
A General Framework for Counterfactual Learning-to-Rank

Aman Agarwal
Cornell University

Ithaca, NY
aman@cs.cornell.edu

Kenta Takatsu
Cornell University

Ithaca, NY
kt426@cornell.edu

Ivan Zaitsev
Cornell University

Ithaca, NY
iz44@cornell.edu

Thorsten Joachims
Cornell University

Ithaca, NY
tj@cs.cornell.edu

ABSTRACT

Implicit feedback (e.g., click, dwell time) is an attractive source

of training data for Learning-to-Rank, but its naive use leads to

learning results that are distorted by presentation bias. For the

special case of optimizing average rank for linear ranking func-

tions, however, the recently developed SVM-PropRank method has

shown that counterfactual inference techniques can be used to

provably overcome the distorting efect of presentation bias. Going

beyond this special case, this paper provides a general and theo-

retically rigorous framework for counterfactual learning-to-rank

that enables unbiased training for a broad class of additive rank-

ing metrics (e.g., Discounted Cumulative Gain (DCG)) as well as a

broad class of models (e.g., deep networks). Speciically, we derive

a relaxation for propensity-weighted rank-based metrics which

is subdiferentiable and thus suitable for gradient-based optimiza-

tion. We demonstrate the efectiveness of this general approach

by instantiating two new learning methods. One is a new type of

unbiased SVM that optimizes DCG ś called SVM PropDCG ś, and

we show how the resulting optimization problem can be solved via

the Convex Concave Procedure (CCP). The other is Deep PropDCG,

where the ranking function can be an arbitrary deep network. In

addition to the theoretical support, we empirically ind that SVM

PropDCG signiicantly outperforms existing linear rankers in terms

of DCG. Moreover, the ability to train non-linear ranking functions

via Deep PropDCG further improves performance.

KEYWORDS

Learning to rank, presentation bias, counterfactual inference

ACM Reference Format:

Aman Agarwal, Kenta Takatsu, Ivan Zaitsev, and Thorsten Joachims. 2019.

A General Framework for Counterfactual Learning-to-Rank. In Proceedings

of the 42nd International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR ’19), July 21–25, 2019, Paris, France. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3331184.3331202

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR ’19, July 21–25, 2019, Paris, France

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6172-9/19/07. . . $15.00
https://doi.org/10.1145/3331184.3331202

1 INTRODUCTION

Implicit feedback from user behavior is an attractive source of data

in many information retrieval (IR) systems, especially ranking appli-

cations where collecting relevance annotations from experts can be

economically infeasible or even impossible (e.g., personal collection

search, intranet search, scholarly search). While implicit feedback

is often abundant, cheap, timely, user-centric, and routinely logged,

it sufers from inherent biases. For example, the position of a result

in a search ranking strongly afects how likely it is to be seen by a

user and thus clicked. So, naively using click data as a relevance

signal leads to sub-optimal performance.

A counterfactual inference approach for learning-to-rank (LTR)

from logged implicit feedback was recently developed to deal with

such biases [15]. This method provides a rigorous approach to un-

biased learning despite biased data and overcomes the limitations

of alternative bias-mitigation strategies. In particular, it does not

require the same query to be seen multiple times as necessary for

most generative click models, and it does not introduce alternate bi-

ases like treating clicks as preferences between clicked and skipped

documents.

The key technique in counterfactual learning is to incorporate

the propensity of obtaining a particular training example into an

Empirical Risk Minimization (ERM) objective that is provably un-

biased [28]. While it was shown that this is possible for learning

to rank, existing theoretical support is limited to linear ranking

functions and optimizing average rank of the relevant documents

as objective [15]. In this paper, we generalize the counterfactual

LTR framework to a broad class of additive IR metrics as well as

non-linear deep models. Speciically, we show that any IR met-

ric that is the sum of individual document relevances weighted

by some function of document rank can be directly optimized via

Propensity-Weighted ERM. Moreover, if an IR metric meets the

mild requirement that the rank weighting function is monotone,

we show that a hinge-loss upper-bounding technique enables learn-

ing of a broad class of diferentiable models (e.g. deep networks).

To demonstrate the efectiveness of the general framework, we

fully develop two learning-to-rank methods that optimize the Dis-

counted Cumulative Gain (DCG) metric. The irst is SVM PropDCG,

which generalizes a Ranking SVM to directly optimize a bound on

DCG from biased click data. The resulting optimization problem is

no longer convex, and we show how to ind a local optimum using

the Convex Concave Procedure (CCP). In CCP, several iterations

of convex sub-problems are solved. In the case of SVM PropDCG,

https://doi.org/10.1145/3331184.3331202
https://doi.org/10.1145/3331184.3331202

these convex sub-problems have the convenient property of being

a Quadratic Program analogous to a generalized Ranking SVM.

This allows the CCP to work by invoking an existing and fast SVM

solver in each iteration until convergence. The second method we

develop is Deep PropDCG, which further generalizes the approach

to deep networks as non-linear ranking functions. Deep PropDCG

also optimizes a bound on the DCG, and we show how the resulting

optimization problem can be solved via stochastic gradient descent

for any network architecture that shares neural network weights

across candidate documents for the same query.

In addition to the theoretical derivation and the justiication, we

also empirically evaluate the efectiveness of both SVM PropDCG

and Deep PropDCG, especially in comparison to the existing SVM

PropRank method [15]. We ind that SVM PropDCG performs sig-

niicantly better than SVM PropRank in terms of DCG, and that it

is robust to varying degrees of bias, noise and propensity-model

misspeciication. In our experiments, CCP convergence was typ-

ically achieved quickly within three to ive iterations. For Deep

PropDCG, the results show that DCG performance is further im-

proved compared to SVM PropDCG when using a neural network,

thus demonstrating that the counterfactual learning approach can

efectively train non-linear ranking functions. SVM PropDCG and

Deep PropDCG are also seen to outperform LambdaRank in terms

of DCG.

2 RELATED WORK

Generative click models are a popular approach for explaining the

bias in user behavior and for extracting relevance labels for learning.

For example, in the cascade model [9] users are assumed to sequen-

tially go down a ranking and click on a document, thus revealing

preferences between clicked and skipped documents. Learning from

these relative preferences lowers the impact of some biases [13].

Other click models ([3, 7, 9], also see [8]) train to maximize log-

likelihood of observed clicks, where relevance is modeled as a latent

variable that is inferred over multiple instances of the same query.

