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Abstract. A policy is a statement that an action is permitted or forbid cer-
tain conditions hold. We introduce a language for reasoabmyut policies called
Rosetta. What makes Rosetta different from existing amres is that its syn-
tax is essentially a fragment of English. The language asddrmal semantics,
and we can prove whether a permission follows from a set oé®Ragolicies in
polynomial time. These features make it fairly easy for @olanguage develop-
ers to provide translations between their languages arsl disra result, policy
writers and (human) readers can create and access poliei¢isevinterface of
their choice; these policies can be translated to Rosetthpace in Rosetta can
be translated to an appropriate language for enforcement.

1 Introduction

A policy describes the conditions under which an actionhsag copying, modifying,
or distributing digital content, is permitted or forbidd@igital content providers write
policies to govern the use of their works. For example, thdA@ssociation for Com-
puting Machinery) has a set of policies that regulate acoetbeir digital library. These
policies include statements such as ‘members of the ACM emifted to access the
articles in the library for personal use’ and ‘members mairepublish the articles
without explicit permission from the ACM’ [Ass04]. Provideand managers of digital
content want the task of writing policies to be as easy asiiples$n addition, they want
their policies to be intelligible to human readers and ecdbte by computers.

Existing policy languages fail to meet these requiremeXithough the details are
deferred to the next section, the key points are as follovegufdl language is fairly
intuitive for (human) readers and writers, but policiestten in a natural language
cannot be readily enforced by computers. XML-based langsiagych as ODRL[lan01]
and XrML [MPEO4], make progress towards enforceability, liave syntax that is too
complex for non-expertusers. Logic-based languages,aaittte tractable fragments of
first-order logic considered in [HWO03] and Binder [DeT02k anforceable, but require
policy writers and readers to be logicians and, thus, arapotopriate for many digital
content creators and managers.

One solution is to create a new policy management systemsyi$tem would have
a user interface to facilitate the writing and reading ofget, and would have a formal
foundation so that policies written via the interface cobtdenforced in a provably
correct manner. Unfortunately, this approach has two foretdal problems. First, it



is unlikely that a single user interface will meet the neefisw@ry community that
is involved in right's management. Second, it will be difficto convince industry to
provide support for the language (e.g., build operatingesys and media players that
enforce the policies). Therefore, we are not proposing a sy&tem. Instead, we are
introducing a policy language that provides the glue betvtbe different approaches.

We call our language the Rosetta Policy Language, becaissegateway from one
policy language to the next. The key features of Rosetta are:

— Statements in the language are constructed from a set ofaeador English
sentences. This makes the language well-suited to be thedtion for a variety of
user interfaces, each tailored for specific communitieg. (ébrarians, repository
managers, content creators).

— The language is unambiguous and tractable. More preciselgive the language
formal semantics by providing a translation from expressim the syntax to for-
mulas in many-sorted first-order logic. It is this formal falation that makes the
language unambiguous, allows ugptove whether a permission or prohibition fol-
lows from a set of policies, and lets us show that determiifirgpermission or
prohibition follows from a set of policies takes polynomntiahe.

— The language can serve as a front-end for existing poliaydage that are inacces-
sible to non-experts. Because several of the current plaimyuages in the formal
methods community are fragments of many-sorted first-dodge, our translation
amounts to one from our syntax to their languages. Furthexntbe translation
from our language to ODRL and XrML is straightforward (altigh the details are
left to the full paper).

In short, we believe that Rosetta’s English-like syntax tomchal semantics allow pol-
icy language developers to give translations between#pgiroaches and ours. If this is
done, then people can write and read policies via the irderddtheir choice and those
policies can be translated through Rosetta to an appremeaisoning engine (to an-
swer questions such as what is and is not permitted) and tp@oariate enforcement
mechanism (namely the one supported by the relevant industr

The rest of this paper is organized as follows. In the nexti@eeve place our work
in a broader context by briefly reviewing various policy laages. In Section 3, we
introduce the basic syntax of our language, and in Sectiare4jive formal semantics
by translating expressions in the language to formulas inyasarted first-order logic.
Roughly speaking, any expression written in this core laggucan be translated to
any of the popular languages discussed in Section 2. IndeBtive discuss how the
core language can be extended to match some of the uniquieilitégsaof other policy
languages, including ODRL, XrML, and the formal approaclaesl we consider how
these changes effect the language’s usability and trdityaldie conclude in Section 6.

