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ABSTRACT
Methods for offline A/B testing and counterfactual learning are

seeing rapid adoption in search and recommender systems, since

they allow efficient reuse of existing log data. However, there are

fundamental limits to using existing log data alone, since the coun-

terfactual estimators that are commonly used in these methods can

have large bias and large variance when the logging policy is very

different from the target policy being evaluated. To overcome this

limitation, we explore the question of how to design data-gathering

policies that most effectively augment an existing dataset of ban-

dit feedback with additional observations for both learning and

evaluation. To this effect, this paper introduces Minimum Variance

Augmentation Logging (MVAL), a method for constructing logging

policies that minimize the variance of the downstream evaluation

or learning problem. We explore multiple approaches to computing

MVAL policies efficiently, and find that they can be substantially

more effective in decreasing the variance of an estimator than naïve

approaches.

CCS CONCEPTS
• Computing methodologies → Batch learning; Active learn-
ing settings; • Theory of computation → Sequential decision
making.

KEYWORDS
counterfactual inference, off-policy evaluation and learning, con-

textual bandits, reinforcement learning, recommender systems
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1 INTRODUCTION
Logged user feedback from online systems is one of the primary

sources of training data for search and recommender systems. How-

ever, learning from log data is challenging since the rewards are

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM ’23, February 27-March 3, 2023, Singapore, Singapore
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9407-9/23/02. . . $15.00

https://doi.org/10.1145/3539597.3570452

only partially observed. In particular, logged data contains the ob-

served reward (e.g. click/no click) only for the specific action (e.g.

movie recommendation) that the historic system took, but logs do

not include the reward observations for the other possible actions

the system could have taken (e.g. all other movies). This means that

offline policy evaluation requires us to deal with counterfactual

outcomes when the historic system and the new policy do not chose

the same action.

Fortunately, over the recent years an increasingly rich set of

counterfactual estimators [6, 10, 11, 22, 24, 26, 28, 30] and learning

methods [4, 14, 19, 23–25] have been developed that can use logged

user feedback with strong theoretical guarantees despite the partial

nature of the data. These developments have led to increasing

adoption of counterfactual learning and evaluation in real-world

applications, where they are used to conduct “offline A/B tests"

and to train policies that directly and provably optimize online

metrics. However, we point out that all counterfactual methods

are fundamentally limited by the information contained in the

logs. In particular, if the policy that logged the data is substantially

different from the target policy we want to evaluate, the variance

of the estimate will be high or the estimator may even be biased

[e.g., 22].

To overcome this fundamental limitation of counterfactual meth-

ods, this paper explores how to best collect a limited amount of

additional log data to maximize the effectiveness of the counterfac-

tual estimator. We call this the problem of augmentation logging,
and we study how to design augmentation logging policies that

optimally augment an existing log dataset. The resulting methods

can be used to optimize data efficiency for A/B testing, and even ad-

dress the question of how to log data in contextual-bandit systems

that are re-trained periodically (e.g., weekly).

The main contributions of this paper are four-fold. First, we

introduce and formalize the problem of augmentation logging as

minimizing the bias and variance of the counterfactual estima-

tor given existing logged data. Second, we show how to compute

variance-optimal augmentation policies and provide a theoretical

characterization of this approach. Third, we develop a method to

approximate the optimal augmentation policy, improving its online

efficiency. Finally, we empirically evaluate the methods for both

counterfactual policy evaluation and counterfactual policy learning.

2 RELATEDWORK
While our formulation of optimal augmentation logging for coun-

terfactual policy evaluation and learning is novel, it is connected

to several bodies of existing literature.

Off-policy evaluation. Counterfactual evaluation (a.k.a. off-policy
evaluation, offline evaluation, or offlineA/B testing) has beenwidely
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studied as a method of estimating the value of a policy based on data

collected under a different policy. Estimators like Inverse Propensity

Score (IPS) weighting and its variants [13, 23, 26] are typically used

to correct the distribution shift between logging and target policy.

While unbiased under full support [21, 23], such estimators can

have large variance. Our method aims to reduce the variance of

the estimator, which is also the motivation behind work such as

Bottou et al. [6], Dudík et al. [10], Farajtabar et al. [11], Sachdeva

et al. [22], Su et al. [24], Wang et al. [30], or Thomas and Brunskill

[28] for evaluation; and behind Bottou et al. [6], Joachims et al.

[14], Strehl et al. [23], Su et al. [24], Swaminathan and Joachims

[25], or London and Sandler [19] for learning. However, instead of

treating the data as fixed and trying to reduce bias and variance

with this constraint, we investigate which additional data would

most reduce bias and variance.

Batched Bandits. Online contextual bandits (see e.g. Cesa-Bianchi
and Lugosi [7]) have been studied as a model of sequential decision

making under a variety of settings and modeling assumptions [2,

3, 5, 16, 18]. However, as other researchers have noted, the ability

to change the policy for each context is not necessarily realistic,

motivating the creation of Batched Bandits [12]. Our method differs

from work on Batched Bandits in that our method minimizes the

maximum variance of the off-policy estimate for any 𝜋 ∈ Π, for any
chosen policy class Π. Being able to choose the policy class Π is

valuable since users can impose whatever constraints they want on

Π, such as fairness. Secondly, our method allows for substantially

more flexible policy classes than are typical in the batched bandits

literature, and we show that it can effectively learn policies that

are parameterized by neural networks. Thirdly, our method allows

for arbitrary policy histories. Instead of assuming that the bandit

algorithm controls the full sequence of policies, our method works

after any sequence of known policies.

Active Learning. Augmentation logging also shares similarities

with Active Learning methods, which seek to prioritize the collec-

tion of the most informative data. Of particular note is a line of

research starting at CORNUET et al. [9], which combines multiple

importance samplers with an adaptive setting. More recent work

in this area including Yan et al. [31] and Yan et al. [32] are quite

similar to our method in that they also use a weighted combination

of two different importance weights in order to reduce the variance

of their estimates. However, they differ in a few crucial regards. The

biggest difference is that these methods focus on full-information

classification rather than partial-information policy evaluation and

learning. Where their goal is to find a classifier that has low error

over 𝑥 ∼ D, our goal is to find a policy which maximizes the ex-

pected reward in bandit settings. As part of this, our method is able

to handle reward values in R, rather than a binary or categorical

label space Y.

Monte-Carlo Estimation. Designing optimal sampling distribu-

tions is a problem widely considered in Monte-Carlo estimation

[21]. We draw upon foundational results about which sampling

strategies are optimal for importance sampling estimators, which

are analogous to IPS estimators. Moreover, we relate augmentation

logging to multiple importance sampling [1], and we show how to

extend these methods to get uniform bounds on the variance of a

class of target policies.