In contrast, the counterfactual framework [15] does not require

latent-variable inference and repeat queries, but allows directly in-

corporating click feedback into the learning-to-rank algorithm in a

principled and unbiased way, thus allowing the direct optimization

of ranking performance over the natural query distribution.

The counterfactual approach uses inverse propensity score (IPS)

weighting, originally employed in survey sampling [11] and causal

inference from observational studies [24], but more recently also in

whole page optimization [34], IR evaluation with manual judgments

[25], and recommender evaluation [17, 26]. This approach is similar

in spirit to [32], where propensity-weighting is used to correct

for selection bias when discarding queries without clicks during

learning-to-rank.

Recently, inspired by the IPS correction approach for unbiased

LTR, some algorithms (Ai et al. [2], Hu et al. [12]) have been pro-

posed that jointly estimate the propensities and learn the ranking

function. However, this requires an accurate relevance model to

succeed, which is at least as hard as the LTR from biased feedback

problem in question. Moreover, the two-step approach of propensity

estimation followed by training an unbiased ranker allows direct

optimization of any chosen target ranking metric independent of

Metric λ (rank)

AvдRank rank

DCG −1/log(1 + rank)

Prec@k −1rank≤k/k

RBP-p [20] −(1 − p)/prank

Table 1: Some popular linearly decomposable IR metrics

that can be directly optimized by Propensity-Weighted ERM.

λ (r) is the rank weighting function.

the propensity estimation step.

While our focus is on directly optimizing ranking performance

in the implicit feedback partial-information setting, several ap-

proaches have been proposed for the same task in the full-information

supervised setting, i.e. when the relevances of all the documents

in the training set are known. A common strategy is to use some

smoothed version of the ranking metric for optimization, as seen

in SoftRank [30] and others [6, 14, 35, 36]. In particular, SoftRank

optimizes the expected performance metric over the distribution of

rankings induced by smoothed scores, which come from a normal

distribution centered at the query-document mean scores predicted

by a neural net. This procedure is computationally expensive with

an O(n3) dependence on the number of documents for a query.

In contrast, our approach employs an upper bound on the perfor-

mance metric, whose structure makes it amenable to the Convex

Concave Procedure for eicient optimization, as well as adaptable

to non-linear ranking functions via deep networks.

Finally, several works exist [4, 5, 23, 30] that have proposed

neural network architectures for learning-to-rank. We do not focus

on a speciic network architecture in this paper, but instead propose

a new training criterion for learning-to-rank from implicit feedback

that in principle allows unbiased network training for a large class

of architectures.

3 UNBIASED ESTIMATION OF RANK-BASED
IR METRICS

We begin by developing a counterfactual learning framework that

covers the full class of linearly decomposable metrics as deined

below (e.g. DCG). This extends [15] which was limited to the Aver-

age Rank metric. Suppose we are given a sample X of i.i.d. query

instances xi ∼ P(x), i ∈ [N]. A query instance can include per-

sonalized and contextual information about the user in addition to

the query string. For each query instance xi , let ri (y) denote the

user-speciic relevance of result y for instance xi . For simplicity, as-

sume that relevances are binary, ri (y) ∈ {0, 1}. In the following, we

consider the class of additive ranking performance metrics, which

includes any metric that can be expressed as

∆(y |xi , ri) =

∑
y∈y

λ (rank(y |y)) · ri (y). (1)

y denotes a ranking of results, and λ () can be any weighting func-

tion that depends on the rank rank(y |y) of documenty in rankingy.

A broad range of commonly used rankingmetrics falls into this class,

and Table 1 lists some of them. For instance, setting λ (rank) = rank

gives the sum of relevant ranks metric (also called average rank

when normalized) considered in [15], and λ (rank) = −1
log(1+rank)

gives the DCG metric. Note that we consider negative values wher-

ever necessary to make the notation consistent with risk minimiza-

tion.

A ranking system S maps a query instance xi to a ranking y.

Aggregating the losses of individual rankings over the query distri-

bution, we can deine the overall risk (e.g., the expected DCG) of a

system as

R(S) =

∫
∆(S(x)|x , r) d P(x , r). (2)

A key problem when working with implicit feedback data is that

we cannot assume that all relevances ri are observed. In particular,

while a click (or a suiciently long dwell time) provides a noisy

indicator of positive relevance in the presented ranking ȳi , a missing

click does not necessarily indicate lack of relevance as the user may

not have observed that result. From a machine learning perspective,

this implies that we are in a partial-information setting, which we

will deal with by explicitly modeling missingness in addition to

relevance. Let oi ∼ P(o |xi , ȳi , ri) denote the 0/1 vector indicating

which relevance values are revealed. While oi is not necessarily

fully observed either, we can now model its distribution, which

we will ind below is suicient for unbiased learning despite the

missing data. In particular, the propensity of observing ri (y) for

query instance xi given presented ranking ȳ is then deined as

Q(oi (y) = 1|xi , ȳi , ri).

Using this counterfactual setup, an unbiased estimate of∆(y |xi , ri)

for any ranking y can be obtained via IPS weighting

∆̂I PS (y |xi , ȳi ,oi) =
∑

y :oi (y)=1∧
ri (y)=1

λ (rank(y |y))

Q(oi (y)=1|xi , ȳi , ri)
. (3)

This is an unbiased estimator since,

Eoi [∆̂I PS (y |xi , ȳi ,oi)] (4)

= Eoi


∑

y :oi (y)=1

λ (rank(y |y))·ri (y)

Q(oi (y)=1|xi , ȳi , ri)


=

∑
y∈y

Eoi

[
oi (y)·λ (rank(y |y))·ri (y)

Q(oi (y)=1|xi , ȳi , ri)

]

=

∑
y∈y

Q(oi (y) = 1|xi , ȳi , ri) · λ (rank(y |y)) · ri (y)

Q(oi (y) = 1|xi , ȳi , ri)

=

∑
y∈y

λ (rank(y |y)) ri (y)

= ∆(y |xi , ri),

assuming Q(oi (y) = 1|xi , ȳi , ri) > 0 for all y that are relevant

ri (y) = 1. The above proof is a generalized version of the one in [15]

for the Average Rank metric. Note that the estimator in Equation (3)

sums only over the results where the feedback is observed (i.e.,

oi (y) = 1) and positive (i.e., ri (y) = 1), which means that we do not

have to disambiguate whether lack of positive feedback (e.g., the

lack of a click) is due to a lack of relevance or due to missing the

observation (e.g., result not relevant vs. not viewed).