2 Existing Approaches

Policies are traditionally written in a natural languagggtsas English. Using a natu-
ral language makes the policy writing task relatively ed®cause the languages are
usually well-known to the writer and are highly expressidewever, the meaning of



statements in natural language can be ambiguous. For egasuplpose that the ACM
has two policies ‘only authors may edit their works in the AGlgital library’ and
‘anyone who is not permitted to edit a work in the ACM digitédrliry may submit a
request for edits’. If Alice is the author of some work in ti@ry, then the first policy
might allow her to edit that work, or it might simply prevenher people from editing
it. Furthermore, if the first policy does not permit autharsdtit their works, then the
second policy might allow Alice to submit a request for chesitp her work (since she
is not explicitly permitted to edit it) or it might not (sincdice is not forbidden from
editing). Lacking precise meaning, such policies are csinfyifor human readers and
unenforceable by computers.

The ODRL (Open Digital Rights Language) [lan01] and the Xr#Xtensible
rights Markup Language) [MPEO4] were designed to captullieips in a way that
could be readily manipulated by humans and enforced by ctenptograms. For many
policy writers and readers; however, the languages arduitive. If a policy writer is
not familiar with XML conventions, which is often the cadeeh she will find it difficult
to write policies in any XML-based language, including OD&hd XrML. This is true
despite XML toolkits such as XMLSpy [Alt04] and Oxygen [S$OMoreover, even if
the policy reader is conversant with XML-conventions, shiéprobably find policies
written in an XML-based language difficult to read, becalsértmeaning is buried in
verbose XML syntax.

Not only does ODRL and XrML fail to meet the usability goalethalso fail to meet
the enforceability goal. As with natural languages, ODRungnforceable because it
is ambiguous. For example, a computer program cannot c¢hyrreaforce the policy
‘anyone who is not permitted to edit a work may submit a retfise®dits’ when written
in ODRL, because the ambiguity that exists in the Englisisieerexists in the ODRL
version as well. It also seems unlikely that an efficient esdment algorithm exists for
XrML, because determining if a permission follows from a @EKrML policies is an
NP-hard problem [HWO04] (i.e., the time needed to answer hitrary query is at least
exponential in the size of the query).

While ODRL and XrML were under development, the formal methoommunity
was creating its own policy languages. Most of the recenpgsals are an extension of
Datalog (function-free negation-free horn clauses) [GMQR) Perhaps the most pop-
ular choice is safe, stratified Datalog, which supports @didhuse of negation (see for
example, Delegation Logic[LGFO03], the RT (Role-based Frmanagement) frame-
work [LMWO02], Binder [DeT02], and Sd3 [Jim01]). Another ag is Datalog with
Constraints, which supports a limited use of functions feeexample [LM03] and
[BBFS98]). Because these languages have formal sematiteys are unambiguous.
Moreover, the languages are tractable; we can prove whafmemission follows from
the policies written in one of these languages in polynotmiat.

One problem with the Datalog languages is that they do ndadecpolicies that
forbid actions if certain conditions hold. Instead, theseluages assume that any action
that is not explicitly permitted is forbidden. To see whystis a problem, suppose that
Alice and Bob are collaborating on a multimedia projectcAlivants to show the work
in progress to her friends and Bob does not care whether arseas the work before it
is finished. Intuitively, Alice and Bob’s policies do not deedict each other. However,



if the policies are in one of the Datalog languages, then 8pblicy is that no one may
view the unfinished work (since he does not explicitly alldwe tviewing) and, thus,
Bob’s policies do contradict Alice’s. It is not hard to seattlny two policy sets will
contradict one another, unless they are identical. So, #tal®y approaches are not
well-suited to environments in which multiple policy se¢gulate the same resource.

