
A Formal Foundation for XrML∗

Joseph Y. Halpern
Cornell University
Ithaca, NY 14853

halpern@cs.cornell.edu

Vicky Weissman
Cornell University
Ithaca, NY 14853

vickyw@cs.cornell.edu

Abstract

XrML is becoming a popular language in industry for
writing software licenses. The semantics for XrML is im-
plicitly given by an algorithm that determines if a permis-
sion follows from a set of licenses. We focus on a repre-
sentative fragment of the language and use it to highlight
some problematic aspects of the algorithm. We then cor-
rect the problems, introduce formal semantics, and show
that our semantics matches the (corrected) algorithm. Fi-
nally, we consider the complexity of determining if a per-
mission is implied by a set of XrML licenses. We show that
the general problem is NP-hard, but it is polynomial-time
computable for an expressive fragment of the language.

1. Introduction

The eXtensible rights Markup Language (XrML) is be-
coming an increasingly popular language in which to write
software licenses. When first released in 2000, XrML re-
ceived the support of many technology providers, content
owners, distributors, and retailers, including Adobe Sys-
tems, Hewlett-Packard Laboratories, Microsoft, Xerox
Corp., Barnesandnoble.com, and Time Warner Trade Pub-
lishing. Companies including Microsoft, OverDrive,
and DMDsecure have publicly announced their agree-
ment to build products and/or services that are XrML com-
pliant. Currently, XrML is being used by international stan-
dard committees as the basis for application-specific
languages that are designed for use across entire in-
dustries. For example, the Moving Picture Experts
Group (MPEG) has selected XrML as the founda-
tion for their MPEG-21 Rights Expression Language

∗ Authors supported in part by NSF under grant CTC-0208535, by
ONR under grants N00014-00-1-03-41 and N00014-01-10-511,by
the DoD Multidisciplinary University Research Initiative(MURI) pro-
gram administered by the ONR under grant N00014-01-1-0795,and
by AFOSR under grant F49620-02-1-0101.

(MPEG-21 REL). (See http://www.xrml.org for more in-
formation.) It is clear that a number of industries are
each moving towards a standard language for writing li-
censes, and that many of these standard languages are
likely to be based on XrML. To understand the new stan-
dards, we need to understand XrML.

XrML does not have formal semantics. Instead, the
XrML specification [3] presents the semantics in two
ways. First is an English description of the language. Sec-
ond is an English description of an algorithm that deter-
mines if a permission follows from a set of licenses. Un-
fortunately, the two versions of the semantics do not agree.
To make matters worse, the algorithm has unintuitive con-
sequences that do not seem to reflect the language writers’
intent.

As a first step towards addressing these issues, we pro-
vide a formal semantics for XrML. To the best of our knowl-
edge, we are the first to do this. We give the language formal
semantics by providing a translation from XrML licenses to
formulas in modal first-order logic. We verify the transla-
tion by proving that the algorithm included in the XrML
document, slightly modified to correct the unintuitive be-
havior, matches our semantics. More precisely, the algo-
rithm says that a permission follows from a set of licenses
iff the translated permission is a logical consequence of the
translated licenses. We then consider the complexity of de-
termining if a permission is implied by a set of licenses.
We show that the general problem is NP-hard, but, for an
expressive fragment of the language, it is polynomial-time
computable.

The rest of the paper is organized as follows. In the next
section we present a fragment of XrML that suffices to il-
lustrate the key issues. In Section 3 we review XrML’s al-
gorithm for determining what is permitted given a set of
licenses. After considering some examples in which the al-
gorithm’s behavior is unintuitive and almost certainly
unintended, we propose a revised algorithm that we be-
lieve captures the designers’ intent. Formal semantics
for XrML are given in Section 4, and the revised algo-
rithm is shown to be sound and complete with respect

to the semantics. In Section 5 we show that the prob-
lem of determining if a permission follows from a set of
licenses is NP-hard. We also discuss a fragment of the lan-
guage that is both tractable and relatively expressive.
In Section 6 we outline how our results can be modi-
fied to apply to the entire language, including extensions
that are within the XrML framework. We conclude in Sec-
tion 7. Proofs for all of the theorems can be found at
www.cs.cornell.edu/home/halpern/papers/xrml.pdf.

2. Syntax

Before we can begin our analysis of XrML, we need
to choose a version of the language. ContentGuard froze
the language in November 2001 [1] with the intention that
standard committees would extend the language to suit the
needs of their particular constituents. However, the stan-
dard committees are currently modifying the language, as
opposed to simply extending it. In particular, the MPEG
committee published their version of the language [4] a few
weeks before the final submission of this paper. Although
we have not studied that release carefully, we have exam-
ined their March 2003 Specification [3], which is the ver-
sion before the current one. In this paper we discuss the
March 2003 Specification; in the full paper we discuss the
current version.

In this section we present a syntax for a representative
fragment of XrML. (The rest of the language is discussed
in Section 6.) Although XrML is an XML-based language,
our syntax does not follow the XML conventions. Instead,
we have chosen a syntax that we believe is more intuitive.
There are other differences between the two approaches;
these are discussed at the end of the section.

At the heart of XrML is the notion of alicense. A license
is a (grant; principal) pair, where the license(g, p) meansp
issues (i.e., says)g. For example, the license (Bob is smart,
Alice) means “Alice says ‘Bob is smart’ ”.

A grant has the form ‘∀x1, . . . ,∀xn(condition →
conclusion)’, which intuitively means that the condi-
tion implies the conclusion under all appropriate substi-
tutions. Conditions and conclusions are defined as fol-
lows.

• A condition has the formSaid(p1, e1) ∧ . . . ∧
Said(pn, en), wherepi is a principal andei is a con-
clusion. We represent the empty conjunction (when
n = 0) by true. Roughly speaking,Said(pi, ei)
holds if the grants issued by the principalpi, along
with the set of licenses, implyei.

• A conclusion has either the formPerm(p, r, s) or the
form Pr(p) wherePr is a property,p is a principal,r
is a right (i.e., an action), ands is a resource. The con-
clusionPerm(p, r, s) meansp may exerciser overs.

For example,Perm(Bob, edit , budget report) means
Bob may edit the budget report. The conclusionPr(p)
meansp has the propertyPr . For example, the conclu-
sionAttractive(Bob) means Bob is attractive.

We abbreviate the grant∀x1, . . . ,∀xn(true → e) as
∀x1, . . . ,∀xne. Also, we try to consistently used, possi-
bly subscripted, to denote generic conditions ande, possi-
bly subscripted, to denote generic conclusions.

Consider the following example. Suppose that Alice is-
sues the grant ‘Bob is smart’ and Amy issues the grant ‘if
Alice says that Bob is smart, then he is attractive’. We can
write the first license in our syntax as(g1,Alice), where
g1 = Smart(Bob) (recall that this is an abbreviation for
true → Smart(Bob)), and we can write the second as
(g2,Amy), whereg2 = Said(Alice,Smart(Bob)) →
Attractive(Bob). Because(g1,Alice) means ‘Alice says
Bob is smart’ andg2 means ‘if Alice says Bob is smart,
then he is attractive’, the licenses together with the grants
issued by Amy imply that Bob is attractive. Thus, the con-
dition Said(Amy ,Attractive(Bob)) holds.

The sets of principals, properties, rights, and resources
depend on the particular application. For example, a multi-
media application might have a principal for each employee
and each customer; properties such as ‘hearing impaired’
and ‘manager’; rights such as ‘edit’ and ‘download’; and a
resource for each object such as a movie. We assume the
application gives us a finite setprimitivePrin of principals
and a finite setprimitiveProp of properties. We then de-
fine the components in our language as follows.

