Selectively Traceable Anonymity

Abstract. Anonymous communication can, by its very nature, facili-
tate socially unacceptable behavior; such abuse of anonymity is a serious
impediment to its widespread deployment. This paper studies two no-
tions related to the prevention of abuse. The first is selective traceability,
the property that a message’s sender can be traced with the help of an
explicitly stated set of parties. The second is noncoercibility, the prop-
erty that no party can convince an adversary (using technical means)
that he was not the sender of a message. We show that, in principal, al-
most any anonymity scheme can be made selectively traceable, and that
a particular anonymity scheme can be modified to be noncoercible.

1 Introduction

Anonymous communication has several important potential applications, in-
cluding anonymous email for “whistle-blowing,” anonymous web browsing to
access useful but possibly embarrassing or incriminating information (e.g., “how
to deal with a drug addiction”), and mechanisms to ensure individual privacy
in electronic transactions. At the same time, there are obvious ways in which
anonymity protocols could be used for antisocial or criminal purposes such as
slander, threats, and transfer of illegal content. In some cases, especially when the
anonymity guarantees are strong, the negative consequences of allowing users to
communicate anonymously can outweigh the benefits. This is a major stumbling
block for the widespread adoption of anonymizing systems.

Systems for anonymous communication have generally tried to provide the
strongest possible guarantees while providing some reasonable level of efficiency
and ease-of-use, but, surprisingly, have usually not addressed “revoking” the
anonymity of a message in a formal manner.! In this paper we argue that it
would be useful to have anonymity protocols that ezplicitly allow the tracing of
a message’s sender whenever a set of fair and sensible conditions is met. To this
effect, we define selectively traceable anonymous communication, which allows
tracing a message when a tracing policy is satisfied, such as a fixed fraction of
the participants voting to trace the message.

Another reason for examining tracing in anonymity protocols is that some
existing anonymity protocols already allow a certain form of ad-hoc tracing by
allowing participants to prove that they did not send some particular message.
If a protocol has this property, we call it coercible, because participants can be
coerced into proving that they did not send a particular message. Coercibility is
related to tracing in that a coercible protocol allows gradual and uncoordinated
tracing: every participant except the sender can show that they did not send
the message. If the anonymity set of a message is small, this can be easier
than tracing through other means. While similar to the notions of coercibility
in election protocols [Acq04,BT94,JJ02], deniability in encryption [CDNO97],
and adaptive security in multiparty computation [CFGN96], coercibility is not
usually addressed in the anonymous communication literature, even though some
protocols are coercible and others are not.

! One exception is the mechanisms in various anonymous cash and election protocols
that allow revoking the anonymity of a user who double-spends or double-votes.

We present two definitions of traceable anonymity. In one, which we refer to
as weak traceable anonymity, a message should be traced whenever the tracing
policy is satisfied; in the other, strong traceable anonymity, nothing about the
sender of a message should be learned unless the tracing policy is satisfied.
To clarify the distinction between these definitions, we mention that a weak
traceable protocol can be coercible: the message can be traced when the tracing
policy is satisfied, but something about the identity of the sender can be revealed
even if the tracing policy is not satisfied if any participants prove that they did
not send the message. A strong traceable protocol does not allow such coercion.

In this paper, we present definitions and several technical results relating to
selectively traceable anonymous communication. Our technical results include:

A generic transformation that adds selective traceability. We show
that a large class of systems for anonymous communication can, in principle,
be transformed into systems with selectively traceable anonymity. The start-
ing point for this transformation, mentioned in [KTY04], uses group signatures
[CvHI91,ACJT00], which allow a member of a group to sign a message so that
everyone can verify that someone in the group signed it, but which allow only
a group manager to determine and reveal the signer of a particular message.
The basic idea of [KTY04] is to append a group signature to every message sent
on an anonymous communication protocol and require the receivers to drop all
messages that are not signed. To trace a message, a distributed implementation
of the group manager reveals the signer. We note that this transformation suffers
from an incentive problem: receivers have no incentive to drop unsigned mes-
sages, and thus senders have no incentive to sign messsages. We show that, in
principle, almost any anonymity scheme can be transformed to avoid this prob-
lem without sacrificing anonymity.

