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Abstract. A policy is a statement that an action is permitted or forbidden if cer-
tain conditions hold. We introduce a language for reasoningabout policies called
Rosetta. What makes Rosetta different from existing approaches is that its syn-
tax is essentially a fragment of English. The language also has formal semantics,
and we can prove whether a permission follows from a set of Rosetta policies in
polynomial time. These features make it fairly easy for policy language develop-
ers to provide translations between their languages and ours. As a result, policy
writers and (human) readers can create and access policies via the interface of
their choice; these policies can be translated to Rosetta; and once in Rosetta can
be translated to an appropriate language for enforcement.

1 Introduction

A policy describes the conditions under which an action, such as copying, modifying,
or distributing digital content, is permitted or forbidden. Digital content providers write
policies to govern the use of their works. For example, the ACM (Association for Com-
puting Machinery) has a set of policies that regulate accessto their digital library. These
policies include statements such as ‘members of the ACM are permitted to access the
articles in the library for personal use’ and ‘members may not republish the articles
without explicit permission from the ACM’ [Ass04]. Providers and managers of digital
content want the task of writing policies to be as easy as possible. In addition, they want
their policies to be intelligible to human readers and enforcable by computers.

Existing policy languages fail to meet these requirements.Although the details are
deferred to the next section, the key points are as follows. Natural language is fairly
intuitive for (human) readers and writers, but policies written in a natural language
cannot be readily enforced by computers. XML-based languages, such as ODRL[Ian01]
and XrML [MPE04], make progress towards enforceability, but have syntax that is too
complex for non-expert users. Logic-based languages, suchas the tractable fragments of
first-order logic considered in [HW03] and Binder [DeT02], are enforceable, but require
policy writers and readers to be logicians and, thus, are notappropriate for many digital
content creators and managers.

One solution is to create a new policy management system. Thesystem would have
a user interface to facilitate the writing and reading of policies, and would have a formal
foundation so that policies written via the interface couldbe enforced in a provably
correct manner. Unfortunately, this approach has two fundamental problems. First, it



is unlikely that a single user interface will meet the needs of every community that
is involved in right’s management. Second, it will be difficult to convince industry to
provide support for the language (e.g., build operating systems and media players that
enforce the policies). Therefore, we are not proposing a newsystem. Instead, we are
introducing a policy language that provides the glue between the different approaches.

We call our language the Rosetta Policy Language, because itis a gateway from one
policy language to the next. The key features of Rosetta are:

– Statements in the language are constructed from a set of templates for English
sentences. This makes the language well-suited to be the foundation for a variety of
user interfaces, each tailored for specific communities (e.g., librarians, repository
managers, content creators).

– The language is unambiguous and tractable. More precisely,we give the language
formal semantics by providing a translation from expressions in the syntax to for-
mulas in many-sorted first-order logic. It is this formal foundation that makes the
language unambiguous, allows us toprove whether a permission or prohibition fol-
lows from a set of policies, and lets us show that determiningif a permission or
prohibition follows from a set of policies takes polynomialtime.

– The language can serve as a front-end for existing policy language that are inacces-
sible to non-experts. Because several of the current policylanguages in the formal
methods community are fragments of many-sorted first-orderlogic, our translation
amounts to one from our syntax to their languages. Furthermore, the translation
from our language to ODRL and XrML is straightforward (although the details are
left to the full paper).

In short, we believe that Rosetta’s English-like syntax andformal semantics allow pol-
icy language developers to give translations between theirapproaches and ours. If this is
done, then people can write and read policies via the interface of their choice and those
policies can be translated through Rosetta to an appropriate reasoning engine (to an-
swer questions such as what is and is not permitted) and to an appropriate enforcement
mechanism (namely the one supported by the relevant industry).

The rest of this paper is organized as follows. In the next section we place our work
in a broader context by briefly reviewing various policy languages. In Section 3, we
introduce the basic syntax of our language, and in Section 4,we give formal semantics
by translating expressions in the language to formulas in many-sorted first-order logic.
Roughly speaking, any expression written in this core language can be translated to
any of the popular languages discussed in Section 2. In Section 5 we discuss how the
core language can be extended to match some of the unique capabilities of other policy
languages, including ODRL, XrML, and the formal approaches, and we consider how
these changes effect the language’s usability and tractability. We conclude in Section 6.