3 AUGMENTATION LOGGING FOR
SINGLE-POLICY EVALUATION

We begin by formalizing the augmentation-logging problem for

evaluating a single target policy 𝜋tar, and then extend this approach

to multi-policy evaluation and learning in Section 4. In all three

settings, we consider contextual bandit policies, which are widely

used to model search and recommendation problems [17, 18]. At

each time step 𝑖 , a context 𝑥𝑖 (e.g., query, user request) is sampled

i.i.d. from an underlying distribution 𝑥𝑖 ∼ Pr(𝑋 ), and a policy 𝜋

stochastically chooses an action 𝑎𝑖 (e.g., a movie to recommend)

such that 𝑎𝑖 ∼ 𝜋 (𝐴|𝑥). The system then observes the reward 𝑟𝑖 (e.g.,

purchase) for action 𝑎𝑖 from the environment.

The central question in single-policy evaluation lies in estimating

the expected reward (a.k.a. utility)

𝑅𝜋tar
=

∑︁
𝑥

∑︁
𝑎

E𝑟 [𝑟 (𝑥, 𝑎)]𝜋tar (𝑎 |𝑥) Pr(𝑥) (1)

of some target policy 𝜋tar. The conventional approach is to field this

target policy in an A/B test, which allows us to estimate 𝑈 (𝜋tar)
simply from the average of the observed rewards. However, such

online A/B tests typically take a long time to complete, and they do

not scale when we need to evaluate many target policies. Therefore,

offline evaluation has seen substantial interest, since it computes

an estimate of 𝑈 (𝜋tar) using only historic data

D
log

= {𝑥𝑖 , 𝑎𝑖 , 𝑟𝑖 }
𝑛log

𝑖=1
(2)

already logged from some other policy 𝜋
log

.
1
The key challenge

lies in the fact that the logging policy 𝜋
log

typically picks actions

that are different from those selected by the target policy 𝜋tar. This

challenge can be addressed by counterfactual estimators such as

inverse propensity score (IPS) weighting

𝑅IPS𝜋tar

=
1

𝑛
log

𝑛log∑︁
𝑖=1

𝜋tar (𝑎𝑖 |𝑥𝑖 )
𝜋
log

(𝑎𝑖 |𝑥𝑖 )
𝑟𝑖 . (3)

The IPS estimator can be shown to be unbiased whenever the log-

ging policy has full support under the target policy, namely when

∀𝑥∀𝑎 : 𝜋tar (𝑎 |𝑥)𝑃 (𝑥) > 0 → 𝜋
log

(𝑎 |𝑥) > 0. Unfortunately, this

condition is frequently violated in practical applications. Further,

even if the condition is met, the IPS estimator can have excessive

variance. Much work has gone into mitigating both the bias prob-

lem [10, 22] and the variance problem [6, 10, 24, 28, 30], but any

estimator that only has the information in D
log

is fundamentally

limited.

To overcome these fundamental limits, we allow that we can

augment D
log

with 𝑛aug additional observations

Daug = {𝑥𝑖 , 𝑎𝑖 , 𝑟𝑖 }
𝑛aug

𝑖=1
(4)

from an augmentation logging policy 𝜋aug. We next address the

key questions of which counterfactual estimator to use, and how to

design 𝜋aug so that the 𝑛aug additional observations most improve

the quality of the utility estimate.

1
For simplicity of notation, we assume all observations were collected from the same

𝜋log . However, all results in this paper can be extended to the case where the data

comes from multiple logging policies.
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3.1 Designing Variance-Optimal Augmentation
Policies

In order to reason about which augmentation policy 𝜋aug minimizes

bias and variance, we first need to select an estimator. As we will

justify below, we focus on the balanced estimator [1],

𝑅BAL𝜋tar

=
1

𝑁

©­«
∑︁

(𝑥𝑖 ,𝑎𝑖 ,𝑟𝑖 ) ∈Dlog∪Daug

𝜋tar (𝑎𝑖 |𝑥𝑖 )
𝜋
balanced

(𝑎𝑖 |𝑥𝑖 )
𝑟𝑖
ª®¬ , (5)

where 𝑁 = 𝑛
log

+ 𝑛aug, 𝛼 = 𝑛aug/𝑁 and

𝜋
balanced

(𝑎 |𝑥) = (1 − 𝛼)𝜋
log

(𝑎 |𝑥) + 𝛼𝜋aug (𝑎 |𝑥) .

This estimator was shown to never have a larger variance than the

following more naïve IPS estimator

𝑅IPS𝜋tar

=
1

𝑁

∑︁
(𝑥,𝑎,𝑟 )𝑖 ∈Dlog

𝜋tar (𝑎𝑖 |𝑥𝑖 )
𝜋
log

(𝑎𝑖 |𝑥𝑖 )
𝑟𝑖 +

1

𝑁

∑︁
(𝑥,𝑎,𝑟 ) 𝑗 ∈Daug

𝜋tar (𝑎 𝑗 |𝑥 𝑗 )
𝜋aug (𝑎 𝑗 |𝑥 𝑗 )

𝑟 𝑗

that weights each action by the policy that selected it, and it can

have substantially smaller variance [1]. Further, it is easy to verify

that the balanced estimator is unbiased under strictly weaker con-

ditions than the IPS estimator. In particular, the balanced estimator

is already unbiased if ∀𝑥∀𝑎 : 𝜋tar (𝑎 |𝑥)𝑃 (𝑥) > 0 → (𝜋
log

(𝑎 |𝑥) >

0 ∨ 𝜋aug (𝑎 |𝑥) > 0). The balanced estimator has the following vari-

ance as shown in [1], with proof in Appendix A.1 as well.

Var

[
𝑅BAL𝜋tar

]
=

1

𝑁

(
E𝑥

[∑︁
𝑎∈A

𝜋2

tar
(𝑎 |𝑥)E𝑟

[
𝑟2 (𝑥, 𝑎)

]
𝜋
balanced

(𝑎 |𝑥)

]
−𝑅2

𝜋tar

)
(6)

In this equation, E𝑟
[
𝑟2 (𝑥, 𝑎)

]
= 𝑟2 (𝑥, 𝑎) +𝜎2 (𝑥, 𝑎), where 𝑟 (𝑥, 𝑎)

and 𝜎2 (𝑥, 𝑎) are the expected rewards and their variance condi-

tioned on the given 𝑥, 𝑎.