Two efficient transformations from specific DC-Net-based protocols.
We show efficient transformations from two specific DC-Net-based protocols:
[ABHO03,GJ04]. The transformations do not affect the efficiency of the underly-
ing non-traceable protocols and yield security against malicious adversaries.

Coercibility results. We discuss the notion of coercibility in anonymous com-
munication, and show how the DC-Net-based protocols in [ABH03,GJ04] allow
coercion. We show a simple modification to the [ABHO03] protocol that gives
noncoercibility. We also show that our generic transformations do not alter the
coercibility (or noncoercibility) of the underlying protocols. These results show
that, in principle, strong traceable anonymity can be acheived.

2 Threshold Cryptography and Group Signatures

We use two main building blocks for the technical results that follow: threshold
El Gamal decryption and group signatures. The first technique generalizes El
Gamal encryption so that private keys are distributed among a number of prin-
cipals; the second provides a way for a principal to sign a message anonymously
in such a way that the signer’s anonymity can be revoked by the group manager.

Distributed El Gamal Decryption. We will use a public-key encryption
system to encrypt information that identifies the sender of a message. To do so
in a way that respects a particular tracing policy, however, we want decryption
to occur only when all the voters in some tracing set T' agree to take part. In
other words, we require a cryptosystem with the following features:

1. There is an “aggregate” public key y that can be used to encrypt messages,
as with regular public-key cryptosystems.

2. Each voter v; has a secret private key x; that can be used to “partially”
decrypt a ciphertext C, and decryption is computationally hard unless all
the voters in some tracing set 7" take part in the decryption.

To implement such a scheme, we can use threshold El Gamal encryption [Ped91al,
which we describe in Appendix A.

Group Signatures. Group signature schemes [CvH91] provide a way for mem-
bers of a group to sign messages anonymously. That is, they allow a member of
a group to digitally sign a document in such a way that it may be verified that
the document was signed by a group member, but not which particular group
member signed it unless a designated group manager “opens” the signature.

Definition 1. (From [ACJT00]): A group signature scheme is a digital signa-
ture scheme comprised of the following five procedures:

— SETUP outputs the initial group public key GPK (including all system pa-
rameters) and the secret key for the group manager.

— JOIN allows a new user to join the group. The user’s output is a membership
certificate and a membership secret.

— SIGN(m), given GPK, a membership certificate and secret, and a message
m, outpuls a group signature on m.

— VERIFY establishes the validity of an alleged group signature o on message
m with respect to GPK.

— OPEN given a message m with valid group signature o, the key GPK and the
group manager’s secret key, determines the identity of the signer.

Group signature schemes must satisfy a variety of properties. Signatures pro-
duced using SIGN must be accepted using VERIFY, for example, and the actual
signer of a message should remain anonymous until the signature is opened by
the group manager. For more details, see [ACJT00].

More than one recent group signature scheme (e.g., [ACJT00,CG04,KTY04])
implements OPEN as an instance of El Gamal decryption. For such schemes it
is possible to distribute the functionality of the group manager so that each
instance of OPEN operates according to a threshold scheme.

3 Selective Traceability

Tracing, like anonymity, may be abused. Accordingly, we want to avoid any re-
quirements that tracing information be logged or enforaced by any single, central
authority, since in many cases the primary reason for having an anonymity pro-
tocol is to provide protection against central authorities. To describe a general

framework for traceable schemes, it will therefore be important to specify who
is able to trace. The setting we consider is as follows: there is a finite set G of
users who may be able to send or receive messages anonymously, and there is a
finite set V' of voters who are authorized to trace a message. There is also a set
VY C 2V, the tracing policy, such that an act of tracing only occurs when all the
members of a tracing set T € V agree to it. (We assume that V is monotone,
so that if T € V and T C T’, then T” € V. It therefore suffices to consider only
the minimal sets in V.) We call (G,V,V) a tracing scheme. Some examples of
tracing policies include:

1. The trivial tracing policy, in which explicit tracing by voters is not allowed,
can be represented with V = (). (For many protocols, a sufficiently large
subset of the users of a system can cooperate to trace messages; but this is
an implicit process, rather than one enforced by the protocol.)