• The set of principals is the result of closing
primitivePrin under union. (Here and elsewhere
we identify a principalp ∈ primitivePrin with the
singleton{p}.) Thus, every principal has the form
{p1, . . . , pn}, where eachpi is a primitive princi-
pal. The interpretation of a principal{p1, . . . , pn}
depends on context (i.e., depends on whether the prin-
cipal appears as the first argument in aSaid condition,
as the first argument in a conclusion, or as the sec-
ond argument in a license). We discuss this later in the
paper (primarily in Section 5).

• The only properties considered by XrML are those in
primitiveProp . Following XrML, we consider only
properties that take a single principal as an argument.
For example,primitiveProp can include the property
Employee, whereEmployee(x) means principal
x is an employee, but it cannot include the property
MotherOf , whereMotherOf(x, y) meansx is the
mother ofy, nor can it include the propertyVehicle,
whereVehicle(x) means resourcex is a vehicle (e.g.,
a motorcycle, car, or truck). All of the results of this pa-
per would continue to hold if we extend the fragment to
include properties that take multiple arguments of vari-

ous sorts (i.e., principals, rights, and resources). We re-
mark that in XrML the set of properties is not closed
under conjunction or negation. It is easy to show that
closing the set under conjunction adds no expressive
power to the language. Closing under negation does
add expressive power; we return to this issue in Sec-
tion 7.

• The only right isissue and the only resources are
grants. Intuitively, if a principalp has the right to is-
sue a grantg, andp does issueg, theng is a true state-
ment.

We remark that, although the grants∀xPr (x) and∀yPr(y)
have the same semantic interpretation (all principles have
propertyPr), XrML treats them as distinct grants syntacti-
cally. For example, according to the XrML algorithm, if Al-
ice is permitted to issue the grant∀xPr (x), then she is not
necessarily permitted to issue∀yPr(y).

We formally define the language’s syntax according to
the following grammar.

license ::= (grant , prin)
grant ::= ∀var . . . ∀var (cond → conc)
var ::= prinVar | rsrcVar

cond ::= Said(prin , conc) | cond ∧ cond | true

conc ::= prop(prin) | Perm(prin , right , rsrc)
prop ::= Pr

prin ::= {p} | {prinVar} | prin ∪ prin

right ::= issue

rsrc ::= grant | rsrcVar ,

where Pr is a generic element ofprimitiveProp , p is
a generic element ofprimitivePrin , and prinVar and
rsrcVar are variables ranging over primitive princi-
ples and resources, respectively. For the remainder of
this paper we assume that the second argument in a li-
cense is a singleton. Because the XrML document
treats the license(g, {p1, . . . , pn}) as an abbrevia-
tion for the set of licenses{(g, p) | p ∈ {p1, . . . , pn}}, it
is easy to modify our discussion to support all of the li-
censes included in the grammar. We further restrict the lan-
guage so that all grants areclosed, that is, for each grant
∀x1 . . . ∀xn(d → e), the set of free variables ind → e is
contained in{x1, . . . , xn}. We discuss some of the conse-
quences of this restriction in Section 4, and remove it in the
full paper.

As mentioned at the beginning of this section, the gram-
mar presented here is not identical to that described in the
XrML document. The differences are listed below.

• Instead of assuming that the application provides a set
of primitive principals, XrML assumes that the appli-
cation provides a setK of cryptographic keys; the set
of primitive principals is{KeyHolder(k) | k ∈ K}.

We could takeprimitivePrin to be this set; how-
ever, our more general approach leads to a simpler
discussion. Moreover, our results do not change if
we restrict primitive principals to those of the form
KeyHolder(k).

• XrML does not have conditions of the form
Said(p, e). To capture Said conditions, XrML
uses PrerequisiteRight conditions of the form
(G, e), whereG is a set of grants ande is a con-
clusion. A condition Said({p1, . . . , pn}, e) in
our syntax (where eachpi is a primitive princi-
pal or a variable of sortPrincipal) corresponds to the
PrerequisiteRight condition ({g1, . . . , gn}, e) in
XrML, where eachgi is ∀xPerm(pi, issue, x) and
x is a variable of sortResource.

• XrML does not have conclusions of the formPr(p).
To capture properties, XrML uses a right called
PossessProperty, and considers the properties
given by the application to be resources. The conclu-
sion Pr(p) in our grammar corresponds to the con-
clusion Perm(p, PossessProperty,Pr) in XrML.
We have two types of conclusions because we be-
lieve the grammar should help distinguish the concep-
tually different notions of permissions and properties,
rather than confounding them.

• Instead of writing allConds(c1, . . . , cn),
allConds(), and AllPrincipals(p1, . . . , pn),
we use the more standard notationsc1 ∧ . . .∧ cn, true,
andp1 ∪ . . . ∪ pn, respectively.

• XrML abbreviates a set of licenses{(gi, pj) |
i ≤ n, j ≤ m} as the single license
({g1, . . . , gn}, {p1, . . . , pm}). For ease of expo-
sition, we do not do this. Our discussion can be
easily extended to take the abbreviation into ac-
count.

3. XrML’s Authorization Algorithm

The XrML document includes a procedure that we call
Query to determine if a conclusion follows from a set of li-
censes (and some additional input that is discussed below).
In this section we present and analyze the parts of the algo-
rithm that pertain to our fragment.

Before describing the algorithm, we note that some as-
pects ofQuery are inefficient. This is acknowledged in the
XrML document, which explains thatQuery was designed
with clarity as the primary goal; it is the responsibility ofthe
language implementors to create efficient algorithms with
the same input/output behavior asQuery. (In Section 5, we
show that it is highly unlikely that such an efficient algo-
rithm exists.)

3.1. A Description of Query

The input toQuery is a closed conclusione (i.e., a con-
clusion with no free variables), a setL of licenses(g, p)
such thatp is variable-free, and a setR of grants;Query re-
turnstrue if e is implied byL andR. To explain the intu-
ition behindL andR, we first note that the procedure treats
a predefined set of principals as trusted. If the grantg is
issued by a trusted principal, theng is in R and it is as-
sumed to be true. If the license(g, p) is in L, theng is is-
sued byp (i.e., p saysg) andp is not an implicitly trusted
principal. To clarify the inferences that are drawn fromR
andL, suppose that the grantg is QueenOfSiam(Alice),
which means Alice is Queen of Siam, and the grantg′ is
Perm(Alice, issue, g), which means Alice may issueg.
If g ∈ R, then we assume that Alice really is queen. If
(g,Alice) is in L, then Alice says that she is the queen,
but we cannot conclude that she is royalty from this state-
ment alone. If(g,Alice) is in L andg′ is in R, then we as-
sume that Alice has the authority to declare herself queen,
becauseg′ ∈ R; we assume that she exercises that author-
ity, because(g,Alice) ∈ L; and we conclude that Alice is
queen, because this follows from the two assumptions.

Query begins by calling theAuth algorithm.Auth takes
e, L, andR as input; it returns a setD of closed conditions
(i.e., conditions with no free variables). Roughly speaking,
a closed conditiond is in D if d, L, andR together implye.
To determine if a condition inD holds,Query relies on the
Holds algorithm. The input toHolds is a closed conditiond
and a setL of licenses;Holds(d, L) returns true only if the
licenses inL imply d. (Notice thatHolds does not takeR
as input. We examine the consequences of this omission in
Section 3.2.) IfHolds(d, L) returnstrue for somed in D,
thenQuery returnstrue, indicating thatL andR imply e.
Query is summarized in Figure 1.