Importantly, this variance depends directly on 𝜋
balanced

, which

is based on 𝜋
log

and 𝜋aug. This allows us to design an augmentation

policy 𝜋aug which compensates for high variance terms caused

by the logging policy 𝜋
log

. This compensation is not possible for

the naïve IPS estimator 𝑅IPS𝜋tar

, since the partial derivative of the

variance with respect to 𝜋aug (𝑎 |𝑥) does not include any terms with

𝜋
log

(𝑎 |𝑥), nor are there any interactions in the constraints ∀𝑥 :∑
𝑎∈A 𝜋aug (𝑎 |𝑥) = 1. Therefore the augmentation policy 𝜋aug does

not depend in any way on logging policy 𝜋
log

, and the variance

minimizing augmentation logging policy would be the same as if

the logging policy 𝜋
log

had not been used.

Given these limitations of the IPS estimator, we thus focus on

the balanced estimator for designing augmentation logging policies.

Note that it is straightforward to extend the balanced estimator to

a doubly-robust setting [10], which we omit for the sake of brevity

and to highlight the structural improvements provided by augmen-

tation logging rather than other variance reduction techniques. We

formulate the search for the variance minimizing augmentation

policy as the following optimization problem, which we refer to as

Minimum Variance Augmentation Logging (MVAL).

Optimization Problem 1 (MVAL for Single-Policy Evalua-

tion). For a given context 𝑥 ∈ X,

𝜋aug (𝐴|𝑥) = arg min

𝜋 ∈R |A|

∑︁
𝑎∈A

𝜋2

tar (𝑎 |𝑥) E𝑟
[
𝑟2 (𝑥, 𝑎)

]
(1 − 𝛼)𝜋log (𝑎 |𝑥) + 𝛼𝜋 (𝑎)

subject to
∑︁
𝑎∈A

𝜋 (𝑎) = 1,

∀𝑎 ∈ A : 𝜋 (𝑎) ≥ 0

The augmentation policy 𝜋aug (𝐴|𝑥) computed by OP1 mini-

mizes the variance of the balanced estimator, since 𝜋
balanced

(𝑎 |𝑥) =
(1 − 𝛼)𝜋

log
(𝑎 |𝑥) + 𝛼𝜋 (𝑎). Variance is a weighted sum of these in-

dependent minimized terms, and the number of real-valued param-

eters 𝜋 (𝑎) in this optimization problem always equals the number

of actions for the given context 𝑥 .

The first key property of this optimization problem is that it is

always convex, making it possible to efficiently find the solution.

Theorem 3.1 (MVAL Convexity). OP1 is convex.

Proof. This can be seen by taking the partial derivative of the

variance of the balanced estimator in Equation (6) with respect to

𝜋aug (𝑎 |𝑥) is

𝜕

𝜕𝜋aug (𝑎 |𝑥)
Var

[
𝑅BAL𝜋tar

]
= − 𝛼

𝑁

𝜋2

tar
(𝑎 |𝑥) E𝑟

[
𝑟2 (𝑥, 𝑎)

]
Pr(𝑥)(

(1 − 𝛼)𝜋
log

(𝑎 |𝑥) + 𝛼𝜋aug (𝑎 |𝑥)
)

2
.

This partial derivative is always negative, because there is a negative

sign, and 𝜋 (𝑎 |𝑥) > 0, 𝜋2 (𝑎 |𝑥) > 0 for all valid 𝜋 , and 𝑟2 (𝑥, 𝑎) and
𝜎2 (𝑥, 𝑎) are also always positive.

Now consider its second derivatives. For 𝑥 ′, 𝑎′ ≠ 𝑥, 𝑎,

𝜕2

𝜕𝜋aug (𝑎 |𝑥)𝜕𝜋aug (𝑎′ |𝑥 ′)
Var

[
𝑅BAL𝜋tar

]
= 0.

Because these are all zero, the Hessian matrix of the variance of

the balanced estimator is diagonal. For 𝑥, 𝑎,

𝜕2

𝜕2𝜋aug (𝑎 |𝑥)
Var

[
𝑅BAL𝜋tar

]
=

2𝛼2

𝑁

𝜋2

tar
(𝑎 |𝑥) E𝑟

[
𝑟2 (𝑥, 𝑎)

]
Pr(𝑥)(

(1 − 𝛼)𝜋
log

(𝑎 |𝑥) + 𝛼𝜋aug (𝑎 |𝑥)
)

3
.

Note that every term of this equation is always positive, so this

term is always positive. It follows that every term in the diagonal of

the Hessian is positive, and since the Hessian is a diagonal matrix,

this means that the Hessian is positive-definite, and therefore the

optimization problem is convex. □

The second key property of this optimization problem is that the

augmentation policy 𝜋aug it computes is guaranteed to produce data

that makes the balanced estimator unbiased. Specifically, with aug-

mentation data from 𝜋aug the balanced estimator is unbiased, even

if the logging policy 𝜋
log

is support deficient and would otherwise

lead to biased estimates.

Theorem 3.2 (MVAL Guarantees Unbiasedness). OP1 always pro-
duces augmentation policies 𝜋aug so that the balanced estimator is
unbiased for any 𝜋log and for any choice of 𝑟 (𝑥, 𝑎) and 𝜎2 (𝑥, 𝑎) > 0,
even if 𝑟 (𝑥, 𝑎) and 𝜎2 (𝑥, 𝑎) are inaccurate.
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Proof. As shown in [1], the balanced estimator is unbiased

when 𝜋
balanced

has full support for 𝜋tar, specifically

∀𝑥∀𝑎 : 𝜋tar (𝑎 |𝑥)𝑃 (𝑥) > 0 → 𝜋
balanced

(𝑎 |𝑥) > 0.