To address this deficiency, we considered various fragmeantgst-order logic
[HWO3]. We refer to the most expressive tractable fragmésdussed in [HWO03] as
the Lithium language. Lithium includes policies that fatlictions, although some re-
strictions on negation are needed to get tractability; aingliage also fully supports the
use of functions. In many cases, the policies that peoplé teatiscuss can be written
in Lithium and we can determine if those policies imply a psgion or prohibition in
polynomial time (see [HWO3] for details).

Although the formal languages meet the enforceability goad are sufficiently
expressive for a number of applications, they are not apfat@for many policy writers
or (human) readers. Policy writers are not typically logis; therefore, expecting them
to write policies in a fragment of first-order logic is unrisit. Similarly, since policy
readers are not usually logicians, they are not likely toausthnd the formulas (even
though they are both succinct and unambiguous).

We have created Rosetta as a first step towards solving tiditysand enforce-
ability problems seen in the other languages. As discugsdle introduction, it is
unlikely that a single interface will meet the usability §éar everyone involved in
policy management. However, we believe that Rosetta peswadsolid foundation for a
family of intuitive interfaces, primarily because it hastamglish-like syntax and formal
semantics. To make languages such as ODRL and XrML enfacael need to give
them formal semantics (thereby removing ambiguity) andedessary, to find tractable
fragments. We propose a formal semantics for ODRL in [PWaaf for XrML in
[HWO04]. (More specifically, we give a translation from padéis written in a repre-
sentative fragment of ODRL and XrML to formulas in many-garfirst-order logic
and modal many-sorted first-order logic, respectively.)hWdee also found a tractable
fragment of XrML that is fairly expressive [HWO04] and are mntly investigating the
complexity of ODRL. While this work addresses key problenithvwoth ODRL and
XrML, the same problems are likely to exist in the next getiereof policy languages
(unless, of course, they are created by the formal methadsemity). Since we cannot
rely on logicians retrofitting formal semantics to every nawguage, we need a way
for the language developer to provide semantics withoutdeilogician. This can be
done through Rosetta. More specifically, language devedogsn guarantee that their
policies are enforceable by translating them to the Endiigh(and, thus, fairly intu-
itive) Rosetta language. Of course, logicians are needertémd Rosetta to suit more
expressive languages; however, we expect that it will bemeasier to extend Rosetta
as needed than to give formal semantics to every new langliseggly.

3 Syntax

In this section, we introduce the basic syntax for our pdémguage, which we extend
in Section 5. The language is a fragment of English with twoegtions. First, it sup-



ports a notion of labeling that is not commonly seen in Eigh&e discuss the benefits
of using labels later in the section. Second, for simpligigrelax the formal definitions

of compound nominals and prepositions. Specifically, wéithe compound nominals
such as ‘"ACM member’ and ‘library stacks’ in our set of comnmmuns, and include

‘than’ in our set of prepositions even though it is sometimssd as a conjunction. The
language is, admittedly, stilted; however, we believe thattovides a solid foundation

for more natural user interfaces. Before presenting thguage, we motivate our work
with a few examples.

Example 1. Consider the simple sentence ‘Alice’s file is confidenti@hile this sen-
tence is not in our language, we can write the similar semtdhd is a file and Alice
ownsf, thenf is confidential’, wheref is a label. Notice that the two sentences are not
exactly equivalent; the first sentence, ‘Alice’s file is cdefitial’, is ambiguous if Alice
has zero files, or if she has more than one. The sentence iamguage does not have
this ambiguity because it says that every file that Alice Banfidentialll

Example 2. Consider the policy ‘if a professor knows a student, thenshgermitted
to enter the library stacks’. This policy could mean thatieleht may enter the library
stacks if the student has been vouched for by the professitrcould mean that pro-
fessors who socialize with students may enter the stackdef®mine the meaning of
the policy, we need to know who is referred to by the pronowi.‘m our language,
we avoid this ambiguity by using labels in place of prono@pcifically, we associate
the common nouns professor and student with the Igbaiwls respectively. Then, we
write the policy as ‘if a professqgr knows a student, thens is permitted to enter the
library stacks’ or as ‘if a profess@rknows a student, thenp is permitted to enter the
library stacks’, depending on the policy’s intended megriin