Query(e, L, R):

let D = Auth(e, L, R)
for eachd ∈ D

if Holds(d, L) returnstrue

then Returntrue

Returnfalse

Figure 1. The Query Algorithm

We now discussAuth andHolds in some detail. To de-
fineAuth, we first consider the case whereL = ∅ and every
grant inR has the formdg → eg. In this caseAuth(e, ∅, R)
returns the setD of closed conditions such that each con-
dition, together withR, implies e. More precisely, a con-
dition d is in D if there is a grantg = d → eg in R

such thateg implies e. In determining whether or not the
implication holds,Auth makes thesubset assumption. The
subset assumption says that any property or permission at-
tributed to a principalp is attributed to every principal that
includesp. In other words, ifp ⊆ p′, thenPr(p) implies
Pr(p′) and Perm(p, r, s) implies Perm(p′, r, s). Thus,
Auth(Pr(p), ∅, R) returns

{d | d → Pr(pg) ∈ R andpg ⊆ p}

andAuth(Perm(p, r, s), ∅, R) returns

{d | d → Perm(pg, r, s) ∈ R andpg ⊆ p}.

Suppose that there is at least one grant
∀x1 . . . ∀xn(dg → eg) in R such thatdg → eg is
open (i.e., has free variables). Then we reduce this case
to the previous one by considering all the substitution in-
stances of grants inR. Define aclosed substitution to be a
mapping from variables to closed expressions of the appro-
priate type. Given a closed substitutionσ and an expression
t, let tσ be the expression that arises after all free vari-
ablesx in t are replaced byσ(x). Let RΣ = {dgσ → egσ |
∀x1 . . . ∀xn(dg → eg) ∈ R, σ is a closed substitution}.
We then defineQuery(e, ∅, R) to beQuery(e, ∅, RΣ). As
we show in Section 3.2,RΣ may be infinite, in which case
Query is not well-defined. For ease of exposition, we as-
sume thatRΣ is finite for the rest of this section. In Sec-
tion 3.3 we propose a restriction on the language that
guarantees thatRΣ is finite.

Finally, suppose thatL is not necessarily∅. Then
we reduce this case to the previous one by taking
Auth(e, L, R) = Auth(e, ∅, R′), where

R′ = R ∪ R′′

R′′ = {g | for some principalp and conditiond, (g, p) ∈ L,
d ∈ Auth(Perm(p, issue, g), L − {(g, p)}, R),
andHolds(d, L) returnstrue}.

R′ consists of the grants inR and the grants that are is-
sued by someone who has the authority to do so. Intu-
itively, R′ is the set of grants that hold, since the grants in
R implicitly hold and, as discussed in Section 2, a grant
g holds if it is issued by a principalp and p is permit-
ted (i.e., has authority) to issueg. To determine if a prin-
cipal p is permitted to issue a grantg we should be able to
call Query(Perm(p, issue, g), L, R), which returnstrue

if Holds(d, L) returnstrue for somed in the set returned
by Auth(Perm(p, issue, g), L, R). This is indeed how we
determine ifg ∈ R′, with one minor change: the second ar-
gument toAuth is L − {(g, p)} rather thanL. We discuss
the consequences of this choice in Section 3.2. (As an aside,
we suspect that the design decision was made because it is
easy to see that the algorithm will not terminate if we re-
placeL − {(g, p)} by L.) Pseudocode forAuth is given in
Figure 2.

Auth(e, L, R):

let D = ∅
if L = ∅
then

% FindD, the conditions under whichR impliese
for each grant∀x1 . . . ∀xn(dg → eg) ∈ R

and each closed substitutionσ
if e = Pr(p) andegσ = Pr(pg) or

e = Perm(p, r, s) andegσ = Perm(pg, r, s),
andpg ⊆ p

then let D = D ∪ {dgσ}
else

% FindR′

let R′ = R
for each(g, p) ∈ L

let L′ = L − {(g, p)}
let D = Auth(Perm(p, issue, g), L′, R)
for eachd ∈ D

if Holds(d, L) returnstrue

then let R′ = R′ ∪ {g}
% FindD, the conditions under whichR′ impliese
let D = Auth(e, ∅, R′)

ReturnD

Figure 2. The Auth Algorithm

We defineHolds(d, L) by induction on the structure ofd.
If d is true, thenHolds(d, L) returnstrue. If d = d1 ∧ d2,
then Holds(d, L) returnstrue iff both Holds(d1, L) and
Holds(d2, L) returntrue. If d = Said(p, e), thenHolds
setsRp to the grants issued by a principal who has the au-
thority to do so, under the assumption thatp may issue any
grant. That is,

Rp = {g | for some license(g, p′) ∈ L and condition
d ∈ Auth(Perm(p′, issue, g), L − (g, p′), R′

p)
such thatHolds(d, L) returnstrue},

where

R′
p = {∀xPerm(p′, issue, x) | p′ ∈ p}.

Holds(Said(p, e), L) returnstrue if there is a grantg in
Rp and a conditiond such thatg andd together implye
(without making use of the subset assumption). Pseudocode
for Holds is given in Figure 3.

Example 3.1: In Section 2, we argued informally that
Amy says Bob is attractive, if the set of licenses isL =
{(g1,Alice), (g2,Amy)}, whereg1 = Smart(Bob) and
g2 = Said(Alice,Smart(Bob)) → Attractive(Bob).
The formal algorithm confirms this conclusion,
since Holds(Said(Amy,Attractive(Bob)), L)

Holds(d, L):

if d = true then Returntrue

if d = d1 ∧ d2 then ReturnHolds(d1, L) ∧ Holds(d2, L)

if d = Said(p, e)
then

% FindRp

let Rp = ∅
let R′

p = {∀xPerm(p′, issue, x) | p′ ∈ p}
for each(g, p′) ∈ L

let L′ = L − {(g, p′)}
let D = Auth(Perm(p′, issue, g), L′, R′

p)
for eachd′ ∈ D

if Holds(d′, L) returnstrue

then let Rp = Rp ∪ {g}

% Returntrue if Rp impliese
for each grant∀x1 . . .∀xn(dg → eg) ∈ Rp and

closed substitutionσ such thategσ = e
if Holds(dgσ, L) returnstrue

Return true

Return false

Figure 3. The Holds Algorithm

returns true. To see this note that
Holds(Said(Amy,Attractive(Bob)), L) first de-
termines R′

Amy , which is {g2}. Intuitively, this in-
dicates thatg2 holds, if we assume that the grants
issued by Amy hold. The algorithm then calls
Holds(Said(Alice,Smart(Bob)), L) to determine if the
condition Said(Alice;Smart(Bob)) holds. Intuitively,
this is done becauseg2 and Said(Alice,Smart(Bob))
together imply Said(Amy ,Attractive(Bob)).
Holds(Said(Alice,Smart(Bob)), L) first calculates
R′

Alice to be {g1} and then callsHolds(true, L), be-
cause g1 holds if we assume that the grants issued
by Alice hold and that g1 and true together im-
ply Smart(Bob). Holds(true, L) returns true, so
Holds(Said(Alice,Smart(Bob)), L) returns true, and
then Holds(Said(Amy,Attractive(Bob)), L) does as
well.

Suppose that a trusted principal says that Amy has the
authority to issueg2 (i.e., if Amy saysg2, theng2 holds).
Then we can conclude that Bob really is attractive, be-
cause Query(Attractive(Bob), L, R) returns true,
where R = {Perm(Amy, issue, g2)}. Specifically,
Query begins by callingAuth(Attractive(Bob), L, R).
Auth(Attractive(Bob), L, R), in turn,
calls Auth(Attractive(Bob), ∅, R′), where
R′ = {g2,Perm(Amy, issue, g2)}.

