operators are handled using a spedffitigate to represent a violation (in this
context, defaulting on a contract). Unfortunately, theiddg not meant to reason about contracts
written in some language. Instead, the models for the I@gicesenthe contracts to be analyzed. In
other words, for each contract that he wants to study, Lddsaispecific model encoding violations
at the appropriate states.

6 Conclusion

In this paper we have introduced a framework for preciseliirgj and rigorously proving properties
of licenses. We also have illustrated how our logic can beifieatto reason about licenses that are
written in any language with a trace-based semantics. Témgbflity provides us with a common
ground in which to compare different rights languages wiiteé-based semantics. We intend to
report on these comparisons in the future. While usefulsimitn right, the logic is a simple foun-
dation on which more expressive rights management logicdeduilt. For example, the logic can
be modified in a straightforward manner to support multifiknts and multiple providers. Multiple
providers is an especially interesting case, becauseivgalls to study the management of licensing
rights, the rights required for one provider to legitimgiteffer another provider’s work to a client.
We plan to examine various extension in the near future. & lemnain interesting questions about
the foundation of£%¢, such as axiomatizations for the logic. Finally, as mermibpreviously, our
operatorsP andO have a distinctly deontic flavor. It would be interesting stedlish a correspon-
dence between our approach and existing deontic framewiargarticular deontic logics of actions
[Khosla and Maibaum 1987; Meyer 1988; Meyden 1990].

Acknowledgments

We would like to thank Joe Halpern, Carl Lagoze and Sandy tRajear their helpful comments.

Joshua Guttman and the CSFW anonymous referees made $uggelsat greatly improved the
presentation. Support for this work came from the ONR undantg N00014-00-1-0341 and
N00014-01-1-0511, from the DoD Multidisciplinary UnivéysResearch Initiative (MURI) pro-

gram administered by the ONR under grant NO0O014-01-1-0a88, from the NSF under grant
11S-9905955 (Project Prism).

A Proofs

Proposition 2.1: For all action expressionga, n), the formulaP(a,n) vV P(a,n) is valid.

16

Proof: The validity of this formula is a consequence of the fact tRatt) contains at least one
action corresponding to every license nameGiven a runr and a timet, and consider the action
expressior(a,n). We know there must exist an action-name gaim) in P,(t). Two cases arise.
If a = b, then(a, n) is in bothA[(a,n)] andP,(t), and thus-, ¢t = P(a,n). If a # b, then(b, a) is
in both A[(a, n)] andP.(t), and thus-, ¢ = P(a,n). Therefore, we have t = P(a,n)V P(a,n).
Since the above holds for alland¢, = P(a,n) v P(a,n). 1l

Proposition 2.2: If r is a finite run andV,, C N,, thenr, ¢ |= ¢ iff = ¢, = Ofp.

To simplify the proof, we introduce the following notatiofsiven runsr, 7/, timest, ¢, and a
subsetN of Names, define(r,t) <y (+/,t') if forall i > 0, lic(r,t + i) C lic(r',t' +) and
(act(r,t +1i) N (Act x N)) = (act(r',t' +14) N (Act x N)). Intuitively, (r,t) < (',) if every
license issued by (starting at timer) is also issued in’ (starting at timet’), and moreover the
two runs agree on the actions corresponding to license nem?és The following lemmas capture
the relevant properties of they relation. Recall thatV,, is the set of license names appearing in
formulae.

Lemma A.1: For any ¢ such thatN,, C N,., if (r,0) <, (',t'), thenr,i = @iff r',t' +i = ¢
forall 7 > 0.

Proof: By induction on the structure @f. We prove the nontrivial cases here. Consigdet n : /.

If 7,4 = n: ¢, then(n,?) € lic(r,i) C lic(r',t' + i), and hence’,t' + i = n : £. Conversely,
if r',t' +i = n: ¢, then sinceN, C N,, license name: must appear im, and by definition of
(r,0) <n, (r',t") and the fact that license names can be associated with oaljiaamse in a run,
it must be the case théh, () € lic(r,7). Hence,r,i = n : {. The cases fofa,n) and(a,n)
follow from r andr’ agreeing on the actions for license names N, C N,. For P(a,n) and
P(a,n), because andr’ agree on the licenses issued with name N, C N,, and because
andr’ agree on the actions pertaining to license nameg, and P, agree on the permissions with
respect to license name from which the result follows. The remaining cases areaigttforward
application of the inductive hypothesk.

Lemma A.2: ' t' = o, iff (r,0) <y, (',).

