
Selectively Traceable Anonymity
Abstract. Anonymous communication can, by its very nature, facili-
tate socially unacceptable behavior; such abuse of anonymity is a serious
impediment to its widespread deployment. This paper studies two no-
tions related to the prevention of abuse. The first is selective traceability,
the property that a message’s sender can be traced with the help of an
explicitly stated set of parties. The second is noncoercibility, the prop-
erty that no party can convince an adversary (using technical means)
that he was not the sender of a message. We show that, in principal, al-
most any anonymity scheme can be made selectively traceable, and that
a particular anonymity scheme can be modified to be noncoercible.

1 Introduction

Anonymous communication has several important potential applications, in-
cluding anonymous email for “whistle-blowing,” anonymous web browsing to
access useful but possibly embarrassing or incriminating information (e.g., “how
to deal with a drug addiction”), and mechanisms to ensure individual privacy
in electronic transactions. At the same time, there are obvious ways in which
anonymity protocols could be used for antisocial or criminal purposes such as
slander, threats, and transfer of illegal content. In some cases, especially when the
anonymity guarantees are strong, the negative consequences of allowing users to
communicate anonymously can outweigh the benefits. This is a major stumbling
block for the widespread adoption of anonymizing systems.

Systems for anonymous communication have generally tried to provide the
strongest possible guarantees while providing some reasonable level of efficiency
and ease-of-use, but, surprisingly, have usually not addressed “revoking” the
anonymity of a message in a formal manner.1 In this paper we argue that it
would be useful to have anonymity protocols that explicitly allow the tracing of
a message’s sender whenever a set of fair and sensible conditions is met. To this
effect, we define selectively traceable anonymous communication, which allows
tracing a message when a tracing policy is satisfied, such as a fixed fraction of
the participants voting to trace the message.

Another reason for examining tracing in anonymity protocols is that some
existing anonymity protocols already allow a certain form of ad-hoc tracing by
allowing participants to prove that they did not send some particular message.
If a protocol has this property, we call it coercible, because participants can be
coerced into proving that they did not send a particular message. Coercibility is
related to tracing in that a coercible protocol allows gradual and uncoordinated
tracing: every participant except the sender can show that they did not send
the message. If the anonymity set of a message is small, this can be easier
than tracing through other means. While similar to the notions of coercibility
in election protocols [Acq04,BT94,JJ02], deniability in encryption [CDNO97],
and adaptive security in multiparty computation [CFGN96], coercibility is not
usually addressed in the anonymous communication literature, even though some
protocols are coercible and others are not.
1 One exception is the mechanisms in various anonymous cash and election protocols

that allow revoking the anonymity of a user who double-spends or double-votes.

1

We present two definitions of traceable anonymity. In one, which we refer to
as weak traceable anonymity, a message should be traced whenever the tracing
policy is satisfied; in the other, strong traceable anonymity, nothing about the
sender of a message should be learned unless the tracing policy is satisfied.
To clarify the distinction between these definitions, we mention that a weak
traceable protocol can be coercible: the message can be traced when the tracing
policy is satisfied, but something about the identity of the sender can be revealed
even if the tracing policy is not satisfied if any participants prove that they did
not send the message. A strong traceable protocol does not allow such coercion.

In this paper, we present definitions and several technical results relating to
selectively traceable anonymous communication. Our technical results include:

A generic transformation that adds selective traceability. We show
that a large class of systems for anonymous communication can, in principle,
be transformed into systems with selectively traceable anonymity. The start-
ing point for this transformation, mentioned in [KTY04], uses group signatures
[CvH91,ACJT00], which allow a member of a group to sign a message so that
everyone can verify that someone in the group signed it, but which allow only
a group manager to determine and reveal the signer of a particular message.
The basic idea of [KTY04] is to append a group signature to every message sent
on an anonymous communication protocol and require the receivers to drop all
messages that are not signed. To trace a message, a distributed implementation
of the group manager reveals the signer. We note that this transformation suffers
from an incentive problem: receivers have no incentive to drop unsigned mes-
sages, and thus senders have no incentive to sign messsages. We show that, in
principle, almost any anonymity scheme can be transformed to avoid this prob-
lem without sacrificing anonymity.