Auth(Attractive(Bob), ∅, R′) returns
{Said(Alice;Smart(Bob))}. So, Bob is attractive
if the condition Said(Alice;Smart(Bob)) holds.
To determine if the condition holds,Query calls
Holds(Said(Alice;Smart(Bob)), L). As observed
above, Holds(Said(Alice;Smart(Bob)), L) returns
true, soQuery(Attractive(Bob), L, R) does as well.

3.2. An Analysis of Query

In this section we present seven examples in which
Query gives unexpected results. Example 3.2 reveals a mis-
match betweenQuery and the informal language descrip-
tion; the discrepancy exists becauseAuth makes the subset
assumption and the informal language description does not.
Examples 3.3 and 3.4 illustrate the consequences of not in-
cluding assumptions in the input toHolds; in Example 3.3
the grants issued by implicitly trusted principals (i.e., those
in R) are disregarded, and in Example 3.4 the assumption
thatp may issue any grant is disregarded when evaluating
Said(p, e). Examples 3.5 and 3.6 show thatQuery does not
terminate on all inputs, for two quite different reasons: Ex-
ample 3.5 shows that on certain inputAuth returns an infi-
nite set, and Example 3.6 shows that on certain inputHolds
makes infinitely many recursive calls. Example 3.7 demon-
strates that a license(g, p) should not be removed from the
set of licenses when determining ifp is permitted to issue
g. Finally, Example 3.8 uncovers a minor discrepancy be-
tween the description ofR and its use inQuery.

Example 3.2: Suppose that Alice is quietly walking beside
her two giggling daughters, Betty and Bonnie. Are the three
of them a quiet group? Intuitively, the answer is no, since
Betty and Bonnie are giggling. According toQuery, how-
ever, the answer is yes. Because Alice is quiet andAuth
makes the subset assumption,Query concludes that the
principal{Alice,Betty,Bonnie} is quiet. That is,

Query(Quiet({Alice,Betty,Bonnie}), ∅, {Quiet(Alice)})

returnstrue, indicating that the group is quiet.

Example 3.3: Suppose that Alice may issue a grantg and,
if it follows from Bob’s statements that Alice may issueg,
then Charlie may issueg. May Charlie issueg? The answer
should be yes. If Alice may issueg, then this right follows
from any statement (or no statement at all). However, ac-
cording to the XrML algorithm, Charlie may not issueg. To
see why, let

g1 = Perm(Alice, issue, g),
g2 = d → Perm(Charlie , issue, g), and
d = Said(Bob,Perm(Alice, issue, g)).

We are interested in

Query(Perm(Charlie , issue, g), ∅, {g1, g2}).

Query begins by calling

Auth(Perm(Charlie , issue, g), ∅, {g1, g2}),

which returns{d}. Intuitively, Charlie may issueg if the
conditiond holds. The algorithm then executesHolds(d, ∅)
(since the set of licenses is∅), and this call returnsfalse.
Roughly speaking,Holds(d, ∅) returns false becaused
does not follow from the (empty) set of licenses. To get the
intuitively correct answer thatd holds,Holds would need
to takeR into account. But it cannot possibly do this, since
R is not part ofHolds’s input. Because none of the condi-
tions returned byAuth are met according toHolds, Query
returnsfalse and we (wrongly) conclude that Charlie does
not have permission to issueg.

Example 3.4: Let d be the condition

Said({Alice,Amy},Perm(Alice, issue,Smart(Alice))).

Intuitively, d holds, because Alice is permitted to issue the
grantSmart(Alice), given that Amy and Alice are per-
mitted to issue every grant. However,Holds(d, ∅) returns
false, becauseRp includes only grants that are mentioned
in L, which is∅ in this case.

Suppose that instead of being∅, L =
{(g1,Alice), (g2,Amy)}, where g1 = Smart(Alice)
and g2 = Said(Bob,Smart(Alice)) →
Perm(Alice, issue,Smart(Alice)). Now, Holds(d, L)
should returntrue for a reason quite different from that
above. To see this, notice that if Alice and Amy may is-
sue any grant, theng1 and g2 hold. Therefore, Al-
ice is smart and, as in Example 3.3, it follows that
Said(Bob,Smart(Alice)) holds (since Alice is smart,
this fact follows from Bob’s statements). Because the con-
dition in g2 holds andg2 holds, the conclusion ofg2

holds and, thus, Alice may issue the grantSmart(Alice).
Unfortunately, Holds(d, L) still returns false. Specif-
ically, Holds(d, L) sets Rp = {g1, g2}. It then calls
Holds(Said(Bob,Smart(Alice)), L). This call re-
turns false, because it is not passed the assumption that
Alice’s statement holds.

Example 3.5: Suppose that Alice is trusted, if Amy says
that she may issue some grant (any grant at all). Is Alice
trusted? To answer this query, we must compute

Query(Trusted(Alice), ∅, {∀x(d → Trusted(Alice))}),

whered = Said(Amy ,Perm(Alice, issue, x)). Query
begins by calling

Auth(Trusted(Alice), ∅, {∀x(d → Trusted(Alice))}),

which returnsD = {Said(Amy,Perm(Alice, issue, g)) |
g is a grant}. Query then calls Holds(d′, L) for each
d′ ∈ D. However, the language includes infinitely-many

grants, even if there is only one propertyPr and one prin-
cipal p in the language. To see this, define grantsgn,
n ≥ 1, inductively by takingg1 = true → Pr(p)
and gn+1 = Said(p,Perm(p, issue, gn)) → Pr(p)
for all n > 0. Clearly each of these grants is dis-
tinct. SinceD is an infinite set,Query does not terminate.

Example 3.6: Suppose that Alice and Amy may issue any
grant, Alice says that Bob is trustworthy if Amy says that
he is, and Amy says that Bob is trustworthy if Alice says
that he is. Should we conclude that Bob is trustworthy? The
intuitive answer is no, since neither Alice nor Amy says that
he is.

To answer this query usingQuery, let e =
Trustworthy(Bob), L = {(g1,Alice), (g2,Amy)}, g1 =
Said(Amy, e) → e, g2 = Said(Alice, e) → e, andR =
{∀xPerm(Alice, issue, x), ∀xPerm(Amy, issue, x)},
where x is a variable of sortResource. We are in-
terested in Query(e, L, R). Query(e, L, R) be-
gins by calling Auth(e, L, R), which returns the set
D = {Said(Amy , e),Said(Alice, e)}. Query then
calls Holds on each of the conditions inD. Dur-
ing the execution ofHolds(Said(Amy , e), L), Holds sets
RAmy = {g2}, and then callsHolds(Said(Alice, e), L).
Holds(Said(Alice, e), L) setsRAlice = {g1}, and then
calls Holds(Said(Amy , e), L). Notice that this is just the
original call. It is not hard to see that an infinite num-
ber of calls toHolds(Said(Amy, e), L) will be made dur-
ing the execution ofHolds(Said(Amy, e), L) and, thus,
the algorithm does not terminate.

It is tempting to conclude that a conclusione fol-
lows from a setL of licenses and a setR of grants only
if Query(e, L, R) terminates and returnstrue. Unfortu-
nately, this might not lead to the intuitively correct answer.
To see why, consider a slight modification of our pre-
vious example where we add{Trustworthy(Bob)}
to the grant setR. Intuitively, this means that an im-
plicitly trusted principal says that Bob is trustworthy. It
now seems reasonable to expectQuery(e, L, R′) to re-
turn true, where R′ = R ∪ {e}, and e, L, and R
are as defined in the original example. Surely the is-
sued grants imply that Bob is trustworthy, since a grant
issued by a trusted principal says just that! However, the ex-
ecution ofQuery(e, L, R′) does not terminate for the same
reason thatQuery(e, L, R) does not terminate.