2. Given V and an integer 1 <t < |V, let V(t) ={RCV | |R| =t}. V() is a
threshold tracing policy, with parameter t. Tracing occurs only when at least
t members of V' agree that tracing should occur.

3. Let V be the set of n members of a legislative body (e.g., the US Senate’s 100
members or the UK House of Commons’ 646 members); then V(|n/2] 4 1)
is the policy that says a legislative act is required to trace a message.

We note that there is a close relationship between the tracing scheme V of a
selectively traceable anonymity protocol and the “trust model” of any anonymity
protocol. In particular, when a static set of nodes must be trusted not to reveal
the sender of all messages, it is clear that the tracing policy must include this
subset as an element. On the other hand, a tracing policy explicitly specifies sets
of voters (not necessarily participants) who may trace a message regardless of
its origin or destination; a participant must therefore trust these sets of voters.
In the case of a tracing policy, however, these sets are always static, and always
have the power to trace a message; in many existing anonymity protocols, the set
of nodes that can trace any particular message varies by message. Thus “trust
models” are mostly a side-effect of the protocols employed by some anonymous
communication schemes, whereas tracing policies are conscious decisions to allow
tracing the anonymity of a message.

3.1 Generic transformations

In this section we present a method to convert a generic anonymous communi-
cation protocol to a new protocol that permits selective tracing. We assume that
there is an independent set V of voters and a threshold tracing policy V C 2V.
(We remark that any monotone tracing policy may be implemented using our
method, though in the worst case the length of the shares may be exponential
in the size of the voting set. Here we focus only on the threshold case.) We do
not assume anything about the voters except that they can be trusted with a
secret share of the El Gamal private key that will be used for decryption. The
voters may be principals in the original anonymous communication scheme, but
this isn’t a necessary requirement. For this work, we make the simplifying as-
sumption that a group manager enforces some binding between a user’s identity
in the JOIN protocol and that user’s physical identity.

Let M be the set of possible anonymous messages, which are generated by
one party to be processed for anonymous delivery to another party, and let P M
be the set of protocol messages, which are exchanged by parties during the ex-
ecution of the protocol. Our generic transformation applies to protocols that
include a finite number of parties {Py,..., P,} and include the primitive oper-
ations SEND, PROCESS, and RECOVER, which we now describe. (These operations
use a set of public parameters selected by an initial setup stage, and each player
P; may use his secret parameters S; in any stage):

— SEND: a procedure executed by P; that takes as input an anonymous message
m € M and a recipient P;, and outputs a list ¢ of pairs (¢; ;, P;) where ¢; ;
is a protocol message to be sent to P;.

— PROCESS: a procedure executed by P; that takes as input a list of pairs
(¢i,j, Pi), where the ¢; ; are protocol messages received from P;, and outputs
a new list ¢’ of pairs (] ;, P;) where ¢}, is a protocol message to be sent
to Pj. (We remark that there may be several rounds of PROCESS operations
during a single execution of the protocol.)

— RECOVER: a procedure executed by P; that takes as input a list ¢ (or multiple
vectors) of pairs (¢; j, P;), where the ¢; ; are protocol messages received from
P;, and outputs a list of pairs (mg, P,) where each my is an anonymous
message to send to P.

All well-known anonymity protocols in the security literature implement vari-
ants of these protocols. With mixes and onion-routing protocols, for example, a
PROCESS step takes a batch of protocol messages and shuffles and forwards them
along to other parties, possibly after performing some operation on the messages
such as encryption and/or decryption.

Transformation 1: The first transformation we consider (already mentioned
in [KTY04]) affects the SEND and RECOVER steps of a given protocol. In the new
protocol the sender P; must sign the message m € M to get a group signature
o, and the resulting message m’ = (m, o) is the one that must be processed by
the SEND operation. For any party P; executing a RECOVER operation to recover
a message m, P; must ensure that m has been signed using a group signature
and must discard the message if it has not been signed.

