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ABSTRACT
Rankings are the primary interface through which many online

platforms match users to items (e.g. news, products, music, video).

In these two-sided markets, not only the users draw utility from

the rankings, but the rankings also determine the utility (e.g. ex-

posure, revenue) for the item providers (e.g. publishers, sellers,

artists, studios). It has already been noted that myopically optimiz-

ing utility to the users – as done by virtually all learning-to-rank

algorithms – can be unfair to the item providers. We, therefore,

present a learning-to-rank approach for explicitly enforcing merit-

based fairness guarantees to groups of items (e.g. articles by the

same publisher, tracks by the same artist). In particular, we pro-

pose a learning algorithm that ensures notions of amortized group

fairness, while simultaneously learning the ranking function from

implicit feedback data. The algorithm takes the form of a controller

that integrates unbiased estimators for both fairness and utility, dy-

namically adapting both as more data becomes available. In addition

to its rigorous theoretical foundation and convergence guarantees,

we find empirically that the algorithm is highly practical and robust.
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1 INTRODUCTION
We consider the problem of dynamic Learning-to-Rank (LTR), where

the ranking function dynamically adapts based on the feedback

that users provide. Such dynamic LTR problems are ubiquitous in

online systems — news-feed rankings that adapt to the number of

"likes" an article receives, online stores that adapt to the number of

positive reviews for a product, or movie-recommendation systems

that adapt to who has watched a movie. In all of these systems,

learning and prediction are dynamically intertwined, where past

feedback influences future rankings in a specific form of online

learning with partial-information feedback [18].

While dynamic LTR systems are in widespread use and unques-

tionably useful, there are at least two issues that require careful

design considerations. First, the ranking system induces a bias

through the rankings it presents. In particular, items ranked highly

are more likely to collect additional feedback, which in turn can

influence future rankings and promote misleading rich-get-richer

dynamics [3, 32, 33, 40]. Second, the ranking system is the arbiter

of how much exposure each item receives, where exposure directly

influences opinion (e.g. ideological orientation of presented news

articles) or economic gain (e.g. revenue from product sales or stream-

ing) for the provider of the item. This raises fairness considerations

about how exposure should be allocated based on the merit of the

items [14, 42]. We will show in the following that naive dynamic

LTR methods that are oblivious to these issues can lead to economic

disparity, unfairness, and polarization.

In this paper, we present the first dynamic LTR algorithm – called

FairCo – that overcomes rich-get-richer dynamics while enforc-

ing a configurable allocation-of-exposure scheme. Unlike existing

fair LTR algorithms [14, 42, 43, 48], FairCo explicitly addresses the

dynamic nature of the learning problem, where the system is unbi-

ased and fair even though the relevance and the merit of items are

still being learned. At the core of our approach lies a merit-based

exposure-allocation criterion that is amortized over the learning

process [14, 42]. We view the enforcement of this merit-based ex-

posure criterion as a control problem and derive a P-controller that

optimizes both the fairness of exposure as well as the quality of

the rankings. A crucial component of the controller is the ability

to estimate merit (i.e. relevance) accurately, even though the feed-

back is only revealed incrementally as the system operates, and

the feedback is biased by the rankings shown in the process [32].

To this effect, FairCo includes a new unbiased cardinal relevance
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estimator – as opposed to existing ordinal methods [4, 33] –, which

can be used both as an unbiased merit estimator for fairness and as

a ranking criterion.

In addition to the theoretical justification of FairCo, we provide

empirical results on both synthetic news-feed data and real-world

movie recommendation data. We find that FairCo is effective at

enforcing fairness while providing good ranking performance. Fur-

thermore, FairCo is efficient, robust, and easy to implement.

2 MOTIVATION
Consider the following illustrative example of a dynamic LTR prob-

lem. An online news-aggregation platform wants to present a rank-

ing of the top news articles on its front page. Through some external

mechanism, it identifies a set D = {d1, ...,d20} of 20 articles at the
beginning of each day, but it is left with the learning problem of

how to rank these 20 articles on its front page. As users start coming

to the platform, the platform uses the following naive algorithm to

learn the ranking.

Algorithm 1: Naive Dynamic LTR Algorithm

Initialize counters C(d) = 0 for each d ∈ D;

foreach user do
present ranking σ = argsortD [C(d)] (random tiebreak);

increment C(d) for the articles read by the user.

Executing this algorithm at the beginning of a day, the platform

starts by presenting the 20 articles in random order for the first

user. It may then observe that the user reads the article in position

3 and increments the counter C(d) for this article. For the next

user, this article now gets ranked first and the counters are updated

based on what the second user reads. This cycle continues for each

subsequent user. Unfortunately, this naive algorithm has at least

two deficiencies that make it suboptimal or unsuitable for many

ranking applications.

The first deficiency lies in the choice of C(d) as an estimate of

average relevance for each article – namely the fraction of users

that want to read the article. Unfortunately, even with infinite

amounts of user feedback, the counters C(d) are not consistent

estimators of average relevance [32, 33, 40]. In particular, items

that happened to get more reads in early iterations get ranked

highly, where more users find them and thus have the opportunity

to provide more positive feedback for them. This perpetuates a

rich-get-richer dynamic, where the feedback count C(d) recorded
for each article does not reflect how many users actually wanted to

read the article.

The second deficiency of the naive algorithm lies in the ranking

policy itself, creating a source of unfairness even if the true average

relevance of each article was accurately known [7, 14, 42]. Consider

the following omniscient variant of the naive algorithm that ranks

the articles by their true average relevance (i.e. the true fraction

of users who want to read each article). How can this ranking be

unfair? Let us assume that we have two groups of articles, G
right

and G
left

, with 10 items each (i.e. articles from politically right-

and left-leaning sources). 51% of the users (right-leaning) want to

read the articles in group G
right

, but not the articles in group G
left

.

In reverse, the remaining 49% of the users (left-leaning) like only

the articles in G
left

. Ranking articles solely by their true average

relevance puts items from G
right

into positions 1-10 and the items

from G
left

in positions 11-20. This means the platform gives the

articles in G
left

vastly less exposure than those in G
right

. We argue

that this can be considered unfair since the two groups receive

disproportionately different outcomes despite having similar merit

(i.e. relevance). Here, a 2% difference in average relevance leads to

a much larger difference in exposure between the groups.

We argue that these two deficiencies – namely bias and unfair-

ness – are not just undesirable in themselves, but that they have

undesirable consequences. For example, biased estimates lead to

poor ranking quality, and unfairness is likely to alienate the left-

leaning users in our example, driving them off the platform and

encouraging polarization.