Example 3.7: Suppose that Alice says that she is smart,
and if Alice says that she is smart, then she is per-
mitted to say that she is smart. Is Alice smart? In-
tuitively, the answer is yes, because Alice is per-
mitted to say that she is smart and she does so.
But consider Query(Smart(Alice), L, R), where
L = {(g,Alice)}, R = {Said(Alice,Smart(Alice)) →

Perm(Alice, issue, g)}, and g = Smart(Alice).
Query(Smart(Alice), L, R) begins by calling
Auth(Smart(Alice), L, R). This algorithm checks
whether or not Alice is permitted to issueg. It deter-
mines that Alice may not issueg, because the permission
does not follow fromR andL − {(g,Alice)}. Since Al-
ice is not permitted to issueg, Auth setsR′ = R and re-
turns ∅. BecauseAuth returns∅, Query returns false.

Example 3.8: Suppose that a trusted principal issues the
grant g1, whereg1 says ‘if Amy says that some princi-
pal may issueg2, then Alice may issue it’. May Alice issue
g2? At first glance, the answer should be no. Alice may is-
sueg2 only if Amy says that some principal may issueg2;
we cannot conclude this fromg1 alone. However,g1 was is-
sued by a trusted principal, who we will callpt, pt may is-
sue any grant, and, thus,pt’s right to issueg2 follows
from Amy’s statements, because it is true. So, the condi-
tion in g1 is met and Alice may issueg2. Unfortunately,
Query(Perm(Alice, issue, g2), ∅, R) returns false,
where R = {∀x(Said(Amy,Perm(x, issue, g2)) →
Perm(Alice, issue, g2))}. Thus, Query does not al-
ways treat the grants inR as having been issued by
a trusted principal (who may issue every grant). Per-
haps a better interpretation is thatQuery treats the grants
in R as being those that are accepted, without assum-
ing that they have been issued by some trusted princi-
pal. While this is a perfectly reasonable interpretation, it
is not consistent with the discussion in the XrML docu-
ment.

3.3. A Corrected Version of Query

In this section we reviseQuery and the informal lan-
guage description to avoid the problems observed in Sec-
tion 3.2. Three of the corrections are fairly straightforward.

• We resolve the mismatch illustrated in Example 3.2 by
removing the subset assumption fromAuth. We note
that the language is sufficiently expressive to force the
subset assumption, if desired, by including the follow-
ing grants inR:

g = ∀x1 . . .∀x3(Perm(x1, issue, x2) →
Perm(x1 ∪ x3, issue, x2))

gi = ∀x1∀x2(Pr i(x1) → Pr1(x1 ∪ x2)),
for i = 1, . . . , n,

wherex1, . . . , x3 are variables of the appropriate sorts
andPr 1, . . . ,Prn are the properties in the language.

• We address the problem exhibited in Example 3.3 by
modifyingQuery so thatR (the set of grants issued by
a trusted principal) is passed to and used appropriately

by Holds. In addition, we addR′
p to R during the eval-

uation ofSaid(p, e). This solves the problems high-
lighted in Example 3.4.

• We do not reviseQuery in any way to respond to
the discussion in Example 3.8. Instead, we change
the intuitive meaning ofR; we assumeR is the set
of grants that implicitly hold, although they are not
necessarily issued by a principal (trusted or other-
wise). We remark that we could force the algorithm
to treat a principalp as trusted by including the grant
∀xPerm(p, issue, x) in R, wherex is a variable of
the sortResource.

There are three remaining issues, corresponding to Exam-
ples 3.5, 3.6, and 3.7. We consider each of these in turn.

We restrict the language to avoid the type of nontermi-
nation that occurs in Example 3.5. There are various restric-
tions that could accomplish this. To understand ours, recall
that Auth(e, L, R) first extendsR to R′ by adding all the
grants that are issued by someone who has the authority to
do so. Since all the grants inR′ − R are inL, the setR′

must be finite. Then,Auth creates the possibly-infinite set
RΣ consisting of all substitution instances of grants inR′,
and returns{d | d → e ∈ RΣ}. (For simplicity here, we are
assuming thatAuth does not use the subset assumption; this
assumption does not affect our discussion.) SinceAuth con-
siders only the grants inRΣ whose conclusion matches the
first input toAuth, we could certainly replaceRΣ by R′

Σ,
where

R′
Σ = {dgσ → e | ∀x1 . . . ∀xn(dg → eg) ∈ R′,

σ is a closed substitution, andegσ = e}.

Becausee is closed,R′
Σ is finite if for every grantg in

R′, if g’s condition mentions a free variablex, then ei-
ther x ranges over a finite set orx appears ing’s con-
clusion. Our solution is simply to restrict the language
so that every grant has this property. Since, in our frag-
ment, there are infinitely-many resources (grants), and only
finitely many principles, this amounts to restricting the lan-
guage so that if∀x1 . . . ∀xn(dg → eg) is a grant, then ev-
ery free variable of sortResource that appears indg also
appears ineg. We call a grantacceptable if it has this prop-
erty; we call a license(g, p) acceptable ifg is acceptable.
Thus, for example,∀x∀y(Said(∅,Perm(x, issue, y)) →
Perm(Alice, issue, y)) is acceptable, but

∀y∀z(Said(∅,Perm(Alice, issue, y)) →
Perm(Alice, issue, z))

is not. It is not hard to see that if a grant
g = ∀x1 . . . ∀xn(dg → eg) is acceptable, then for
any closed conclusione, there are at most2|g||primitivePrin|

grants of the formdgσ → egσ such thatσ is a closed sub-
stitution andegσ = e. Thus, by restricting to acceptable

grants and licenses, we solve the problem raised in Ex-
ample 3.5. Note that, this restriction is, in a sense,
necessary to deal with the problem: Ifg is not accept-
able, then there is a variable of sortResource in dg,
say x, that does not appear ine. If we can find a sub-
stitution σ such thategσ = e, then there must be in-
finitely many distinct grantsdgσ → egσ whereegσ = e,
since there are infinitely many distinct substitutions pos-
sible for x. For example, ife = Perm(Alice, issue, g),
where g is a closed grant, then the set of substitu-
tionsσ such that

Perm(Alice, issue, z)σ = Perm(Alice, issue, g)

andSaid(∅,Perm(Alice, issue, y))σ is closed is the in-
finite set

{[y/t z/g] | t is a closed term of sortResource}.

We now consider the type of nontermination exhibited
in Example 3.6. This behavior occurs becauseQuery tries
to verify that aSaid conditiond holds by checking ifd
holds. We see this in Example 3.6 when the algorithm tries
to verify that the conditionHolds(Said(Amy , e), L) holds
by repeatedly callingHolds(Said(Amy, e), L). To correct
the problem, we modifyHolds so that no call is evaluated
twice. Specifically, the revisedHolds takes a fourth argu-
mentS that is the set ofSaid conditions that have been the
first argument to a previous call;Holds(d, L, R, S) returns
false if d ∈ S. In addition,Holds setsS to ∅ if grants are
added toR, because no condition has been evaluated un-
der the new set of assumptions. BecauseHolds2 calls the
other algorithms, they also take the additional argument.