Proof: We know by definition that’, ¢’ =), if and only if /.t = g, ¥/, t' +1 | ¢1, ...,
't 4ty =y, andr,t’ +t = ¢ for all t > t. Given the definition of)y, . .. , 1, andy,, this
is equivalent tdic(r,0) C lic(r',t'), ..., lic(r, ty) C lic(r',t' +tg), lic(r,t) =0 C lic(r', t' + 1)
fort > ty, and moreover(:) andr’(t' 4 i) agree on the actions pertaining to license namesN,
for all i > 0. This just says thatr, 0) <, (r',t'). I

Proof: (Proposition 2.2) Note that,t = ¢ iff 7,0 = Ole. Thus, it is sufficient to show that
r,0 = ¢iff =4, = ¢.

First, assume thatr,0) = . Letr’ ¢ be an arbitrary run and time. f ¢ = ,, then
by Lemma A.2,(r,0) <n, (r,t'). SinceN, C N,, Lemma A.1 implies that’,t = ¢. This
establishes that, ¢’ = 1, = . Sincer’,t' was arbitrary= v, = ¢ holds.

For the converse direction, assume thaty, = ¢. In particular,r,0 = ¢, = ¢. Since
(r,0) <, (r,0), Lemma A.2 implies that, 0 = v, and hence., 0 = ¢. 1

17

Proposition 2.3: For any license, the formulas: : ¢ = cpjlé are valid, fori =0,1,2,....

Proof: The proof relies on a suitable application of standard ptaseof regular expressions, and
much formal symbolic manipulation. We sketch the argumemné hFirst, extend the definition of
S to handle more than a single action. L#t(¢) (for & > 1) be the function that returns the set
of all prefixes of lengtht of action sequences associated withFormally, S'(¢) = S(¢), and
Skt = fao 1 a€ S(l),0 € S¥(D,(0))}.

Given this definition, we can verify that the formulg’,' is equivalent tao!, , A " ", where
@b+ is the formula

A <((ao?n)/\O(a17N)Al"' >
woar e AO'(ai,n)) = O P(ait1,n)
542 ()
Letr, ¢t be an arbitrary run and time. We show by induction that= n : ¢ = gpjw foralli > 0.
Assumer,t =n : ¢, thatis,(n, () € lic(r,t). The base case of the induction is verified by noticing
that cp?w = Aues P(a,n), and by the definition of.(¢), for all a € S(¢), (a,n) € Pr(t),
so thatr,t = P(a,n). The induction step follows by a similar reasoning. Assume}= <pfw
Given the above equivalence, it is sufficient to show that— go;?“ to establish the result. For
anyag- a1 € ST, if rt = (ag,n) A Olar,n) A -+ A O (ai,n), thenr,t = (ag,n),
rt+1 (a1,n),...,rt+i = (a;,n). Sinceag - - - a;a;+1 € S™2(€), itis viable for¢, and hence
(air1,m) € P(t+i+1),thatis,r,t+i+1 = P(aiy1,n), orrt = O P(a;11,n), as required.
Since this is true for all sequencesSfi2(¢), we haver,t = cp;?“l, establishing our resulll

Proposition 3.1: r,t = piff M, s; =1 ©”.

Proof: We prove by induction on the structure @fthat for allt, r,t = o iff M,,s; = . We
give a few representative cases here, the remaining caisesdimilar.

Considerp = n : (. For anyt, we haver,t = n : Ciff (n,0) € lic(r,t) iff issued(n,) € L(s;)
(by construction ofl.(s;)) iff M,,s; =y issued(n, ¢).

Considerp = P(a,n). For anyt, we haver,t = P(a,n) iff (b,n) € P,(t) for someb # a
iff obligated(a,n) isnotin L(s;) (since(a,n) cannot be the unique action i.(t)) iff M,,s; =1,
—obligated(a, n).

Considerp = QOy'. For anyt, we haver,t = Oy’ iff r,t + 1 |= ¢ iff M, s;1 =1 (¢)T (by
hypothesis) iffM,., s; =1 X(¢)T, andX ()T = 7. 1

Proposition 3.2: If M, s =1 o’ A ¢!, then there exists a runsuch thatr, 0 = .

Proof: Without loss of generalityM = (S, L) with S = {s¢, s1,... }, ands = sp. (If not, s = s;
for somet, and takeM’ = (S’, L) whereS’ = {s, s¢11,... }, and we can check that’, sy =,
o7 Ap!.) Construct the runy, as follows: for allt > 0, ras(t) = (Las(t), A (t)), whereL y (t) =
{(n,?) : issued(n,?) € L(s;)}, and A (t)(n) = aif done(a,n) € L(s:), and Ay (t)(n) = L
otherwise. This is a well-defined run, becaudg, s, satisfiesDone 4, n, andlssuedr,,. We next
check that for alt > 0, P,,,(t) = {(a,n) : permitted(a,n) € Ly(s¢)}. The details are routine,
if tedious. Essentially, every path through the automateroded inNFA, A, corresponds to a
viable trace of the licenséfrom the point where the license is issued. A straightfodyamoof by
induction establishes thajf;,0 = ¢. I

18

Theorem 3.3: The satisfiability problem fo£'c is PSPACE-complete.