2 Existing Approaches

Policies are traditionally written in a natural language, such as English. Using a natu-
ral language makes the policy writing task relatively easy,because the languages are
usually well-known to the writer and are highly expressive.However, the meaning of



statements in natural language can be ambiguous. For example, suppose that the ACM
has two policies ‘only authors may edit their works in the ACMdigital library’ and
‘anyone who is not permitted to edit a work in the ACM digital library may submit a
request for edits’. If Alice is the author of some work in the library, then the first policy
might allow her to edit that work, or it might simply prevent other people from editing
it. Furthermore, if the first policy does not permit authors to edit their works, then the
second policy might allow Alice to submit a request for changes to her work (since she
is not explicitly permitted to edit it) or it might not (sinceAlice is not forbidden from
editing). Lacking precise meaning, such policies are confusing for human readers and
unenforceable by computers.

The ODRL (Open Digital Rights Language) [Ian01] and the XrML(eXtensible
rights Markup Language) [MPE04] were designed to capture policies in a way that
could be readily manipulated by humans and enforced by computer programs. For many
policy writers and readers; however, the languages are unintuitive. If a policy writer is
not familiar with XML conventions, which is often the case, then she will find it difficult
to write policies in any XML-based language, including ODRLand XrML. This is true
despite XML toolkits such as XMLSpy [Alt04] and Oxygen [SS04]. Moreover, even if
the policy reader is conversant with XML-conventions, she will probably find policies
written in an XML-based language difficult to read, because their meaning is buried in
verbose XML syntax.

Not only does ODRL and XrML fail to meet the usability goal, they also fail to meet
the enforceability goal. As with natural languages, ODRL isunenforceable because it
is ambiguous. For example, a computer program cannot correctly enforce the policy
‘anyone who is not permitted to edit a work may submit a request for edits’ when written
in ODRL, because the ambiguity that exists in the English version exists in the ODRL
version as well. It also seems unlikely that an efficient enforcement algorithm exists for
XrML, because determining if a permission follows from a setof XrML policies is an
NP-hard problem [HW04] (i.e., the time needed to answer an arbitrary query is at least
exponential in the size of the query).

While ODRL and XrML were under development, the formal methods community
was creating its own policy languages. Most of the recent proposals are an extension of
Datalog (function-free negation-free horn clauses) [GMUW02]. Perhaps the most pop-
ular choice is safe, stratified Datalog, which supports a limited use of negation (see for
example, Delegation Logic[LGF03], the RT (Role-based Trust-management) frame-
work [LMW02], Binder [DeT02], and Sd3 [Jim01]). Another option is Datalog with
Constraints, which supports a limited use of functions (seefor example [LM03] and
[BBFS98]). Because these languages have formal semantics,they are unambiguous.
Moreover, the languages are tractable; we can prove whethera permission follows from
the policies written in one of these languages in polynomialtime.

One problem with the Datalog languages is that they do not include policies that
forbid actions if certain conditions hold. Instead, these languages assume that any action
that is not explicitly permitted is forbidden. To see why this is a problem, suppose that
Alice and Bob are collaborating on a multimedia project. Alice wants to show the work
in progress to her friends and Bob does not care whether anyone sees the work before it
is finished. Intuitively, Alice and Bob’s policies do not contradict each other. However,



if the policies are in one of the Datalog languages, then Bob’s policy is that no one may
view the unfinished work (since he does not explicitly allow the viewing) and, thus,
Bob’s policies do contradict Alice’s. It is not hard to see that any two policy sets will
contradict one another, unless they are identical. So, the Datalog approaches are not
well-suited to environments in which multiple policy sets regulate the same resource.

To address this deficiency, we considered various fragmentsof first-order logic
[HW03]. We refer to the most expressive tractable fragment discussed in [HW03] as
the Lithium language. Lithium includes policies that forbid actions, although some re-
strictions on negation are needed to get tractability; the language also fully supports the
use of functions. In many cases, the policies that people want to discuss can be written
in Lithium and we can determine if those policies imply a permission or prohibition in
polynomial time (see [HW03] for details).