Example 3. Consider the policy ‘ACM members may republish articleshiéy have
permission from the ACM.” We could write this policy in oumiguage as ‘if an ACM
memberm hasp andp is a permission ang is from ACM anda is an article, themn
is permitted to republish.’ I

The syntax for our language is described by the grammar inr€id. To define
the grammar, we use the abbreviations given in Figure 2 dsas¢he following nota-
tion. Elements in parenthesis are optional;denotes one or more occurences;adnd
[s ] s'] meanss or s’. The start symbols argS, CxP, andCzF. We note that basic facts
such as ‘Alice is a student’ can be encoded in the languagleoddgih these statements
are not policies, they provide information that is oftendegtto determine the implica-
tions of policies. For example, to determine if Alice may dead the syllabus, given
the policy ‘every studend may download the syllabus’, we need to know if Alice is a
student. We also remark that the language given below daeisclade a number of
interesting features, including negation; however, thglemge is extended in Section 5.

We restrict the syntax so that the articles ‘a’ and ‘an’ appeanly if clauses, and
the word ‘every’ never appears in an if clause. As a resutifesees such as ‘Bob bor-
rowed a book’ and ‘if every studestfinishes the exam, then the teacher is permitted
to post solutions’ are not in Rosetta. It turns out that if weeribt make this restriction,
then determining if a permission follows from a set of statais in the language would



Figure 1: The Grammar
SP — NP is permitted toV; NP

Figure 2: Abbreviations

s wp V7 b I
SS — SP | SF Imp
SS simple sentence

CdF — SF (andSF)™*
CdS — SS (andSS)*t
CzP — if [SS | CdS], thenSP

CdF compound fact
cdS compound sentence

A o e
NP — PN |the CN | (a|an) CN L| vp nounpphrase
CNL|L

W VP verb phrase
v _>'(VMZ) y CN common noun

is[Adj | (a | an)CN | (Adj)Prep NP] oy o o
CN — employed book | collection| ...

i iversi L label

PN — Alice | University of Bath| ... v e e ver
L—x|y]|... t S
vV, — download| edit| distribute| . .. Vaur  auxiliary verb
Vour — is | was| does| have| Art article
4 I Adj adjective

Adj — trusted| hi-res| corrupt| ...
Prep — to| of | about| with | in| ...

Prep preposition

be an undecidable problem. We discuss the technical detalgheir implications in
the full paper. Also in the full paper, we extend the syntaxhst common nouns do
not need to be followed by labels. For example, in the fullgyahe sentence ‘if every
student finishes the exam, then the teacher is permittedstosptutions’ is in the lan-
guage, as is ‘if a teacher vouches for a studethiens is permitted to enter the library
stacks.” A preprocessing step adds a label after ‘everyesitidnd ‘a teacher’ before
the translation (as described here) is done.

In practice, the set of terminal symbols (e.g., the adjesticommon nouns, and
transitive verbs) will depend on the application. For extamniie terminal symbols de-
fined in a digital library application might include a propeun for each employee, the
common nouns ‘adult’ and ‘child’, the adjective ‘hearinggaired’, and the transitive
verb ‘download’. The symbols could be defined by the systefarbeany policies are
written; however, we expect that some of the terms will beangd from other applica-
tions or languages (XrML and ODRL both define a set of termsahaappropriate for
various policies) and others will be created by policy wetas they go’. As an aside,
the interface designer does not have to create a text-bapdidation to use Rosetta;
she simply has to provide a translation from the user’s iffputvhatever form it is
given) to statements in our language.

In this section we have presented a simple grammar thatfisisuatly expressive to
capture a number of policies that are of practical intetas$ection 5, we consider var-
ious extensions to increase the language’s expressivigt, Rowever, we give formal
semantics to the language defined thus far.



