Learning from Logged Bandit Feedback of Multiple Loggers

Yi Su

YS756@QCORNELL.EDU

Cornell Universtity, Dept. of Statistical Science, Ithaca, NY, USA

Aman Agarwal

AA2398@QCORNELL.EDU

Cornell Universtity, Dept. of Computer Science, Ithaca, NY, USA

Thorsten Joachims

TJQCS.CORNELL.EDU

Cornell Universtity, Dept. of Computer Science, Ithaca, NY, USA

Abstract

We explore the problem of Batch Learning
from Bandit Feedback (BLBF) in a setting
where the training data comes from multiple
logging policies. This setting is ubiquitous in
search, recommendation, and ad placement,
since these systems are regularly updated by
deploying new policies in production or in
A/B testing. Unfortunately, we find that
naively using this heterogeneous log data can
lead to situations where adding more training
data decreases learning accuracy. To over-
come this problem, we propose a learning
algorithm that incorporates a weighted es-
timator, providing optimal variance within
its class. Empirical results confirm that this
leads to substantial improvements in learning
accuracy.

1. Introduction

Learning improved policies from logged interaction
data is a core problem in many applications, includ-
ing personalized medicine, search engines, recommen-
dation systems, and ad-placement (Beygelzimer and
Langford, 2009; Bottou et al., 2013; Athey and Wager,
2017; Lefortier et al., 2016). A key challenge with such
log data is that we only observe the outcomes of the
deployed action, but not the potential outcomes of all
possible actions the system could have taken (aka con-
textual bandit feedback). For example, in an ad place-
ment system, we only observe a user’s click-feedback
for the ad that was presented by the system, but

CausalML Workshop at the International Conference on
Machine Learning (ICML), Stockholm, Sweden, 2018.
Copyright 2018 by the author(s).

not for the alternative ads that could have been pre-
sented instead. The Counterfactual Risk Minimization
(CRM) principle (Swaminathan and Joachims, 2015a)
has been proposed to learn in this setting, called batch
learning from bandit feedback (BLBF). The key idea
is to control for differences in variance between target
policies when performing Empirical Risk Minimization
(ERM) based on a counterfactual risk estimator, es-
pecially the inverse-propensity-score (IPS) weighting
estimator (Rosenbaum and Rubin, 1983).

This paper makes the case that naively applying CRM
to the setting where the log data comes from multiple
policies can be highly sub-optimal. Our work centers
on the idea that, to effectively learn from all the in-
formation, the log data from different policies must be
weighted differently. To this end, we derive a weighted
counterfactual learning principle for BLBF under mul-
tiple loggers and then design an algorithm for it.

Our work builds upon recent results for effective coun-
terfactual evaluation with multiple loggers (Agarwal
et al., 2017), where a weighted inverse propensity score
(WIPS) estimator is proposed by re-weighting data
from different policies by their ”divergence” from the
target policy. The WIPS estimator is optimal in the
sense that this particular choice of weights will give
the smallest variance among all weighted estimators.
A major challenge in extending this approach to learn-
ing is that the weights depend on the target policy, and
thus need to be updated within the learning algorithm
along with the policy being learned (in other words, we
have a moving target). To overcome this issue, we for-
mulate the learning problem as a bi-level optimization
problem (Colson et al., 2007; Bennett et al., 2008), up-
dating the weights for different loggers and finding the
optimal policy simultaneously. Luckily, the lower level
of the bi-level optimization problem has a closed form
solution, which lets us effectively escape the compu-

Learning from Logged Bandit Feedback of Multiple Loggers

tational inefficiency of bi-level optimization problems.
Another challenge is that the optimal weights depend
on the divergences between the target policy and the
historical policies, which requires that we have access
to full information about all the input-action-loss tu-
ples. Since this is impossible in the BLBF setting, we
exploit that the empirical version of this divergence
is a consistent estimator and can be a good surro-
gate for the true divergence (Agarwal et al., 2017).
However, for relatively peaked policy distributions, we
observed that the empirical divergence estimator con-
verges very slowly, and thus using it in the weight cal-
culation brings inaccurate weight estimation leading
to a poor learning outcome. Motivated by this, we
propose a better empirical divergence estimator using
control variates (Owen, 2013). To assess effectiveness,
we evaluate our learning algorithm on several multi-
label classification problems and show that it can pro-
vides substantially improved generalization error over
naively using the CRM principle without consideration
for multiple logging policies.