Proof: For the lower bound, we show that we can reduce the satisfyapiioblem for LTL to
the satisfiability problem foC"c. Let ' be a formula of LTL, over primitive proposition® ;=
{p1,... ,pn}. We first rewriteF” into a formulayx of £, by picking an arbitrary non- action in
Act (call it x) and a namer,, for everyp € ®;, and replacing every primitive propositignin F
by the action expressiafx, n,,), and replacings, X, andU by O, O, and i/ respectively. Assume
Fis satisfiable in a linear structufe = (.S, L) at states;, whereS = (sg, s1,...). Letry be
the run defined by, (t) = (0, A(t)), where A(t) maps nameu, to actionx if p € L(s;), and
to L otherwise, and maps all other namesltolt is easy to check thapy is satisfiable in-y; at
time . Similarly, if o is satisfiable in a rum at timet, we can convert into a linear structure
M, = (S,L), wherep € L(s;) iff (x,n,) € act(r,t), and it is easy to check that is satisfiable in
M, at states;. Since the satisfiability problem for LTL is PSPACE-complehe above reduction
means that the satisfiability problem 6f° is PSPACE-hard.

For the upper bound, we show that we can reduce the satifigmibblem for £%¢ to the
satisfiability problem for LTL in polynomial time. In partidar, we show thap is satisfiable inC
iff o7 A ! is satisfiable in LTL. Letp be a formula satisfied in runat timet. By Proposition 3.1,
M,,s; =1 ¢'. By construction, it is clear that/,,s; =1 o’ (only one action per license per
time, no two licenses with the same name ever issued, and)saHaemce,M,, s; =1 ¢ A ¢!,
Conversely, assume that A ! is satisfiable in a linear structure/. By Proposition 3.2, there
exists a run- such thatr, 0 = ¢, i.e., ¢ is satisfiable inClic, Finally, one can check that the size of
the formulayp” A ¢! is polynomial in the size op. I

Proposition 3.4. There exists a polynomial time algorithm for computing thieripretation P,
corresponding to a finite run.

Proof: It is clearly sufficient to defing?. for non-L actions only, by takingl to be the default
value of P,. Let L, be the set of named licenses issued inrue define, for every named license
(n,f) € L,, afunctionP,,, that gives for every time the set of actions permitted by the named
license(n, £) at timet. Clearly, we can then take, (t) = U, per,, Frn(t)-

Consider a named licenge, ¢) € L,, and assumén, ¢) Iis issued at time, in r. Let A =
(Q,I,A, F) be thee-free NFA corresponding to the regular expressipmvhere(is the set of
states/ is the set of initial states\ is the transition relation, anfl is the set of final states. We can
constructA in time polynomial in the size of, using [Hromkovic, Seibert, and Wilke 1997], where
|Q| is linear in the size of and|A| is less than quadratic.

We can now define the functioRt,. ,,. Fort < ty, we can takeP, ,(t) = {L}. Fort > t,
we need to take the license into consideration. First, défiesequence of sety, S1,... , Sm—t,
wherem is the length of run-. These sets represents the sets of states of the NFA obtayned
following the actions related to license namprescribed by the run. Formally, defiSeinductively
as:

So = 1
Siv1 = {5 : (s,a,s') € Aforsome
s € S;and(a,n) € act(r,to +1)}.

With these sets, we defin®. ,,(to + i) = U,es,{a : 35'.(s,a,5") € A}, that s, the set of actions
that can be performed according to licerfsgtarting from any of the states ;. One can check

19

that the sets; can be constructed in polynomial time, and therefore #hat, and hence?,., can be
constructed in polynomial timd.

Theorem 3.5: There exists an algorithm for deciding if a formulas true in a finite run- at time
t. Furthermore, the algorithm runs in polynomial time witlspect to the size of the modeand in
exponential time with respect to the size of the formula

Proof. Given a runr, we can computé”’,. in polynomial time by Proposition 3.4, and construct the
model M, in time polynomial in the size af. We can translate into ¢” in time polynomial in the
size of the formula. We use Proposition 3.1 to reduce thelgnolbo the model-checking problem
for LTL, which can be solved in time polynomial in the size bétM/,. and exponential in the size
of ¢ (see, for instance, [Vardi 1997].