Furthermore, note that these two deficiencies are not specific

to the news example, but that the naive algorithm leads to anal-

ogous problems in many other domains. For example, consider a

ranking system for job applicants, where rich-get-richer dynamics

and exposure allocation may perpetuate and even amplify existing

unfairness (e.g. disparity between male and female applicants). Sim-

ilarly, consider an online marketplace where products of different

sellers (i.e. groups) are ranked. Here rich-get-richer dynamics and

unfair exposure allocation can encourage monopolies and drive

some sellers out of the market.

These examples illustrate the following two desiderata that a

less naive dynamic LTR algorithm should fulfill.

Unbiasedness: The algorithm should not be biased or subject to

rich-get-richer dynamics.

Fairness: The algorithm should enforce a fair allocation of expo-

sure based on merit (e.g. relevance).

With these two desiderata in mind, this paper develops alterna-

tives to the Naive algorithm. In particular, after introducing the

dynamic learning-to-rank setting in Section 4, Section 5 formalizes

an amortized notion of merit-based fairness, accounting for the fact

that merit itself is unknown at the beginning of the learning process

and is only learned throughout. Section 6 then addresses the bias

problem, providing estimators that eliminate the presentation bias

for both global and personalized ranking policies. Finally, Section 7

proposes a control-based algorithm that is designed to optimize

ranking quality while dynamically enforcing fairness.

3 RELATEDWORK
Ranking algorithms are widely recognized for their potential for

societal impact [8], as they form the core of many online systems,

including search engines, recommendation systems, news feeds,

and online voting. Controlling rich-get-richer phenomena in rec-

ommendations and rankings has been studied from the perspective

of both optimizing utility through exploration as well as ensur-

ing fairness of such systems [2, 41, 49]. There are several adverse

consequences of naive ranking systems [20], such as political polar-

ization [11], misinformation [46], unfair allocation of exposure [43],

and biased judgment [8] through phenomena such as the Matthew

effect [3, 24]. Viewing such ranking problems as two-sided markets

of users and items that each derive utility from the ranking system

brings a novel perspective to tackling such problems [1, 42]. In this



work, we take inspiration from these works to develop methods for

mitigating bias and unfairness in a dynamic setting.

Machine learning methods underlie most ranking algorithms.

There has been a growing concern around the question of how

machine learning algorithms can be unfair, especially given their

numerous real-world applications [10]. There have been several

definitions proposed for fairness in the binary classification setting

[9], as well as recently in the domains of rankings in recommenda-

tions and information retrieval [13, 14, 17, 42]. The definitions of

fairness in ranking span from ones purely based on the composition

of the top-k [17], to relevance-based definitions such as fairness of

exposure [42], and amortized attention equity [14]. We will discuss

these definitions in greater detail in Section 5. Our work also re-

lates to the recent interest in studying the impact of fairness when

learning algorithms are applied in dynamic settings [22, 36, 44].

In information retrieval, there has been a long-standing interest

in learning to rank from biased click data. As already argued above,

the bias in logged click data occurs because the feedback is incom-

plete and biased by the presentation. Numerous approaches based

on preferences (e.g. [26, 31]), click models (e.g. [19]), and random-

ized interventions (e.g. [37]) exist. Most recently, a new approach

for de-biasing feedback data using techniques from causal inference

and missing data analysis was proposed to provably eliminate se-

lection biases [6, 33]. We follow this approach in this paper, extend

it to the dynamic ranking setting, and propose a new unbiased

regression objective in Section 6.

Learning in our dynamic ranking setting is related to the con-

ventional learning-to-rank algorithms such as LambdaRank, Lamb-

daMART, RankNet, Softrank etc. [16, 45]. However, to implement

fairness constraints based on merit, we need to explicitly estimate

relevance to the user as a measure of merit while the scores esti-

mated by these methods don’t necessarily have a meaning. Our

setting is also closely related to online learning to rank for top-k

ranking where feedback is observed only on the top-k items, and

hence exploration interventions are necessary to ensure conver-

gence [27, 35, 38, 50]. These algorithms are designed with respect

to a click-model assumption [50] or learning in the presence of

document features [35]. A key difference in our method is that

we do not consider exploration through explicit interventions, but

merely exploit user-driven exploration. However, explicit explo-

ration could also be incorporated into our algorithms to improve

the convergence rate of our methods.

4 DYNAMIC LEARNING-TO-RANK
We begin by formally defining the dynamic LTR problem. Given is

a set of items D that needs to be ranked in response to incoming

requests. At each time step t , a request

xt , rt ∼ P(x , r) (1)

arrives i.i.d. at the ranking system. Each request consists of a feature

vector describing the user’s information need xt (e.g. query, user
profile), and the user’s vector of true relevance ratings rt for all
items in the collection D. Only the feature vector xt is visible to
the system, while the true relevance ratings rt are hidden. Based on
the information in xt , a ranking policy πt (x) produces a ranking
σt that is presented to the user. Note that the policy may ignore

the information in xt , if we want to learn a single global ranking

like in the introductory news example.

After presenting the ranking σt , the system receives a feedback

vector ct from the user with a non-negative value ct (d) for every
d ∈ D. In the simplest case, it is 1 for click and 0 for no click, and we

will use the word "click" as a placeholder throughout this paper for

simplicity. But the feedback may take many other forms and does

not have to be binary. For example, in a video streaming service,

the feedback may be the percentage the user watched of each video.

After the feedback ct was received, the dynamic LTR algorithm

A now updates the ranking policy and produces the policy πt+1
that is used in the next time step.

πt+1 ←− A((x1,σ1, c1), ..., (xt ,σt , ct ))

An instance of such a dynamic LTR algorithm is the Naive algorithm

already outlined in Section 2. It merely computes

∑
ct to produce

a new ranking policy for t + 1 (here a global ranking independent

of x ).

4.1 Partial and Biased Feedback
A key challenge of dynamic LTR lies in the fact that the feedback

ct provides meaningful feedback only for the items that the user

examined. Following a large body of work on click models [19], we

model this as a censoring process. Specifically, for a binary vector

et indicating which items were examined by the user, we model

the relationship between ct and rt as follows.

ct (d) =
{
rt (d) if et (d) = 1

0 otherwise

(2)

Coming back to the running example of news ranking, rt contains
the full information about which articles the user is interested

in reading, while ct reveals this information only for the articles

d examined by the user (i.e. et (d) = 1). Analogously, in the job

placement application rt indicates for all candidates d whether

they are qualified to receive an interview call, but ct reveals this
information only for those candidates examined by the employer.