Although the formal languages meet the enforceability goaland are sufficiently
expressive for a number of applications, they are not appropriate for many policy writers
or (human) readers. Policy writers are not typically logicians; therefore, expecting them
to write policies in a fragment of first-order logic is unrealistic. Similarly, since policy
readers are not usually logicians, they are not likely to understand the formulas (even
though they are both succinct and unambiguous).

We have created Rosetta as a first step towards solving the usability and enforce-
ability problems seen in the other languages. As discussed in the introduction, it is
unlikely that a single interface will meet the usability goal for everyone involved in
policy management. However, we believe that Rosetta provides a solid foundation for a
family of intuitive interfaces, primarily because it has anEnglish-like syntax and formal
semantics. To make languages such as ODRL and XrML enforcable, we need to give
them formal semantics (thereby removing ambiguity) and, ifnecessary, to find tractable
fragments. We propose a formal semantics for ODRL in [PW04],and for XrML in
[HW04]. (More specifically, we give a translation from policies written in a repre-
sentative fragment of ODRL and XrML to formulas in many-sorted first-order logic
and modal many-sorted first-order logic, respectively.) Wehave also found a tractable
fragment of XrML that is fairly expressive [HW04] and are currently investigating the
complexity of ODRL. While this work addresses key problems with both ODRL and
XrML, the same problems are likely to exist in the next generation of policy languages
(unless, of course, they are created by the formal methods community). Since we cannot
rely on logicians retrofitting formal semantics to every newlanguage, we need a way
for the language developer to provide semantics without being a logician. This can be
done through Rosetta. More specifically, language developers can guarantee that their
policies are enforceable by translating them to the English-like (and, thus, fairly intu-
itive) Rosetta language. Of course, logicians are needed toextend Rosetta to suit more
expressive languages; however, we expect that it will be much easier to extend Rosetta
as needed than to give formal semantics to every new languagedirectly.

3 Syntax

In this section, we introduce the basic syntax for our policylanguage, which we extend
in Section 5. The language is a fragment of English with two exceptions. First, it sup-



ports a notion of labeling that is not commonly seen in English. We discuss the benefits
of using labels later in the section. Second, for simplicitywe relax the formal definitions
of compound nominals and prepositions. Specifically, we include compound nominals
such as ‘ACM member’ and ‘library stacks’ in our set of commonnouns, and include
‘than’ in our set of prepositions even though it is sometimesused as a conjunction. The
language is, admittedly, stilted; however, we believe thatit provides a solid foundation
for more natural user interfaces. Before presenting the language, we motivate our work
with a few examples.

Example 1. Consider the simple sentence ‘Alice’s file is confidential’.While this sen-
tence is not in our language, we can write the similar sentence ‘if f is a file and Alice
ownsf , thenf is confidential’, wheref is a label. Notice that the two sentences are not
exactly equivalent; the first sentence, ‘Alice’s file is confidential’, is ambiguous if Alice
has zero files, or if she has more than one. The sentence in our language does not have
this ambiguity because it says that every file that Alice has is confidential.

Example 2. Consider the policy ‘if a professor knows a student, then he is permitted
to enter the library stacks’. This policy could mean that a student may enter the library
stacks if the student has been vouched for by the professor, or it could mean that pro-
fessors who socialize with students may enter the stacks. Todetermine the meaning of
the policy, we need to know who is referred to by the pronoun ‘he’. In our language,
we avoid this ambiguity by using labels in place of pronouns.Specifically, we associate
the common nouns professor and student with the labelsp ands respectively. Then, we
write the policy as ‘if a professorp knows a students, thens is permitted to enter the
library stacks’ or as ‘if a professorp knows a students, thenp is permitted to enter the
library stacks’, depending on the policy’s intended meaning.

Example 3. Consider the policy ‘ACM members may republish articles if they have
permission from the ACM.’ We could write this policy in our language as ‘if an ACM
memberm hasp andp is a permission andp is from ACM anda is an article, thenm
is permitted to republisha.’