Using this unbiased estimate of the loss function, we get an

unbiased estimate of the risk of a ranking system S

R̂I PS (S) =
1

N

N∑
i=1

∑
y :oi (y)=1∧

ri (y)=1

λ (rank(y |S(xi)))

Q(oi (y)=1|xi , ȳi , ri)
. (5)

Note that the propensities Q(oi (y) = 1|xi , ȳi , ri) are generally

unknown, and must be estimated based on some model of user

behavior. Practical approaches to estimating the propensities are

given in [1, 10, 15, 33].

4 UNBIASED EMPIRICAL RISK
MINIMIZATION FOR LTR

The propensity-weighted empirical risk from Equation (5) can be

used to perform Empirical Risk Minimization (ERM)

Ŝ = argminS ∈S
{
R̂I PS (S)

}
.

Under the standard uniform convergence conditions [31], the unbi-

asedness of the risk estimate implies consistency in the sense that

given enough training data, the learning algorithm is guaranteed to

ind the best system in S. We have thus obtained a theoretically jus-

tiied training objective for learning-to-rank with additive metrics

like DCG. However, it remains to be shown that this training objec-

tive can be implemented in eicient and practical learning methods.

This section shows that this is indeed possible for a generalization

of Ranking SVMs and for deep networks as ranking functions.

Consider a dataset of n examples of the following form. For

each query-result pair (xi ,yi) that is clicked, let qi = Q(oi (y) =

1|xi , ȳi , ri) be the propensity of the click according to a click propen-

sity model such as the Position-BasedModel [15, 33].We also record

the candidate set Yi of all results for query xi . Note that each click

generates a separate training example, even if multiple clicks occur

for the same query.

Given this propensity-scored click data, we would like to learn

a scoring function f (x ,y). Such a scoring function f naturally

speciies a ranking system S by sorting candidate results Y for a

given query x by their scores.

Sf (x) ≡ argsortY { f (x ,y)} (6)

Since rank(y |Sf (x)) of a result is a discontinuous step function

of the score, tractable learning algorithms typically optimize a

substitute loss that is (sub-)diferentiable [13, 30, 36]. Following

this route, we now derive a tractable substitute for the empirical

risk of (5) in terms of the scoring function. This is achieved by the

following hinge-loss upper bound [15] on the rank

rank(yi |y) − 1 =
∑
y∈Yi
y,yi

1f (xi ,y)−f (xi ,yi)>0

≤
∑
y∈Yi
y,yi

max(1 − (f (xi ,yi) − f (xi ,y)), 0).

Using this upper bound, we can also get a bound for any IR metric

that can be expressed through a monotonically increasing weight-

ing function λ (r) of the rank. Note that this monotonicity condition

is satisied by all the metrics in Table 1. By rearranging terms and

applying the weighting function λ (r), we have

λ (rank(yi |y)) ≤ λ

©­­­«
1 +

∑
y∈Yi
y,yi

max(1 − (f (xi ,yi) − f (xi ,y)), 0)
ª®®®¬
.

This provides the following continuous and subdiferentiable upper

bound R̂
hinдe
I PS

(f) on the propensity-weighted risk estimate of (5).

R̂I PS (Sf) ≤ R̂
hinдe
I PS

(f)

=

1

n

n∑
i=1

1

qi
λ

©­­­«
1+

∑
y∈Yi
y,yi

max(1 − (f (xi ,yi)− f (xi ,y)), 0)
ª®®®¬

(7)

Focusing on the DCGmetric, we show in the following how this up-

per bound can be optimized for linear as well as non-linear neural

network scoring functions. For the general class of additive IR met-

rics, the optimization depends on the properties of the weighting

function λ (r), and we highlight them wherever appropriate.

4.1 SVM PropDCG

The following derives an SVM-style method, called SVM PropDCG,

for learning a linear scoring function f (x ,y) = w · ϕ(x ,y), where

w is a weight vector and ϕ(x ,y) is a feature vector describing the

match between query x and result y. For such linear ranking func-

tions ś which are widely used in Ranking SVMs [13] and many

other learning-to-rank methods [19] ś, the propensity-weighted

ERM bound from Equation (7) can be expressed as the following

SVM-type optimization problem.

ŵ = argminw,ξ

1

2
w ·w +

C

n

n∑
i=1

1

qi
λ
©­«
∑
y∈Yi

ξiy + 1
ª®¬

s .t . ∀y ∈ Y1\{y1} : w · [ϕ(x1,y1) − ϕ(x1,y)] ≥ 1−ξ1y

.

.

.

∀y ∈ Yn \{yn } : w · [ϕ(xn ,yn) − ϕ(xn ,y)] ≥ 1−ξny

∀i∀y : ξiy ≥ 0

C is a regularization parameter. The training objective optimizes

the L2-regularized hinge-loss upper bound on the empirical risk

estimate (7). This upper bound holds since for any feasible (w, ξ)

and any monotonically increasing weighting function λ (r)

λ

©­­­«
1 +

∑
y∈Yi
y,yi

max(1 − (f (xi ,yi) − f (xi ,y)), 0)
ª®®®¬

= λ

©­­­«
1+

∑
y∈Yi
y,yi

max(1 −w · [ϕ(xi ,yi) − ϕ(xi ,y)], 0)
ª®®®¬
≤ λ

©­«
1+

∑
y∈Yi

ξiy
ª®¬
.

As shown in [15], for the special case of using the sum of relevant

ranks as the metric to optimize, i.e. λ (r) = r , this SVM optimiza-

tion problem is a convex Quadratic Program which can be solved

eiciently using standard SVM solvers, like SVM-rank [14], via a

one-slack formulation.

Moving to the case of DCG as the training metric via the weight-

ing function λ (r) = −1
log(1+r)

, we get the following optimization

problem for SVM PropDCG

ŵ = argminw,ξ

1

2
w ·w −

C

n

n∑
i=1

1

qi

1

log(
∑
y∈Yi ξiy + 2)

s .t . ∀j∀y ∈ Yi \{yi } : w · [ϕ(xi ,yi) − ϕ(xi ,y)] ≥ 1−ξiy

∀j∀y : ξiy ≥ 0.

This optimization problem is no longer a convex Quadratic Pro-

gram. However, all constraints are still linear inequalities in the

variables w and ξ , and the objective can be expressed as the dif-

ference of two convex functions h an д. Let h(w) = 1
2 ∥w ∥2 and

д(ξ) = C
n

∑n
j=1

1
qi

1
log(

∑
y∈Yi

ξiy+2)
. Then the function h is the L2

norm of the vectorw and is thus a convex function. As for the func-

tion д, the function k : x 7→ 1
log x

is convex as it is the composition

of a a convex decreasing function (x 7→ 1
x) with a concave function

(x 7→ logx). So, since the sum of aine transformations of a convex

function is convex, д is convex.