A second challenge lies in the fact that the examination vector

et cannot be observed. This implies that a feedback value of ct (d) =
0 is ambiguous – it may either indicate lack of examination (i.e.

et (d) = 0) or negative feedback (i.e. rt (d) = 0). This would not

be problematic if et was uniformly random, but which items get

examined is strongly biased by the ranking σt presented to the

user in the current iteration. Specifically, users are more likely to

look at an item high in the ranking than at one that is lower down

[32]. We model this position bias as a probability distribution on

the examination vector

et ∼ P(e |σt ,xt , rt ). (3)

Most click models can be brought into this form [19]. For the sim-

plicity of this paper, we merely use the Position-Based Model (PBM)

[21]. It assumes that the marginal probability of examination pt (d)
for each item d depends only on the rank rank(d |σ ) of d in the

presented ranking σ . Despite its simplicity, it was found that the

PBM can capture the main effect of position bias accurately enough

to be reliable in practice [5, 33, 47].



4.2 Evaluating Ranking Performance
We measure the quality of a ranking policy π by its utility to the

users. Virtually all ranking metrics used in information retrieval de-

fine the utilityU (σ | r) of a ranking σ as a function of the relevances

of the individual items r. In our case, these item-based relevances r
represent which articles the user likes to read, or which candidates

are qualified for an interview. A commonly used utility measure is

the DCG [30]

UDCG (σ | r) =
∑
d ∈σ

r(d)
log

2
(1 + rank(d |σ ))

,

or the NDCG when normalized by the DCG of the optimal ranking.

Over a distribution of requests P(x , r), a ranking policy π (x) is
evaluated by its expected utility

U (π ) =

∫
U (π (x)| r) d P(x , r). (4)

4.3 Optimizing Ranking Performance
The user-facing goal of dynamic LTR is to converge to the policy

π∗ = argmaxπ U (π ) that maximizes utility. Even if we solve the

problem of estimatingU (π ) despite our lack of knowledge of e, this
maximization problem could be computationally challenging, since

the space of ranking policies is exponential even when learning

just a single global ranking. Fortunately, it is easy to show [39] that

sorting-based policies

π (x) ≡ argsort

d ∈D

[
R(d |x)

]
, (5)

where

R(d |x) =

∫
r(d) d P(r |x), (6)

are optimal for virtually allU (σ | r) commonly used in IR (e.g. DCG).

So, the problem lies in estimating the expected relevance R(d |x)
of each item d conditioned on x . When learning a single global

ranking, this further simplifies to estimating the expected average

relevance R(d) =
∫
r(d)d P(r,x) for each item d . The global ranking

can then be derived via

σ = argsort

d ∈D

[
R(d)

]
(7)

In Section 6, we will use techniques from causal inference and

missing-data analysis to design unbiased and consistent estimators

forR(d |x) andR(d) that only require access to the observed feedback
ct .

5 FAIRNESS IN DYNAMIC LTR
While sorting by R(d |x) (or R(d) for global rankings) may provide

optimal utility to the user, the introductory example has already

illustrated that this ranking can be unfair. There is a growing body

of literature to address this unfairness in ranking, and we now

extend merit-based fairness [14, 42] to the dynamic LTR setting.

The key scarce resource that a ranking policy allocates among

the items is exposure. Based on the model introduced in the pre-

vious section, we define the exposure of an item d as the mar-

ginal probability of examination pt (d) = P(et (d) = 1|σt ,xt , rt ).
It is the probability that the user will see d and thus have the op-

portunity to read that article, buy that product, or interview that

candidate. We discuss in Section 6 how to estimate pt (d). Taking a

group-based approach to fairness, we aggregate exposure by groups

G = {G1, . . . ,Gm }.

Expt (Gi ) =
1

|Gi |

∑
d ∈Gi

pt (d). (8)

These groups can be legally protected groups (e.g. gender, race),

reflect some other structure (e.g. items sold by a particular seller),

or simply put each item in its own group (i.e. individual fairness).

In order to formulate fairness criteria that relate exposure to

merit, we define the merit of an item as its expected average rele-

vance R(d) and again aggregate over groups.

Merit(Gi ) =
1

|Gi |

∑
d ∈Gi

R(d) (9)

In Section 6, we will discuss how to get unbiased estimates of

Merit(Gi ) using the biased feedback data ct .
With these definitions in hand, we can address the types of dis-

parities identified in Section 2. Specifically, we extend the Disparity

of Treatment criterion of [42] to the dynamic ranking problem,

using an amortized notion of fairness as in [14]. In particular, for

any two groups Gi and G j the disparity

DE
τ (Gi ,G j ) =

1

τ
∑τ
t=1 Expt (Gi )

Merit(Gi )
−

1

τ
∑τ
t=1 Expt (G j )

Merit(G j )
(10)

measures in how far amortized exposure over τ time steps was

fulfilled. This exposure-based fairness disparity expresses in

how far, averaged over all time steps, each group of items got

exposure proportional to its relevance. The further the disparity is

from zero, the greater is the violation of fairness. Note that other

allocation strategies beyond proportionality could be implemented

as well by using alternate definitions of disparity [42].

Exposure can also be allocated based on other fairness criteria,

for example, a Disparity of Impact that a specific exposure allocation

implies [42]. If we consider the feedback ct (e.g. clicks, purchases,
votes) as a measure of impact

Impt (Gi ) =
1

|Gi |

∑
d ∈Gi

ct (d), (11)

then keeping the following disparity close to zero controls how

exposure is allocated to make impact proportional to relevance.

DI
τ (Gi ,G j ) =

1

τ
∑τ
t=1 Impt (Gi )

Merit(Gi )
−

1

τ
∑τ
t=1 Impt (G j )

Merit(G j )
(12)

We refer to this as the impact-based fairness disparity. In Sec-

tion 7 we will derive a controller that drives such exposure and

impact disparities to zero.

6 UNBIASED ESTIMATORS
To be able to implement the ranking policies in Equation (5) and

the fairness disparities in Equations (10) and (12), we need accu-

rate estimates of the position bias pt , the expected conditional

relevances R(d |x), and the expected average relevances R(d). We

consider these estimation problems in the following.