2. Method

To recap the formulation of the BLBF problem, we
have contexts x € X drawn i.i.d from a fixed but un-
known distribution Pr(X). For each particular con-
text, the system draws the action y €) based on the
policy m(Y|z) and receives feedback 6(z,y) : X x Y —
R. Here, we use § to denote the loss induced by the
action, the lower the better. The learning algorithm
considers a hypothesis space F of stochastic polices
m(Y]x), where each is a probability distribution over
the action space). The risk (i.e. expected loss) for
policy w € F is defined as:

U(W) = Ey~7r()1|a:),x~Pr(X) [5(55; y)] (1)

The goal of learning we consider in this paper is to find
an policy m € F that has low risk, using the logged
data from multiple logging policies w1, ma, " , Ty
The log data we get from each historical policy 7; is:

Di:{(zi’yi i’pi)"" 7(nlvyn, 51 ’pizi)} (2)
with D = U:’;l D;. Here n; is the number of data
points collected from historical policy m;, with each
data point ! R Pr(X), and yi ~ n(Y|z}), where

j e {1,2,. nz} The loss and propensity score for
each pomt is 0% = 6(x%, y5), and p = mi(y}|ah).

2.1. Weighted IPS estimator

The weighted IPS (WIPS) estimator (Agarwal et al.,
2017) for evaluation introduces the following “diver-
gence” as a measure of mismatch between target policy

m and logging policy ;.
6(x, y)m(y|z)
o2 (n||m) = Var, pr(x),y~mi (Y|2) [W(Z/LT)

(3)
For simplicity, let us define the re-weighted loss for
each data point and their mean loss as

iy Tl
Ui = S @)
Ui(r) = %ZU}(W). (5)

Then the WIPS estimator can be written as
=> p"U(m), (6)
i=1

where p = {p;}"1, U(rr) = {U%(7)}1™; and the weight
vector p is defined by p = argmin,cn Varp (R(7))
and has the closed form solution

U

UE(WHW) ZJ 1 (72(77\|7T])

(7)

pi =

It was shown in (Agarwal et al.,
weights achieve minimal variance.

2017) that these

2.2. Better Divergence Estimator

Unfortunately, we do not have access to the informa-
tion necessary for computing the divergence o3 (r||m;)
and thus the optimal weights. At first thought, we
may therefore consider using the empirical divergence
estimator

nq

T) -

j=1

U'(m)*. (8)

&3 (m|mi) =

However, this estimator performs poorly when the log-
ging policy m; is peaked and the true divergence is
large, which causes inaccurate weight estimates and
strongly degrades the learning outcome. Here, we pro-
vide an improved empirical variance estimator, which
introduces a multiplicative correction inspired by the
idea of control variates (Owen, 2013; Swaminathan and
Joachims, 2015b). For simplicity, define the control
variate S?(m) and the overall mean of U ; (m) as

Sitm) — izw, o)

ni 4= mi(yjle;)

ZZ Ui (m (10)

(11)

Ulr) =

= =1 j=1

Learning from Logged Bandit Feedback of Multiple Loggers

Our self-normalized divergence estimator is then de-
fined as

n; i ~ 2
) = 3 > (g(;; U<w>> - 2)

Jj=1

We can show that this estimator is consistent even
though it is not unbiased. Dividing U?(7) by S*(r)
7 (yj|25)
with U}(7) and that E[S*(7)] = 1. Using the overall
U(r) instead of the IPS estimate for each specific log-
ger m; utilizes information from all the data and pro-
vides a more informed estimate. Note that we could
also add a multiplicative control variate into this term.
However, we found that combining all data already re-
sults in a sufficiently accurate estimator of U and that
the self-normalized term does not help much. Dividing
by S%(7) in the first term is crucial, though. Empiri-
cally the improved estimator performs better than the
naive divergence estimator in terms of learning perfor-
mance, especially when the historical policy is nearly
deterministic.

exploits that each term is typically correlated

2.3. Weighted Counterfactual Risk
Minimization Principle

We now present the Weighted Counterfactual Risk
Minimization (WCRM) principle, which is motivated
by an empirical Bernstein argument (Maurer and Pon-
til, 2009) analogous to the CRM principle for a sin-
gle logger (Swaminathan and Joachims, 2015a). The
learning principle minimizes the WIPS estimator and
its empirical standard deviation at the same time, for
the aim of robust learning.