4 Semantics

In this section we give a translation from statements in tteergnar to formulas in
many-sorted first-order logic. For the rest of this disomssiwe assume knowledge
of first-order logic at the level of Enderton [End72]. Moreesifically, we assume fa-
miliarity with the syntax of first-order logic, including aostants, variables, predicate
symbols, function symbols, and quantification, with the aptits of first-order logic,
including relational models and valuations, and with théiors of satisfiability and
validity of first-order formulas.

We assume that the application provides aggeperNouns of proper nouns, a set
commonNouns of common nouns, a seidjectives of adjectives, a seprepositions
of prepositions, a sdtansitive Verbs of transitive verbs, and a setzilliary Verbs of
auxiliary verbs. In addition, we define the setbs = {transitive Verbs} U {vauz vz |
Vauz € auzilliaryVerbs andv, € transitive Verbs}. The vocabulary includes two sorts
ProperNouns (e.g., Alice, University of Bath) and ctions (e.g., downloading ‘Find-
ing Nemo’, editing a budget report). The vocabulary alsdudes the following sym-
bols:

— aconstanpn of sort ProperNouns for eachpn € properNouns;

— a constanttheCn of sort ProperNouns and a unary predicat€n that takes an
argument of sorProperNouns for eachCn € commonNouns;

— aunary predicateldj that takes an argument of sdttoperNouns for each adjec-
tive Adj € adjectives;

— a binary predicaté’rep that takes two arguments of saftoperNouns for each
prepositionPrep € prepositions;

— abinary predicatel djPrep that takes two arguments of s@ttoper Nouns for each
pair (Adj, Prep), whereAdj € adjectives and Prep € prepositions;

— abinary predicate that takes two arguments of SesperNouns and a unary func-
tion with signatureProperNouns — Actions for eachv € verbs; and

— abinary predicatPermitted that takes arguments of sdttoperNouns andActions.

We remark that a common noun preceeded by the article ‘tHersdo a spe-
cific object in much the same way that a proper noun does. F®rdlason, we as-
sociate each common noun in the syntax with a proper one irtrémslated lan-
guage. We also associate each common noun with a predicatgtively, Cn(n)
means the proper noum is a Cn. For example Book(‘ Moby Dick’) means that
‘Moby Dick’ is a book. The other predicates have a similar nmieg. It is worth not-
ing that if verd is a predicate, themerb(ni,n2) meansn, did verb to ne. On the
other hand, ifverb is a function, therwerb(ni,ns) refers to the action ofi; do-
ing verb to ny. For exampleEdits(Alice, the report) is the statement ‘Alice edits
the report’ if Edits is a predicate, and it is the action of Alice editing the repbr
Edits is a function. AlsoPermitted(n, a) means: is permitted to da. For example,
Permitted(Alice, edits(Alice, the report)) means Alice is permitted to edit the report.

The translation is given below.

— For every simple sentence, complex policy, and complex faat the language
[s]" = Va1, ... Voo (Aewyec, (@) = ([s1]7)), wherez:, ..., z, are the labels



in s andCs = {(c, x) | the common noun and the label are
in the same noun phrase 4.

— If s =‘if S, thenT” is a complex policy or a complex fact, then
[s]" =[S} = [T]".

— If s = S; and ... andS,, is a compound sentence, thid! = [[Sl]] A[SR]E.
— [NPy is permztted to Vi NPo]! = Permltted([[NPl]]O [[Vt]] ([[NPQ]]O))
[[NPI ( auxr Vt NPZ]] - [[Vauw Vt]] ([[NPI]] IINPZ]] )

— [NP is Adj]! Adj([[NP]]O)

— [NP is (Art)ON]! = CN([NP]°).

— [NP; is Prep NP5)! = Prep([[NPl]]O, [NP2]©).

— [NPy is Adj Prep NPo]! = Adj Prep([NP1]°, [NP2]°), whereAd; Prep is the
predicate associated with the paitdj, Prep).