6.1 Estimating the Position Bias
Learning a model for pt is not part of our dynamic LTR problem,

as the position-bias model is merely an input to our dynamic LTR

algorithms. Fortunately, several techniques for estimating position-

bias models already exist in the literature [5, 23, 33, 47], and we

are agnostic to which of these is used. In the simplest case, the

examination probabilities pt (d) only depend on the rank of the

item in σ , analogous to a Position-Based Click Model [21] with

a fixed probability for each rank. It was shown in [5, 33, 47] how

these position-based probabilities can be estimated from explicit

and implicit swap interventions. Furthermore, it was shown in [23]

how the contextual features x about the users and query can be

incorporated in a neural-network based propensity model, allow-

ing it to capture that certain users may explore further down the

ranking for some queries. Once any of these propensity models are

learned, they can be applied to predict pt for any new query xt and
ranking σt .

6.2 Estimating Conditional Relevances
The key challenge in estimating R(d |x) from Equation (6) lies in

our inability to directly observe the true relevances rt . Instead,
the only data we have is the partial and biased feedback ct . To
overcome this problem, we take an approach inspired by [33] and

extend it to the dynamic ranking setting. The key idea is to correct

for the selection bias with which relevance labels are observed in

ct using techniques from survey sampling and causal inference

[28, 29]. However, unlike the ordinal estimators proposed in [33],

we need cardinal relevance estimates since our fairness disparities

are cardinal in nature. We, therefore, propose the following cardinal

relevance estimator.

The key idea behind this estimator lies in a training objective that

only uses ct , but that in expectation is equivalent to a least-squares

objective that has access to rt . To start the derivation, let’s consider
how we would estimate R(d |x), if we had access to the relevance

labels (r1, ..., rτ ) of the previous τ time steps. A straightforward

solution would be to solve the following least-squares objective for

a given regression model R̂w(d |xt ) (e.g. a neural network), where
w are the parameters of the model.

Lr(w) =
τ∑
t=1

∑
d

(
rt (d) − R̂w(d |xt )

)
2

(13)

The minimumw∗ of this objective is the least-squares regression
estimator of R(d |xt ). Since the (r1, ..., rτ ) are not available, we de-
fine an asymptotically equivalent objective that merely uses the

biased feedback (c1, ..., cτ ). The new objective corrects for the po-

sition bias using Inverse Propensity Score (IPS) weighting [28, 29],

where the position bias (p
1
, ..., pτ ) takes the role of the missingness

model.

Lc(w) =
τ∑
t=1

∑
d

R̂w(d |xt )
2 +

ct (d)
pt (d)

(ct (d) − 2R̂w(d |xt )) (14)

We denote the regression estimator defined by the minimum of this

objective as R̂Reg(d |xt ). The regression objective in (14) is unbiased,

meaning that its expectation is equal to the regression objective

Lr(w) that uses the unobserved true relevances (r1, ..., rτ ).

Ee
[
Lc(w)

]
=

τ∑
t=1

∑
d

∑
et (d )

[
R̂w(d |xt )

2+
ct (d)
pt (d)

(ct (d)−2R̂w(d |xt))

]
P(et (d)|σt ,xt)

=

τ∑
t=1

∑
d

R̂w(d |xt )
2 +

1

pt (d)
rt (d)(rt (d) − 2R̂w(d |xt )) pt (d)

=

τ∑
t=1

∑
d

R̂w(d |xt )
2 + rt (d)2 − 2 rt (d)R̂w(d |xt )

=

τ∑
t=1

∑
d

(
rt (d) − R̂w(d |xt )

)
2

= Lr(w)

Line 2 formulates the expectation in terms of the marginal exposure

probabilities P(et (d)|σt ,xt ), which decomposes the expectation

as the objective is additive in d . Note that P(et (d) = 1|σt ,xt ) is
therefore equal to pt (d) under our exposure model. Line 3 sub-

stitutes ct (d) = et (d) rt (d) and simplifies the expression, since

et (d) rt (d) = 0 whenever the user is not exposed to an item. Note

that the propensities pt (σ ) for the exposed items now cancel, as

long as they are bounded away from zero – meaning that all items

have some probability of being found by the user. In case users

do not naturally explore low enough in the ranking, active inter-

ventions can be used to stochastically promote items in order to

ensure non-zero examination propensities (e.g. [27]). Note that un-

biasedness holds for any sequence of (x1, r1,σ1)..., (xT , rT ,σT ), no
matter how complex the dependencies between the rankings σt
are.

Beyond this proof of unbiasedness, it is possible to use stan-

dard concentration inequalities to show that Lc(w) converges to
Lr(w) as the size τ of the training sequence increases. Thus, un-

der standard conditions on the capacity for uniform convergence,

it is possible to show convergence of the minimizer of Lc(w) to
the least-squares regressor as the size τ of the training sequence

increases. We will use this regression objective to learn neural-

network rankers in Section 8.2.

6.3 Estimating Average Relevances
The conditional relevances R(d |x) are used in the ranking policies

from Equation (5). But when defining merit in Equation (9) for the

fairness disparities, the average relevance R(d) is needed. Further-
more, R(d) serves as the ranking criterion for global rankings in

Equation (7). While we could marginalize R(d |x) over P(x) to derive
R(d), we argue that the following is a more direct way to get an

unbiased estimate.

R̂IPS(d) =
1

τ

τ∑
t=1

ct (d)
pt (d)

. (15)



The following shows that this estimator is unbiased as long as the

propensities are bounded away from zero.

Ee
[
R̂IPS(d)

]
=

1

τ

τ∑
t=1

∑
et (d )

et (d) rt (d)
pt (d)

P(et (d)|σt ,xt )

=
1

τ

τ∑
t=1

rt (d)
pt (d)

pt (d)

=
1

τ

τ∑
t=1

rt (d)

= R(d)

In the following experiments, we will use this estimator whenever

a direct estimate of R(d) is needed for the fairness disparities or as

a global ranking criterion.

7 DYNAMICALLY CONTROLLING FAIRNESS
Given the formalization of the dynamic LTR problem, our defini-

tion of fairness, and our derivation of estimators for all relevant

parameters, we are now in the position to tackle the problem of

ranking while enforcing the fairness conditions. We view this as

a control problem since we need to be robust to the uncertainty

in the estimates R̂(d |x) and R̂(d) at the beginning of the learning

process. Specifically, we propose a controller that is able to make

up for the initial uncertainty as these estimates converge during

the learning process.

