Supervised Learning

- Find function from input space X to output space Y

\[h : X \rightarrow Y \]

such that the prediction error is low.

Examples of Complex Output Spaces

- **Natural Language Parsing**
 - Given a sequence of words x, predict the parse tree y.
 - Dependencies from structural constraints, since y has to be a tree.

```
3 The dog chased the cat
```

```
3 2
NP S VP NP
Det N V Det N
```

- **Part-of-Speech Tagging**
 - Given a sequence of words x, predict sequence of tags y.
 - Dependencies from tag-tag transitions in Markov model.

```
3 The bear chased the cat
```

```
3 2
Det N V Det N
```

Examples of Complex Output Spaces

- **Multi-Label Classification**
 - Given a (bag-of-words) document x, predict a set of labels y.
 - Dependencies between labels from correlations between labels (“iraq” and “oil” in newswire corpus).

```
3 Due to the continued violence in Baghdad, the oil price is expected to further increase.
OPEC officials met with …
```

```
3 2
antarctica +1 benelux -1 germany +1 iraq +1 oil -1 coal -1 trade -1 acquisitions
```

Examples of Complex Output Spaces

- **Non-Standard Performance Measures (e.g. F_β-score, Lift)**
 - F_β-score: harmonic average of precision and recall

\[F_\beta = \frac{2 \times \text{Precision} \times \text{Recall}}{\beta^2 \times \text{Precision} + \text{Recall}} \]

- New example vector \mathbf{y}.
 - Predict $y_3 = 1$, if $P(y_3 = 1 | \mathbf{x}) = 0.4$?
 - Depends on other examples!
Examples of Complex Output Spaces

- **Noun-Phrase Co-reference**
 - Given a set of noun phrases x, predict a clustering y.
 - Structural dependencies, since prediction has to be an equivalence relation.
 - Correlation dependencies from interactions.

![Noun-Phrase Co-reference Example](image)

Why do we Need Research on Complex Outputs?

- Important applications for which conventional methods don’t fit!
 - Noun-phrase co-reference: two-step approaches of pair-wise classification and clustering as postprocessing, e.g. [Ng & Candie, 2002]
 - Directly optimize complex loss functions (e.g. F_1, AvgPrec)

- Improve upon existing methods!
 - Natural language parsing: generative models like probabilistic context-free grammars
 - SVM outperforms Naïve Bayes for text classification [Joachims, 1998]

<table>
<thead>
<tr>
<th>Model</th>
<th>Precision/Recall</th>
<th>Break-Even Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve Bayes</td>
<td>72.1</td>
<td>87.5</td>
</tr>
<tr>
<td>Linear SVM</td>
<td>82.0</td>
<td>90.3</td>
</tr>
<tr>
<td>Support Vector Machines</td>
<td>62.4</td>
<td>71.6</td>
</tr>
</tbody>
</table>

Overview

- Task: Learning to predict complex outputs
 - Formalizing the problem
 - Multi-class classification: Generative vs. Discriminative
 - Training models with structured outputs
 - Generative training
 - SVMs and large-margin training
 - Conditional likelihood training

- Example 1: Learning to parse natural language
- Learning weighted context free grammar
- Example 2: Optimizing F_1-score in text classification
- Predict vector of class labels
- Example 3: Learning to cluster
- Learning a clustering function that produces desired clusterings

Structured Output Prediction as Multi-Class Classification

- **Learning Task**: $P(X,Y) = P(X) P(Y|X)$
 - Input Space: X (i.e. feature vectors, word sequence, etc.)
 - Output Space: Y (i.e. class, tag sequence, parse tree, etc.)
 - Training Data: $S = (x_1, y_1), ..., (x_n, y_n) \sim_{iid} P(X,Y)$

- **Approach**: view as multi-class classification task
 - Every complex output $y \in Y$ is one class

- **Goal**: Find $h: X \rightarrow Y$ with low expected loss
 - Loss function: $\Delta(x, y')$ (penalty for predicting y' if y correct)
 - Expected loss (i.e. Risk):
 $$\mathbb{E}_{(x,y) \sim S\Delta(x,y)} = \sum_{x \in X, y \in Y} \frac{\Delta(x, y)}{S} P(X=x) = 0$$