If a receiver Py presents an anonymous message to the voting group V for
tracing, a tracing set T" € V may open the signature to reveal the sender of the
message.

A significant problem with Transformation 1 is that nothing stops the party
P; executing RECOVER from reading a recovered unsigned message, or sending it
on to its intended recipient — regardless of whether P; is simply curious or is
attempting to subvert the tracing scheme. As soon as unsigned messages are read
instead of dropped, senders have no incentive to sign messages that they may
later be blamed for, and the system degrades into a non-traceable protocol. Of
course one could appoint a trusted “auditor” to check that all messages are signed
before delivery but this would both have the effect of severely degrading the
anonymity of the system (the auditor sees ALL messages delivered!) and would
create a single point of failure for the anonymity protocol; we seek a solution

that violates anonymity for traceability only to the extent that it enforces the
tracing policy.

Transformation 2: In most anonymity protocols, the PROCESS step involves
protocol messages from which the original anonymous message m cannot be
efficiently recovered by the party executing the step. The message may be en-
crypted, for example, or split into shares using some secret-sharing scheme. (One
exception to this is the Crowds framework [RR98], where messages may be sent
in plaintext. Protocol participants essentially flip a coin to decide whether to
execute a PROCESS or a RECOVER operation, and they can see the anonymous
messages at every step.) The transformation we outline below may be applied
whenever it is impossible or computationally infeasible to recover m from the
PROCESS step.

Our solution to the game-theoretic problem of Transformation 1 is to require
that an agent P; executing a PROCESS step must check that the protocol messages
Cl,j,---,Cn,; are all generated from underlying anonymous messages that have
been signed using the group signature scheme. To do this without revealing
anything about the underlying message, we use noninteractive zero-knowledge
(NIZK) proofs [BDMP91]; Appendix B provides a brief introduction to NIZK
proofs.

Let GPK be the group verification key for a group signature scheme. To use
NIZK proofs we construct the language L7 (GPK) for the underlying anonymous
communication protocol II as follows. Let

Ls(GPK) ={x:x € SEND((m,0),...) AVERIFY(GPK,m,0) =TRUE)} ,

that is, Ls(GPK) is the set of legitimate protocol messages generated by SEND
on a (group)-signed anonymous message. Lg(GPK) € NP, since (m, o) serves
as a polynomial-length witness for © € Lg(GPK) when o is a group signature
on m. Let

~.

Lp(GPK) = {x : x € PROCESS(c1,...,Cn,...), \(¢i € Ls(GPK)V¢; € Lp(GPK))},

=1

so that Lp(GPK) is the set of legitimate protocol messages generated by PROCESS

with inputs that were “legitimate” protocol messages (i.e., generated by some

sequence of SEND executions on signed anonymous messages and subsequent

PROCESS executions). For any polynomial-time protocol there is a polynomial-

length witness for the statement @ € Lp(GPK) as well: the original signed

messages and the random bits used by all parties in the protocol so far.
Similarly, we define the language

Lr(GPK) = {x : x € RECOVER(c1,...,Cn,-..), (¢; € Lp(GPK))}

~.

1=1

which is the set of output messages originating from signed input messages and
is similarly in N P. Finally, we define the language

Li(GPK) = Ls(GPK)U Lp(GPK) U Lr(GPK) .

The transformed protocol works as follows: the new SEND procedure executes the
original SEND procedure on a pair (m, SIGN(m)) to produce a vector of protocol
messages ¢;, and then produces an NIZK proof 7; that each protocol message
¢; is in Ly (GPK). The transformed protocol messages are then pairs (¢;, 7;).
The new PROCESS procedure on a tuple of protocol messages each of the form
(¢j,mj) first checks that all proofs are correct; if for some j the proof is incorrect
then (¢, m;) is replaced by (e,¢) (¢ here just means “the empty message”). Then
the original PROCESS procedure is invoked on (c1, ..., ¢,) to produce a vector of
original protocol messages (c},...,c,), and the proofs ; are used as witnesses
to produce NIZK proofs 7} that ¢, € Ly (GPK). The transformed protocol mes-
sages are again the pairs (¢}, 7}). Finally, the new RECOVER procedure is similarly
transformed, as follows: the protocol messages are checked for correctness, and
if any proof fails the corresponding original protocol message is left empty; the
original RECOVER procedure is executed on the vector (¢, ..., ¢,) to produce out-
put message (m, o) and a proof is produced that m € L (GPK); finally, (m, o)
is output along with the proof.