Following our pairwise definitions of amortized fairness from

Section 5, we quantify by how much fairness between all classes is

violated using the following overall disparity metric.

Dτ =
2

m(m − 1)

m∑
i=0

m∑
j=i+1

��Dτ (Gi ,G j )
��

(16)

This metric can be instantiated with the disparity DE
τ (Gi ,G j ) from

Equation (10) for exposure-based fairness, orDI
τ (Gi ,G j ) from Equa-

tion (12) for impact-based fairness. Since optimal fairness is achieved

for Dτ = 0, we seek to minimize Dτ .

To this end, we now derive a method we call FairCo, which
takes the form of a Proportional Controller (a.k.a. P-Controller)

[12]. A P-controller is a widely used control-loop mechanism that

applies feedback through a correction term that is proportional to

the error. In our application, the error corresponds to the violation

of our amortized fairness disparity from Equations (10) and (12).

Specifically, for any set of disjoint groups G = {G1, . . . ,Gm }, the

error term of the controller for any item d is defined as

∀G ∈ G ∀d ∈ G : errτ (d) = (τ − 1) ·max

Gi

(
D̂τ−1(Gi ,G)

)
.

The error term errτ (G) is zero for the group that already has the

maximum exposure/impact w.r.t. its merit. For items in the other

groups, the error term grows with increasing disparity.

Note that the disparity D̂τ−1(Gi ,G) in the error term uses the es-

timated ˆMerit(G) from Equation (15), which converges toMerit(G)
as the sample size τ increases. To avoid division by zero, ˆMerit(G)
can be set to some minimum constant.

We are now in a position to state the FairCo ranking policy as

FairCo: στ = argsort

d ∈D

(
R̂(d |x) + λ errτ (d)

)
. (17)

When the exposure-based disparity D̂E
τ−1(Gi ,G) is used in the error

term, we refer to this policy as FairCo(Exp). If the impact-based

disparity D̂I
τ−1(Gi ,G) is used, we refer to it as FairCo(Imp).

Like the policies in Section 4.3, FairCo is a sort-based policy.

However, the sorting criterion is a combination of relevance R̂(d |x)
and an error term representing the fairness violation. The idea

behind FairCo is that the error term pushes the items from the

underexposed groups upwards in the ranking. The parameter λ
can be chosen to be any positive constant. While any choice of λ
leads to asymptotic convergence as shown by the theorem below

for exposure fairness, a suitable choice of λ can have influence

on the finite-sample behavior of FairCo: a higher λ can lead to

an oscillating behavior, while a smaller λ makes the convergence

smoother but slower. We explore the role of λ in the experiments,

but find that keeping it fixed at λ = 0.01 works well across all of

our experiments. Another key quality of FairCo is that it is agnostic

to the choice of error metric, and we conjecture that it can easily

be adapted to other types of fairness disparities. Furthermore, it is

easy to implement and it is very efficient, making it well suited for

practical applications.

To illustrate the theoretical properties of FairCo, we now ana-

lyze its convergence for the case of exposure-based fairness. To

disentangle the convergence of the estimator for ˆMerit(G) from the

convergence of FairCo, consider a time point τ0 where ˆMerit(G) is
already close toMerit(G) for allG ∈ G. We can thus focus on the

question whether FairCo can drive D
E
τ to zero starting from any

unfairness that may have persisted at time τ0. To make this prob-

lem well-posed, we need to assume that exposure is not available

in overabundance, otherwise it may be unavoidable to give some

groups more exposure than they deserve even if they are put at

the bottom of the ranking. A sufficient condition for excluding this

case is to only consider problems for which the following is true:

for all pairs of groups Gi ,G j , if Gi is ranked entirely above G j at

any time point t , then

Expt (Gi )

ˆMerit(Gi )
≥

Expt (G j )

ˆMerit(G j )
. (18)

Intuitively, the condition states that rankingGi ahead ofG j reduces

the disparity if Gi has been underexposed in the past. We can now

state the following theorem.

Theorem 7.1. For any set of disjoint groups G = {G1, . . . ,Gm }

with any fixed target merits ˆMerit(Gi ) > 0 that fulfill (18), any
relevance model R̂(d |x) ∈ [0, 1], any exposure model pt (d) with
0 ≤ pt (d) ≤ p

max
, and any value λ > 0, running FairCo(Exp) from

time τ0 will always ensure that the overall disparity D
E
τ with respect

to the target merits converges to zero at a rate of O
(
1

τ

)
, no matter

how unfair the exposures 1

τ0
∑τ0
t=1 Expt (G j ) up to τ0 have been.

The proof of the theorem is included in Appendix B. Note that

this theorem holds for any time point τ0, even if the estimated

merits change substantially up to τ0. So, once the estimated merits



have converged to the true merits, FairCo(Exp) will ensure that the

amortized disparity D
E
τ converges to zero as well.

8 EMPIRICAL EVALUATION
In addition to the theoretical justification of our approach, we also

conducted an empirical evaluation
1
. We first present experiments

on a semi-synthetic news dataset to investigate different aspects

of the proposed methods under controlled conditions. After that

we evaluate the methods on real-world movie preference data for

external validity.

8.1 Robustness Analysis on News Data
To be able to evaluate the methods in a variety of specifically de-

signed test settings, we created the following simulation environ-

ment from articles in the Ad Fontes Media Bias dataset
2
. It simulates

a dynamic ranking problem on a set of news articles belonging to

two groupsG
left

andG
right

(e.g. left-leaning and right-leaning news

articles).

In each trial, we sample a set of 30 news articles D. For each

article, the dataset contains a polarity value ρd that we rescale to the

interval between -1 and 1, while the user polarities are simulated.

Each user has a polarity that is drawn from a mixture of two normal

distributions clipped to [−1, 1]

ρut ∼ clip[−1,1]

(
pneдN(−0.5, 0.2) + (1 − pneд)N(0.5, 0.2)

)
(19)

wherepneд is the probability of the user to be left-leaning (mean=−0.5).

We use pneд = 0.5 unless specified. In addition, each user has an

openness parameter out ∼ U(0.05, 0.55), indicating on the breadth

of interest outside their polarity. Based on the polarities of the user

ut and the item d , the true relevance is drawn from the Bernoulli

distribution

rt (d) ∼ Bernoulli

[
p = exp

(
−(ρut − ρd )2

2(out )2

)]
.