The syntax for our language is described by the grammar in Figure 1. To define
the grammar, we use the abbreviations given in Figure 2 as well as the following nota-
tion. Elements in parenthesis are optional;s+ denotes one or more occurences ofs; and
[s | s′] meanss or s′. The start symbols areSS , CxP , andCxF . We note that basic facts
such as ‘Alice is a student’ can be encoded in the language. Although these statements
are not policies, they provide information that is often needed to determine the implica-
tions of policies. For example, to determine if Alice may download the syllabus, given
the policy ‘every students may download the syllabus’, we need to know if Alice is a
student. We also remark that the language given below does not include a number of
interesting features, including negation; however, the language is extended in Section 5.

We restrict the syntax so that the articles ‘a’ and ‘an’ appear in only if clauses, and
the word ‘every’ never appears in an if clause. As a result, sentences such as ‘Bob bor-
rowed a book’ and ‘if every students finishes the exam, then the teacher is permitted
to post solutions’ are not in Rosetta. It turns out that if we did not make this restriction,
then determining if a permission follows from a set of statements in the language would



Figure 1: The Grammar
SP → NP is permitted toVt NP

SF → NP VP

SS → SP | SF

CdF → SF (andSF )+

CdS → SS (andSS)+

CxP → if [SS | CdS ], thenSP

CxF → if [SF | CdF ], thenSF

NP → PN | the CN | (a | an) CN L |
every CN L | L

VP → (Vaux)Vt NP |
is [Adj | (a | an)CN | (Adj )PrepNP ]

CN → employee| book | collection| . . .

PN → Alice | University of Bath| . . .

L → x | y | . . .

Vt → download| edit | distribute| . . .

Vaux → is | was| does| have| . . .

Adj → trusted| hi-res| corrupt| . . .

Prep → to | of | about| with | in | . . .

Figure 2: Abbreviations
SP simple policy
SF simple fact
SS simple sentence
CdF compound fact
CdS compound sentence
CxP complex policy
CxF complex fact
NP noun phrase
VP verb phrase
CN common noun
PN proper noun
L label
Vt transitive verb
Vaux auxiliary verb
Art article
Adj adjective
Prep preposition

be an undecidable problem. We discuss the technical detailsand their implications in
the full paper. Also in the full paper, we extend the syntax sothat common nouns do
not need to be followed by labels. For example, in the full paper the sentence ‘if every
student finishes the exam, then the teacher is permitted to post solutions’ is in the lan-
guage, as is ‘if a teacher vouches for a students thens is permitted to enter the library
stacks.’ A preprocessing step adds a label after ‘every student’ and ‘a teacher’ before
the translation (as described here) is done.

In practice, the set of terminal symbols (e.g., the adjectives, common nouns, and
transitive verbs) will depend on the application. For example, the terminal symbols de-
fined in a digital library application might include a propernoun for each employee, the
common nouns ‘adult’ and ‘child’, the adjective ‘hearing impaired’, and the transitive
verb ‘download’. The symbols could be defined by the system before any policies are
written; however, we expect that some of the terms will be imported from other applica-
tions or languages (XrML and ODRL both define a set of terms that are appropriate for
various policies) and others will be created by policy writers ‘as they go’. As an aside,
the interface designer does not have to create a text-based application to use Rosetta;
she simply has to provide a translation from the user’s input(in whatever form it is
given) to statements in our language.

In this section we have presented a simple grammar that is sufficiently expressive to
capture a number of policies that are of practical interest.In Section 5, we consider var-
ious extensions to increase the language’s expressivity. First, however, we give formal
semantics to the language defined thus far.



4 Semantics

In this section we give a translation from statements in the grammar to formulas in
many-sorted first-order logic. For the rest of this discussion, we assume knowledge
of first-order logic at the level of Enderton [End72]. More specifically, we assume fa-
miliarity with the syntax of first-order logic, including constants, variables, predicate
symbols, function symbols, and quantification, with the semantics of first-order logic,
including relational models and valuations, and with the notions of satisfiability and
validity of first-order formulas.