Generative Model: Model $P(X,Y)$

- Bayes’ Decision Rule: Optimal Decision is
 $$\hat{y} = \arg\max_{y} \sum_{x \in X} \frac{P(X=x) P(Y=y|X)}{P(Y=y)}$$

- Equivalent Reformulations: For $0(1 - \text{Loss} \Delta(x,y')) = 1$, if $y \neq y'$, 0 else
 $$\Delta(x) = \arg\max_{y, y'} \frac{P(Y=y | X=x) P(X=x)}{\sum_{y' \in Y} P(Y=y' | X=x) P(X=x)}$$

- Learning: maximum likelihood (or MAP, or Bayesian)
 - Assume model class $P(X,Y|\omega)$ with parameters $\omega \in \Omega$
 - Find
 $$\omega = \arg\max_{\omega} \prod_{(x,y) \sim S} \left[P(Y=y | X=x, \omega) \right]$$

Natural Language Parsing as Multi-Class Classifications

![Natural Language Parsing Example](image)
Naïve Bayes’ Classifier (Multivariate)
- Input Space X: Feature Vector
- Output Space Y: $\{1,-1\}$
- Model:
 - Prior class probabilities $P(Y=1), P(Y=-1)$
 - Class conditional model (one for each class)
 $$P(X|Y=1) = \prod \frac{P(X = x^i|Y=1)}{P(X = x^i|Y=0)}$$
 - Classification rule:
 $$h(x) = \arg \max_{y \in \Omega} \{P(Y=y) \prod_{x \in X} P(X = x|Y=y)\}$$

Bayes’ Decision Rule:
- Input Space X: Feature Vector
- Output Space Y: $\{1,-1\}$
- Model discriminant functions $P(Y|X)$
- Discriminative Model: Model $P(Y|X)$
 - Optimal Decision:
 - Assume 0/1 Loss
 - Class conditional model (one for each class)
 $$P(Y|X) = \frac{P(Y=1|X)}{P(Y=-1|X)}$$
 - Prior class probabilities
 - Classification rule:
 $$h(x) = \arg \max_{y \in \Omega} P(Y=y|X=x)$$

Discriminative Model: Model $P(Y|X)$
- Bayes’ Decision Rule:
 - Assume 0/1 Loss $\mathbb{I}(y) = 1$, if $y \neq y'$, 0 else
 - Optimal Decision:
 $$h(x) = \arg \max_{y \in \Omega} P(Y=y|X=x)$$
- Learning: maximum likelihood (or MAP, or Bayesian)
 - Assume model class $P(Y,X,o)$ with parameters $o \in \Omega$
 - Find
 $$\omega^* = \arg \max_{\omega \in \Omega} \sum_{x,y} P(Y=y,X=x,o)$$
- Example: Logistic regression classifier
 - Assume
 $$P(Y = y|X = x, o) = \frac{1}{1 + e^{-x \cdot o^T}}$$

Generative vs. Discriminative Models
- Learning Task:
 - Generator: Generate descriptions according to distribution $P(X)$.
 - Teacher: Assigns a value to each description based on $P(Y|X)$.
- Training Examples $(x_1, y_1), \ldots, (x_n, y_n) \sim P(X, Y)$
- Discriminative Model
 - Model $P(Y|X)$ with $P(Y|X,o)$
 - Find $o \in \Omega$ via MLE
 - Examples: Log. Reg., CRF
 - Model discriminant functions $h(x)$ with low train loss (e.g. Emp. Risk Min.)
 - Examples: naive Bayes, HMM
 - Prediction:
 $$h(x) = \arg \max_{y \in \Omega} P(Y=y|X=x,o)$$

Challenges in Learning with Complex Outputs
- Approach: view as multi-class classification task
 - Every complex output $y \in Y$ is one class
 - Example: The bear chased the cat
 - Prediction: $h(x) = \arg \max_{y \in \Omega} P(Y=y|X=x)$
- Problem: Exponentially many classes!
 - Generative Model: $P(X,Y)$
 - Discriminative Model: $P(Y|X)$
 - Discriminant Functions $h: X \times Y \rightarrow \Omega$
- Challenges:
 - How to compactly represent model?
 - How to do efficient inference with model (i.e. compute $P(Y|x,o)$)?
 - How to effectively estimate model from data? (e.g. compute $P(Y=x,o)$)
Natural Language Parsing

- Input Space X: Sequences of words
- Output Space Y: Trees over sequences
- Problem:
 How to compute predictions

\[\lambda(x) = \arg \max_{y \in Y} P(x,y) \]

efficiently?