As the model of user behavior, we use the Position-based click

model (PBM [19]), where the marginal probability that user ut
examines an article only depends only on its position. We choose

an exposure drop-off analogous to the gain function in DCG as

pt (d) =
1

log
2
(rank(d |σt ) + 1)

. (20)

The remainder of the simulation follows the dynamic ranking

setup. At each time step t a user ut arrives to the system, the

algorithm presents an unpersonalized ranking σt , and the user

provides feedback ct according to pt and rt . The algorithm only

observes ct and not rt .
To investigate group-fairness, we group the items according to

their polarity, where items with a polarity ρd ∈ [−1, 0) belong to

the left-leaning group G
left

and items with a polarity ρd ∈ [0, 1]
belong to the right-leaning group G

right
.

We measure ranking quality by the average cumulative NDCG

1

τ
∑τ
t=1U

DCG (σt | rt ) over all the users up to time τ . We measure

Exposure Unfairness via D
E
τ and Impact Unfairness via D

I
τ as de-

fined in Equation (16).

1
The implementation is available at https://github.com/MarcoMorik/Dynamic-Fairness.

2
https://www.adfontesmedia.com/interactive-media-bias-chart/

In all news experiments, we learn a global ranking and compare

the following methods.

Naive: Rank by the sum of the observed feedback ct .
D-ULTR(Glob): Dynamic LTR by sorting via the unbiased esti-

mates R̂IPS(d) from Eq. (15).

FairCo(Imp): Fairness controller from Eq. (17) for impact fairness.
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Figure 1: Convergence of NDCG (left) and Unfairness (right)
as the number of users increases. (100 trials)

8.1.1 Can FairCo reduce unfairness while maintaining good rank-
ing quality? This is the key question in evaluating FairCo, and

Figure 1 shows how NDCG and Unfairness converge for Naive, D-

ULTR(Glob), and FairCo(Imp). The plots show that Naive achieves

the lowest NDCG and that its unfairness remains high as the

number of user interactions increases. D-ULTR(Glob) achieve the

best NDCG, as predicted by the theory, but its unfairness is only

marginally better than that of Naive. Only FairCo manages to sub-

stantially reduce unfairness, and this comes only at a small decrease

in NDCG compared to D-ULTR(Glob).

The following questions will provide further insight into these

results, evaluating the components of the FairCo and exploring its

robustness.
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Figure 2: Error of relevance estimators as the number of
users increases (|D| = 30, 10 trials)

8.1.2 Do the unbiased estimates converge to the true relevances?
The first component of FairCo we evaluate is the unbiased IPS

estimator R̂IPS(d) from Equation (15). Figure 1 shows the absolute

difference between the estimated global relevance and true global

relevance for R̂IPS(d) and the estimator used in the Naive. While

the error for Naive stagnates at around 0.25, the estimation error

of R̂IPS(d) approaches zero as the number of users increases. This

verifies that IPS eliminates the effect of position bias and learns

accurate estimates of the true expected relevance for each news

article so that we can use them for the fairness and ranking criteria.

https://github.com/MarcoMorik/Dynamic-Fairness
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Figure 3: The effect of a block of right-leaning users on the
Unfairness of Impact. (50 trials, 3000 users)

8.1.3 Does FairCo overcome the rich-get-richer dynamic? The il-

lustrating example in Section 2 argues that naively ranking items

is highly sensitive to the initial conditions (e.g. which items get

the first clicks), leading to a rich-get-richer dynamic. We now test

whether FairCo overcomes this problem. In particular, we adver-

sarially modify the user distribution so that the first x users are

right-leaning (pneд = 0), followed by x left-leaning users (pneд = 1),

before we continue with a balanced user distribution (pneд = 0.5).

Figure 3 shows the unfairness after 3000 user interactions. As ex-

pected, Naive is the most sensitive to the head-start that the right-

leaning articles are getting. D-ULTR(Glob) fares better and its un-

fairness remains constant (but high) independent of the initial user

distribution since the unbiased estimator R̂IPS(d) corrects for the
presentation bias so that the estimates still converge to the true rel-

evance. FairCo inherits this robustness to initial conditions since it

uses the same R̂IPS(d) estimator, and its active control for unfairness

makes it the only method that achieves low unfairness across the

whole range.
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Figure 4: Comparing the LP Baseline and the P-Controller
in terms of NDCG (left) and Unfairness (right) for different
values of λ. (15 trials, 3000 users)

8.1.4 How effective is the FairCo compared to a more expensive
Linear-Programming Baseline? As a baseline, we adapt the linear

programming method from [42] to the dynamic LTR setting to

minimize the amortized fairness disparities that we consider in

this work. The method uses the current relevance and disparity

estimates to solve a linear programming problem whose solution

is a stochastic ranking policy that satisfies the fairness constraints

in expectation at each τ . The details of this method are described

in Appendix A. Figure 4 shows NDCG and Impact Unfairness after

3000 users averaged over 15 trials for both LinProg and FairCo for

different values of their hyperparameter λ. For λ = 0, both methods

reduce to D-ULTR(Glob) and we can see that their solutions are

unfair. As λ increases, both methods start enforcing fairness at the

expense of NDCG. In these and other experiments, we found no

evidence that the LinProg baseline is superior to FairCo. However,

LinProg is substantially more expensive to compute, which makes

FairCo preferable in practice.
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Figure 5: NDCG (left) and Unfairness (right) for varying pro-
portion of Gleft (20 trials, 3000 users)

8.1.5 Is FairCo effective for different group sizes? In this experi-

ment, we vary asymmetry of the polarity within the set of 30 news

articles, ranging fromG
left
= 1 toG

left
= 15 news articles. For each

group size, we run 20 trials for 3000 users each. Figure 5 shows

that regardless of the group ratio, FairCo reduces unfairness for

the whole range while maintaining NDCG. This is in contrast to

Naive and D-ULTR(Glob), which suffer from high unfairness.
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Figure 6: NDCG (left) and Unfairness (right) with varying
user distributions. (20 trials, 3000 users)

8.1.6 Is FairCo effective for different user distributions? Finally, to

examine the robustness to varying user distributions, we control the

polarity distribution of the users by varying pneд in Equation (19).

We run 20 trials each on 3000 users. In Figure 6, observe that Naive

and D-ULTR(Glob) suffer from high unfairness when there is a

large imbalance between the minority and the majority group,

while FairCo is able to control the unfairness in all settings.

8.2 Evaluation on Real-World Preference Data
To evaluate our method on a real-world preference data, we adopt

the ML-20M dataset [25]. We select the five production companies

with the most movies in the dataset — MGM, Warner Bros, Para-
mount, 20th Century Fox, Columbia. These production companies

form the groups for which we aim to ensure fairness of exposure.