Finally, we resolve the problem illustrated in Ex-
ample 3.7. As we hinted in Section 3.1, the prob-
lem lies in the definition ofR′. Recall that we define
Auth(e, L, R) = Auth(e, ∅, R′). Roughly speaking,R′

should consist of the set of grants inR together with those
issued by someone who has the authority to do so. In other
words,R′ should beR ∪ {g | for a principalp , (g, p) ∈
L andQuery(Perm(p, issue, g), L, R) returnstrue}.
However, when computingQuery(Perm(p, issue, g), L, R),
Auth is given the argumentL − {(g, p)} rather thanL.
Our solution is to do the “right” thing here, and com-
puteQuery(Perm(p, issue, g), L, R). But now we have
to deal with the problem of termination, since a conse-
quence of our change is thatQuery(e, L, R) terminates
only if the setL = ∅. To ensure termination, we mod-
ify Auth so that it does not call itself to evaluate a con-
clusion that has already been considered. We remark that
this is essentially the same approach that we take to ensur-
ing thatHolds terminates.

Pseudocode for the modifiedQuery2 is given in Fig-
ure 4.Query2 callsAuth2 andHolds2, which are the mod-
ified versions ofAuth andHolds, respectively. Pseudocode

for Auth2 is given in Figure 5 and pseudocode forHolds2
is given in Figure 6.

To summarize, the main differences betweenQuery2,
Auth2, andHolds2 and their analogues as defined in the
XrML document are:

• Auth2 does not make use of the subset assumption.

• Holds2’s output depends onR, which is the set of
grants that implicitly hold.

• Holds2(Said(p, e), L, R, S, E) returnstrue if e fol-
lows fromL, R, andR′

p, which says that every princi-
pal inp may issue every grant.

• For anySaid conditiond, Holds2(d, L, R, S, E) re-
turnsfalse if d ∈ S.

• Auth2 does not remove(g, p) from the set of licenses
when determining ifp may issueg.

• For any conclusione, Auth2(e, L, R, S, E) returns
false if e ∈ E.

Query2(e, L, R, S, E):

let D = Auth2(e, L, R, S, E)
for eachd ∈ D

if Holds2(d, L, R, S, E) returnstrue

then Returntrue

Returnfalse

Figure 4. The Query2 Algorithm

Auth2(e, L, R, S.E):

if e ∈ E
then Return∅
else

let E′ = E ∪ {e}
let R′ = R
for each(g, p) ∈ L

if Query2(Perm(p, issue, g), L, R, S, E′)
returnstrue

then let R′ = R′ ∪ {g}
let D = ∅
for each grant∀x1 . . .∀xn(dg → eg) ∈ R′ and

closed substitutionσ such thategσ = e
let D = D ∪ {dgσ}

ReturnD

Figure 5. The Auth2 Algorithm

Holds2(d, L, R, S, E):

if d = true then Returntrue

if d = d1 ∧ d2

then Return
∧

i=1,2 Holds2(di, L, R, S, E)

if d = Said(p, e)
then

if d ∈ S
then returnfalse

else
let S′ = S ∪ {d}
let R′ = R ∪ {∀xPerm(p′, issue, x) | p′ ∈ p}
if R′ = R

returnQuery2(e, L, R, S′, E)
else

% ResetS′ andE; they might follow fromR′.
returnQuery2(e, L, R′, ∅, ∅)

Figure 6. The Holds2 Algorithm

We observe thatQuery2 terminates on all input that
is in our restricted language. Recall that a grantg =
∀x1 . . . ∀xn(dg → eg) is acceptable if every free variable
of sortResource that is mentioned indg is also mentioned
in eg; the license(g, p) is acceptable ifg is acceptable.

Theorem 3.9: Suppose that e is a closed conclusion, L is a
set of acceptable licenses, R is a set of acceptable grants,
S is a set of Said conditions, and E is a set of conclusions.
Then Query2(e, L, R, S, E) terminates.

Query2 has the intuitively correct input/output be-
havior for the examples in Section 3.2. In Exam-
ple 3.2, Query2(Quiet(p′), ∅,Quiet(p), ∅, ∅) re-
turns false, when p′ = {Alice,Betty,Bonnie}
and p = Alice, because Auth2 does not rely
on the subset assumption. In Example 3.3,
Query2(Perm(Charlie , issue, g), ∅, {g1, g2}, ∅, ∅)
returns true, because Holds2 correctly handles
the set R of grants that implicitly hold. In Exam-
ple 3.4, Holds2(d, ∅, ∅, ∅, ∅) and Holds2(d, L, ∅, ∅, ∅)
both return the intuitively correct answertrue.
We avoid the problem in Example 3.5, since the
grant ∀x(Said(Amy,Perm(Alice, issue, x)) →
Trusted(Alice)) is not acceptable. In Example 3.6,
Query2(Trustworthy(Bob), L, R, ∅, ∅) returns
false and Query2(Trustworthy(Bob), L, R′, ∅, ∅)
returns true, as it should. In Example 3.7,
Auth2(Smart(Alice), L, R, ∅, ∅) returns the intu-
itively correct answer, namelytrue, because Al-
ice’s issuance ofg is taken into account when de-
termining if Alice may issue g. Finally, in Exam-
ple 3.8, Query2(Perm(Alice, issue, g2), ∅, R, ∅, ∅)

returns false, where R =
{∀x(Said(Amy,Perm(x, issue, g2)) →
Perm(Alice, issue, g2))}. This is the intuitively cor-
rect answer, because we no longer assume that some prin-
cipals are implicitly trusted.

We have discussed the examples in Section 3.2 with
members of the MPEG-21 working group that are develop-
ing XrML. They agreed with our observations and have ap-
parently dealt with many of them in the final version of the
specification. Based on these discussions, we believe that
the technical results in the rest of the paper should apply
with very little change to the final XrML specification.

4. Formal Semantics

In this section we provide a formal semantics for the
XrML fragment described in the previous section, by trans-
lating licenses in the grammar to formulas in a modal many-
sorted first-order logic. The logic has three sorts:Principal ,
Right , andResource. The vocabulary includes the follow-
ing symbols:

• a constantp of sortPrincipal for every principalp ∈
primitivePrin ;

• a constantissue of sortRight ;

• a ternary predicatePerm that takes arguments of sort
Principal , Right , andResource;

• a unary predicatePr that takes an argument of sort
Principal for each propertyPr ∈ primitiveProp ;

• a function∪ : Principal × Principal −→ Principal ;

• a constantcg of sortResource for each grantg in the
language.

• a modal operatorVal that takes a formula as an argu-
ment.

Intuitively, Pr (p) means principalp has propertyPr , and
Val(ϕ) means formulaϕ is valid. Notice that every princi-
pal in the grammar corresponds to a term in the language,
because∪ is a function symbol.

The semantics of our language is just the standard se-
mantics for first-order logic, extended to deal withVal. We
restrict attention to models for which∪ satisfies the follow-
ing properties:

U1. ∀x((x ∪ x) = x)

U2. ∀x1∀x2((x1 ∪ x2) = (x2 ∪ x1))

U3. ∀x1∀x2∀x3(x1 ∪ (x2 ∪ x3)) = ((x1 ∪ x2) ∪ x3))

U4. ∀x((x ∪ ∅) = x)

In addition, we are interested only in Herbrand models,
where the only elements of sortPrincipal , Right , and
Resource are interpretations of syntatic terms. We call such
modelsacceptable models. Val(ϕ) is true in an acceptable

modelm if ϕ is true in all acceptable models. If a formulaϕ
is true in all acceptable models, then we sayϕ is valid and
write |= ϕ. Thus,Val(ϕ) is true in an acceptable model iff
|= ϕ.