Two efficient transformations from specific DC-Net-based protocols.
We show efficient transformations from two specific DC-Net-based protocols:
[ABH03,GJ04]. The transformations do not affect the efficiency of the underly-
ing non-traceable protocols and yield security against malicious adversaries.

Coercibility results. We discuss the notion of coercibility in anonymous com-
munication, and show how the DC-Net-based protocols in [ABH03,GJ04] allow
coercion. We show a simple modification to the [ABH03] protocol that gives
noncoercibility. We also show that our generic transformations do not alter the
coercibility (or noncoercibility) of the underlying protocols. These results show
that, in principle, strong traceable anonymity can be acheived.

2 Threshold Cryptography and Group Signatures

We use two main building blocks for the technical results that follow: threshold
El Gamal decryption and group signatures. The first technique generalizes El
Gamal encryption so that private keys are distributed among a number of prin-
cipals; the second provides a way for a principal to sign a message anonymously
in such a way that the signer’s anonymity can be revoked by the group manager.

2

Distributed El Gamal Decryption. We will use a public-key encryption
system to encrypt information that identifies the sender of a message. To do so
in a way that respects a particular tracing policy, however, we want decryption
to occur only when all the voters in some tracing set T agree to take part. In
other words, we require a cryptosystem with the following features:

1. There is an “aggregate” public key y that can be used to encrypt messages,
as with regular public-key cryptosystems.

2. Each voter vi has a secret private key xi that can be used to “partially”
decrypt a ciphertext C, and decryption is computationally hard unless all
the voters in some tracing set T take part in the decryption.

To implement such a scheme, we can use threshold El Gamal encryption [Ped91a],
which we describe in Appendix A.

Group Signatures. Group signature schemes [CvH91] provide a way for mem-
bers of a group to sign messages anonymously. That is, they allow a member of
a group to digitally sign a document in such a way that it may be verified that
the document was signed by a group member, but not which particular group
member signed it unless a designated group manager “opens” the signature.

Definition 1. (From [ACJT00]): A group signature scheme is a digital signa-
ture scheme comprised of the following five procedures:

– SETUP outputs the initial group public key GPK (including all system pa-
rameters) and the secret key for the group manager.

– JOIN allows a new user to join the group. The user’s output is a membership
certificate and a membership secret.

– SIGN(m), given GPK, a membership certificate and secret, and a message
m, outputs a group signature on m.

– VERIFY establishes the validity of an alleged group signature σ on message
m with respect to GPK.

– OPEN given a message m with valid group signature σ, the key GPK and the
group manager’s secret key, determines the identity of the signer.

Group signature schemes must satisfy a variety of properties. Signatures pro-
duced using SIGN must be accepted using VERIFY, for example, and the actual
signer of a message should remain anonymous until the signature is opened by
the group manager. For more details, see [ACJT00].

More than one recent group signature scheme (e.g., [ACJT00,CG04,KTY04])
implements OPEN as an instance of El Gamal decryption. For such schemes it
is possible to distribute the functionality of the group manager so that each
instance of OPEN operates according to a threshold scheme.

3 Selective Traceability

Tracing, like anonymity, may be abused. Accordingly, we want to avoid any re-
quirements that tracing information be logged or enforaced by any single, central
authority, since in many cases the primary reason for having an anonymity pro-
tocol is to provide protection against central authorities. To describe a general

3

framework for traceable schemes, it will therefore be important to specify who
is able to trace. The setting we consider is as follows: there is a finite set G of
users who may be able to send or receive messages anonymously, and there is a
finite set V of voters who are authorized to trace a message. There is also a set
V ⊆ 2V , the tracing policy, such that an act of tracing only occurs when all the
members of a tracing set T ∈ V agree to it. (We assume that V is monotone,
so that if T ∈ V and T ⊆ T ′, then T ′ ∈ V. It therefore suffices to consider only
the minimal sets in V.) We call (G, V,V) a tracing scheme. Some examples of
tracing policies include:

1. The trivial tracing policy, in which explicit tracing by voters is not allowed,
can be represented with V = ∅. (For many protocols, a sufficiently large
subset of the users of a system can cooperate to trace messages; but this is
an implicit process, rather than one enforced by the protocol.)