Var(pi Ui ()
Dk Tk

aWERM — argmin p? UM (1) + X

TEF,PEAM,

subject to

p = arg min Varp(R(7)) (13)
PEAR

Luckily, the lower level problem has a closed-form so-
lution as stated in (7) and we estimated it using the
better divergence estimator stated in (11). We omit
the proof that the true risk is upper bounded by the
weighted CRM objective with high probability (sim-
ilar to CRM proof for single logger with an addi-
tional covering argument for the simplex in which the
weights lie). To further control variance, we adjust
our weighted loss for each data point to be the clipped

; PN sis (y;|z})
version Uj(m) = §; min{M, m(;;‘zf;) }, where M serves
as a hyper-parameter for “clipping” (avoid unbounded
variance from 7;(y}|2%) = 0).

Following (Lafferty et al., 2001; Swaminathan and
Joachims, 2015a) in the choice of hypothesis space F,
in the following we consider learning stochastic linear
rules m,, € F (each policy 7 is parameterized by vector
w)

_ exp(w’o(z,y))

¢(x,y) is the joint feature map of input x and action
y, and Z(x) is the normalization factor. Besides this,
we introduce a “stochastic multiplier” a, which trans-
forms the function vector w to aw, which will be used
in our later experiments.

(14)

3. Experiments

In this section, we empirically examine the generaliza-
tion performance of the weighted CRM in comparison
to the conventional CRM that does not account for
multiple loggers. We follow the same supervised —
bandit transformation as in (Agarwal et al., 2014). We
chose the multi-label datasets from LibSVM for the ex-
periments. Each multi-label classification dataset con-
tains input « € R? and target labels y* € {0,1}?. For
any supervised dataset D = {(z1,¥7), -, (Tn,¥}:)},
we collect bandit dataset by simulating y; ~ m;(Y|x;)
and report the loss §(y}, y;) associated with this sam-
ple by the number of correctly predicted labels com-
pared with the ground truth y;.

For each dataset, we kept aside 20% to train and get
the historical logging policy. For simplicity, we use two
logging policies in the following experiment. The first
logger m; (aka bad logger) is trained using a CRF on
these 20% of data, and we then set the stochastic mul-
tiplier to be {-1,-0.8,-0.5,-0.3,0,0.3,0.5,0.8,1} (-1 looks
like inverting the probability of reasonably good pol-
icy). The second logger 7o (aka good logger) is trained
on the same data with stochastic multiplier to be 1.
We kept another 20% of data as validation set (choos-
ing hyperparameter \). We optimizate the WCRM
and CRM objectives using L-BFGS (Lewis and Over-
ton, 2013) from scikit-learn (Pedregosa et al., 2011).
We test performance of the learned policies 7"V EM
and 7€M by calculating the expected loss per test in-

stance R(r) = —— St By mmwora (v [0(yF, yi)]-

Results for eachn&sfoeriment are averaged over 10 runs.
The baseline to beat is the naive CRM principle. We
report the expected hamming loss of both WCRM
and naive CRM, the lower the better. Figure 1 com-
pares the performance of WCRM and naive CRM as
the stochastic multiplier of logger 1 ranges from -1 to
1. For both datasets, WCRM maintains good per-
formance even as the quality of logger 1 is degraded,
while the naive CRM approach is severly affected.

Learning from Logged Bandit Feedback of Multiple Loggers

Naive vs. Weighted (Scene) Naive vs. Weighted (Yeast)

©
o

2.4

Expected Test Error
Expected Test Error

2.2

0.70 0.80 0.90 1.00

-1.0 00 1.0 -1.0 00 1.0

Logger 1 Stochastic Multiplier Logger 1 Stochastic Multiplier

Figure 1. Left: Expected Test Error of the policy learned
by naive CRM and WCRM for the Scene dataset (296 fea-
tures, 4 labels). Right: Expected Test Error of the policy
learned by naive CRM and WCRM for the Yeast dataset
(104 features, 6 labels).