Such an optimization problem is called a convex-concave prob-

lem1 and a local optimum can be obtained eiciently via the Convex-

Concave Procedure (CCP) [18]. At a high level, the procedure works

by repeatedly approximating the second convex function with its

irst order Taylor expansion which makes the optimization problem

convex in each iteration. The Taylor expansion is irst done at some

chosen initial point in the feasible region, and then the solution of

the convex problem in a particular iteration is used as the Taylor

approximation point for the next iteration. It can be shown that

this procedure converges to a local optimum [18].

Concretely, letwk , ξk be the solution in the kth iteration. Then,

we have the Taylor approximation

д̂(ξ ; ξk) = д(ξk) + ∇д(ξk)T (ξ − ξk)

= д(ξk) −
C

n

n∑
j=1

1

qi

∑
y∈Yi

ξiy − ξkiy(∑
y∈Yi

ξkiy + 2

)
log2

(∑
y∈Yi

ξkiy + 2

)

Letting q′i = qi

(∑
y∈Yi

ξkiy + 2

)
log2

(∑
y∈Yi

ξkiy + 2

)
, and dropping

the additive constant terms from д̂, we get the following convex

program that needs to be solved in each CCP iteration.

argminw,ξ

1

2
w ·w +

C

n

n∑
i=1

1

q′i

∑
y∈Yi

ξiy

s .t . ∀i∀y ∈ Yi \{yi } : w · [ϕ(xi ,yi) − ϕ(xi ,y)] ≥ 1−ξiy

∀i∀y : ξiy ≥ 0

Observe that this problem is of the same form as SVM PropRank, the

Propensity Ranking SVM for the average rank metric, i.e. λ (r) = r

(with the caveat that q′i are not propensities). This nifty feature

allows us to solve the convex problem in each iteration of the CCP

using the fast solver for SVM PropRank provided in [15]. In our

1More generally, the inequality constraints can also be convex-concave and not just
convex

experiments, CCP convergence was achieved within a few itera-

tions ś as detailed in the empirical section. For other IR metrics,

the complexity and feasibility of the above Ranking SVM optimiza-

tion procedure will depend on the form of the target IR metric. In

particular, if the rank weighting function λ (r) is convex, it may be

solved directly as a convex program. If λ (r) is concave, then the

CCP may be employed as shown for the DCG metric above.

An attractive theoretical property of SVM-style methods is the

ability to switch from linear to non-linear functions via the Kernel

trick. In principle, kernelization can be applied to SVM PropDCG

as is evident from the representer theorem [27]. Speciically, by

taking the Lagrange dual, the problem can be kernelized analogous

to [13]. While it can be shown that the dual is convex and strong

duality holds, it is not clear that the optimization problem has

a convenient and compact form that can be eiciently solved in

practice. Even for the special case of the average rankmetric, λ (r) =

r , the associated kernel matrix Kiy, jy′ has a size equal to the total

number of candidates
∑n
i=1 |Yi | squared, making the kernelization

approach computationally infeasible or challenging at best. We

therefore explore a diferent route for extending our approach to

non-linear scoring functions in the following.

4.2 Deep PropDCG

Since moving to non-linear ranking functions through SVM kernel-

ization is challenging, we instead explore deep networks as a class

of non-linear scoring functions. Speciically, we replace the linear

scoring function f (x ,y) = w · ϕ(x ,y) with a neural network

f (x ,y) = NNw [ϕ(x ,y)] (8)

This network is generally non-linear in both the weightsw and the

features ϕ(x ,y). However, this does not afect the validity of the

hinge-loss upper bound from Equation (7), which now takes the

form

1

n

n∑
j=1

1

qi
λ

©­­­«
1+

∑
y∈Yi
y,yi

max(1 − (NNw [ϕ(xi ,yi)] − NNw [ϕ(xi ,y)]), 0)
ª®®®¬

During training, we need to minimize this function with respect to

the network parameters w . Unlike in the case of SVM PropDCG,

this function can no longer be expressed as the diference of a con-

vex and a concave function, since NNw [ϕ(xi ,yi)] is neither convex

nor concave in general. Nevertheless, the empirical success of opti-

mizing non-convex NNw [ϕ(xi ,yi)] via gradient descent to a local

optimum is well documented, and we will use this approach in the

following. This is possible since the training objective is subdif-

ferentiable as long as the weighting function λ (r) is diferentiable.

However, the non-linearity of λ (r) adds a challenge in applying

stochastic gradient descent methods to our training objective, since

the objective no longer decomposes into a sum over all (xi ,y) as

in standard network training. We discuss in the following how to

handle this situation to arrive at an eicient stochastic-gradient

procedure.

For concreteness, we again focus on the case of optimizing DCG

via λ (r) = −1
log(1+r)

. In particular, plugging in theweighting function

 NN

 NN

 NN

 NN

H

H

H

 λ
L
O
S
S

Figure 1: Deep PropDCG schema for computing the loss

from one query instance. The blue document is the positive

(clicked) result, and the red documents are the other can-

didates. The neural net NN is used to compute document

scores for each set of candidate features. Pairs of scores are

passed through the hinge node, and then inally the weight-

ing function is applied as shown.

for DCG, we get the Deep PropDCG minimization objective

1

n

n∑
j=1

−1

qi
log−1

©­­­«
2+

∑
y∈Yi
y,yi

max(1−(NNw [ϕ(xi ,yi)]−NNw [ϕ(xi ,y)]), 0)
ª®®®¬

to which a regularization term can be added (our implementation

uses weight decay).

Since the weighting function ties together the hinge losses from

pairs of documents in a non-linear way, stochastic gradient descent

(SGD) is not directly feasible at the level of individual documents.

In the case of DCG, since the rank weighting function is concave,

one possible workaround is a Majorization-Minimization scheme

[28] (akin to CCP): upper bound the loss function with a linear

Taylor approximation at the current neural net weights, perform

SGD at the level of document pairs (yi ,y) to update the weights,

and repeat until convergence.