We assume that the application provides a setproperNouns of proper nouns, a set
commonNouns of common nouns, a setadjectives of adjectives, a setprepositions

of prepositions, a settransitiveVerbs of transitive verbs, and a setauxilliaryVerbs of
auxiliary verbs. In addition, we define the setverbs = {transitiveVerbs} ∪ {vauxvt |
vaux ∈ auxilliaryVerbs andvt ∈ transitiveVerbs}. The vocabulary includes two sorts
ProperNouns (e.g., Alice, University of Bath) andActions (e.g., downloading ‘Find-
ing Nemo’, editing a budget report). The vocabulary also includes the following sym-
bols:

– a constantpn of sortProperNouns for eachpn ∈ properNouns ;
– a constanttheCn of sort ProperNouns and a unary predicateCn that takes an

argument of sortProperNouns for eachCn ∈ commonNouns ;
– a unary predicateAdj that takes an argument of sortProperNouns for each adjec-

tive Adj ∈ adjectives ;
– a binary predicatePrep that takes two arguments of sortProperNouns for each

prepositionPrep ∈ prepositions ;
– a binary predicateAdjPrep that takes two arguments of sortProperNouns for each

pair (Adj ,Prep), whereAdj ∈ adjectives andPrep ∈ prepositions ;
– a binary predicate that takes two arguments of sortProperNouns and a unary func-

tion with signatureProperNouns −→ Actions for eachv ∈ verbs ; and
– a binary predicatePermitted that takes arguments of sortProperNouns andActions.

We remark that a common noun preceeded by the article ‘the’ refers to a spe-
cific object in much the same way that a proper noun does. For this reason, we as-
sociate each common noun in the syntax with a proper one in thetranslated lan-
guage. We also associate each common noun with a predicate. Intuitively, Cn(n)
means the proper nounn is a Cn. For example,Book(‘Moby Dick ′) means that
‘Moby Dick’ is a book. The other predicates have a similar meaning. It is worth not-
ing that if verb is a predicate, thenverb(n1, n2) meansn1 did verb to n2. On the
other hand, ifverb is a function, thenverb(n1, n2) refers to the action ofn1 do-
ing verb to n2. For example,Edits(Alice, the report) is the statement ‘Alice edits
the report’ if Edits is a predicate, and it is the action of Alice editing the report if
Edits is a function. Also,Permitted(n, a) meansn is permitted to doa. For example,
Permitted(Alice, edits(Alice, the report)) means Alice is permitted to edit the report.

The translation is given below.

– For every simple sentence, complex policy, and complex facts in the language
[[s]]T = ∀x1, . . . ,∀xn(

∧
(c,x)∈Cs

c(x) ⇒ ([[sL]]I)), wherex1, . . . , xn are the labels



in s andCs = {(c, x) | the common nounc and the labelx are
in the same noun phrase ins}.

– If s = ‘ if S, thenT ′ is a complex policy or a complex fact, then
[[s]]I = [[S]]I ⇒ [[T ]]I .

– If s = S1 and ... andSn is a compound sentence, then[[s]]I = [[S1]]
I ∧ . . .∧ [[Sn]]I .

– [[NP1 is permitted to Vt NP2]]
I = Permitted([[NP1]]

O, [[Vt ]]
F ([[NP2]]

O)).
– [[NP1 (Vaux ) Vt NP2]]

I = [[VauxVt ]]
P ([[NP1]]

O, [[NP2]]
O).

– [[NP is Adj ]]I = Adj ([[NP ]]O).
– [[NP is (Art)CN ]]I = CN ([[NP ]]O).
– [[NP1 is Prep NP2]]

I = Prep([[NP1]]
O, [[NP2]]

O).
– [[NP1 is Adj Prep NP2]]

I = AdjPrep([[NP1]]
O, [[NP2]]

O), whereAdjPrep is the
predicate associated with the pair(Adj ,Prep).

– [[PN ]]O = PN , [[the CN ]]O = theCN , which is the constant associated withCN ,
[[(a | an)CN L]]O = L, [[every CN L]]O = L, [[L]]O = L, [[verb]]P is the predicate
associated withverb, and[[verb]]F is the function associated withverb.