Multi-Class Linear Discriminant

- Linear discriminant function of the form:
 \[h(x) = \arg \max_{y \in Y} [\sum \phi(x,y)] \]

Joint Feature Map

- Feature vector \(\phi_n(x,y) \) that describes match between \(x \) and \(y \)
- Linear discriminant function of the form:
 \[h(x) = \arg \max_{y \in Y} [\sum \phi(x,y)] \]

Joint Feature Map for Trees

- Weighted Context Free Grammar
 - Each rule \(\text{r}_i \) (e.g. \(S \rightarrow NP \)) has a weight
 - Score of a tree is the sum of its weights
 - Find highest scoring tree

Joint Feature Map for Sequences

- Linear Chain Model
 - Only local dependencies
 - Score for each adjacent label/label and word/label pair
 - Find highest scoring sequence

\[h(x) = \max_{y \in Y} P(x,y) \]

Connection to Graphical Models

Hidden Markov Model:

- Assumptions
 - \[\prod_{t=1}^{L} P(Y_t=x_t|Y_{t-1}=y_{t-1}) \]
 - Rule: \[h(x) = \arg \max_{y \in Y} [\sum \phi(x,y)] \]

with \(w_{j,y} = -\log P(Y_j=x_j|Y_{j-1}=y_{j-1}) \) and \(w_{i,x} = -\log P(Y_i=x_i|Y_{i-1}=y_{i-1}) \)
and \(\phi(x,y) \) histogram
Overview

- Task: Learning to predict complex outputs
- Formulating the problem
 - Multi-class classification: Generative vs. Discriminative
 - Compact models for problems with structured outputs
- Training models with structured outputs
 - Generative training
 - SVMs and large-margin training
 - Conditional likelihood training
- Example 1: Learning to parse natural language
 - Learning weighted context free grammar
- Example 2: Optimizing F1-score in text classification
 - Predict vector of class labels
- Example 3: Learning to cluster
 - Learning a clustering function that produces desired clusterings
- Summary & Reading

Training Generative Model: HMM

- Assume:
 - model class P(X,Y|α) with parameters α ∈ Ω
- Maximum Likelihood (or alternative estimator)
 - Find \(\omega^* = \arg \max_{\omega} \prod_{n=1}^{N} P(Y_n|X_n = \omega) \)
- Example: Hidden Markov Model
 - Closed-form solutions
 - \(P(Y = y_i | X = x_j) = \frac{2 \text{times} \text{State}_\text{B} \text{follows} \text{State}_\text{B}}{2 \text{times} \text{State}_\text{B} \text{occurs}} \)
 - \(P(X = x_i | Y = y_j) = \frac{2 \text{times} \text{Output}_\text{A} \text{occurs} \text{State}_\text{B}}{2 \text{times} \text{State}_\text{B} \text{occurs}} \)
 - Need for smoothing the estimates (e.g. max a posteriori)

Support Vector Machine

- Training Examples: \((x_1, y_1), \ldots, (x_n, y_n) \) \(\in \mathbb{R}^d \times \{1, \ldots, K\} \)
- Hypothesis Space: \(\mathcal{H} = \{ w \in \mathbb{R}^d \times \mathbb{R} \} \)
- Training: Find hyperplane \(\mathbf{w}, b \) with minimal
 \[\frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{n} \xi_i \]

\[\begin{align*}
\mathbf{w}^T \mathbf{x}_i + b & \geq 1 - \xi_i \\
\text{if } y_i = 1 \\
\mathbf{w}^T \mathbf{x}_i + b & \leq -1 + \xi_i \\
\text{if } y_i = -1
\end{align*} \]