The translation takes a setL of licenses, a setR of grants,
and a setS of Said conditions as parameters. Intuitively,L
is the set of licenses that have been issued,R is the set of
grants that are assumed to be true, andS is the set ofSaid

conditions that have been considered when determining if a
condition holds. (The role ofS should become clearer in the
course of defining the translation.) Finally, we assume that
if (g, p) ∈ L thenp is variable-free. (We do this because
the assumption is built intoQuery.) The translation is de-
fined below, wheretL,R,S is the translation of the stringt
given inputL, R, andS.

• If (g, p) ∈ L, (g, p)L,R,S = Perm(p, issue, cg) ⇒
gL,R,S.

• If (g, p) 6∈ L, (g, p)L,R,S = true.

• ∀x1 . . . ∀xn(d → e)L,R,S = ∀x1 . . . ∀xn(dL,R,S ⇒
eL,R,S).

• trueL,R,S = true.

• If Said(p, e) ∈ S, thenSaid(p, e)L,R,S = false.

• If Said(p, e) 6∈ S, thenSaid(p, e)L,R,S =

Val(
∧

`∈L

`L,R′,S′

∧
∧

g∈R′

gL,R′,S′

⇒ eL,R′,S′

),

where S′ = S ∪ {Said(p, e)} and
R′ = R ∪ {∀xPerm(p′, issue, x) | p′ ∈
p andx is a variable of sortResource}.

• (d1 ∧ d2)
L,R,S = dL,R,S

1 ∧ dL,R,S
2 .

• Perm(p, r, s)L,R,S = Perm(p, r, s∗), wheres∗ = s
if s is a variable of sortResource ands∗ = cs if s is a
grant.

• Pr(p)L,R,S = Pr (p).

The following theorem shows that our semantics match
the procedure given in the XrML document (corrected as
described in Section 3).

Theorem 4.1: For every closed conclusion e, set
L of acceptable licenses, and set R of accept-
able grants, Query2(e, L, R, ∅, ∅) returns true iff
|=

∧
`∈L `L,R,∅ ∧

∧
g∈R gL,R,∅ ⇒ eL,R,∅.

Before leaving this section, we remark that, in the trans-
lation ofPerm(p, issue, g), we can replaceg by the con-
stant cg because of our assumption thatg is closed. If
we had allowedg to be open (i.e., to include free vari-
ables), then we would need to translate every conclusion
Perm(p, issue, g) as Perm(p, issue, fg(x1, . . . , xn)),
wherefg is a function symbol andx1, . . . , xn are the free

variables ing. Although this extension is straightforward,
it might have a substantial impact on tractability; see Sec-
tion 6.

5. Complexity

In this section, we examine the complexity of deciding if
the revisedQuery2 returnstrue on a given input. As we
now show, the problem is NP hard. The real problem turns
out to be that, if there aren primitive principals, we can con-
struct2n principals using the∪ operator.

Theorem 5.1: Deciding if Query2(e, L, R, ∅, ∅) returns
true, where e is a closed conclusion, L is a set of ac-
ceptable licenses, and R is a set of acceptable grants, is
NP-hard.

Proof: (Sketch:) We show that we can reduce the Hamil-
tonian path problem to the problem of determining
whetherQuery2(e, L, R, ∅, ∅) returnstrue. Given a graph
G(V, E), whereV = {v1, . . . , vn}, we takev1, . . . , vn

to be primitive principles. We also assume that the lan-
guage has primitive propertiesNode, Edge, andPath. For
each nodev ∈ V , we consider a grantgv = Node(v) (re-
call that this is an abbreviation fortrue → Node(v));
for each edgee = (v, v′) ∈ E, we consider the
grant g(v,v′) = Edge({v, v′}). (We are taking advan-
tage of the fact here that{v, v′} is a principal if v and
v′ are primitive principals.) Finally, letg be the grant
∀x1 . . . ∀xn(d1 ∧ d2 → Path({x1, . . . , xn})), where

d1 =
∧

1≤i≤n Said(Alice,Node(xi)) and
d2 =

∧
1≤i≤n−1 Said(Alice,Edge({xi, xi+1})).

Let R = {gv | v ∈ V } ∪ {ge | e ∈ E} ∪ {g}. It is not hard
to show thatQuery2(Path({v1, . . . , vn}), ∅, R, ∅, ∅) re-
turns true iff G has a Hamiltonian path. To see this,
observe that Auth2(Path({v1, . . . , vn}), ∅, R, ∅, ∅)
returns {d1σ ∧ d2σ | σ(xi) = vπ(i), i =
1, . . . , n, whereπ is some permutation of{1, . . . , n}}.
The conditiond2σ holds iff there is a pathx1σ, . . . , xnσ.
Thus, Query2(Path({v1, . . . , vn}), ∅, R, ∅, ∅) returns
true iff there is a Hamiltonian path inG.

Theorem 5.1 shows that deciding the consequences of
even simple grants can be hard. The real culprit here, as we
hinted before, is the ability to form more complex princi-
pals from primitive principals by taking union. If we pro-
hibit the use of the union operator (so that the only princi-
pals that can appear in grants are primitive principals, and
variables of sortPrincipal are taken to range over prim-
itive principals), then the problem becomes tractable. The
key insight is that, without union, the fragment is quite sim-
ilar to function-free negation-free Horn clauses. (The only
difference is that our translation includes theVal operator,

which does not affect the complexity.) Determining if a lit-
eral follows from a set of function-free negation-free Horn
clauses is a well-known polynomial time problem [5]. Us-
ing the same techniques, we can answer our queries in poly-
nomial time.

Theorem 5.2: The problem of deciding whether
Query2(e, L, R, ∅, ∅) returns true, where e is a closed con-
clusion, L is a set of acceptable licenses, and R is a set of
acceptable grants, and ∪ does not appear in e, L, or R, is
in polynomial time.

How serious a restriction is it to disallow the∪ operator?
Principals appear as the second argument in a license, the
first argument in aSaid condition, and the first argument in
a conclusion.

• According to the XrML documentation, the license
(g, {p1, . . . , pn}) is an abbreviation for the set of li-
censes{(g, p) | p ∈ {p1, . . . , pn}}. It follows that we
can restrict the second argument of licenses to prim-
itive principals and variables without sacrificing any
expressive power. (In fact, we can restrict the second
argument of licenses to only primitive principals, be-
causeQuery assumes that if(g, p) is a license inL,
thenp is variable-free.)

• As for the Said condition, if we disallow∪, then
we do lose some expressive power. However, the
loss is not as serious as it may appear. We can re-
place all grants of the formSaid({p1, . . . , pn}, e),
where p1, . . . , pn are primitive principals, by a
grant Said({p1, . . . , pn}∗, e), where {p1, . . . , pn}∗

is a new primitive principal, and then expand
the set L of issued licenses by adding a new li-
cense(g, {p1, . . . , pn}∗) for every license(g, p) al-
ready inL, wherep ∈ {p1, . . . , pn}. It is not hard
to show that this results in at most a quadratic in-
crease in the number of grants. Thus, as long as the
first argument toSaid is variable-free, we can ex-
press it without using∪. However, it seems that we do
lose some expressive power in not being able to ex-
pressSaid conditions where the first argument is a set
that involves a variable.