Since𝜋
balanced

is a convex combination of𝜋
log

and𝜋aug, full support

is already guaranteed if ∀𝑥∀𝑎 : 𝜋tar (𝑎 |𝑥)𝑃 (𝑥) > 0 → (𝜋
log

(𝑎 |𝑥) >
0 ∨ 𝜋aug (𝑎 |𝑥) > 0). To show that this condition is always fulfilled,

we need to verify that 𝜋aug (𝑎 |𝑥) > 0 when 𝜋
log

(𝑎 |𝑥) = 0. To verify

this condition, note that 𝜋
log

(𝑎 |𝑥) = 0 implies that the term

𝜋2

tar
(𝑎 |𝑥) E𝑟

[
𝑟2 (𝑥, 𝑎)

]
𝛼𝜋aug (𝑎)

occurs in the objective of OP1. Note that the solution of OP1 cannot

have 𝜋aug (𝑎) = 0, since this would lead to an infinite objective

which is not optimal since the uniform 𝜋 is feasible and has a better

objective value. □

The final issue we need to resolve is that E𝑟
[
𝑟2 (𝑥, 𝑎)

]
is typ-

ically unknown. Fortunately, there are at least two options for

handling this. The first option is to optimize the following vari-

ant of the MVAL optimization problem, where we simply drop

E𝑟
[
𝑟2 (𝑥, 𝑎)

]
from the objective. This is equivalent to minimizing an

upper bound on the variance, where E𝑟
[
𝑟2 (𝑥, 𝑎)

]
is replaced with

max𝑥,𝑎 E𝑟
[
𝑟2 (𝑥, 𝑎)

]
in Equation (6). This is the approach taken

in our experiments unless otherwise noted. The second option

is to use a regression estimate to impute the estimated value for

E𝑟
[
𝑟2 (𝑥, 𝑎)

]
. Virtually any real-valued regression technique can be

applied to D
log

to estimate 𝑟2 (𝑥, 𝑎), and even imperfect estimates

can provide useful information about Var[𝑅BAL𝜋tar

]. Note that Theo-
rem 3.2 holds even for incorrect estimates of E𝑟

[
𝑟2 (𝑥, 𝑎)

]
so long

as the resulting augmentation policy 𝜋aug (𝑎) > 0, so bad estimates

of E𝑟
[
𝑟2 (𝑥, 𝑎)

]
> 0 only increase the variance of the estimates and

never introduce bias.

3.2 Analysis and Discussion
Wenow further analyze the properties ofMVAL policies and provide

intuition through some illustrative edge cases.

3.2.1 MVAL without Historic Log Data. When the historic data

D
log

is empty, the MVAL policy 𝜋BAL
aug

(𝑎 |𝑥) computed by OP1 coin-

cides with the variance minimizing logging policy 𝜋 IPS
minvar

(𝑎 |𝑥) for
the IPS estimator. If 𝛼 = 𝑛aug/(𝑛aug + 𝑛

log
) = 1, then the optimal

augmentation policy is

𝜋BAL
aug

(𝑎 |𝑥) =
𝜋tar (𝑎 |𝑥)

√︃
E𝑟

[
𝑟2 (𝑥, 𝑎)

]
∑

𝑎∈A
𝜋tar (𝑎 |𝑥)

√︃
E𝑟

[
𝑟2 (𝑥, 𝑎)

]
= 𝜋 IPS

minvar
(𝑎 |𝑥) .

This can be shown using Lagrange multipliers to solve OP1, and

using the well known result [21] characterizing the variance mini-

mizing IPS logging policy. This immediately implies that if there is

no logged data so that𝛼 = 1, and no information about themean and

variance of the reward such that E𝑟
[
𝑟2 (𝑥, 𝑎)

]
= 𝑐 , then since the

optimal augmentation policy 𝜋BAL
aug

(𝑎 |𝑥) ∝ 𝜋tar (𝑎 |𝑥)
√︃
E𝑟

[
𝑟2 (𝑥, 𝑎)

]
,

and E𝑟
[
𝑟2 (𝑥, 𝑎)

]
= 𝑐 , then 𝜋BAL

aug
(𝑎 |𝑥) ∝ 𝜋tar (𝑎 |𝑥), and therefore

the optimal augmentation policy for single policy evaluation using

the balanced estimator coincides with the target policy.

3.2.2 MVAL Corrects Historic Log Data Towards the Target Policy.
When the historic data is non-empty, the augmentation policy

𝜋aug minimizes the balanced estimator variance by trying to make

the balanced policy 𝜋
balanced

similar to the minimum variance IPS

policy 𝜋 IPS
minvar

. Specifically, when there is enough augmentation

data for 𝜋aug to cause 𝜋
balanced

= 𝜋 IPS
minvar

, then that is the solution

chosen.

In this case, we can even compute the MVAL policy in closed

form. If 𝛼 is big enough that the mixed policy 𝜋
balanced

= (1 −
𝛼)𝜋

log
+𝛼𝜋aug can be equal to the minimum variance augmentation

policy for the IPS estimator 𝜋 IPS
minvar

, then the MVAL policy for the

balanced estimator is the policy 𝜋 such that ∀𝑥 ∈ X, 𝑎 ∈ A : (1 −
𝛼)𝜋

log
(𝑎 |𝑥) +𝛼𝜋 (𝑎 |𝑥) = 𝜋 IPS

minvar
(𝑎 |𝑥). This is because the balanced

estimator variance is the IPS variance with 𝜋
balanced

instead of 𝜋
log

,

so if 𝜋aug can make 𝜋
balanced

= 𝜋 IPS
minvar

then that is optimal.

The fact that, in the case of constant E𝑟
[
𝑟2 (𝑥, 𝑎)

]
, MVAL aims

to augment the existing data D
log

so that the overall data looks

like it was all sampled from 𝜋tar has an interesting implication

for the overall utility during data collection. In particular, MVAL

will ensure an overall utility as if all of D
log

and Daug had been

sampled from 𝜋tar. Since it is the prior belief in many A/B tests

that the target policy 𝜋tar is better than the logging policy 𝜋
log

, this

means that MVAL will improve utility during data collection in

addition to sampling the most informative data.

3.2.3 Introducing a New Action. A common way a new target pol-

icy is different from the logging policy is through the introduction

of a new action (e.g., a new movie). In this case, MVAL’s behavior

matches the intuition that this new action should now be sampled

by the augmentation policy. This is because of Theorem 3.2, which

states that MVAL produces unbiased estimates for any 𝑥 such that

E𝑟
[
𝑟2 (𝑥, 𝑎)

]
> 0. If 𝜋tar (𝑎 |𝑥) > 0 = 𝜋

log
(𝑎 |𝑥) and 0 = 𝜋aug (𝑎 |𝑥),

then it would be a biased estimate. This means that if there is an

action 𝑎 ∈ A such that 𝜋tar (𝑎 |𝑥) > 0 but 𝜋
log

(𝑎 |𝑥) = 0, then the

variance minimizing 𝜋aug is such that 𝜋aug (𝑎 |𝑥) > 0.

3.2.4 Deterministic Target Policies. If 𝜋tar is deterministic, then the

optimal augmentation policy for single policy evaluation using the

balanced estimator is 𝜋tar. If 𝜋tar (𝑎 |𝑥) = 0 for some action, then

that action contributes nothing to the balanced estimator variance,

and since the variance contribution for each action decreases with

more probability, using the deterministic target policy is optimal.