Proposition 3.6: r = ¢ iff M,,so =1 G(¢7).

Proof: By definition,r = ¢ iff for all times ¢, r,t = ¢. By Proposition 3.1, this holds iff for all
statess; of M,., M., s; = ", which just means that/,., so = G I

References

Brzozowski, J. A. (1964). Derivatives of regular expressialournal of the ACM 1), 481—
494,

Clarke, E. M., O. Grumberg, and D. Peled (1999pdel CheckingThe MIT Press.
ContentGuard, Inc. (2000). XrML: Extensible rights Markiupnguage. Available frorattp:

//www.xrml.org.

Ellison, C., B. Frantz, B. Lampson, R. Rivest, B. Thomas, &ndlonen (1999). Simple public
key certificate. At http://world.std.comtme/spki.txt. Internet RFC 2693.

Follesdal, D. and R. Hilpinen (1981). Deontic logic: An mduction. In R. Hilpinen and D. Rei-
del (Eds.),Deontic Logic: Introductory and Systematic Readings. 1-35. Dordrecht.

Goldblatt, R. (1992)Logics of Time and Computatio@SLI Lecture Notes, No. 7. CSLI.

Gunter, C. A., S. T. Weeks, and A. K. Wright (2001). Models &mjuages for digital rights. In
Hawaii International Conference on Systems Sciences

Halpern, J. Y. and R. van der Meyden (2001a). A logic for SB$iiked local name spaces.
Journal of Computer Security(®,2), 47-74.

Halpern, J. Y. and R. van der Meyden (2001b). A logical retroction of SPKI. InProceedings
of the 14th IEEE Computer Security Foundations Workshp 59-70. IEEE Computer
Society Press.

Harel, D., D. Kozen, and J. Tiuryn (200@ynamic Logic Cambridge, Massachusetts: The MIT
Press.

Hoare, C. (1985)Communicating Sequential Processerentice-Hall.

Hoare, C. A. R. (1969). An axiomatic basis for computer pangming.Communications of the
ACM 12 576-580, 583.

20

Hopcroft, J. E. and J. D. Ullman (196%ormal languages and their relation to automaRead-
ing Mass.: Addison Wesley.

Hromkovic, J., S. Seibert, and T. Wilke (1997). Translatiegular expressions into small
epsilon-free nondeterministic finite automataSlymposium on Theoretical Aspects of Com-
puter ScienceVolume 1200 ol_ecture Notes in Computer Scienpp. 55-66.

IPR Systems Pty Ltd (2001). Open Digital Rights Language RDP Available fromhttp:
//odrl.net.

Khosla, S. and T. S. E. Maibaum (1987). The prescription stdption of state based systems.
In B. Baniegbal, H. Barringer, and A. Pnueli (Edg@¢mporal Logic in SpecificatiopiVolume
398 of Lecture Notes in Computer Scienpp. 243-294. Springer.

Lee, R. M. (1988). A logic model for electronic contractifecision Support Systems2y—44.

Meyden, R. van der (1990). The dynamic logic of permissiarRrioceedings of the Fifth IEEE
Conference on Logic in Computer Science (LICS @p) 72—78.

Meyer, J.-J. C. (1988). A different approach to deonticdoddeontic logic viewed as a variant
of dynamic logic.Notre Dame Journal of Formal Logic 28), 109-136.

Meyer, J.-J. C. and R. J. Wieringa (1993). Deontic logic: Aaee overview. In J.-J. C. Meyer
and R. J. Wieringa (Eds.peontic Logic in Computer Science: Normative System Sgecifi
tion, Chapter 1, pp. 3—-16. John Wiley & Sons.

Pucella, R. and V. Weissman (2002). A logic for reasoningualligital rights (extended ab-
stract). InProceedings of the Workshop on Issues in Computer SecWifyS'02)

Ramanujapuram, A. and P. Ram (1998). Digital content arell@tual property rightsDr.
Dobb’s Journal 2812), 20-27.

Sistla, A. and E. Clarke (1985). The complexity of propasitil linear temporal logiclournal
of the ACM 32733-749.

Vardi, M. Y. (1997). Alternating automata: Checking truttdavalidity for temporal logics. In
Proceedings of the 14th International Conference on Autech®eductionVolume 1249 of
Lecture Notes in Computer Sciengp. 191-206. Springer.

Wieringa, R. J. and J.-J. C. Meyer (1993). Applications afrdie logic in computer science: A
concise overview. In J.-J. C. Meyer and R. J. Wieringa (E@epntic Logic in Computer
Science: Normative System SpecificatiBhapter 2, pp. 17—40. John Wiley & Sons.

21