2. Given V and an integer 1 ≤ t ≤ |V |, let V(t) = {R ⊆ V | |R| = t}. V(t) is a
threshold tracing policy, with parameter t. Tracing occurs only when at least
t members of V agree that tracing should occur.

3. Let V be the set of n members of a legislative body (e.g., the US Senate’s 100
members or the UK House of Commons’ 646 members); then V(bn/2c + 1)
is the policy that says a legislative act is required to trace a message.

We note that there is a close relationship between the tracing scheme V of a
selectively traceable anonymity protocol and the “trust model” of any anonymity
protocol. In particular, when a static set of nodes must be trusted not to reveal
the sender of all messages, it is clear that the tracing policy must include this
subset as an element. On the other hand, a tracing policy explicitly specifies sets
of voters (not necessarily participants) who may trace a message regardless of
its origin or destination; a participant must therefore trust these sets of voters.
In the case of a tracing policy, however, these sets are always static, and always
have the power to trace a message; in many existing anonymity protocols, the set
of nodes that can trace any particular message varies by message. Thus “trust
models” are mostly a side-effect of the protocols employed by some anonymous
communication schemes, whereas tracing policies are conscious decisions to allow
tracing the anonymity of a message.

3.1 Generic transformations

In this section we present a method to convert a generic anonymous communi-
cation protocol to a new protocol that permits selective tracing. We assume that
there is an independent set V of voters and a threshold tracing policy V ⊆ 2V .
(We remark that any monotone tracing policy may be implemented using our
method, though in the worst case the length of the shares may be exponential
in the size of the voting set. Here we focus only on the threshold case.) We do
not assume anything about the voters except that they can be trusted with a
secret share of the El Gamal private key that will be used for decryption. The
voters may be principals in the original anonymous communication scheme, but
this isn’t a necessary requirement. For this work, we make the simplifying as-
sumption that a group manager enforces some binding between a user’s identity
in the JOIN protocol and that user’s physical identity.

4

Let M be the set of possible anonymous messages, which are generated by
one party to be processed for anonymous delivery to another party, and let PM
be the set of protocol messages, which are exchanged by parties during the ex-
ecution of the protocol. Our generic transformation applies to protocols that
include a finite number of parties {P1, . . . , Pn} and include the primitive oper-
ations SEND, PROCESS, and RECOVER, which we now describe. (These operations
use a set of public parameters selected by an initial setup stage, and each player
Pi may use his secret parameters Si in any stage):

– SEND: a procedure executed by Pi that takes as input an anonymous message
m ∈M and a recipient Pj , and outputs a list c of pairs (ci,j , Pj) where ci,j

is a protocol message to be sent to Pj .
– PROCESS: a procedure executed by Pj that takes as input a list of pairs

(ci,j , Pi), where the ci,j are protocol messages received from Pi, and outputs
a new list c′ of pairs (c′j,k, P ′

k) where c′j,k is a protocol message to be sent
to P ′

k. (We remark that there may be several rounds of PROCESS operations
during a single execution of the protocol.)

– RECOVER: a procedure executed by Pj that takes as input a list c (or multiple
vectors) of pairs (ci,j , Pi), where the ci,j are protocol messages received from
Pi, and outputs a list of pairs (mk, P ′

k) where each mk is an anonymous
message to send to P ′

k.

All well-known anonymity protocols in the security literature implement vari-
ants of these protocols. With mixes and onion-routing protocols, for example, a
PROCESS step takes a batch of protocol messages and shuffles and forwards them
along to other parties, possibly after performing some operation on the messages
such as encryption and/or decryption.