To illustrate how the translation works, we revisit each of the examples in Section 3.
For ease of exposition, we change the fonts and capitalization to match standard con-
ventions For example, the common noun boy is associated withthe predicateBoy and
the constanttheBoy .

Example 4. The translation of ‘iff is a file and Alice ownsf , thenf is confidential’ is
∀f(File(f) ∧Owns(Alice, f) ⇒ Confidential(f)).

Example 5. The translation of the complex policy ‘if a professorp knows a students,
thens is permitted to enter the library stacks’ is∀p∀s(Professor(p)∧Student(s) ⇒
(Knows(p, s) ⇒ Permitted(s,Enter(the library stacks)))), which is logically equiv-
alent to∀p∀s(Professor(p) ∧ Student(s) ∧ Knows(p, s) ⇒
Permitted(s,Enter(the library stacks))).

Example 6. The translation of ‘if an ACM memberm has p and p is a permis-
sion andp is from ACM anda is an article, thenm is permitted to republisha’ is
∀m∀p∀a(ACMmember(m) ⇒ (Has(m, p) ∧Permission(p) ∧
From(p,ACM ) ∧ Article(a) ⇒ Permitted(p, republish(a)))), which is logically
equivalent to∀m∀p∀a(ACMmember(m) ∧ Has(m, p) ∧ Permission(p) ∧
From(p,ACM ) ∧Article(a) ⇒ Permitted(p, republish(a))).

We now formally define when a permission follows from a set of statements written
in Rosetta, where a permission is a simple label-free policy, such as ‘Alice is permitted
to enter the library stacks’.

Definition 1. Let {s1, . . . , sn} be a set of simple sentences, complex facts, and complex
policies. A permission p follows from{s1, . . . , sn} iff the formula
[[s1]]

T ∧ . . . ∧ [[sn]]T ⇒ [[p]]T is valid.

Theorem 1. Let L0 be the set of formulas of the form [[s1]]
T ∧ . . . ∧ [[sn]]T ⇒ [[p]]T ,

where each si is a simple sentence, complex sentence, or complex policy, and p is a
permission. The validity problem for L0 is decidable in polynomial time.



This result is immediate from the fact that every statement in the language translates to a
formula that is essentially in Datalog. (Datalog does not include functions; however, the
function symbols in our language cannot be nested. Including function symbols in this
way does not effect tractability.) In fact, every statementin our language translates to
a formula in Lithium and to an XrML policy (called a license inthe XrML literature).
Also, every policy in our language translates to a policy in ODRL. (ODRL does not
include simple statements or complex facts.) This is not surprising; the language pre-
sented thus far arguably has the core features of any policy language. Thus, it is likely
that every Rosetta policy can be translated to every language of interest. Of course, a
policy that can be translated to a particular language of interest might not be expressible
in Rosetta. Therefore, we consider various extensions to Rosetta in the next section.

5 Extensions

In this section, we consider key features of ODRL, XrML, Lithium, and the Datalog
approaches that are not in our language, and we discuss the consequences of adding
them.

5.1 Simple Extensions

There are a number of straightforward ways in which we can extend the language.

– Consider the sentence ‘Bob is department chair from August,1, 2002 to July 31,
2005’. Although this statement is not in our language, it is easy to modify our
approach to include it. To do this, we extend the definition ofverb phrases in the
grammar to include strings of the formis CN (PrepNP)+; we add an(n + 1)ary

predicateCNPrep1 . . .Prepn to the vocabulary for each sequence of a common
noun andn prepositional symbols; and we add the following to the translation:

[[NP0 is CNPrep1NP1 . . .PrepnNPn]]I = CnPreps([[NP0]]
O, . . . , [[NPn]]O),

whereCnPreps is the predicate associated with the sequenceCN ,Prep1, . . . ,Prepn.
We remark that, as expected,[[NP0 is CNPrep1NP1 . . .PrepnNPn]]I = [[NP0 is CN ]]I

if n = 0 (i.e., if there are no prepositions following the common noun). Also, the
sentence ‘Bob is department chair from August, 1, 2002 to July 31, 2005’ is in the
extended language, and translates to

DepartmentChairFromTo(Bob,August , 1 , 2002 , July31 , 2005 ).