While this Majorization-Minimization scheme in analogy to the

SVM approach is possible also for deep networks, we chose a dif-

ferent approach for the reasons given below. In particular, given

the success of stochastic-gradient training of deep networks in

other settings, we directly perform stochastic-gradient updates

at the level of query instances, not individual (xi ,y). At the level

of query instances, the objective does decompose linearly such

that any subsample of query instances can provide an unbiased

gradient estimate. Note that this approach works for any diferen-

tiable weighting function λ (r), does not require any alternating

approximations as in Majorization-Minimization, and processes

each candidate document y including the clicked document yi only

once in one SGD step.

For SGD at the level of query instances, a forward pass of the neu-

ral network ś with the current weights ixed ś must be performed

on each document y in candidate set Yi in order to compute the

loss from training instance (xi ,yi). Since the number of documents

in each candidate set varies, this is best achieved by processing

each input instance (including the corresponding candidate set)

as a (variable-length) sequence so that the neural net weights are

efectively shared across candidate documents for the same query

instance.

This process is most easily understood via the network architec-

ture illustrated in Figure 1. The scoring function NNw [ϕ(xi ,yi)] is

replicated for each result in the candidate set using shared weights

w . In addition there is a hinge-loss nodeH (u,v) = max(1−(u−v), 0)

that combines the score of the clicked result with each other result

in the candidate set Yi . For each such pair (yi ,y), the corresponding

hinge-loss node computes its contribution hj to the upper bound on

the rank. The result of the hinge-loss nodes then feeds into a single

weighting node Λ(®h) = λ
(
1 +

∑
j hj

)
that computes the overall

bound on the rank and applies the weighting function. The result

is the loss of that particular query instance.

Note that we have outlined a very general method which is ag-

nostic about the size and architecture of the neural network. As a

proof-of-concept, we achieved superior empirical results over a lin-

ear scoring function even with a simple two layer neural network,

as seen in Section 5.8. We conjecture that DCG performance may

be enhanced further with deeper, more specialized networks. More-

over, in principle, the hinge-loss nodes can be replaced with nodes

that compute any other diferentiable loss function that provides

an upper bound on the rank without fundamental changes to the

SGD algorithm.

5 EMPIRICAL EVALUATION

While the derivation of SVM PropDCG and Deep PropDCG has

provided a theoretical justiication for both methods, it still remains

to show whether this theoretical argument translates to improved

empirical performance. To this efect, the following empirical eval-

uation addresses three key questions.

First, we investigate whether directly optimizing DCG improves

performance as compared to baseline methods, in particular, SVM

PropRank as the most relevant method for unbiased LTR from

implicit feedback, as well as LambdaRank, a common strong non-

linear LTR method. Comparing SVM PropDCG to SVM PropRank

is particularly revealing about the importance of direct DCG opti-

mization, since both methods are linear SVMs and employ the same

software machinery for the Quadratic Programs involved, thus elim-

inating any confounding factors. We also experimentally analyze

the CCP optimization procedure to see whether SVM PropDCG is

practical and eicient. Second, we explore the robustness of the

generalized counterfactual LTR approach to noisy feedback, the

severity of the presentation bias, and misspeciication of the propen-

sity model. And, inally, we compare the DCG performance of Deep

PropDCG with a simple two layer neural network against the linear

SVM PropDCG to understand to what extent non-linear models

can be trained efectively using the generalized counterfactual LTR

approach.

5.1 Setup

We conducted experiments on synthetic click data derived from

two major LTR datasets, the Yahoo Learning to Rank Challenge cor-

pus and LETOR4.0 [22]. LETOR4.0 contains two separate corpora:

MQ2007 and MQ2008. Since MQ2008 is signiicantly smaller than

Dataset # Avg. train clicks # Train queries # Features

Yahoo 173,986 20,274 699

LETOR4.0 25,870 1,484 46

Table 2: Properties of the two benchmark datasets.

Model Avg. DCG (Yahoo) Avg. DCG (LETOR4.0)

SVM Rank 0.6223 ± 8e-4 0.6841 ± 2e-3

LambdaRank 0.6435 ± 4e-4 0.6915 ± 4e-3

SVM PropRank 0.6410± 1e-3 0.7004 ± 1e-2

SVM PropDCG 0.6468± 2e-3 0.7043 ± 1e-2

Deep PropDCG 0.6517 ± 4e-4 0.7244 ± 4e-3

Table 3: Performance comparison of diferent methods on

two benchmark datasets (η = 1, ϵ− = 0.1, ϵ+ = 1).

Yahoo Learning to Rank Challenge, with only 784 queries, we follow

the data augmentation approach proposed in [21], combining the

MQ2007 and MQ2008 train sets for training and using the MQ2008

validation and test sets for validation and testing respectively.

Our experiment setup matches [15] for the sake of consistency

and reproducibility. Briely, the training and validation click data

were generated from the respective full-information datasets (with

relevances binarized) by simulating the position-based click model.

Following [15], we use propensities that decay with presented rank

of the result as pr =
(1
r

)η
. The rankings that generate the clicks are

given by a łproduction rankerž which was a conventional Ranking

SVM trained on 1 percent of the full-information training data.

The parameter η controls the severity of bias, with higher values

causing greater position bias.

We also introduced noise into the clicks by allowing some irrele-

vant documents to be clicked. Speciically, an irrelevant document

ranked at position r by the production ranker is clicked with prob-

ability pr times ϵ−. When not mentioned otherwise, we used the

parameters η = 1, ϵ− = 0.1 and ϵ+ = 1, which is consistent with

the setup used in [15]. Other bias proiles are also explored in the

following.

Both the SVM PropRank and SVM PropDCGmodels were trained

and cross-validated to pick the regularization constant C. For cross-

validation, we use the partial feedback data in the validation set and

select based on the IPS estimate of the DCG [29]. The performance

of the models is reported on the binarized fully labeled test set

which is never used for training or validation.

5.2 How do SVM PropDCG and Deep PropDCG
compare against baselines?

We begin the empirical evaluation by comparing our counterfactual

LTR methods again standard methods that follow a conventional

ERM approach, namely LambdaRank and SVM-Rank. We generate

synthetic click data using the procedure describe above, iterating

over the training set 10 times for the Yahoo dataset and 100 times

for MQ2008. This process was repeated over 6 independent runs,

and we report the average performance along with the standard

deviation over these runs. The regularization constant C for all

SVM methods was picked based on the average DCG performance

across the validation click data sampled over the 6 runs. Table 2

 0.56

 0.57

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

 0.66

1.7E3 1.7E4 1.7E5

A
v
g

.
D

C
G

 o
f

R
e

le
v
a

n
t

R
e

s
u

lt
s

Number of Training Clicks

SVM PropDCG
SVM PropRank

Noise-free Full-info Skyline
Production Ranker

Figure 2: Test set Avg DCG performance for SVM PropDCG

and SVM PropRank (η = 1, ϵ− = 0.1)

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

1.7E3 1.7E4 1.7E5

A
v
g

.
R

a
n

k
 o

f
R

e
le

v
a

n
t

R
e

s
u

lt
s

Number of Training Clicks

SVM PropDCG
SVM PropRank

Noise-free Full-info Skyline
Production Ranker

Figure 3: Test set Avg Rank performance for SVM PropDCG

and SVM PropRank (η = 1, ϵ− = 0.1)

shows the average number of clicks along with other information

about the training sets.