Transformation 1: The first transformation we consider (already mentioned
in [KTY04]) affects the SEND and RECOVER steps of a given protocol. In the new
protocol the sender Pi must sign the message m ∈ M to get a group signature
σ, and the resulting message m′ = (m,σ) is the one that must be processed by
the SEND operation. For any party Pj executing a RECOVER operation to recover
a message m, Pj must ensure that m has been signed using a group signature
and must discard the message if it has not been signed.

If a receiver Pk presents an anonymous message to the voting group V for
tracing, a tracing set T ∈ V may open the signature to reveal the sender of the
message.

A significant problem with Transformation 1 is that nothing stops the party
Pj executing RECOVER from reading a recovered unsigned message, or sending it
on to its intended recipient — regardless of whether Pj is simply curious or is
attempting to subvert the tracing scheme. As soon as unsigned messages are read
instead of dropped, senders have no incentive to sign messages that they may
later be blamed for, and the system degrades into a non-traceable protocol. Of
course one could appoint a trusted “auditor” to check that all messages are signed
before delivery but this would both have the effect of severely degrading the
anonymity of the system (the auditor sees ALL messages delivered!) and would
create a single point of failure for the anonymity protocol; we seek a solution

5

that violates anonymity for traceability only to the extent that it enforces the
tracing policy.
Transformation 2: In most anonymity protocols, the PROCESS step involves
protocol messages from which the original anonymous message m cannot be
efficiently recovered by the party executing the step. The message may be en-
crypted, for example, or split into shares using some secret-sharing scheme. (One
exception to this is the Crowds framework [RR98], where messages may be sent
in plaintext. Protocol participants essentially flip a coin to decide whether to
execute a PROCESS or a RECOVER operation, and they can see the anonymous
messages at every step.) The transformation we outline below may be applied
whenever it is impossible or computationally infeasible to recover m from the
PROCESS step.

Our solution to the game-theoretic problem of Transformation 1 is to require
that an agent Pj executing a PROCESS step must check that the protocol messages
c1,j , . . . , cn,j are all generated from underlying anonymous messages that have
been signed using the group signature scheme. To do this without revealing
anything about the underlying message, we use noninteractive zero-knowledge
(NIZK) proofs [BDMP91]; Appendix B provides a brief introduction to NIZK
proofs.
Let GPK be the group verification key for a group signature scheme. To use
NIZK proofs we construct the language LΠ(GPK) for the underlying anonymous
communication protocol Π as follows. Let

LS(GPK) = {x : x ∈ SEND((m,σ), . . .) ∧ VERIFY(GPK, m, σ) = TRUE)} ,

that is, LS(GPK) is the set of legitimate protocol messages generated by SEND
on a (group)-signed anonymous message. LS(GPK) ∈ NP , since (m,σ) serves
as a polynomial-length witness for x ∈ LS(GPK) when σ is a group signature
on m. Let

LP (GPK) = {x : x ∈ PROCESS(c1, . . . , cn, . . .),
n∧

i=1

(ci ∈ LS(GPK)∨ci ∈ LP (GPK))} ,

so that LP (GPK) is the set of legitimate protocol messages generated by PROCESS
with inputs that were “legitimate” protocol messages (i.e., generated by some
sequence of SEND executions on signed anonymous messages and subsequent
PROCESS executions). For any polynomial-time protocol there is a polynomial-
length witness for the statement x ∈ LP (GPK) as well: the original signed
messages and the random bits used by all parties in the protocol so far.

Similarly, we define the language

LR(GPK) = {x : x ∈ RECOVER(c1, . . . , cn, . . .),
n∧

i=1

(ci ∈ LP (GPK))} ,

which is the set of output messages originating from signed input messages and
is similarly in NP . Finally, we define the language

LΠ(GPK) = LS(GPK) ∪ LP (GPK) ∪ LR(GPK) .