Logger Performance (Scene) Logger 1 weights (Scene)

Logger 1 weights

Expected Test Error
1.0 15 20 25

T T T 1
-1.0 0.0 1.0

-1.0 00 1.0

Logger 1 Stochstic Multiplier Logger 1 Stochstic Multiplier

Figure 2. Left: Expected Test Error of the CRM policies
learned by only using data generated from Logger 1 or
Logger 2 respectively (Scene Dataset). Right: Weight of
logger 1 as chosen by the WCRM evaluated at the learned
policy (Scene Dataset).

Nevertheless, the performance of WCRM slightly im-
proves towards the right-hand side of the plots as ex-
pected, since it has access to more high-quality data
for stochastic multipliers close to 1. Further note that
WCRM and naive CRM perform similarly when the
stochastic multiplier for logger 1 approaches 1, since
at this point both loggers are nearly identical and the
naive CRM applies.

To give further insight into the performance gains of
the WCRM, the left-hand plot in Figure 2 shows the

performance of CRM when training only on data from
logger 1 or logger 2 respectively. This is shown to
sanity check that logger 1 indeed provides poor data
for learning a good policy in the BLBF setting. The
right-hand plot of Figure 2 shows the final weight p;
for logger 1 chosen by the WCRM and evaluated at
the 7WVCERM that it learned. As expected, the WCRM
puts more weight on logger 1 (i.e. p; ~ 0.5) when
its data quality is good, and it down-weights logger 1
(i.e. p1 =~ 0.0) when its data quality would degrade
the variance of the learning objective.

Acknowledgments

This work was supported by NSF awards I1S-1615706
and IIS-1513692, and through gifts from Criteo and
Amazon. This material is based upon work supported
by the National Science Foundation Graduate Re-
search Fellowship Program under Grant No. DGE-
1650441. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

References

Agarwal, A., Basu, S., Schnabel, T., and Joachims,
T. (2017). Effective evaluation using logged bandit
feedback from multiple loggers. In ACM SIGKDD

Conference on Knowledge Discovery and Data Min-
ing (KDD).

Agarwal, A., Hsu, D. J., Kale, S., Langford, J., Li, L.,
and Schapire, R. E. (2014). Taming the monster: A
fast and simple algorithm for contextual bandits. In

31st International Conference on Machine Learning,
pages 1638-1646.

Athey, S. and Wager, S. (2017). Efficient policy learn-
ing. arXw preprint arXiv:1702.02896.

Bennett, K. P., Kunapuli, G., Hu, J., and Pang, J.-S.
(2008). Bilevel optimization and machine learning,.
In IEEE World Congress on Computational Intelli-
gence, Springer, pages 25-47.

Beygelzimer, A. and Langford, J. (2009). The off-
set tree for learning with partial labels. In 15th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 129-138.

Bottou, L., Peters, J., Candela, J. Q., Charles, D. X.,
Chickering, M., Portugaly, E., Ray, D., Simard,
P. Y., and Snelson., E. (2013). Counterfactual rea-
soning and learning systems: the example of compu-

Learning from Logged Bandit Feedback of Multiple Loggers

tational advertising. Journal of Machine Learning

Research, 14(1):3207-3260.

Colson, B., Marcotte, P., and Savard, G. (2007). An
overview of bilevel optimization. Annals of Opera-
tions Research, pages 235—256.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N.
(2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.
In International Conference on Machine Learning,
pages 282-289.

Lefortier, D., Swaminathan, A., Gu, X., Joachims, T.,
and de Rijke, M. (2016). Large-scale validation of

counterfactual learning methods: A test-bed. In
NIPS 2016 What-1If Workshop.

Lewis, A. S. and Overton, M. L. (2013). Nonsmooth
optimization via quasi-newton methods. Mathemat-
ical Programming, 141(1-2):135-163.

Maurer, A. and Pontil, M. (2009). Empirical bernstein
bounds and sample-variance penalization. In 22nd
Conference on Learning Theory.

Owen, A. (2013). Monte Carlo theory, methods and
examples.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., and Duchesnay, E. (2011). Scikit-learn: Machine
learning in python. Journal of Machine Learning
Research, 12:2825-2830.

Rosenbaum, P. R. and Rubin, D. B. (1983). The
central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41-55.

Swaminathan, A. and Joachims, T. (2015a). Coun-
terfactual risk minimization: Learning from logged
bandit feedback. In International Conference on
Machine Learning (ICML), pages 814-823.

Swaminathan, A. and Joachims, T. (2015b). The self-
normalized estimator for counterfactual learning. In
Neural Information Processing Systems (NIPS).