To exclude movies with only a few ratings and have a diverse user

population, from the set of 300 most rated movies by these produc-

tion companies, we select 100 movies with the highest standard



deviation in the rating across users. For the users, we select 10
4

users who have rated the most number of the chosen movies. This

leaves us with a partially filled ratings matrix with 10
4
users and

100movies. To avoid missing data for the ease of evaluation, we use

an off-the-shelf matrix factorization algorithm
3
to fill in the missing

entries. We then normalize the ratings to [0, 1] by apply a Sigmoid

function centered at rating b = 3 with slope a = 10. These serve

as relevance probabilities where higher star ratings correspond to

a higher likelihood of positive feedback. Finally, for each trial we

obtain a binary relevance matrix by drawing a Bernoulli sample

for each user and movie pair with these probabilities. We use the

user embeddings from the matrix factorization model as the user

features xt .
In the following experiments we use FairCo to learn a sequence

of ranking policies πt (x) that are personalized based on x . The goal
is to maximize NDCG while providing fairness of exposure to the

production companies. User interactions are simulated analogously

to the previous experiments. At each time step t , we sample a user

xt and the ranking algorithm presents a ranking of the 100 movies.

The user follows the position-based model from Equation (20) and

reveal ct accordingly.
For the conditional relevance model R̂Reg(d |x) used by FairCo and

D-ULTR, we use a one hidden-layer neural network that consists of

D = 50 input nodes fully connected to 64 nodes in the hidden layer

with ReLU activation, which is connected to 100 output nodes with

Sigmoid to output the predicted probability of relevance of each

movie. Since training this networkwith less than 100 observations is

unreliable, we use the global ranker D-ULTR(Glob) for the first 100

users. We then train the network at τ = 100 users, and then update

the network after every 10 users on all previously collected feedback

i.e. c1, ..., cτ using the unbiased regression objective, Lc(w), from
Eq. (14) with the Adam optimizer [34].
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Figure 7: Comparing the NDCG of personalized and non-
personalized rankings on the Movie data. (10 trials)

8.2.1 Does personalization via unbiased objective improve NDCG?.
We first evaluate whether training a personalized model using the

de-biased R̂Reg(d |x) regression estimator improves ranking perfor-

mance over a non-personalized model. Figure 7 shows that ranking

by R̂Reg(d |x) (i.e. D-ULTR) provides substantially higher NDCG than

the unbiased global ranking D-ULTR(Glob) and the Naive ranking.

To get an upper bound on the performance of the personalization

models, we also train a Skyline model using the (in practice un-

observed) true relevances rt with the least-squares objective from

Eq. (13). Even though the unbiased regression estimator R̂Reg(d |x)

3
Surprise library (http://surpriselib.com/) for SVD with biased=False and D=50
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Figure 8: NDCG (left) and ExposureUnfairness (right) on the
Movie data as the number of user interactions increases. (10
trials)
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Figure 9: NDCG (left) and Impact Unfairness (right) on the
Movie data as the number of user interactions increases. (10
trials)

only has access to the partial feedback ct , it tracks the performance

of Skyline. As predicted by the theory, they appear to converge

asymptotically.

8.2.2 Can FairCo reduce unfairness? Figure 8 shows that FairCo(Exp)

can effectively control Exposure Unfairness, unlike the other meth-

ods that do not actively consider fairness. Similarly, Figure 9 shows

that FairCo(Imp) is effective at controlling Impact Unfairness. As ex-

pected, the improvement in fairness comes at a reduction in NDCG,

but this reduction is small.
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Figure 10: Unfairness of Exposure (left) and Unfairness of
Impact (right) for the personalized controller optimized for
either Exposure or Impact. (10 trials)

8.2.3 How different are exposure and impact fairness? Figure 10

evaluates how an algorithm that optimizes Exposure Fairness per-

forms in terms of Impact Fairness and vice versa. The plots show

that the two criteria achieve different goals and that they are sub-

stantially different. In fact, optimizing for fairness in impact can

even increase the unfairness in exposure, illustrating that the choice

of criterion needs to be grounded in the requirements of the appli-

cation.



9 CONCLUSIONS
We identify how biased feedback and uncontrolled exposure alloca-

tion can lead to unfairness and undesirable behavior in dynamic

LTR. To address this problem, we propose FairCo, which is able

to adaptively enforce amortized merit-based fairness constraints

even though their underlying relevances are still being learned. The

algorithm is robust to presentation bias and thus does not exhibit

rich-get-richer dynamics. Finally, FairCo is easy to implement and

computationally efficient, which makes it well suited for practical

applications.
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A LINEAR PROGRAMMING BASELINE
Here, we present a version of the fairness constraint defined in

Singh and Joachims [42] that explicitly computes an optimal rank-

ing to present in each time step τ by solving a linear program (LP).

In particular, we formulate an LP that explicitly maximizes the

estimated DCG of the ranking στ while minimizing the estimated

cumulative fairness disparity DI
τ formulated in Equation (11). This

is used as a baseline to compare the P-Controller with.

To avoid an expensive search over the exponentially-sized space

of rankings as in [14], we exploit an alternative representation [42]

as a doubly-stochastic matrix P that is sufficient for representing σt .
In this matrix, the entry Py, j denotes the probability of placing item
y at position j . Both DCG as well as Impτ (Gi ) are linear functions of

P, which means that the optimum can be computed as the following

linear program.

P∗ = argmax

P,ξ ≥0

∑
y

R̂(y |x)
n∑
j=1

Py, j

log(1 + j)︸                          ︷︷                          ︸
Utility

−λ
∑
i, j

ξi j

s.t. ∀y, j :
n∑
i=1
Py,i = 1,

∑
y′
Py′, j = 1, 0 ≤ Py, j ≤ 1

∀ Gi ,G j :

(
ˆImpτ (Gi |Pτ )

ˆMerit(Gi )
−

ˆImpτ (G j |Pτ )

ˆMerit(G j )

)
+ Dτ−1(Gi ,G j ) ≤ ξi j

(21)

The parameter λ controls trade-off between DCG of σt and fairness.
We explore this parameter empirically in Section 8.1.