6

The transformed protocol works as follows: the new SEND procedure executes the
original SEND procedure on a pair (m, SIGN(m)) to produce a vector of protocol
messages ci, and then produces an NIZK proof πi that each protocol message
ci is in LΠ(GPK). The transformed protocol messages are then pairs (ci, πi).
The new PROCESS procedure on a tuple of protocol messages each of the form
(cj , πj) first checks that all proofs are correct; if for some j the proof is incorrect
then (cj , πj) is replaced by (ε, ε) (ε here just means “the empty message”). Then
the original PROCESS procedure is invoked on (c1, . . . , cn) to produce a vector of
original protocol messages (c′1, . . . , c

′
n), and the proofs πi are used as witnesses

to produce NIZK proofs π′i that c′i ∈ LΠ(GPK). The transformed protocol mes-
sages are again the pairs (c′i, π

′
i). Finally, the new RECOVER procedure is similarly

transformed, as follows: the protocol messages are checked for correctness, and
if any proof fails the corresponding original protocol message is left empty; the
original RECOVER procedure is executed on the vector (c1, . . . , cn) to produce out-
put message (m,σ) and a proof is produced that m ∈ LΠ(GPK); finally, (m,σ)
is output along with the proof.

We note that in some protocols with information-theoretic anonymity (e.g.,
DC-Nets [Cha88]), the naive application of the above transformation may fail,
since each single protocol message is uniformly distributed and independent of
the message being transmitted. (In this case, a proof that the protocol message Pi

sends to Pj is consistent with some input is meaningless, because any such mes-
sage would be consistent.) We note, however, that a well-known approach to the
problem, described in the multiparty computation literature [GMW87,BGW88],
can be applied here: first, modify the setup procedure to output a vector of com-
mitments, one to each player’s secret input; then modify PROCESS(c1, . . . , cn)
to output commitments to c1, . . . , cn as well commitments to c′1, . . . , c

′
n; finally,

apply the above transformation. If these commitments are unconditionally hid-
ing, they do not alter the information-theoretic anonymity of the underlying
protocol.

Efficiency. We stress that the point of this general scheme is not to suggest
a protocol that should be used in practice, but to show that in principle, any
anonymity scheme can provide selective traceability. Indeed, the most efficient
general constructions of NIZKs [GOS05] have length roughly 6000T bits, where
T is the number of bit operations required to verify that x ∈ L given witness
w. Since in the previous transformation, this involves (at minimum) verifying a
group signature or checking a NIZK, and the most efficient such signatures re-
quire roughly T = 106 bit operations per verification, the generic transformation
cannot be considered practical.

3.2 More Efficient Transformations

In this section, we will demonstrate simple modifications to allow selective trac-
ing of two DC-Net-based protocols: k-AMT [ABH03] and a protocol due to Golle
and Juels [GJ04] which we refer to as GJ. Both protocols make slight alterations
to the basic DC-Net protocol [Cha88] to implement a shared channel; these
modified protocols are then run in several parallel copies, and cryptographic
mechanisms are employed to prove that each participant broadcasts on at most
one channel, ensuring fair access to the medium. Our approach considers the

7

messages sent on each channel orthogonally and allows determining who has
broadcast on a single channel, so for ease of exposition we will describe the pro-
tocols here only in terms of a single shared channel.

k-AMT. The k-AMT protocol implements a shared channel as a secure mul-
tiparty sum computation, using Pedersen commitments2 to ensure correctness.
Here we assume that player Pi wants to send message Xi. The basic protocol
has four phases:

1. Commitment Phase:
– Pi splits Xi ∈ Zq into n random shares si,1, ..., si,n, and chooses ri,j ← Zq

– Pi computes and broadcasts commitments {Ci,j = Cri,j
(si,j) : 1 ≤ j ≤ n}.

2. Sharing Phase:
– For each j 6= i, Pi −→ Pj : (ri,j , si,j).
– Pj checks that Cri,j

(si,j) = Ci,j

3. Broadcast Phase:
– Pi computes and broadcasts Ri =

∑
j rj,i mod q and Si =

∑
j sj,i mod q.