We note that in some protocols with information-theoretic anonymity (e.g.,
DC-Nets [Cha88]), the naive application of the above transformation may fail,
since each single protocol message is uniformly distributed and independent of
the message being transmitted. (In this case, a proof that the protocol message P;
sends to P; is consistent with some input is meaningless, because any such mes-
sage would be consistent.) We note, however, that a well-known approach to the
problem, described in the multiparty computation literature [GMW87,BGWSS],
can be applied here: first, modify the setup procedure to output a vector of com-
mitments, one to each player’s secret input; then modify PROCESS(cq,...,cy)
to output commitments to ci,...,c, as well commitments to ¢},...,c,; finally,
apply the above transformation. If these commitments are unconditionally hid-
ing, they do not alter the information-theoretic anonymity of the underlying
protocol.

Efficiency. We stress that the point of this general scheme is not to suggest
a protocol that should be used in practice, but to show that in principle, any
anonymity scheme can provide selective traceability. Indeed, the most efficient
general constructions of NIZKs [GOS05] have length roughly 60007 bits, where
T is the number of bit operations required to verify that z € L given witness
w. Since in the previous transformation, this involves (at minimum) verifying a
group signature or checking a NIZK, and the most efficient such signatures re-
quire roughly 7 = 10° bit operations per verification, the generic transformation
cannot be considered practical.

3.2 More Efficient Transformations

In this section, we will demonstrate simple modifications to allow selective trac-
ing of two DC-Net-based protocols: k-AMT [ABHO03] and a protocol due to Golle
and Juels [GJ04] which we refer to as GJ. Both protocols make slight alterations
to the basic DC-Net protocol [Cha88] to implement a shared channel; these
modified protocols are then run in several parallel copies, and cryptographic
mechanisms are employed to prove that each participant broadcasts on at most
one channel, ensuring fair access to the medium. Our approach considers the

messages sent on each channel orthogonally and allows determining who has
broadcast on a single channel, so for ease of exposition we will describe the pro-
tocols here only in terms of a single shared channel.

k-AMT. The k-AMT protocol implements a shared channel as a secure mul-
tiparty sum computation, using Pedersen commitments® to ensure correctness.
Here we assume that player P; wants to send message X;. The basic protocol
has four phases:

1. Commitment Phase:
— P splits X; € Z, into n random shares s; 1, ..., S;,n, and chooses 7; ; < Z,
— P; computes and broadcasts commitments {C; ; = C, (i) : 1 < j < n}.
2. Sharing Phase:
—Foreach j#14, P, — P; : (rij, S)
— Pj checks that C;, (si ;) = Ci;
3. Broadcast Phase:
— P; computes and broadcasts R; = Zj rj; mod ¢ and S; = Zj sj; mod g.
— All players check that Cg, (S;) = [[; Cj; mod p
4. Result:
Each player computes X =Y. S; mod g and R =), R, mod ¢; if Cr(X) =
Hi, j C;,; mod p, then the player outputs the anonymous message X.

As was previously mentioned, k-AMT actually runs several parallel copies of
this protocol and includes procedures for proving that a party has transmitted
on at most one parallel channel or “slot.” Here we will describe how to augment
the basic protocol so that it is selectively traceable. It should be clear that these
modifications are orthogonal to those additional procedures.

The new protocol exploits the relationship between El Gamal encryption
and Pedersen commitments to allow the voters to “decrypt” the commitments
generated in Phase 1 (when the tracing policy is satisfied). Here we describe the
necessary modifications.

1. Initialization: As a group, choose securely an El Gamal key pair (G, z,y)
where y = G”, such that the private key x is shared by threshold secret
sharing according to the desired tracing policy, as in Section 2.