— [PN]° = PN, [the CN]° = theCN, which is the constant associated WitV
[(a] an)CN L]° = L, [every CN L]° = L, [L]° = L, [verb]* is the predicate
associated withverb, and[verb]* is the function assouated witherb.

To illustrate how the translation works, we revisit eachhaf €xamples in Section 3.
For ease of exposition, we change the fonts and capitalizét match standard con-
ventions For example, the common noun boy is associatedhétpredicatdBoy and
the constantheBoy.

Example4. The translation of ‘iff is a file and Alice ownd, thenf is confidential’ is
Vf(File(f) A Owns(Alice, f) = Confidential(f)).

Example 5. The translation of the complex policy ‘if a profesgoknows a student,
thens is permitted to enter the library stacksVigVs(Professor(p) AStudent(s) =
(Knows(p, s) = Permitted(s, Enter(the library stacks)))), which is logically equiv-
alent toVpVs(Professor(p) A Student(s) A Knows(p, s) =

Permitted(s, Enter (the library stacks))).

Example 6. The translation of ‘if an ACM membem hasp and p is a permis-
sion andp is from ACM anda is an article, thenn is permitted to republisl’ is
VYmVpVa(ACMmember(m) = (Has(m,p) A Permission(p) A

From(p, ACM) A Article(a) = Permitted(p, republish(a)))), which is logically
equivalent tovmVpva(ACMmember(m) A Has(m, p) A Permission(p) A
From(p, ACM) A Article(a) = Permitted(p, republish(a))). Il

We now formally define when a permission follows from a settafeanents written
in Rosetta, where a permission is a simple label-free pddiegh as ‘Alice is permitted
to enter the library stacks’.

Definition 1. Let {s1,...,s,} beaset of simple sentences, complex facts, and complex
policies. A permission p follows from{s1, ..., s, } iff theformula
[s1]" Ao A [sn]® = [p]" isvalid. N

Theorem 1. Let £, be the set of formulas of the form [s;]7 A ... A [s,]T = [p]7,
where each s; is a simple sentence, complex sentence, or complex policy, and p isa
permission. The validity problemfor £, is decidablein polynomial time.



This result isimmediate from the fact that every statemetiteé language translates to a
formulathat is essentially in Datalog. (Datalog does noltide functions; however, the
function symbols in our language cannot be nested. Incfufilinction symbols in this
way does not effect tractability.) In fact, every statemienbur language translates to
a formula in Lithium and to an XrML policy (called a licensetime XrML literature).
Also, every policy in our language translates to a policy DR).. (ODRL does not
include simple statements or complex facts.) This is ngbrssing; the language pre-
sented thus far arguably has the core features of any paligyulage. Thus, it is likely
that every Rosetta policy can be translated to every largo&@terest. Of course, a
policy that can be translated to a particular language ef@st might not be expressible
in Rosetta. Therefore, we consider various extensions sefin the next section.

5 Extensions

In this section, we consider key features of ODRL, XrML, liitim, and the Datalog
approaches that are not in our language, and we discuss tisequences of adding
them.

5.1 Simple Extensions
There are a number of straightforward ways in which we caerekthe language.

— Consider the sentence ‘Bob is department chair from Audystp02 to July 31,
2005'. Although this statement is not in our language, itasyeto modify our
approach to include it. To do this, we extend the definitionarb phrases in the
grammar to include strings of the foria CN (Prep NP)*; we add an(n + 1)ary
predicateCN Prep, ... Prep,, to the vocabulary for each sequence of a common
noun andn prepositional symbols; and we add the following to the tiatien:

[NPyis CN Prep, NP ... Prep, NP,]' = CnPreps([NPo]°,...,[NP,]°),

whereCnPreps is the predicate associated with the sequetWe Prep, . . ., Prep,,.
We remark that, as expectddV Py is CN Prep, NP1 ... Prep,, NP,]! =[NP, is CN]*
if n = 0 (i.e., if there are no prepositions following the common mplso, the
sentence ‘Bob is department chair from August, 1, 2002 tp 30) 2005’ is in the
extended language, and translates to

DepartmentChairFromTo(Bob, August, 1, 2002, July31, 2005).