– All players check that CRi
(Si) =

∏
j Cj,i mod p

4. Result:
Each player computes X =

∑
i Si mod q and R =

∑
i Ri mod q; if CR(X) =∏

i,j Ci,j mod p, then the player outputs the anonymous message X.

As was previously mentioned, k-AMT actually runs several parallel copies of
this protocol and includes procedures for proving that a party has transmitted
on at most one parallel channel or “slot.” Here we will describe how to augment
the basic protocol so that it is selectively traceable. It should be clear that these
modifications are orthogonal to those additional procedures.

The new protocol exploits the relationship between El Gamal encryption
and Pedersen commitments to allow the voters to “decrypt” the commitments
generated in Phase 1 (when the tracing policy is satisfied). Here we describe the
necessary modifications.

1. Initialization: As a group, choose securely an El Gamal key pair (G, x, y)
where y = Gx, such that the private key x is shared by threshold secret
sharing according to the desired tracing policy, as in Section 2.

2. Commitment Phase: In addition to the {Ci,j : j ∈ [M]} commitments
broadcast by party Pi, we will have Pi broadcast a certificate that can be
proven correct for a given set of commitments, but can only be opened by
the owner of the private key of the El Gamal encryption scheme above.
Assuming that a round of k-AMT is correctly computed, we are guaranteed
that Si =

∏
j Ci,j = gXihRi , where Ri =

∑
j ri,j . Let ai = GRi and bi =

g−XiyRi . Together, ai and bi form an El Gamal encryption of g−Xi with the
public key y.
Finally, we compute σi to be an efficient noninteractive proof of knowledge
that the discrete log of ai with respect to base G is the same as the discrete

2 If p, q are primes such that p = 2q + 1, and g, h ∈ Z∗
p both have order q, a Pedersen

commitment to the value x ∈ Zq is generated by randomly choosing r ∈ Zq and
computing Cr(x) = gxhr.

8

log of Sibi with respect to base hy. The certificate broadcast in addition to
the commitments is just (ai, bi, σi).
To verify a certificate, which all parties will do for all broadcast commit-
ments, simply verify the proof of knowledge.

Now, to trace a message: identify the slot that it was transmitted on, obtain a
number of parties as required by the tracing policy, and securely compute the
decryption M of each party’s certificate for that slot. For all participants who
sent nothing on the channel we have Xi = 0, and thus M = g−Xi = 1. All other
participants transmitted something on the channel, and in particular if only one
participant i sent a message we have X = Xi, and thus M · gX = 1.

To compute σi, we want to show that logG ai = loghy Sibi. In general, to prove
that logg y = logh z when logg h is unknown and hard to compute, it suffices to
prove knowledge of logg/h(y/z). (If there exists a such that y = ga and z = ha,
then because gaz = hay we have logg/h(y/z) = a. If y = ga and z = hb, with
a 6= b, then knowledge of logg/h(y/z) can easily be used to compute logg h.)
Therefore, σi is a noninteractive proof of knowledge of logG/hy(ai/Sibi), and can
be computed efficiently using standard techniques.3 Note that this modification
doesn’t affect the asymptotic efficiency of the underlying protocol.

We prove in Appendix C that under the Decisional Diffie-Hellman assump-
tion, the protocol remains secure against computationally bounded adversaries
that have not corrupted a tracing set.

The GJ DC-Net Protocol. The GJ DC-Net protocol takes advantage of bi-
linear maps to perform many Diffie-Hellman key exchanges noninteractively,
thus achieving a single-round (noninteractive) DC-net protocol. The protocol
works over groups G1, G2 of prime order q, and with an admissible bilinear map
ê : G1 × G1 → G2. (A map is bilinear if ê(aP, bP) = ê(P, P)ab.) We denote
the group operation in G1 using additive notation, and the group operation in
G2 using multiplicative notation, as is common when dealing with admissible
bilinear maps. (G1 is typically an elliptic curve group.) We let P ∈ G1 be a
public parameter and assume all parties know a map H : {0, 1}∗ → G1, which
we will model as a random oracle. As previously mentioned, the GJ protocol
is actually comprised of several parallel executions of a simple shared channel
along with some auxiliary information that proves a player has transmitted on at
most one channel; for simplicity, and because our modifications are orthogonal,
we describe only the single channel and omit the auxiliary information. For a
description of the full protocol, see [GJ04].