3.2.5 Variance Reduction through Augmentation Logging. One final
point is that adding even a single augmentation data point can

substantially decrease the estimator’s variance. While the variance

reduction of a single point depends on the specific logging and

target policies, there is no upper bound on the variance reduction

achievable by adding a single augmentation sample.

Consider that when the logging policy assigns almost no prob-

ability to an action with a large probability under the target pol-

icy, then that action has an arbitrarily large variance contribution.

An action/context pair’s contribution to the variance for a given

logging policy is proportional to
1

𝜋log (𝑎 |𝑥)
(
𝜋2

tar
(𝑎 |𝑥) E𝑟

[
𝑟2 (𝑥, 𝑎)

] )
.

Since the last term is always positive, we can roughly note that
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changing from a logging policy where 𝜋
log

(𝑎 |𝑥) = 𝜖 to a bal-

anced policy where 𝜋
balanced

(𝑎 |𝑥) = 𝑁𝜖+1

𝑁
results in roughly a(

1

𝜖 − 𝑁
𝑁𝜖+1

) (
𝜋2

tar
(𝑎 |𝑥) E𝑟

[
𝑟2 (𝑥, 𝑎)

] )
variance improvement. As 𝜖 →

0, this expression goes to ∞.

3.3 Pre-Computing MVAL Policies
So far we have assumed that we simply solve the MVAL optimiza-

tion problem for each individual context 𝑥 as it comes in. This is

realistic in most applications, since these optimization problems

are convex (see Theorem 3.1) and no bigger than the number of

available actions. However, some applications may have latency

requirements where even this modest amount of computation is not

feasible. We therefore ask whether we can learn a general MVAL

policy that applies to any context 𝑥 ahead of time, so that this policy

merely needs to be executed during deployment.

We approach the problem of learning a general MVAL policy as

the following optimization problem. Given a parameterized space

Π of candidate augmentation policies (e.g. deep network policies

[14]) and a sample of contexts {𝑥𝑖 }𝑁𝑖=1
, find the augmentation policy

𝜋aug ∈ Π that minimizes the sum of the variances over all 𝑁 sample

contexts.

Optimization Problem 2 (Pre-Computed MVAL Policy).

arg min

𝜋 ∈Π

∑︁
𝑥𝑖 ∈D

∑︁
𝑎∈A

𝜋2

tar (𝑎 |𝑥𝑖 ) E𝑟
[
𝑟2 (𝑥𝑖 , 𝑎)

]
(1 − 𝛼)𝜋log (𝑎 |𝑥𝑖 ) + 𝛼𝜋 (𝑎 |𝑥𝑖 )

subject to
∑︁
𝑎∈A

𝜋 (𝑎 |𝑥𝑖 ) = 1,

𝜋 (𝑎 |𝑥𝑖 ) ≥ 0 for all 𝑎 ∈ A, 𝑥𝑖 ∈ D

OP2 constructs a policy by using empirical risk minimization

on a sampled dataset with the MVAL objective. As is standard in

ERM, an augmentation policy that minimizes the objective (here

variance) on a large sample of training points can be expected to

also produce good objective values on new contexts under standard

conditions on the capacity of Π. We will empirically compare these

pre-computedMVAL policies to on-the-fly computedMVAL policies

in the experiments.

Note that while the optimal augmentation policy in this setup

depends on the past policies, the target policy, the observed 𝑥𝑖 ,

and the expected squared reward E𝑟
[
𝑟2 (𝑥𝑖 , 𝑎)

]
, it does not depend

on any actions sampled under the past policies. This means that

the contributed variance terms are independent, and OP2 does not

violate any independence conditions.

4 AUGMENTATION LOGGING FOR
MULTI-POLICY EVALUATION AND
LEARNING

The previous section showed how to optimally augment an existing

dataset D
log

when evaluating a single target policy 𝜋tar. However,

in many practical offline A/B tests we may want to evaluate a set

of competing target policies Πtar = {𝜋1, ...𝜋𝑘 }, especially when we

want to learn a new policy 𝜋∗ through Empirical Risk Minimization

(ERM) using the balanced estimator:

𝜋∗ = arg max

𝜋 ∈Πtar

𝑅BAL𝜋 (7)

We therefore ask the question of how to compute an MVAL policy

that minimizes the maximum variance for any target policy in Πtar

𝜋aug (𝐴|𝑥) = arg min

𝜋aug

max

𝜋 ∈Πtar

Var

[
𝑅BAL𝜋 (𝑥)

]
, (8)

where 𝑅BAL𝜋 (𝑥) is the estimate of the expected reward of the target

policy in context 𝑥 .

While solving Equation (8) directly can be challenging, the fol-

lowing upper bound on the variance for any 𝜋tar in a class of

policies Πtar leads to an optimization problem that is no more

complex than single policy evaluation beyond the calculation of

max𝜋 ∈Πtar
𝜋 (𝑎 |𝑥).

Theorem 4.1 (Policy Class Variance Bound). Given a class of poli-
cies Π, then ∀𝜋 ∈ Π,

Var
[
𝑅BAL𝜋

]
≤ 1

𝑁
E𝑥

[ ∑︁
𝑎∈A

𝜋2

max (𝑎 |𝑥) E𝑟
[
𝑟2 (𝑥, 𝑎)

]
𝜋balanced (𝑎 |𝑥)

]
.

where 𝜋max (𝑎 |𝑥) = max𝜋 ∈Π 𝜋 (𝑎 |𝑥).

Proof. By the definition, for all 𝜋 ∈ Π,

𝜋 (𝑎 |𝑥) ≤ max

𝜋 ′∈Π
𝜋 ′(𝑎 |𝑥) = 𝜋max (𝑎 |𝑥).

For all 𝑎, 𝑥 , since 𝜎2 (𝑥, 𝑎), 𝑟2 (𝑥, 𝑎), and 𝜋
balanced

(𝑎 |𝑥) are all posi-
tive,

0 ≤
E𝑟

[
𝑟2 (𝑥, 𝑎)

]
𝜋
balanced

(𝑎 |𝑥) .

Therefore, for all 𝜋 ∈ Π, and all 𝑎, 𝑥 ,

𝜋2 (𝑎 |𝑥) E𝑟
[
𝑟2 (𝑥, 𝑎)

]
𝜋
balanced

(𝑎 |𝑥) <
𝜋2

max
(𝑎 |𝑥) E𝑟

[
𝑟2 (𝑥, 𝑎)

]
𝜋
balanced

(𝑎 |𝑥) .