It remains to define ˆImpτ (G j |Pτ ). Assuming the PBM clickmodel

with q(j) denoting the examination propensity of item d at position

j , the estimated probability of a click is R̂(d)·q(j). So we can estimate

the impact on the items in groupG for the rankings defined by P as

ˆImpτ (G |P) =
1

|G |

∑
d ∈G

R̂(d |x)
©­«
n∑
j=1
Py, j q(j)

ª®¬
We use the scipy.optimize.linprog LP solver to solve for the

optimal P∗, and then use a Birkhoff von-Neumann decomposition

[15, 42] to sample a deterministic ranking στ to present to the

user. This ranking is guaranteed to achieve the DCG and fairness

optimized by P∗ in expectation.

Note that the number of variables in the LP is O(n2 + |G|2), and
even a polynomial-time LP solver incurs substantial computation

cost when working with a large number of items in a practical

dynamic ranking application.



B CONVERGENCE OF FAIRCO-CONTROLLER
In this section we will prove the convergence theorem of FairCo for

exposure fairness. We conjecture that analogous proofs apply to

other fairness criteria as well. To prove the main theorem, we will

first set up the following lemmas.

Lemma B.1. Under the conditions of the main theorem, for any
value of λ and any τ > τ0: if DE

τ−1(Gi ,G j ) >
1

(τ−1)λ , then

τDE
τ (Gi ,G j ) ≤ (τ − 1)D

E
τ−1(Gi ,G j ).

Proof. From the definition of DE
τ in Eq. (10) we know that for

τ > τ0,

τDE
τ (Gi ,G j ) = (τ − 1)D

E
τ−1(Gi ,G j ) +

(
Expτ (Gi )

ˆMerit(Gi )
−

Expτ (G j )

ˆMerit(G j )

)
.

Since DE
τ−1(Gi ,G j ) >

1

(τ−1)λ , we know that for all items in G j

it holds that errτ (d) > 1

λ . Hence, FairCo adds a correction term

λerrτ (d) to the R̂(d) of all d ∈ G j that is greater than λ 1

λ = 1.

Since 0 ≤ R̂(d) ≤ 1, the ranking is dominated by the correc-

tion term λerrτ (d). This means that all d ∈ G j are ranked above

all d ∈ Gi . Under the feasibility condition from Eq.(18), this im-

plies that

(
Expτ (Gi )

ˆMerit (Gi )
≤

Expτ (G j )

ˆMerit (G j )

)
and thus τDE

τ (Gi ,G j ) ≤ (τ −

1)DE
τ−1(Gi ,G j ). □

Lemma B.2. Under the conditions of the main theorem, for any
value of λ > 0 there exists ∆ ≥ 0 such that for anyGi ,G j and τ > τ0:
if DE

τ−1(Gi ,G j ) ≤
1

(τ−1)λ , then τD
E
τ (Gi ,G j ) ≤

1

λ + ∆.

Proof. Using the definition the definition of DE
τ in Eq. (10), we

know that

τDE
τ (Gi ,G j ) = (τ − 1)D

E
τ−1(Gi ,G j ) +

(
Expτ (Gi )

ˆMerit(Gi )
−

Expτ (G j )

ˆMerit(G j )

)
≤

1

λ
+

(
Expτ (Gi )

ˆMerit(Gi )
−

Expτ (G j )

ˆMerit(G j )

)
≤

1

λ
+ ∆

where ∆ = maxσ maxG,G′
G,G′

(
Expσ (G)

ˆMerit (G)
−

Expσ (G
′)

ˆMerit (G′)

)
. Note that ∆ is

a constant independent of τ and refers to the ranking σ for which

two groups G,G ′ have the maximum exposure difference (e.g. one

is placed at the top of the ranking, and the other is placed at the

bottom). □

Using these two lemmas, we conclude the following theorem:

Theorem B.3. For any set of disjoint groups G = {G1, . . . ,Gm }

with any fixed target merits ˆMerit(Gi ) > 0 that fulfill (18), any
relevance model R̂(d |x) ∈ [0, 1], any exposure model pt (d) with
0 ≤ pt (d) ≤ p

max
, and any value λ > 0, running FairCo(Exp) from

time τ0 will always ensure that the overall disparity D
E
τ with respect

to the target merits converges to zero at a rate of O
(
1

τ

)
, no matter

how unfair the exposures 1

τ0
∑τ0
t=1 Expt (G j ) up to τ0 have been.

Proof. To prove that D
E
τ converges to zero at a rate of O

(
1

τ

)
,

we will show that for all τ ≥ τ0, the following holds:

D
E
τ ≤

1

τ

2

m(m − 1)

m∑
i=1

m∑
j=i+1

max

(
τ0

���DE
τ0 (Gi ,G j )

��� , 1
λ
+ ∆

)
The two terms in the max provide an upper bound on the dispar-

ity at time τ for anyGi andG j . To show this, we prove by induction

that τDE
τ (Gi ,G j ) ≤ max

(
τ0

��DE
τ0 (Gi ,G j )

�� , 1λ + ∆)
for all τ ≥ τ0.

At the start of the induction at τ = τ0, the max directly upper

bounds τ0D
E
τ0 (Gi ,G j ). In the induction step from τ − 1 to τ , if (τ −

1)DE
τ−1(Gi ,G j ) >

1

λ , then Lemma B.1 implies that τDE
τ (Gi ,G j ) ≤

(τ − 1)DE
τ−1(Gi ,G j ) ≤ max

(
τ0

��DE
τ0 (Gi ,G j )

�� , 1λ + ∆)
.

If (τ−1)DE
τ−1(Gi ,G j ) ≤

1

λ , then LemmaB.2 implies thatτDE
τ (Gi ,G j ) ≤

1

λ + ∆ ≤ max

(
τ0

��DE
τ0 (Gi ,G j )

�� , 1λ + ∆)
as well. This completes the

induction, and we conclude that

DE
τ (Gi ,G j ) ≤

1

τ
max

(
τ0 |D

E
τ0 (Gi ,G j )|,

1

λ
+ ∆

)
.

Putting everything together, we get

D
E
τ =

2

m(m − 1)

m∑
i=0

m∑
j=i+1

���DE
τ (Gi ,G j )

���
≤

2

m(m − 1)

m∑
i=0

m∑
j=i+1

���� 1τ max

(
τ0 |D

E
τ0 (Gi ,G j )|,

1

λ
+ ∆

)����
≤

1

τ

2

m(m − 1)

m∑
i=0

m∑
j=i+1

max

(
τ0

���DE
τ0 (Gi ,G j )

��� , 1
λ
+ ∆

)
(since λ,∆,τ > 0)

□
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