2. Commitment Phase: In addition to the {C;; : j € [M]} commitments
broadcast by party P;, we will have P; broadcast a certificate that can be
proven correct for a given set of commitments, but can only be opened by
the owner of the private key of the El Gamal encryption scheme above.
Assuming that a round of k&-AMT is correctly computed, we are guaranteed
that S; = Hj Ci; = g%ihfi where R; = Zj rij. Let a; = G® and b; =
g~ Xyl Together, a; and b; form an El Gamal encryption of g~ with the
public key y.

Finally, we compute o; to be an efficient noninteractive proof of knowledge
that the discrete log of a; with respect to base G is the same as the discrete

2 If p, q are primes such that p = 2¢+ 1, and g, h € Zy, both have order ¢, a Pedersen
commitment to the value x € Z, is generated by randomly choosing r» € Z,; and
computing C(z) = g°h".

log of S;b; with respect to base hy. The certificate broadcast in addition to
the commitments is just (a;, b;, ;).

To verify a certificate, which all parties will do for all broadcast commit-
ments, simply verify the proof of knowledge.

Now, to trace a message: identify the slot that it was transmitted on, obtain a
number of parties as required by the tracing policy, and securely compute the
decryption M of each party’s certificate for that slot. For all participants who
sent nothing on the channel we have X; = 0, and thus M = g~ = 1. All other
participants transmitted something on the channel, and in particular if only one
participant i sent a message we have X = X;, and thus M - ¢X = 1.

To compute o, we want to show that log a; = logy,, S;b;. In general, to prove
that log, y = log), z when log, h is unknown and hard to compute, it suffices to
prove knowledge of log ;,(y/2). (If there exists a such that y = g and 2 = h?,

then because gz = hy we have log,/,(y/2) = a. If y = g* and 2z = hb, with
a # b, then knowledge of log,/,(y/z) can easily be used to compute log, h.)
Therefore, 0; is a noninteractive proof of knowledge of log, y,,, (a;/S;b;), and can

be computed efficiently using standard techniques.® Note that this modification
doesn’t affect the asymptotic efficiency of the underlying protocol.

We prove in Appendix C that under the Decisional Diffie-Hellman assump-
tion, the protocol remains secure against computationally bounded adversaries
that have not corrupted a tracing set.

The GJ DC-Net Protocol. The GJ DC-Net protocol takes advantage of bi-
linear maps to perform many Diffie-Hellman key exchanges noninteractively,
thus achieving a single-round (noninteractive) DC-net protocol. The protocol
works over groups G1, Gy of prime order ¢, and with an admissible bilinear map
é: Gy x Gy — Gy. (A map is bilinear if é(aP,bP) = é(P, P)?*.) We denote
the group operation in G; using additive notation, and the group operation in
Go using multiplicative notation, as is common when dealing with admissible
bilinear maps. (G is typically an elliptic curve group.) We let P € G; be a
public parameter and assume all parties know a map H : {0,1}* — Gy, which
we will model as a random oracle. As previously mentioned, the GJ protocol
is actually comprised of several parallel executions of a simple shared channel
along with some auxiliary information that proves a player has transmitted on at
most one channel; for simplicity, and because our modifications are orthogonal,
we describe only the single channel and omit the auxiliary information. For a
description of the full protocol, see [GJ04].

1. Setup Phase Every player P; picks private key x; € Z, and publishes
y; = x; P as his public key.

2. Pad Construction Let s be some unique identifier of a particular execution
of the shared channel. (For example, a running count appended to the list of

3 In the random oracle model, a proof of knowledge of o = log., B has the form
(=7 A= aH({) + p), where p €g Zq and H : Z;, — Zq is a random oracle; the
proof is accepted if v* = 7 (©¢: interactive versions of this protocol first appear in
[CEGPS86].

users). All players compute the element Qs € Gy as Qs = H(s). Then each
pair of players (noninteractively) computes a shared Diffie-Hellman key

ki,j<s> = é(yjamiQs) = é(P7 Qs)xmj = é(yi7 ijs) = kj7i(s) .