Therefore, for all 𝜋 ∈ Π,

Var

[
𝑅BAL𝜋

]
=

1

𝑁
E𝑥

[ ∑︁
𝑎∈A

𝜋2 (𝑎 |𝑥) E𝑟
[
𝑟2 (𝑥, 𝑎)

]
𝜋
balanced

(𝑎 |𝑥)

]
≤ 1

𝑁
E𝑥

[ ∑︁
𝑎∈A

𝜋2

max
(𝑎 |𝑥) E𝑟

[
𝑟2 (𝑥, 𝑎)

]
𝜋
balanced

(𝑎 |𝑥)

]
□

The structure of this bound results in the same optimization

problem as the one for single-policy optimization. In particular,

the augmentation policy that minimizes the maximum value of

the variance bound for any 𝜋 ∈ Π can be found by solving the

following optimization problem, where 𝜋max replaces the 𝜋tar of

OP1.

Optimization Problem 3 (MVAL for Multi-Policy Evalua-

tion).

arg min

𝜋𝑥 ∈R |A|

∑︁
𝑎∈A

𝜋2

max (𝑎 |𝑥) E𝑟
[
𝑟2 (𝑥, 𝑎)

]
(1 − 𝛼)𝜋log (𝑎 |𝑥) + 𝛼𝜋𝑥 (𝑎)

subject to
∑︁
𝑎∈A

𝜋𝑥 (𝑎) = 1,

𝜋𝑥 (𝑎) ≥ 0 for all 𝑎 ∈ A
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This formulation also applies to the problem of augmentation

logging for learning, since many algorithms involve some notion

of an ambiguity class or trust region around the current learned

policy 𝜋 . OP3 allows one to apply MVAL whenever 𝜋max (𝑎 |𝑥) can
be efficiently computed for these policy classes Π. We can even

simplify OP3 for certain types of trust regions. For example, the

trust region policy classΠ𝜋tar
= {𝜋 |∀𝑥, 𝑎 : 𝜋 (𝑎 |𝑥) ∈ [ 1

𝜏 ·𝜋tar (𝑎 |𝑥), 𝜏 ·
𝜋tar (𝑎 |𝑥)]} can be approximated by setting 𝜋max ≈ 𝜋tar for small

𝜏 ≥ 1. The argument is that the solution of OP3 is invariant to 𝜏 ,

since 𝜋max (𝑎 |𝑥) = 𝜏 · 𝜋tar (𝑎 |𝑥) as long as 𝜋tar (𝑎 |𝑥) ≤ 1

𝜏 .

4.1 Analysis and Discussion
We again illustrate and discuss the behavior of MVAL, now for the

case of multi-policy evaluation and learning. An instructive limiting

case is the situation where there is no past data, no restrictions on

the policy class Π, and no knowledge about E𝑟
[
𝑟2 (𝑥, 𝑎)

]
. In this

case, it seems that one should sample from the uniform policy. We

find this intuition agrees with MVAL for the case where Π is all

valid policies, there is no logged data, and there is an uninformative

reward model with E𝑟
[
𝑟2 (𝑥, 𝑎)

]
= 𝑐 > 0. This happens because

when 𝛼 = 1, the optimal augmentation policy is

𝜋max (𝑎 |𝑥)
√︃
E𝑟

[
𝑟2 (𝑥, 𝑎)

]
∑

𝑎∈A
𝜋max (𝑎 |𝑥)

√︃
E𝑟

[
𝑟2 (𝑥, 𝑎)

] .
Since 𝜋max (𝑎 |𝑥) = max𝜋 ∈Π 𝜋 (𝑎 |𝑥), then if Π is all valid policies

then 𝜋max (𝑎 |𝑥) = 1 for all 𝑎. Without a reward distribution model,

E𝑟
[
𝑟2 (𝑥, 𝑎)

]
= 𝑐 > 0, so the optimal policy is the uniform policy:

1

√︃
E𝑟

[
𝑟2 (𝑥, 𝑎)

]
∑

𝑎∈A
1

√︃
E𝑟

[
𝑟2 (𝑥, 𝑎)

] =

√
𝑐∑

𝑎∈A

√
𝑐
=

√
𝑐

|A|
√
𝑐
=

1

|A| .

Therefore, ifΠ is the space of all valid policies, there is no existing

logged data, and E𝑟
[
𝑟2 (𝑥, 𝑎)

]
= 𝑐 > 0 for all (𝑥, 𝑎), then the optimal

augmentation policy is the uniform distribution.

5 EMPIRICAL EVALUATION
To evaluate MVAL on a real-world contextual bandit problem, we

performed experiments on the Yahoo! Front Page Dataset [8]
2
.

Each context in the dataset consists of a 5-dimensional vector u
representing the user, as well as a 𝐷 × 5 dimensional matrix with

vectors A𝑖 for each of the 𝐷 articles. For convenience, we only used

contexts with exactly 19 articles. The dataset includes which article

was recommended (i.e., the action) and if the user clicked on the

article (i.e., the reward).

When collecting this dataset, the article recommendations were

chosen uniformly at random from the articles available for the con-

text. This allows for an unbiased simulation of running a different

article recommendation policy 𝜋 using rejection sampling [29]. To

construct a sample for a new policy 𝜋 , we iterate through the con-

texts 𝑥𝑖 and sample 𝑎′ ∼ 𝜋 (·|𝑥) according to 𝜋 . If the 𝑎′ sampled

from our policy agrees with the observed action 𝑎𝑖 , we include that

(𝑥𝑖 , 𝑎𝑖 , 𝑟𝑖 ) tuple. This gives us an unbiased sample that comes from

2
This dataset was obtained from Yahoo! Webscope at http://research.yahoo.com/

Academic_Relations. The users are anonymized.

the same distribution as if we were running our new policy 𝜋 on

the operational system.

Model Architecture and Training. The policy architecture for pre-

computed MVAL is a feedforward neural network, ending in a

softmax layer where the logit for article 𝑗 is based on the concatena-

tion of the user vector to the article vectors u ◦ A𝑗 passed through

2 fully connected ReLU [20] layers with 256, 256 nodes before 1

fully connected linear node. Adam is used for optimization with

the standard parameters 𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999 [15] and a

batch size of 10000. All experiments can be run on a desktop with

an RTX2080.