1. Setup Phase Every player Pi picks private key xi ∈ Zq and publishes
yi = xiP as his public key.

2. Pad Construction Let s be some unique identifier of a particular execution
of the shared channel. (For example, a running count appended to the list of

3 In the random oracle model, a proof of knowledge of α = logγ β has the form
(ζ = γρ, λ = αH(ζ) + ρ), where ρ ∈R Zq and H : Z∗

p → Zq is a random oracle; the

proof is accepted if γλ = βH(ζ)ζ; interactive versions of this protocol first appear in
[CEGP86].

9

users). All players compute the element Qs ∈ G1 as Qs = H(s). Then each
pair of players (noninteractively) computes a shared Diffie-Hellman key

ki,j(s) = ê(yj , xiQs) = ê(P,Qs)xixj = ê(yi, xjQs) = kj,i(s) .

Each player i computes his “pad” pi(s) =
∏

j ki,j(s)δi,j , where δi,j = −1 if
i < j and 1 otherwise.

3. Transmission In session s, we let the intended message of Pi be the element
mi(s) ∈ G2, where mi(s) is the identity element 1 ∈ G2 if Pi has no message
to send. To transmit, each player Pi publishes value Wi(s) = mi(s)pi(s).

4. Message Extraction The final message is extracted by computing

m(s) =
∏

i

Wi(s) =
∏

i

mi(s)
∏
j

ki,j(s)δi,j =
∏

i

mi(s) ,

since ki,j(s)δi,j = kj,i(s)−δj,i . Thus if exactly one mi(s) 6= 1, then we have
m(s) = mi(s).

To support selective tracing, the only modification to the previous procedures
is in the setup phase: after generating key pair (xi, yi) and publishing yi, player
Pi will share his private key xi among the voters in a similar fashion to that
described in section 2. Then to trace the message m(s), the voters will compute
the pads pi(s) for each i using their shares. If the published value Wi(s) =
m(s)pi(s), then Pi is the sender. We formally describe the new procedures in
appendix D.
We note that in the full GJ protocol [GJ04] shares of the private keys xi are
distributed amongst the players to allow any two-thirds of them to reconstruct
the pads of players who do not participate in any given session. So, even though
this is done for different reasons, the GJ protocol silently implements a threshold
tracing scheme, with V = {P1, . . . , Pn} and V = V(2n

3).

4 Coercibility in Anonymous Protocols

Informally, we say that an anonymity protocol is coercible if every player who
did not send a message can produce a proof that this is the case. More formally,
consider a “proof protocol” P between a player Pi and a verifier V , where the
difference in the probabilities that V “accepts the proof” when Pi sent the
message and Pi did not send the message is at least some value ρP . We call
a protocol ρ-coercible if, over all P, ρ = max(ρP). In other words, ρ measures
the confidence of the best proof procedure. If a protocol is 1-coercible, only the
legitimate sender of a message cannot exculpate himself (but everybody else
can); if a protocol is 0-coercible the verifier should not believe any proofs. If ε
is negligible, we say that a protocol that is (1− ε)-coercible is strongly coercible,
and that a protocol that is at most ε-coercible is noncoercible. If a protocol is
ρ-coercible for some constant ρ, we say that it is plausibly noncoercible.

In this section we assume that all the players in the protocol Π are plausible
senders of any message m. Assuming that all the players belong to the same
“anonymity set” (i.e., the set of players who could have sent a particular message)

10

lets us ignore “proofs of innocence” that can arise simply because two players
belong to different anonymity sets.