We can further extend the language to support an even wider range of statements by
allowing sequences of prepositions to appear in noun phrases, at the end of every
verb phrase, etc. These modifications are straightforward.Moreover, the additional
predicates do not effect the language’s tractability; we can still determine if a per-
mission follows from a set of sentences in polynomial time. The only problem is
that the translation does not attach any intrinsic meaning to words such as ‘from’
and ‘to’. Therefore, it is up to the policy creator to includestatements such as ‘ifx
is department chair fromti to tf andt is greater thanti andt is less thantf thenx

is department chair at timet’. We discuss this in the full paper.



– ODRL, among other languages, supports a notion of action sequences. For exam-
ple, Alice might be permitted to do the action sequence ‘play‘Finding Nemo’ and
then pay five dollars’. We could extend our language to capture this idea by allow-
ing verb phrases to have the form(Vaux )Vt NP( and then (Vaux )Vt NP)+. The
translation is analogous to our treatment for sequences of prepositional phrases; the
extension does not effect tractability.

– Instead of having the sortProperNouns , policy languages typically have a sort for
principals (i.e., agents such as Alice) and resources (i.e., items such as the book
‘Moby Dick’). Some languages have additional sorts for times, roles, and other
useful categories. It is not difficult to mimic their approaches. To illustrate how
this could be done, suppose that we wanted to replace our sortProperNouns with
two sortsPrinc (for principals) andRsrc (for resources). To do this, we would
change the grammar so thatPN → PN P | PN R, wherePNP are proper nouns
that are principals (e.g., Alice) andPN R are proper nouns that are resources (e.g.
‘Moby Dick’). We would need to make a similar split between common nouns,
labels, adjectives, and prepositions; otherwise we would not be able to translate
these to predicates that took arguments of the appropriate sort and, in the case of
labels, to variables of the appropriate sort. In short, we can adapt our language to
accommodate a variety of sorts in place ofProperNouns , but the result will be a
language that is larger and, thus, less easy to use.
We believe that a better approach is to define common nouns such as ‘principal’
and ‘resource’ in our (unaltered) language. Then instead ofdefining an entity to be
one sort or the other, we could make the same distinction, more or less, by adding
sentences such as ‘Alice is a principal’ and “Moby Dick’ is a resource’ to our set
of statements. This approach does not have quite the same effect as multiple sorts
because a proper noun can be described by several adjectives. As a result, a proper
noun can be both a principal and a resource, or neither. Nevertheless, we feel that
this approach strikes a better balance between expressivity and usability.

– ODRL classifies simple sentences based on whether or not a user has the ability to
make the sentence true. For example, Alice can make the sentence ‘Alice paid five
dollars’ true by paying five dollars, but if she is five years old, then there is little that
she can do to make the sentence ‘Alice is an adult’ true. We canadd this distinction
to our language by splitting simple sentences into those that are within the user’s
control and those that are not. (Essentially, this is the same technique that we use
to replace the sortProperNouns with the sortsPrinc andRsrc.)

– XrML and ODRL allow an entity (principal, resource, etc.) tobe a set of entities.
We capture these groups in our language, by assuming that each one corresponds to
a proper noun inproperNouns . The relationship between a group and its members
can be captured as policies and facts in the extended language. For example, to
say that a group knows a password if a member of the group knowsit, we could
include the following complex fact in the set of statements:‘if a principal p knows
a passwordw andp is a member of a groupg, theng knowsw’.

– ODRL supports statements such as ‘at least one of the following policies hold:
p1, . . . , pn’, ‘exactly one of the following policies hold:p1, . . . , pn’, and ‘all of the
following policies hold:p1, . . . , pn’. The last statement can be captured by simply
includingp1 throughpn in the set of statements. To capture the other statements,



we need to extend our language to support negation. To see this, notice that the
statement ‘at least one of the following policies hold:p1, p2’ means ‘ifp1 does not
hold, thenp2 holds and ifp2 does not hold, thenp1 holds’. Similarly,‘exactly one
of the following policies hold:p1, p2’ means ‘ifp1 does not hold, thenp2 holds, if
p2 does not hold, thenp1 holds, ifp1 holds, thenp2 does not hold, and ifp2 holds,
thenp1 does not hold.’ Adding negation to our language is not straightforward. We
discuss it in some detail below.