Estimating E𝑟
[
𝑟2 (𝑥, 𝑎)

]
. The first set of experiments uses a uni-

form E𝑟
[
𝑟2 (𝑥, 𝑎)

]
= 1, since these experiments explore how any

decrease in variance is a result of the algorithmic improvement,

rather than a result of a model of E𝑟
[
𝑟2 (𝑥, 𝑎)

]
. For the sequen-

tial learning experiment, we use a feedforward neural network to

approximate E
[
𝑟2 (𝑥, 𝑎)

]
, trained using mean squared error to per-

form regression on the quantity 𝑟 (𝑥, 𝑎) using the same architecture

as the policy networks described above.

Generating Logging and Target Policies. The policy evaluation

experiments use randomly generated target and logging policies.

We control the generating process to vary how deterministic the

logging policy’s actions are, and how different the target and log-

ging policies are. In particular, to generate the logging policy, we

randomly sample a vector v ∈ R25
such that 𝑣𝑖 ∼ N(𝜇 = 0, 𝜎 = 1).

This vector is then multiplied against a feature vector of the cross

terms between 𝑢 and each 𝐴𝑖 for the given context 𝑖 to allow for

interactions between user and article features while remaining a

simple policy class. Then, the articles are ranked according to this

value to define the selection probabilities of the policy based on the

rank. In particular, the probability of choosing each article is pro-

portional to 𝜂rank𝑖 , where rank𝑖 is the rank of the 𝑖th article. This

allows us to increase the determinism of the policy by increasing 𝜂.

We use the same construction to generate a target policy, but shift

a 𝛿 fraction of the probability weight from the top-ranked article

under the logging policy to the article that is ranked second under

the logging policy. Increasing 𝛿 allows us to increase the difference

between the target and logging policy.

5.1 Single Policy Evaluation
The first experiments explore the effectiveness of MVAL for evalu-

ating a single target policy while varying 𝜂 and 𝛿 for the logging

and target policy generation. The reported variance is the empirical

variance of 50 sampled value estimates for the target policy. Each

value estimate is generated by first sampling 900 data points from

the logging policy. We then compare different augmentation log-

ging policies that are allowed to sample 100 additional data points.

Specifically, we compare MVAL and precomputed MVAL to using

the target policy or the uniform policy for augmentation logging.

Finally, we estimating the value of the target policy using the bal-

anced estimator on all 1000 data points. The standard error bars

are based on of 20 such runs for each parameter setting.

In Figure 1, we see that using MVAL substantially outperforms

using the target policy or uniform policy for augmentation log-

ging for a range determinism factors 𝜂. We find that precomputed

MVAL performs comparable to MVAL over the whole range of 𝜂.
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Figure 1: Variance of the balanced estimator while holding
𝛿 = 0.4 and increasing values of 𝜂, which increases the de-
terminism of the policies. Error bars are the standard error
based on 20 trials. Note the logarithmic y axis.

Figure 2: Variance of the balanced estimator while holding
𝜂 = 4 and increasing values of 𝛿 , which increases the differ-
ence between the logging and target policies. Error bars are
based on 20 trials.

The difference 𝛿 between logging and target policy is fixed at 0.4

in this experiment. At 𝜂 = 0, the logging policy is the uniform

distribution and, as expected, the advantage from augmentation

logging is smallest.

In Figure 2, we vary the value of 𝛿 while the determinism factor

𝜂 is fixed. Again, we find that using MVAL to generate the aug-

mentation policy substantially outperforms using the target policy

or uniform distribution for a broad range of settings. Increasing

the change fraction 𝛿 decreases the performance of all methods as

expected. At 𝛿 = 1, MVAL and target tie because the target policy

is fairly deterministic, and per the discussion in Section 3.2.4 the

target policy is the variance-optimal augmentation policy. At 𝛿 = 1,

precomputed MVAL performs worse than exact MVAL, possibly

because it is training a policy based on (𝑥, 𝑎, 𝑟 ) tuples close to the

logging policy rather than the quite different target policy.

Figure 3: Variance of multiple policy evaluation for 3 policies
with determinism factor 𝜂 = 4 and change fraction 𝛿 = 0.4.
Each box plot contains all the empirical variances of all 3
policy estimates, for 20 trials of the full experiment.

Figure 4: Average cumulative reward for sequentially using
naïve or MVAL augmentation logging at each iteration for
𝜏 = 1. Error bars are the standard error based on 50 trials.

5.2 Multiple Policy Evaluation
The next experiment explores the effectiveness of MVAL for multi-

policy evaluation. The policies for this experiment were generated

as before with determinism factor 𝜂 = 4 and a difference between

logging and target policy of 𝛿 = 0.4. However, the 3 target policies

were constructed by shifting 𝛿 fraction of the logging policy’s top

action’s probability to the 2nd, 3rd, and 4th actions. The experiment

variance is the empirical variance of 100 runs of using the balanced

estimator to estimate the target policy reward. The round-robin

strategy uses each target policy to sample 333 augmentation data

points, while the other strategies collected 999 augmentation data

points from the uniform or precomputed MVAL policy. The orig-

inal logging policy provided 9001 data points for a total of 10000

contexts. As shown in Figure 3, precomputed MVAL substantially

outperforms the round-robin and uniform strategies.
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5.3 Policy Learning
The final experiment explores the effectivess of MVAL for policy

learning over time, where we repeatedly gather 10000 additional

augmentation data points and retrain the model using POEM [25]

with the balanced estimator as policy learner. In the initial iteration

we gather 10000 data points from the uniform policy, following the

optimal MVAL strategy in this situation according to Section 4.1.

After that, each iteration 𝑡 trains a policy 𝜋𝑡 using POEM [25] with

the balanced estimator as policy learner. We compare using MVAL

for augmentation logging to naively logging additional data from

the target policy 𝜋𝑡 in each iteration. We use precomputed MVAL

with E𝑟
[
𝑟2 (𝑥, 𝑎)

]
=𝑚𝑡 (𝑥, 𝑎), where𝑚𝑡

approximates E𝑟
[
𝑟2 (𝑥, 𝑎)

]
using regression. Furthermore, we approximate 𝜋max ≈ 𝜋𝑡 as dis-

cussed in Section 4. For both the naive augmentation logging us-

ing 𝜋𝑡 and MVAL augmentation logging we train POEM for 1000

epochs, which is more than sufficient for convergence. The POEM

clipping parameter is set to 10000, which is chosen to maximize the

performance of the naive method. Figure 4 shows that augmenta-

tion logging via MVAL outperforms naively using the target policy

for augmentation logging.