As a representative for non-linear LTR methods that use a con-

ventional ERM approach, we also conducted experiments with

LambdaRank as one of the most popular tree-based rankers. We use

the LightGBM implementation [16]. During training, LambdaRank

optimizes Normalized Discounted Cumulative Gain (NDCG). Since

LambdaRank is a full-information method, we used clicks as rel-

evance labels, i.e. all clicked documents as relevant and all non-

clicked documents as irrelevant. The hyperparameters for Lamb-

daRank, namely learning rate and the number of leaves were tuned

based on the average DCG of clicked documents in the validation

sets. More speciically, we performed a grid search to inetune learn-

ing rate from 0.001 to 0.1 and the number of leaves from 2 to 256.

After tuning, we selected the learning rate to be 0.1, and the num-

ber of leaves to be 64 for the Yahoo dataset and 4 for MQ2008. We

also made sure each split does not use more than 50% of the input

features.

As shown in in Table 3, the counterfactual ERM approach via

IPS weighting and directly optimizing for the target metric DCG

yield superior results for SVM PropDCG and Deep PropDCG. The

best results on both benchmarks are achieved by Deep PropDCG,

 0.5

 0.55

 0.6

 0.65

 0.7

 0 0.5 1 1.5 2

A
v
g

.
D

C
G

 o
f

R
e

le
v
a

n
t

R
e

s
u

lt
s

Severity of Presentation Bias

SVM PropDCG
SVM PropRank

SVM PropDCG-5x
SVM PropRank-5x

Figure 4: Test set Avg DCG performance for SVM PropDCG

and SVM PropRank as presentation bias becomes more se-

vere in terms of η (n = 45K and n = 225K , ϵ− = 0).

which learns a two-layer neural network ranker. We conjecture

that more sophisticated network architectures can further improve

performance.

5.3 How does ranking performance scale with
training set size?

Next, we explore how the test-set ranking performance changes

as the learning algorithm is given more and more click data. The

resulting learning curves are given in Figures 2 and 3. The click data

has presentation bias with η = 1 and noise with ϵ− = 0.1. For small

datasets, results are averaged over 3 draws of the click data. Both

curves show the performance of the Production Ranker used to

generate the click data, and the SVM skyline performance trained

on the full-information training set. Ideally, rankers trained on click

data should outperform the production ranker and approach the

skyline performance.

Figure 2 shows that the DCG performance of both SVMPropDCG

and SVM PropRank. As expected, both improve with increasing

amounts of click data. Moreover, SVM PropDCG performs substan-

tially better than the baseline SVM PropRank in maximizing test

set DCG.

More surprisingly, Figure 3 shows both methods perform compa-

rably in minimizing the average rank metric, with SVM PropDCG

slightly better at smaller amounts of data and SVM PropRank better

at larger amounts. We conjecture that this is due the variance-

limiting efect of the DCG weights in SVM PropDCG when sub-

stituting the propensity weights qi with the new constants q′i in

the SVM PropDCG CCP iterations. This serves as implicit variance

control in the IPS estimator similar to clipping [15] by preventing

propensity weights from getting too big. Since variance dominates

estimation error at small amounts of data and bias dominates at

large amounts, our conjecture is consistent with the observed trend.

5.4 How much presentation bias can be
tolerated?

We now vary the severity of the presentation bias via η ś higher

values leading to click propensities more skewed to the top positions

 0.5

 0.55

 0.6

 0.65

 0.7

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
g

.
D

C
G

 o
f

R
e

le
v
a

n
t

R
e

s
u

lt
s

Noise Level

SVM PropDCG
SVM PropRank

Figure 5: Test set Avg DCG performance for SVM PropDCG

and SVM PropRank as the noise level increases in terms of

ϵ (n = 170K ,η = 1).

 0.5

 0.55

 0.6

 0.65

 0.7

0 0.5 1 (true) 1.5 2

A
v
g

.
D

C
G

 o
f

R
e

le
v
a

n
t

R
e

s
u

lt
s

Assumed Propensity Model (eta)

SVM PropDCG
SVM PropRank

Figure 6: Test set Avg DCG performance for SVM PropDCG

and SVM PropRank as propensities are misspeciied (true

eta = 1,n = 170K , ϵ− = 0.1).

ś to understand its impact on the learning algorithm. Figure 4 shows

the impact on DCG performance for both methods. We report

performance for two training set sizes that difer by a factor of 5

(noise ϵ− = 0). We see that SVM PropDCG is at least as robust to

the severity of bias as SVM PropRank. In fact, SVM PropRank’s

performance degrades more at high bias than that of SVMPropDCG,

further supporting the conjecture that the DCG weighting in SVM

PropDCG provides improved variance control which is especially

beneicial when propensity weights are large. Furthermore, as also

noted for SVM PropRank in [15], increasing the amount of training

data by a factor of 5 improves performance of both methods due to

variance reduction, which is an advantage that unbiased learning

methods have over those that optimize a biased objective.

5.5 How robust is SVM PropDCG to noise?

Figure 5 shows the impact of noise on DCG performance, as noise

levels in terms of ϵ− increase from 0 to 0.3. The latter results in

click data where 59.8% of all clicks are on irrelevant documents.

As expected, performance degrades for both methods as noise in-

creases. However, there is no evidence that SVM PropDCG is less

robust to noise than the baseline SVM PropRank.

5.6 How robust is SVM PropDCG to
misspeciied propensities?

So far all experiments have had access to the true propensities

that generated the synthetic click data. However, in real-world set-

tings propensities need to be estimated and are necessarily subject

to modeling assumptions. So, we evaluate the robustness of the

learning algorithm to propensity misspeciication.