Multi-Class SVM

- Training Examples: \((x_1, y_1), \ldots, (x_n, y_n) \) \(\in \mathbb{R}^d \times \{1, \ldots, K\} \)
- Hypothesis Space: \(\mathcal{H} = \{ \phi(x,y) \in \mathbb{R}^d \times \mathbb{R} \} \)

\[\begin{align*}
\phi(x,y) & = \mathbf{w}_y^T \phi(x) \\
\mathbf{w}_y & = \sum_{i=1}^{n} \alpha_i y_i \mathbf{1}_{y_i = y} \mathbf{x}_i
\end{align*} \]

Structural Support Vector Machine

- Joint features \(\phi(x,y) \) describe match between \(x \) and \(y \)
- Learn weights \(\mathbf{w} \) so that \(\mathbf{w} \phi(x,y) \) is max for correct \(y \)
Loss Functions: Soft-Margin Struct SVM

- Loss function $\Delta(x, y)$ measures match between target and prediction.

Training Approach 1: Factored QP

- Assume:
 - Linearly decomposable loss function $\Delta(x, y) = \sum_i \Delta_i(x_i, y_i)
 - Linear program solution is integral:
 $$\sum_i \Delta_i(x_i, y_i) = \min_{x, y} \left(\sum_i \Delta_i(x_i, y_i) \right)$$

- Algorithm:
 - Min-Max Formulation:
 $$\min_{x, y} \left(\sum_i \Delta_i(x_i, y_i) \right) = \frac{1}{\varepsilon}$$
 - Linear program for “max”
 - Quadratic program can be rewritten so that it has
 - Polynomially many variables
 - Polynomially many constraints

Training Approach 2: Polynomial Sparsity Bound

- Theorem: The sparse-approximation algorithm finds a solution to the soft-margin optimization problem after adding at most $\alpha \log(d + 1) \log(d + \rho)$ constraints to the working set S, so that the Kuhn-Tucker conditions are fulfilled up to a precision ε. The loss has to be bounded $0 \leq x_i \leq \rho$ and $\rho \leq n_{y_i}$ for each y_i.
Experiment: Natural Language Parsing

- Implementation
 - Implemented Sparse-Approximation Algorithm in SVMstruct
 - Incorporated modified version of Mark Johnson’s CKY parser
 - Learned weighted CFG with $C = 1$
- Data
 - Penn Treebank sentences of length at most 10 (start with POS)
 - Train on Sections 2.22–4098 sentences
- Test on Section 23: 163 sentences

<table>
<thead>
<tr>
<th>Method</th>
<th>Test Accuracy</th>
<th>Training Efficiency</th>
<th>CPU-h</th>
<th>Iter</th>
<th>Const</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCFG with MLE</td>
<td>55.2</td>
<td>86.0</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SVM with (1-F1)-Loss</td>
<td>58.9</td>
<td>88.5</td>
<td>3.4</td>
<td>12</td>
<td>8043</td>
</tr>
</tbody>
</table>

More Expressive Features

- Linear composition:
 - $\phi(x,y) = \sum \phi(x,y)_{i}$
- General form:
 - $\phi(x,y) = \sum \phi(a,y|x_0,y_0,...,y_m)$
- So far:
 - $\phi(x,y) = \begin{cases} 1 & \text{if } \text{rule}(y) = ' N \rightarrow M F $ V P' \\ 0 & \text{otherwise} \end{cases}$
- Example:
 - $\phi(x,y) = \begin{cases} 1 & \text{if } \text{rule}(y) = ' N \rightarrow M F $ V P' \\ 0 & \text{otherwise} \end{cases}$

Applying Structural SVM to New Problem

- Application specific
 - Loss function $\mathcal{L}(y|x,a)$
 - Representation $\Phi(x,y)$
 - Algorithms to compute
 - $\hat{y} = \arg\max_{y} \mathcal{L}(y|x,a)$
 - $z = \arg\max_{y} \mathcal{L}(y|x,a) + \gamma \Phi(x,y)$
- Implementation SVM-struct: http://svmlight.joachims.org
 - Context-free grammars
 - Sequence alignment
 - Classification with multivariate loss (e.g. F1, ROC Area)
 - General API for other problems

Conditional Random Field (CRF)