6 CONCLUSIONS
We introduced and formalized the problem of augmentation logging,

and derivedMVAL as a principled and practical method for variance-

optimizing data gathering for off-policy evaluation. We extended

the approach tomulti-policy evaluation and batch learning, and find

that it can substantially improve estimation and learning quality

over naive methods. This work opens up a number of directions

for future work. For example, contextual-bandit problems with

combinatorial actions like slates [27] raise additional challenges,

but they also provide structure that connects the observations for

different actions. It is interesting to explore how this structure can

inform augmentation logging for improved bias/variance trade-offs.
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A APPENDIX
A.1 Variance of the Balanced Estimator
Since Var[𝑋 ] = E[𝑋 2] − E[𝑋 ]2

,

Var

[
𝜋tar (𝑎𝑖 |𝑥𝑖 )
𝜋 (𝑎𝑖 |𝑥𝑖 )

𝑟𝑖

]
= E

[(
𝜋tar (𝑎𝑖 |𝑥𝑖 )
𝜋 (𝑎𝑖 |𝑥𝑖 )

𝑟𝑖

)
2

]
− E

[
𝜋tar (𝑎𝑖 |𝑥𝑖 )
𝜋 (𝑎𝑖 |𝑥𝑖 )

𝑟𝑖

]
2

.

Since the IPS estimator is unbiased if the support of the logging

policy 𝜋 (𝑎 |𝑥) is a superset of 𝜋tar (𝑎 |𝑥) for all 𝑥 in the support of

Pr(𝑥), if we denote E𝜋tar
[𝑟𝑖 ] = 𝑅𝜋tar

, then

Var

[
𝜋tar (𝑎𝑖 |𝑥𝑖 )
𝜋 (𝑎𝑖 |𝑥𝑖 )

𝑟𝑖

]
= E

[(
𝜋tar (𝑎𝑖 |𝑥𝑖 )
𝜋 (𝑎𝑖 |𝑥𝑖 )

𝑟𝑖

)
2

]
− 𝑅2

𝜋tar

.

Breaking up the expectations, we have the following:

E

[(
𝜋tar (𝑎𝑖 |𝑥𝑖 )
𝜋 (𝑎𝑖 |𝑥𝑖 )

𝑟𝑖

)
2

]
(1)

= E𝑥∼Pr(𝑥) E𝑎∼𝜋 (𝑎 |𝑥) E𝑟𝑖∼𝑟 (𝑥,𝑎)

[(
𝜋tar (𝑎 |𝑥)
𝜋 (𝑎 |𝑥) 𝑟𝑖

)
2

]
(2)

= E𝑥∼Pr(𝑥) E𝑎∼𝜋 (𝑎 |𝑥)

[
𝜋2

tar
(𝑎 |𝑥)

𝜋2 (𝑎 |𝑥)
E𝑟𝑖∼𝑟 (𝑥,𝑎)

[
𝑟2

𝑖

] ]
(3)

= E𝑥∼Pr(𝑥)

[ ∑︁
𝑎∈A

𝜋2

tar
(𝑎 |𝑥)

𝜋2 (𝑎 |𝑥)
E𝑟𝑖∼𝑟 (𝑥,𝑎)

[
𝑟2

𝑖

]
𝜋 (𝑎 |𝑥)

]
(4)

Equation 2 comes from iterated expectation, 3 from the fact that

E𝑟𝑖∼𝑟 (𝑥,𝑎)) is conditioned on 𝑥 and 𝑎 (so they can be factored out),

and 4 from the definition of E𝑎∼𝜋 (𝑎 |𝑥) .
In the traditional IPS estimator, the two 𝜋 (𝑎 |𝑥) terms cancel out.

However, averaging 𝑛
log

terms from 𝜋
log

and 𝑛aug terms from 𝜋aug
results in the following variance, where 𝑁 = 𝑛

log
+ 𝑛aug:

Var

[
𝑅IPS𝜋tar

]
=
𝑛
log

𝑁 2
E𝑥

[ ∑︁
𝑎∈A

𝜋2

tar
(𝑎 |𝑥) E𝑟

[
𝑟2 (𝑥, 𝑎)

]
𝜋
log

(𝑎 |𝑥) − 𝑅2

𝜋tar

]
+
𝑛aug

𝑁 2
E𝑥

[ ∑︁
𝑎∈A

𝜋2

tar
(𝑎 |𝑥) E𝑟

[
𝑟2 (𝑥, 𝑎)

]
𝜋aug (𝑎 |𝑥)

− 𝑅2

𝜋tar

]
However, in this variance expression, the partial derivatives

with respect to 𝜋aug do not depend on any 𝜋
log

terms, and so the

evaluation policy cannot adapt to make up for any deficiencies

in the logging policy. However, if instead we weighted terms by

𝜋tar (𝑎 |𝑥)/𝜋balanced (𝑎 |𝑥) as in the balanced estimator, we get the

following variance:

Var

[
𝑅BAL𝜋tar

]
=
𝑛
log

𝑁 2
E𝑥

[ ∑︁
𝑎∈A

𝜋2

tar
(𝑎 |𝑥) E𝑟

[
𝑟2 (𝑥, 𝑎)

]
𝜋2

balanced
(𝑎 |𝑥)

𝜋
log

(𝑎 |𝑥) − 𝑅2

𝜋tar

]
+
𝑛aug

𝑁 2
E𝑥

[ ∑︁
𝑎∈A

𝜋2

tar
(𝑎 |𝑥) E𝑟

[
𝑟2 (𝑥, 𝑎)

]
𝜋2

balanced
(𝑎 |𝑥)

𝜋aug (𝑎 |𝑥) − 𝑅2

𝜋tar

]
Since 𝜋

balanced
(𝑎 |𝑥) =

𝑛log

𝑁
𝜋
log

(𝑎 |𝑥) + 𝑛aug

𝑁
𝜋aug (𝑎 |𝑥), we have

the following final variance:

Var

[
𝑅BAL𝜋tar

]
=

1

𝑁

[
E𝑥

[ ∑︁
𝑎∈A

𝜋2

tar
(𝑎 |𝑥)

𝜋
balanced

(𝑎 |𝑥) E𝑟
[
𝑟2 (𝑥, 𝑎)

] ]
− 𝑅2

𝜋tar

]
.

An observant reader may worry that these variance terms are

not independent if the augmentation policy 𝜋aug depends on the

logging policy 𝜋
log

. However, note that if 𝜋aug is chosen to min-

imize this variance, while 𝜋aug depends on 𝜋
log

and 𝜋tar and the

distribution over contexts D, it does not depend on any realization

of the random variables. Therefore while 𝜋aug depends on 𝜋
log

and

D, the individual IPS terms are independent after conditioning on

𝜋
log

, 𝜋aug, D, and other known terms.
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