Figure 6 shows the performance of SVM PropDCG and SVM

PropRank when the training data is generated with η = 1, but

the propensities used in learning are misspeciied according to

the η on the x-axis. The results show that SVM PropDCG is at

least as robust to misspeciied propensities as SVM PropRank. Both

methods degrade considerably in the high bias regime when small

propensities are underestimated ś this is often tackled by clipping

[15]. It is worth noting that SVM PropDCG performs better than

SVM PropRank when misspeciication leads to propensities that are

underestimated, further strengthening the implicit variance control

conjecture for SVM PropDCG discussed above.

5.7 How well does the CCP converge?

Next, we consider the computational eiciency of employing the

CCP optimization procedure for training SVM PropDCG. Recall

that the SVM PropDCG objective is an upper bound on the regular-

ized (negative) DCG IPS estimate. It is optimized via CCP which

repeatedly solves convex subproblems using the SVM PropRank

solver until the objective value converges.

In Figure 7, optimization progress vs number of iterations as

indicated by the change in objective value as well as the training

DCG SNIPS estimate [29] is shown for 17K training clicks and

the full range of regularization parameter C used in validation.

The igure shows that the objective value usually converges in 3-5

iterations, a phenomenon observed in our experiments for other

amounts of training data as well. In fact, the convergence tends to

take slightly fewer iterations for larger amounts of data. The igure

also shows that progress in objective is well-tracked with progress

in the training DCG estimate, which suggests that the objective is

a suitable upper bound for DCG optimization.

It is worth noting that restarting the optimizer across multiple

CCP iterations can be substantially less time consuming than the

initial solution that SVM PropRank computes. Since only the coef-

icients of the Quadratic Program change, the data does not need

to be reloaded and the optimizer can be warm-started for quicker

convergence in subsequent CCP iterations.

5.8 When does the non-linear model improve
over the linear model?

We have seen that SVM PropDCG optimizes DCG better than SVM

PropRank, and that it is a robust method across a wide range of

biases and noise levels. Now we explore if performance can be

improved further by introducing non-linearity via neural networks.

Since the point of this paper is not a speciic deep architecture but

Figure 7: Optimization progress with respect to the number of CCP iterations. The objective value is shown in the left plots,

and the training set DCG estimate on the right plots. Each plot corresponds to a particular value of regularization constant C

(n = 17K , η = 1, ϵ− = 0.1).

 0.56

 0.57

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

 0.66

1.7E3 1.7E4 1.7E5

A
v
g

.
D

C
G

 o
f

R
e

le
v
a

n
t

R
e

s
u

lt
s

Number of Training Clicks

SVM PropDCG
Deep PropDCG

Figure 8: Test set Avg DCG performance for SVM PropDCG

and Deep PropDCG (η = 1, ϵ− = 0.1)

a novel training objective, we used a simple two-layer neural net-

work with 200 hidden units and sigmoid activation. We expect that

specialized deep architectures will further improve performance.

Figure 8 shows that Deep PropDCG achieves improved DCG

compared to the linear SVM PropDCG given enough training data.

For small amounts of training data, the linear model performs better,

which is to be expected given the greater robustness to overitting

of linear models.

We also expect improved performance from tuning the hyperpa-

rameters of Deep PropDCG. In fact, we only used default parameters

for Deep PropDCG, while we optimized the hyperparameters of

SVM PropDCG on the validation set. In particular, Adam was used

for stochastic gradient descent with weight decay regularizer at

10−6, minibatch size of 1000 documents and 750 epochs. The learn-

ing rate began at 10−6 for the irst 300 epochs, dropping by one

order of magnitude in the next 200 epochs and another order of

magnitude in the remaining epochs. We did not try any other hy-

perparameter settings and these settings were held ixed across

varying amounts of training data.

6 CONCLUSION

In this paper, we proposed a counterfactual learning-to-rank frame-

work that is broad enough to cover a broad class of additive IR

metrics as well as non-linear deep network models. Based on the

generalized framework, we developed the SVM PropDCG and Deep

PropDCG methods that optimize DCG via the Convex-Concave

Procedure (CCP) and stochastic gradient descent respectively. We

found empirically that SVM PropDCG performs better than SVM

PropRank in terms of DCG, that it is robust to a substantial amount

of presentation bias, noise and propensity misspeciication, and

that it can be optimized eiciently. DCG was improved further by

using a neural network in Deep PropDCG.

There are many directions for future work. First, it is open for

which other ranking metrics it is possible to develop eicient and

efective methods using the generalized counterfactual framework.

Second, the general counterfactual learning approach may also

provide unbiased learning objectives for other settings beyond

ranking, like full-page optimization and browsing-based retrieval

tasks. Finally, it is an open question whether non-diferentiable (e.g.

tree-based) ranking models can be trained in the counterfactual

framework as well.

7 ACKNOWLEDGMENTS

This research was supported in part by NSF Awards IIS-1615706 and

IIS-1513692, an Amazon Research Award, and the Criteo Faculty

Research Award program. All content represents the opinion of

the authors, which is not necessarily shared or endorsed by their

respective employers and/or sponsors.

REFERENCES
[1] Aman Agarwal, Ivan Zaitsev, Xuanhui Wang, Cheng Li, Marc Najork, and

Thorsten Joachims. 2019. Estimating Position Bias without Intrusive Inter-
ventions. In International Conference on Web Search and Data Mining (WSDM).
474ś482.

[2] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W. Bruce Croft. 2018. Un-
biased Learning to Rank with Unbiased Propensity Estimation. In The 41st In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR). ACM, New York, NY, USA, 385ś394. https://doi.org/10.1145/
3209978.3209986

[3] Alexey Borisov, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov. 2016. A
Neural Click Model for Web Search. In Proceedings of the 25th International
Conference on World Wide Web (WWW). 531ś541.

[4] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-
ton, and Greg Hullender. 2005. Learning to Rank Using Gradient Descent. In
Proceedings of the 22Nd International Conference on Machine Learning (ICML).
ACM, New York, NY, USA, 89ś96.

[5] Christopher J Burges, Robert Ragno, and Quoc V Le. 2007. Learning to rank with
nonsmooth cost functions. In Advances in Neural Information Processing Systems
(NeurIPS). 193ś200.

[6] Olivier Chapelle and Mingrui Wu. 2010. Gradient Descent Optimization of
Smoothed Information Retrieval Metrics. Information Retrieval 13, 3 (June 2010),
216ś235. https://doi.org/10.1007/s10791-009-9110-3

[7] Olivier Chapelle and Ya Zhang. 2009. A dynamic bayesian network click model
for web search ranking. In International Conference on World Wide Web (WWW).
ACM, 1ś10.