- Assume:
 - model class $P(Y|X,a)$ with parameters $\omega \in \Omega$
 - In particular,
 - $r(x) = \log \left(\frac{P(Y=y|x)}{P(Y=\bar{y}|x)} \right)$
- Training: Maximum A Posteriori
 - Objective
 - $\omega = \arg\max \left[\frac{1}{N} \sum_{i=1}^{N} \log \left(\frac{P(Y=y|x,a)}{P(Y=\bar{y}|x,a)} \right) \right]$
 - Gradient
 - $\frac{\partial \omega}{\partial \omega_{xy}} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{P(Y=0|x,a)}{P(Y=1|x,a)} \right]_{xy}$
- Methods: iterative scaling, quasi Newton, conjugate gradient
 - See [Taskar et al. 05]

Applying CRF to New Problem

- Application specific
 - Representation $\Phi(x,y)$
 - Algorithms to compute
 - $\hat{y} = \arg\max_{y} \left[\log \left(\frac{P(Y=y|x,a)}{P(Y=\bar{y}|x,a)} \right) \right]$

Relationship CRF and Structural SVM

- Objective Functions:
 - CRF:
 - $\omega = \arg\min \left[\frac{1}{N} \sum_{i=1}^{N} \left(\log \left(\frac{P(Y=y|x,a)}{P(Y=\bar{y}|x,a)} \right) \right) \right]$
 - Structural SVM:
 - $\omega = \arg\max \left(\frac{1}{N} \sum_{i=1}^{N} \left(\log \left(\frac{P(Y=y|x,a)}{P(Y=\bar{y}|x,a)} \right) \right) \right) - \frac{1}{C} \sum_{i=1}^{N} \left(\log \left(\frac{P(Y=y|x,a)}{P(Y=\bar{y}|x,a)} \right) \right)$
- Basic Cases for two classes
 - CRF: Regularized logistic regression
 - Structural SVM: binary classification SVM
Overview

- Task: Learning to predict complex outputs
 - Multi-class classification: Generative vs. Discriminative
 - Compact models for problems with structured outputs
- Training models with structured outputs
 - Generative training
 - SVMs and large-margin training
 - Conditional likelihood training
- Example 1: Learning to parse natural language
 - Learning weighted context-free grammar
- Example 2: Optimizing F1-score in text classification
 - Predict vector of class labels
- Example 3: Learning to cluster
 - Learning a clustering function that produces desired clusterings
- Summary & Reading

Examples of Complex Output Spaces

- Non-Standard Performance Measures (e.g. F1-score, Lift)
 - F1-score: harmonic average of precision and recall
 - New example vector \mathbf{y}_8: Predict $y_8 = 1$, if $P(y_8=1 | \mathbf{y}_8)=0.4$?
 - Depends on other examples!

Experiment: Text Classification

- Dataset: Reuters-21578 (ModApte)
 - 9663 training / 3299 test examples, 90 categories
 - TFIDF unit vectors (no stemming, no stopword removal)
- Experiment Setup
 - Classification SVM with optimal C in hindsight
 - Linear Cost SVM [Morik et al., 1999] with C/C via 2-CV
 - F_1-loss SVM with C via 2-CV
- Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Test F_1</th>
<th>Training Efficiency</th>
<th>[CPU-min] Const</th>
<th>SV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification SVM</td>
<td>32.0</td>
<td>0.1</td>
<td>N/A</td>
<td>20+</td>
</tr>
<tr>
<td>Linear Cost SVM</td>
<td>56.1</td>
<td>0.1</td>
<td>N/A</td>
<td>371</td>
</tr>
<tr>
<td>SVM with (1-F_1)-Loss</td>
<td>62.0</td>
<td>0.2</td>
<td>173</td>
<td>95</td>
</tr>
</tbody>
</table>

Struct SVM for Optimizing F_1-Score

- Loss Function
 - $\Delta(x,y) = (1 - \frac{\text{Precision}}{\text{Recall}})$
- Representation
 - $x = (x_1, x_2, \ldots, x_n)$
 - $y = (y_1, y_2, \ldots, y_n)$
 - Joint feature map $\psi(x,y) = \sum_{i=1}^{n} x_i y_i$
- Prediction
 - $\text{score} = \text{sign}(\psi(x,y) + \theta)$
- Find most violated constraint
 - Only n^2 different contingency tables \Rightarrow search brute force