We can further extend the language to support an even widgeraf statements by
allowing sequences of prepositions to appear in noun psrasehe end of every
verb phrase, etc. These modifications are straightforvidodeover, the additional
predicates do not effect the language’s tractability; we stdl determine if a per-
mission follows from a set of sentences in polynomial timbee Dnly problem is
that the translation does not attach any intrinsic mearongdrds such as ‘from’
and ‘to’. Therefore, it is up to the policy creator to inclustatements such as ‘if
is department chair frort to ¢ andt is greater tham; andt is less thart ¢ thenx

is department chair at tim#& We discuss this in the full paper.



— ODRL, among other languages, supports a notion of actioneseses. For exam-
ple, Alice might be permitted to do the action sequence ‘fffayding Nemo’ and
then pay five dollars’. We could extend our language to cathis idea by allow-
ing verb phrases to have the fo#,..) Vi NP( and then (Vay,) Ve NP)T. The
translation is analogous to our treatment for sequencespbgitional phrases; the
extension does not effect tractability.

— Instead of having the soRroperNouns, policy languages typically have a sort for
principals (i.e., agents such as Alice) and resources {fiegns such as the book
‘Moby Dick’). Some languages have additional sorts for meles, and other
useful categories. It is not difficult to mimic their apprbas. To illustrate how
this could be done, suppose that we wanted to replace ouPsgrtrNouns with
two sorts Princ (for principals) andRsrc (for resources). To do this, we would
change the grammar so thBlN — PN p | PN p, where PNp are proper nouns
that are principals (e.g., Alice) anelNV p are proper nouns that are resources (e.g.
‘Moby Dick’). We would need to make a similar split betweermuoon nouns,
labels, adjectives, and prepositions; otherwise we wouoldbe able to translate
these to predicates that took arguments of the appropoéatesd, in the case of
labels, to variables of the appropriate sort. In short, weadapt our language to
accommodate a variety of sorts in placefdbperNouns, but the result will be a
language that is larger and, thus, less easy to use.

We believe that a better approach is to define common noutsagitprincipal’
and ‘resource’ in our (unaltered) language. Then insteatefifing an entity to be
one sort or the other, we could make the same distinctionemoless, by adding
sentences such as ‘Alice is a principal’ and “Moby Dick’ ises@urce’ to our set
of statements. This approach does not have quite the saegat aff multiple sorts
because a proper noun can be described by several adjeétsvasesult, a proper
noun can be both a principal and a resource, or neither. Neless, we feel that
this approach strikes a better balance between exprgsaindtusability.

— ODRL classifies simple sentences based on whether or not has¢he ability to
make the sentence true. For example, Alice can make thensenfdice paid five
dollars’ true by paying five dollars, but if she is five yeand,ahen there is little that
she can do to make the sentence ‘Alice is an adult’ true. Weaddrthis distinction
to our language by splitting simple sentences into thosedtewithin the user’s
control and those that are not. (Essentially, this is theestaohnique that we use
to replace the soProperNouns with the sortsPrinc and Rsre.)

— XrML and ODRL allow an entity (principal, resource, etc.)lde a set of entities.
We capture these groups in our language, by assuming tHabeacorresponds to
a proper noun imroperNouns. The relationship between a group and its members
can be captured as policies and facts in the extended lang&ag example, to
say that a group knows a password if a member of the group kitpwe could
include the following complex fact in the set of statemetfitst principal p knows
a passwordv andp is a member of a groug, theng knowsw’.

— ODRL supports statements such as ‘at least one of the faitpwolicies hold:
p1,---,Pn, €xactly one of the following policies holdi, .. ., p,’, and ‘all of the
following policies hold;py, ..., p,’". The last statement can be captured by simply
including p; throughp,, in the set of statements. To capture the other statements,



we need to extend our language to support negation. To sgentbtice that the
statement ‘at least one of the following policies hald; p.’ means ‘ifp; does not
hold, thenp, holds and ifp; does not hold, thep; holds’. Similarly,'exactly one
of the following policies holdpy, p2’ means ‘if p; does not hold, thep, holds, if
p2 does not hold, thep; holds, ifp; holds, therp, does not hold, and if; holds,
thenp; does not hold.” Adding negation to our language is not shtéigward. We
discuss it in some detail below.