Each player ¢ computes his “pad” p;(s) = Hj ki j(s)%i , where &; ; = —1 if
1 < j and 1 otherwise.

3. Transmission In session s, we let the intended message of P; be the element
m;(s) € Ga, where m;(s) is the identity element 1 € G if P; has no message
to send. To transmit, each player P; publishes value W;(s) = m;(s)p;(s).

4. Message Extraction The final message is extracted by computing

m(s) = H Wi(s) = Hmz(s) H kz‘,j(s)éi’j = Hmz(s))

since k; j(s)% = k;;(s)%¢. Thus if exactly one m;(s) # 1, then we have
m(s) = m;(s).

To support selective tracing, the only modification to the previous procedures

is in the setup phase: after generating key pair (z;,y;) and publishing y;, player
P; will share his private key z; among the voters in a similar fashion to that
described in section 2. Then to trace the message m(s), the voters will compute
the pads p;(s) for each i using their shares. If the published value W;(s) =
m(s)pi(s), then P; is the sender. We formally describe the new procedures in
appendix D.
We note that in the full GJ protocol [GJ04] shares of the private keys x; are
distributed amongst the players to allow any two-thirds of them to reconstruct
the pads of players who do not participate in any given session. So, even though
this is done for different reasons, the GJ protocol silently implements a threshold
tracing scheme, with V- ={Py,...,P,} and V = V(%")

4 Coercibility in Anonymous Protocols

Informally, we say that an anonymity protocol is coercible if every player who
did not send a message can produce a proof that this is the case. More formally,
consider a “proof protocol” P between a player P; and a verifier V, where the
difference in the probabilities that V' “accepts the proof” when P; sent the
message and P; did not send the message is at least some value pp. We call
a protocol p-coercible if, over all P, p = max(pp). In other words, p measures
the confidence of the best proof procedure. If a protocol is 1-coercible, only the
legitimate sender of a message cannot exculpate himself (but everybody else
can); if a protocol is 0-coercible the verifier should not believe any proofs. If ¢
is negligible, we say that a protocol that is (1 — €)-coercible is strongly coercible,
and that a protocol that is at most e-coercible is noncoercible. If a protocol is
p-coercible for some constant p, we say that it is plausibly noncoercible.

In this section we assume that all the players in the protocol IT are plausible
senders of any message m. Assuming that all the players belong to the same
“anonymity set” (i.e., the set of players who could have sent a particular message)

10

lets us ignore “proofs of innocence” that can arise simply because two players
belong to different anonymity sets.

Formally, for an anonymous communications protocol IT we define coercibil-
ity as follows:

— A proof procedure P is a pair (P, V) of programs such that V outputs either
accept or reject. (Intuitively, P can be thought of as a program that is
run by some player P;.)

— After the public parameters of IT are chosen, V is allowed to choose a message
m as a function of the parameters. This is the message that, if sent during
an execution of the protocol, V will ask players in IT to prove they have not
sent.

— Let viewx (P; : m) denote the view of party X in the anonymity protocol 11
when P; sends message m and m is delivered. The view includes X’s inputs
(including random tape) and any protocol messages sent and received during
the execution of IT.

— Let A denote an (arbitrary) adversary who cannot compromise the anonymity
guarantee of IT. For any player X, denote by views (X : m) the views of all
parties corrupted by A as well as all protocol messages from I that A ob-
serves. Essentially, A will serve as V’s agent in I1: we allow the verifier access
to A’s view of I to help in deciding whether to accept P’s proof that P;
didn’t send m. Denote by P;(X : m) the output of V (on input m and
views (X : m)) when interacting with P (on input m and viewp, (X : m)).

— We say that IT is p-coercible if there is a proof procedure P, an adversary A,
and players P; and P; such that

|Pr[P;(P; : m) = accept] — Pr[P;(P; : m) = accept|| > p ,
regardless of P;’s actions in the second case.

Notice that this definition is weak in the sense that the verifier is allowed to
choose the message. In other words, the protocol is coercible if there ezists a
message and adversary such that so