Struct SVM for Optimizing F_1-Score

- Loss if
 - $\Delta(x,y)$
- Representation
 - $x = (x_1, x_2, \ldots, x_n)$
 - $y = (y_1, y_2, \ldots, y_n)$
 - Joint
- Prediction
 - $\text{score} = \text{sign}(\psi(x,y) + \theta)$
- Find θ^*
 - Only n^2 different contingency tables \Rightarrow search brute force

Multivariate SVM Generalizes Classification SVM

Theorem: The solutions of the multivariate SVM with number of errors as the loss function and an (unbiased) classification SVM are equal.

Multivariate SVM optimizing Error Rate:

Classification SVM (unbiased):

$$\min_{\theta, \mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{M} \mathbf{1} \left(y_i (\mathbf{w}^T \mathbf{x}_i) \geq 1 - \epsilon_i \right)$$
Overview

- Task: Learning to predict complex outputs
 - Multi-class classification: Generative vs. Discriminative
 - Compact models for problems with structured outputs
- Training models with structured outputs
 - Generative training
 - SVMs and large-margin training
 - Conditional likelihood training
- Example 1: Learning to parse natural language
 - Learning weighted context free grammar
- Example 2: Optimizing F-score in text classification
 - Predict vector of class labels
- Example 3: Learning to cluster
 - Learning a clustering function that produces desired clusterings
- Summary & Reading

Learning to Cluster

- Noun-Phrase Co-reference
 - Given a set of noun phrases \(x \), predict a clustering \(y \).
 - Structural dependencies, since prediction has to be an equivalence relation.
- Correlation dependencies from interactions.

Struct SVM for Supervised Clustering

- Representation
 - Supervised clustering is a structured prediction problem.
 - \(y \) is reflexive \(\forall i y_{ii} = 1 \), symmetric \(y_{ij} = y_{ji} \), and transitive (if \(y_{ij} = 1 \) and \(y_{jk} = 1 \) then \(y_{ik} = 1 \)).
 - Joint feature map: \(f(x, y) = \sum a_i f_i(x) g(y_i, y) \).
- Loss Function
 - \(L(y, f(x, y)) = \| y - f(x, y) \|_1 \).
- Prediction
 - \(f(x, y) = \arg \max_y L(y, f(x, y)) \).
- Find most violated constraint
 - \(\tilde{y} = \arg \min_{y \neq \hat{y}} L(y, f(x, \hat{y})) \).
 - NP hard, use linear relaxation instead [Demaine & Immorlica, 2003]

Summary

- Learning to predict structured and interdependent output
 - Discriminant function: \(A(y) = \arg \max_y A(x, y) \).
- Training:
 - Generative
 - Structural SVM
 - Conditional Random Field
- Examples
 - Learning to predict trees (natural language parsing)
 - Optimize to non-standard performance measures (imbalanced classes)
 - Learning to cluster (noun-phrase coreference resolution)
- Software:
 - SVMs: http://www.cs.joensuu.fi/svv/soft/svmlearn.html
 - Mallet: http://mallet.cs.umass.edu/

Reading

- Generative training
 - Hidden-Markov models [Manning & Schutze, 1999]
 - Probabilistic context-free grammars [Manning & Schutze, 1999]
 - Markov random fields [Geman & Geman, 1984]
 - Etc.
- Discriminative training
 - Multivariate output regression [Lazebnik, 1997] [Breiman & Friedman, 1997]
 - Kernel Dependency Estimation [Weston et al. 2003]
 - Conditional HMM [Krogh, 1994]
 - Transformer networks [LeCun et al., 1998]
 - Conditional random fields [Lafferty et al., 2001] [Sutton & McCallum, 2005]
 - Perceptron training of HMM [Collins, 2002]
 - Structural SVMs / Maximum-margin Markov networks [Taskar et al., 2003]
 - Maximum-margin Markov networks [Taskar et al., 2003] [Tsochantaridis et al., 2004, 2005] [Taskar 2004]