5.2 Negation

Our language does not include sentences such as ‘if Alicetismdisciplinary proba-
tion, then she is permitted to join the swim team’ and ‘Alisebdt permitted to imper-
sonate the professor'. It is easy to extend the languagehaoda negation by replaying
the definition of simple policies and verb phrases given ictia 3 to be, respectively,

SP — NP is permitted toV; NP | NP is not permitted toV; NP
VP — (Vauz)(nOY) V; NP | is(not) S,

whereS — [Adj | (a | an)CN | (Adj)Prep NP]. Accordingly, the translation could be
extended to include the following definitions:

[NP; is not permitted toV; NPy]! = =[NP is permitted to V; NP5]!
[( Vausz) Ot V3 NP]]I = [(Vauz) Vi NP]]I
lis notS])! = —[is S]7,

whereS is again[Adj | (a | an)CN | (Adj)Prep NP].
Unfortunately, this solution leads to a language that isdidate, but not tractable.

Theorem 2. Let £, bethe set of formulas of the form
[[51]]T AN [[Sn]]T = [[p]]T,

where {s1, ..., s} isaset of statements (simple sentences, complex facts, and complex
policies) and p is a permission in the language given in Section 3 extended to include
negation. The validity problemfor £, is decidable; it is NP-hard.

The main reason for the NP-hardness result is that senteanembine to imply new
sentences without forming a chain. For example, considspdicies ‘an employeeis
permitted to enter the library stacks’ and ‘a studeistnot permitted to enter the library
stacks’. Together, these policies imply that employeesatstudents, because no one
can be both permitted and not permitted to enter the stadkslagy, the policies ‘if
s is a good student, thenis permitted to watch ‘Finding Nemo” and ‘i is not a
student, them is permitted to watch ‘Finding Nemo” together imply that ang who
is good may watch the movie (since both a good student and é mymo-student have
permission). Determining the consequences of all thesgdations is what leads to
intractability.

By restricting the language appropriately, we can limitilag/s in which statements
interact and, thus, we can obtain a tractable fragment dfiguage that is still quite



expressive. In [HWO03] we give precise conditions under Wwigdirst-order policy lan-
guage is tractable; these conditions readily apply to thguage given here. We can
restrict the language beyond what is strictly needed fatatzlity to create one that
is still reasonably expressive and is also fairly easy tdarpo users. (Details are
given in the full paper.) In addition, if the set of statenseimiclude only simple facts
and complex policies of the form ‘ [[SF' | CdF'], thenSP’, then it is likely that we
can determine if the statements imply a permission in a redde period of time. (See
[HWO3] for the empirical argument.)

Alternatively, we could tailor our support for negation anting to how it is used
in the Datalog languages or in ODRL. (XrML does not suppogati®n; so, we cannot
base our work on theirs.) However, as mentioned in Sectitme2Datalog approaches
do not support negation in simple sentences or in the thersetaof complex policies
or complex facts. Therefore, the languages might not suppaugh negation to be
useful. Also, it is not clear how we could explain when negatiould be used in the if
clauses of complex sentences (the only place in which regeatin appear), even if we
were willing to restrict the language to make the task ea8igfor negation in ODRL,
we do believe that we could explain the ODRL restrictions egation to a general
audience. However, complexity results for ODRL are notla®ée yet; so, we cannot
rely on previous work to ensure that our language, extengéa@ndle negation in the
ODRL way, is tractable.

6 Conclusion

In this paper, we have introduced Rosetta, a policy langtiaateis well-suited to be
both the back-end for user interfaces and the front-end dticyp languages that are
otherwise inaccessible to non-experts. In the near futueehope to work with our
colleagues in human-computer interaction to design pyptst that exploit Rosetta’s
capabilities.
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