• To understand the impact of our restriction on con-
clusions, we need to consider the meaning of
statements such asTrust({Alice, Bob}) and
Perm({Alice, Bob}, issue, g). According to the
XrML document,Trust({Alice, Bob}) means Al-
ice and Bob together (i.e., when viewed as a sin-
gle entity) is trusted;Perm({Alice, Bob}, issue, g)
means Alice and Bob is permitted to issueg. How-
ever, the XrML document does not explain pre-
cisely what it means for Alice and Bob to be viewed
as a single entity Indeed, it seems to treat this no-
tion somewhat inconsistently (recall the inconsistent

use of the subset assumption). There are other diffi-
culties with sets. Notice that if{Alice,Bob} is per-
mitted to issue a grant, then presumablyg holds if
{Alice,Bob} issuesg. However, according to the
XrML documentation, the license(g, {Alice,Bob})
is simply an abbreviation for the set of licenses
{(g, {Alice}), (g, {Bob})}. So, it is unclear whether
a principal that is not a singleton can issue a li-
cense. Furthermore, if principals that are not single-
tons can issue grants and{Alice,Bob} is permitted
to issue a grantg, then it seems reasonable to con-
clude thatg holds ifg is issued by both Alice and Bob,
but it is not clear whether or notg holds if it is is-
sued by only Alice (or by only Bob).

There may well be applications where there is an
obvious and clear semantics for these notions. But we
suspect that, in these applications, there are typically
only relatively few groups of interest. In that case, it
may be possible to simply take these groups to be new
primitive principals, and express the relationship be-
tween the group and its elements in the language. (This
approach has the added advantage of forcing license
writers to be clear about the semantics of groups.)

In short, we are optimistic that many applications do not
need the union function.

6. The Entire XrML Language

XrML has several components that are not in our frag-
ment. Most have been excluded simply for ease of exposi-
tion. In this section we list the main omissions, briefly dis-
cussing each one.

• XrML supports patterns, where a pattern restricts
the terms over which a variable ranges. For ex-
ample, if the variablex is restricted to the pat-
tern ‘ends in Simpson’, thenx ranges over the terms
that meet this syntactic constraint (e.g.,x ranges
over{HomerSimpson, MargeSimpson, . . .}). Pat-
terns in XrML correspond to properties in our frag-
ment. We could represent the example in our frag-
ment by having the propertySimpson in the lan-
guage and having the set of grants determine which
terms have the property. XrML also allows a pat-
tern to be a set of patterns. We can express a set of
patterns as a conjunction of patterns. Since we can ex-
press conjunctions of properties in our fragment, we
can also capture sets of patterns.

• XrML supportsdelegable grants. A delegable grantg
can be viewed as a conjunction of a grantg′ in our
fragment and a setG of grants that, essentially, al-
low other principals to issueg′. For example, the del-
egable grant ‘Doctor Alice may view Charlie’s med-

ical file and she may also give the right to view the
file to her colleague, Doctor Bob’ can be viewed as the
conjunction of the grant ‘Doctor Alice may view Char-
lie’s medical file’ and the grant ‘Alice is permitted to
issue the grant ‘Doctor Bob may view Charlie’s medi-
cal file”. Thus, we can express delegable grants in our
framework.

• XrML supportsgrantGroups, where a grantGroup is
a set of grants. We can extend our syntax to support
grantGroups by closing the set of grants (as currently
defined) under the union operator. Note that our pro-
posed treatment of grantGroups is quite similar to our
current treatment of principals.

• XrML supports additional types of rights, resources,
and conditions, beyond what we have in our frag-
ment. There seems to be no difficulty in extending our
translation to handle these new features, and prov-
ing an analogue of Theorem 4.1. However, full XrML
allows resource terms to be formed by applying func-
tions other than∪. For example, the Standard Exten-
sion [3]1 refers to acontainer resource that is a se-
quence of resources. This naturally translates to a func-
tion container:Resource × Resource −→ Resource,
so that the container〈s1, s2, s3〉 is translated as
container(s1, container(s2, s3)). Allowing such func-
tions makes the problem of deciding if a conclusion
follows from a set of XrML licenses and grants un-
decidable, for much the same reason that the validity
problem for negation-free Datalog with function sym-
bols is undecidable [5].

• XrML allows an application to define additional prin-
cipals, rights, resources, and conditions within
the XrML framework. Obviously, we cannot ana-
lyze terms that have yet to be defined; however, we do
not anticipate any difficulty in extending the transla-
tion to deal with these terms and getting an analogue
of Theorem 4.1.

• XrML allows a grantg to include free variables ifg
appears in the scope of a closed grant. As we men-
tion in Section 4, there is no problem dealing with
this extra expressive power semantically; we simply
replace each constantcg by a functionfg. However,
there might be a problem with the extended language’s
tractability. As we have just shown, adding function
symbols in general leads to undecidability. We are cur-
rently investigating whether adding the symbols in this
particular way has similar consequences.

1 XrML has three parts: the core language that we discuss here; exten-
sions to the core that are provided by the XrML language developers,
which includes the Standard Extension; and extensions madeby ap-
plications to suit their particular needs.

• XrML allows licenses to be encrypted and supports ab-
breviations via theInventory component. However, the
XrML procedure for determining if a permission fol-
lows from a set of licenses assumes that all licenses are
unencrypted and all abbreviations have been replaced
by the statements for which they stood. In other words,
these features are engineering conveniences that are
not part of understanding or reasoning about licenses.

7. Concluding Remarks

We have examined XrML carefully, showing that the
XrML algorithm does not seem to capture the designers’
intentions in a number of ways. Since no formal semantics
for XrML is given in the XrML documentation, we can-
not argue that the XrML algorithm is incorrect, although its
behavior does not always seem reasonable. To address the
problem, we provided formal semantics for XrML in a way
that we believe captures the designers’ intent, modified the
algorithm, and showed that the modified algorithm corre-
sponds to our semantics in a precise sense. Our work em-
phasizes the need for license languages to have formal se-
mantics. Without formal semantics, even carefully crafted
languages are prone to ambiguities and inconsistencies.

We have examined only a fragment of XrML. A key rea-
son for XrML’s popularity is that the framework is exten-
sible; applications can define new components (i.e., prin-
cipals, rights, resources, and conditions) to suit their needs.
We do not believe there should be any difficulty in giving se-
mantics to the extended language. The real question of in-
terest though is whether we can find usefultractable exten-
sions. As we have already seen, although functions pose no
semantic difficulties, adding them makes determining what
follows from XrML licenses and grants undecidable. An-
other obvious and desirable feature to add is negation. Cur-
rently, XrML does not support negation in either the condi-
tion or conclusion of grants. This is a significant expressive
weakness. Without negation, policy makers cannot distin-
guish actions they would like to forbid from the actions that
they do not care to regulate. This makes merging two sets
of policies essentially impossible; the merger will be incon-
sistent unless the polices are identical.

While it is easy to extend XrML to support negation, do-
ing so without placing further restrictions on the language
quickly leads to intractability. We believe that, using ideas
from our earlier work [2], we will be able to identify useful
tractable fragments of XrML extended with negation. How-
ever, we leave this to future work.

Acknowledgements

Many thanks to Xin Wang (an editor for the XrML doc-
ument), who answered our questions about the intended

meaning of various XrML components.

References

[1] ContentGuard. XrML: The digital rights language for trusted
content and services. http://www.xrml.org/, 2001.

[2] J. Halpern and V. Weissman. Using first-order logic to reason
about policies. InProc. 16th IEEE Computer Security Foun-
dations Workshop, pages 187–201, 2003.

[3] MPEG. MPEG-21 rights expression language FCD.
http://www.chiariglione.org/mpeg/workingdocuments.htm,
2003.

[4] MPEG. Information technology—Multimedia framework
(MPEG-21) – Part 5: Rights expression language (ISO/IEC
21000-5:2004). http://www.iso.ch/iso/en/, 2004.

[5] A. Nerode and R. Shore.Logic for Applications. Springer-
Verlag, New York, 2nd edition, 1997.