5.2 Negation

Our language does not include sentences such as ‘if Alice is not on disciplinary proba-
tion, then she is permitted to join the swim team’ and ‘Alice is not permitted to imper-
sonate the professor’. It is easy to extend the language to include negation by replaying
the definition of simple policies and verb phrases given in Section 3 to be, respectively,

SP → NP is permitted toVt NP | NP is not permitted toVt NP

VP → (Vaux )(not)Vt NP | is(not) S,

whereS → [Adj | (a | an)CN | (Adj )PrepNP ]. Accordingly, the translation could be
extended to include the following definitions:

[[NP1 is not permitted toVt NP2]]
I = ¬[[NP1 is permitted toVt NP2]]

I

[[(Vaux ) notVt NP ]]I = ¬[[(Vaux )Vt NP ]]I

[[is notS]]I = ¬[[is S]]I ,

whereS is again[Adj | (a | an)CN | (Adj )PrepNP ].
Unfortunately, this solution leads to a language that is decidable, but not tractable.

Theorem 2. Let L1 be the set of formulas of the form

[[s1]]
T ∧ . . . ∧ [[sn]]T ⇒ [[p]]T ,

where {s1, . . . , sn} is a set of statements (simple sentences, complex facts, and complex
policies) and p is a permission in the language given in Section 3 extended to include
negation. The validity problem for L1 is decidable; it is NP-hard.

The main reason for the NP-hardness result is that sentencescan combine to imply new
sentences without forming a chain. For example, consider the policies ‘an employeee is
permitted to enter the library stacks’ and ‘a students is not permitted to enter the library
stacks’. Together, these policies imply that employees arenot students, because no one
can be both permitted and not permitted to enter the stacks. Similarly, the policies ‘if
s is a good student, thens is permitted to watch ‘Finding Nemo” and ‘ifp is not a
student, thenp is permitted to watch ‘Finding Nemo” together imply that anyone who
is good may watch the movie (since both a good student and a good non-student have
permission). Determining the consequences of all these interactions is what leads to
intractability.

By restricting the language appropriately, we can limit theways in which statements
interact and, thus, we can obtain a tractable fragment of thelanguage that is still quite



expressive. In [HW03] we give precise conditions under which a first-order policy lan-
guage is tractable; these conditions readily apply to the language given here. We can
restrict the language beyond what is strictly needed for tractability to create one that
is still reasonably expressive and is also fairly easy to explain to users. (Details are
given in the full paper.) In addition, if the set of statements include only simple facts
and complex policies of the form ‘ if[SF | CdF ], thenSP ’, then it is likely that we
can determine if the statements imply a permission in a reasonable period of time. (See
[HW03] for the empirical argument.)

Alternatively, we could tailor our support for negation according to how it is used
in the Datalog languages or in ODRL. (XrML does not support negation; so, we cannot
base our work on theirs.) However, as mentioned in Section 2,the Datalog approaches
do not support negation in simple sentences or in the then clauses of complex policies
or complex facts. Therefore, the languages might not support enough negation to be
useful. Also, it is not clear how we could explain when negation could be used in the if
clauses of complex sentences (the only place in which negation can appear), even if we
were willing to restrict the language to make the task easier. As for negation in ODRL,
we do believe that we could explain the ODRL restrictions on negation to a general
audience. However, complexity results for ODRL are not available yet; so, we cannot
rely on previous work to ensure that our language, extended to handle negation in the
ODRL way, is tractable.

6 Conclusion

In this paper, we have introduced Rosetta, a policy languagethat is well-suited to be
both the back-end for user interfaces and the front-end for policy languages that are
otherwise inaccessible to non-experts. In the near future,we hope to work with our
colleagues in human-computer interaction to design prototypes that exploit Rosetta’s
capabilities.
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