[8] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. 2015. Click Models for
Web Search. Morgan & Claypool Publishers.

[9] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An Experi-
mental Comparison of Click Position-bias Models. In International Conference on
Web Search and Data Mining (WSDM). ACM, 87ś94.

[10] Zhichong Fang, A. Agarwal, and T. Joachims. 2019. Intervention Harvesting
for Context-Dependent Examination-Bias Estimation. In ACM Conference on
Research and Development in Information Retrieval (SIGIR).

[11] D. G. Horvitz and D. J. Thompson. 1952. A Generalization of Sampling Without
Replacement from a Finite Universe. J. Amer. Statist. Assoc. 47, 260 (1952), 663ś
685.

[12] Ziniu Hu, Yang Wang, Qu Peng, and Hang Li. 2018. A Novel Algorithm for
Unbiased Learning to Rank. (2018). arXiv:cs.IR/1809.05818

[13] T. Joachims. 2002. Optimizing Search Engines Using Clickthrough Data. In ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). 133ś142.

[14] T. Joachims, T. Finley, and Chun-Nam Yu. 2009. Cutting-Plane Training of
Structural SVMs. Machine Learning 77, 1 (2009), 27ś59.

[15] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
Learning-to-Rank with Biased Feedback. In ACM International Conference on Web
Search and Data Mining (WSDM). ACM, New York, NY, USA, 781ś789.

[16] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Eicient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems (NeurIPS),
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (Eds.). 3146ś3154.

[17] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. 2011. Unbiased Oline
Evaluation of Contextual-bandit-based News Article Recommendation Algo-
rithms. In International Conference on Web Search and Data Mining (WSDM).

297ś306.
[18] Thomas Lipp and Stephen Boyd. 2016. Variations and extension of the convexś

concave procedure. Optimization and Engineering 17, 2 (2016), 263ś287.
[19] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Foundations and

Trends in Information Retrieval 3, 3 (2009), 225ś331.
[20] Alistair Mofat and Justin Zobel. 2008. Rank-biased Precision for Measurement

of Retrieval Efectiveness. ACM Transactions on Information Systems (TOIS) 27, 1
(2008), 2:1ś2:27.

[21] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang Xu, and Xueqi Cheng.
2017. DeepRank: A NewDeep Architecture for Relevance Ranking in Information
Retrieval. In ACM Conference on Information and Knowledge Management (CIKM).
ACM, 257ś266.

[22] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets. CoRR
abs/1306.2597 (2013).

[23] L. Rigutini, T. Papini, M. Maggini, and F. Scarselli. 2011. SortNet: Learning to
Rank by a Neural Preference Function. IEEE Transactions on Neural Networks 22,
9 (Sept 2011), 1368ś1380.

[24] Paul R. Rosenbaum and Donald B. Rubin. 1983. The central role of the propensity
score in observational studies for causal efects. Biometrika 70, 1 (1983), 41ś55.

[25] T. Schnabel, A. Swaminathan, P. Frazier, and T. Joachims. 2016. Unbiased Com-
parative Evaluation of Ranking Functions. In ACM International Conference on
the Theory of Information Retrieval (ICTIR).

[26] T. Schnabel, A. Swaminathan, A. Singh, N. Chandak, and T. Joachims. 2016.
Recommendations as Treatments: Debiasing Learning and Evaluation. In Inter-
national Conference on Machine Learning (ICML).

[27] B. Schoelkopf and A. J. Smola. 2002. Learning with Kernels. The MIT Press,
Cambridge, MA.

[28] A. Swaminathan and T. Joachims. 2015. Batch Learning from Logged Bandit
Feedback through Counterfactual RiskMinimization. Journal of Machine Learning
Research (JMLR) 16 (Sep 2015), 1731ś1755.

[29] A. Swaminathan and T. Joachims. 2015. The Self-Normalized Estimator for
Counterfactual Learning. In Neural Information Processing Systems (NeurIPS).

[30] Michael Taylor, John Guiver, Stephen Robertson, and TomMinka. 2008. SoftRank:
Optimizing Non-smooth Rank Metrics. In ACM International Conference on Web
Search and Data Mining (WSDM). ACM, New York, NY, USA.

[31] V. Vapnik. 1998. Statistical Learning Theory. Wiley, Chichester, GB.
[32] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.

Learning to Rank with Selection Bias in Personal Search. In ACM Conference on
Research and Development in Information Retrieval (SIGIR). ACM.

[33] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc
Najork. 2018. Position Bias Estimation for Unbiased Learning to Rank in Personal
Search. InACM International Conference onWeb Search and Data Mining (WSDM).

[34] Yue Wang, Dawei Yin, Luo Jie, Pengyuan Wang, Makoto Yamada, Yi Chang, and
Qiaozhu Mei. 2016. Beyond Ranking: Optimizing Whole-Page Presentation. In
Proceedings of the Ninth ACM International Conference on Web Search and Data
Mining (WSDM). 103ś112.

[35] Mingrui Wu, Yi Chang, Zhaohui Zheng, and Hongyuan Zha. 2009. Smoothing
DCG for Learning to Rank: A Novel Approach Using Smoothed Hinge Functions.
In ACM Conference on Information and Knowledge Management (CIKM). ACM,
New York, NY, USA, 1923ś1926. https://doi.org/10.1145/1645953.1646266

[36] Yisong Yue, T. Finley, F. Radlinski, and T. Joachims. 2007. A Support Vector
Method for Optimizing Average Precision. In ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR). 271ś278.

https://doi.org/10.1145/3209978.3209986
https://doi.org/10.1145/3209978.3209986
https://doi.org/10.1007/s10791-009-9110-3
http://arxiv.org/abs/cs.IR/1809.05818
https://doi.org/10.1145/1645953.1646266

	Abstract
	1 Introduction
	2 Related Work
	3 Unbiased Estimation of Rank-Based IR Metrics
	4 Unbiased Empirical Risk Minimization for LTR
	4.1 SVM PropDCG
	4.2 Deep PropDCG

	5 Empirical Evaluation
	5.1 Setup
	5.2 How do SVM PropDCG and Deep PropDCG compare against baselines?
	5.3 How does ranking performance scale with training set size?
	5.4 How much presentation bias can be tolerated?
	5.5 How robust is SVM PropDCG to noise?
	5.6 How robust is SVM PropDCG to misspecified propensities?
	5.7 How well does the CCP converge?
	5.8 When does the non-linear model improve over the linear model?

	6 Conclusion
	7 Acknowledgments
	References