Formally, for an anonymous communications protocol Π we define coercibil-
ity as follows:

– A proof procedure P is a pair (P,V) of programs such that V outputs either
accept or reject. (Intuitively, P can be thought of as a program that is
run by some player Pi.)

– After the public parameters of Π are chosen, V is allowed to choose a message
m as a function of the parameters. This is the message that, if sent during
an execution of the protocol, V will ask players in Π to prove they have not
sent.

– Let viewX(Pj : m) denote the view of party X in the anonymity protocol Π
when Pj sends message m and m is delivered. The view includes X’s inputs
(including random tape) and any protocol messages sent and received during
the execution of Π.

– Let A denote an (arbitrary) adversary who cannot compromise the anonymity
guarantee of Π. For any player X, denote by viewA(X : m) the views of all
parties corrupted by A as well as all protocol messages from Π that A ob-
serves. Essentially, A will serve as V’s agent in Π: we allow the verifier access
to A’s view of Π to help in deciding whether to accept P’s proof that Pi

didn’t send m. Denote by Pi(X : m) the output of V (on input m and
viewA(X : m)) when interacting with P (on input m and viewPi

(X : m)).
– We say that Π is ρ-coercible if there is a proof procedure P, an adversary A,

and players Pi and Pj such that

|Pr[Pi(Pj : m) = accept]− Pr[Pi(Pi : m) = accept]| ≥ ρ ,

regardless of Pi’s actions in the second case.

Notice that this definition is weak in the sense that the verifier is allowed to
choose the message. In other words, the protocol is coercible if there exists a
message and adversary such that some player can prove that she did not send
the message. (This makes noncoercibility a stronger definition, because it rules
out any convincing proofs of innocence.) As we will demonstrate, the coercibility
of several protocols from the literature is much stronger — and therefore more
problematic — because it allows any player to prove she is not the sender of any
message she did not send.

Coercibility for group signature schemes can be defined analogously. We re-
mark that noncoercibility of group signatures satisfying the security definitions
of [BMW03] is implied by the “full anonymity” condition.

Recently, Danezis and Clulow [DC05] have introduced the notion of compulsion-
resistant anonymity protocols. In their setting, an adversary may compel certain
noncooperative nodes to reveal their secrets (via, for example decrypting cipher-
texts or revealing logs or secret keys) in an attempt to trace a message back
to its sender. Noncoercibility and compulsion-resistance are related in that both
concern the ability of an adversary to trace a message after it has been sent. Our
notion is different from compulsion-resistance in several ways. First, a coercive
adversary is given a complete transcript of a protocol execution, whereas the per-
haps more realistic (but weaker) “compulsive” adversary has only an anonymous

11

reply block. Second, our constructions consider mainly DC-Net based protocols
whereas [DC05] is concerned mainly with mix-based protocols. Finally, the goals
of noncoercibility and compulsion-resistance differ somewhat: a noncoercible pro-
tocol aims to make compulsory revelation of secrets useless because no such rev-
elation will convincingly exonerate a nonsender, whereas a compulsion-resistant
protocol aims to make such compulsory tracing prohibitively expensive.

4.1 Coercibility in various anonymity protocols

In this section we discuss the question of coercibility in some of the well-known
protocols for anonymity.

In the simplest formulation of Chaum’s mix-net protocol [Cha81], each party
sends a message to the mix, who decrypts and shuffles the messages before for-
warding them to the recipients. This protocol is clearly coercible against a global
passive adversary: if Pi sent ciphertext ci to the mix, and ci does not decrypt to
m, he can open ci to plaintext pi 6= m to the verifier. The true sender, on the
other hand, cannot. It is similarly clear that, in the worst case, any forwarding-
based scheme which relies on static public or shared keys allows similar acts of
exculpation to a global passive adversary: by decrypting all received ciphertexts
and opening all sent ciphertexts, Pi can prove that he was not the originator of
any message he did not send. Clearly some players will be reluctant to sacrifice
their anonymity entirely in order to give such proofs. It is conceivable, however,
that the consequences of non-exculpation could be serious enough that such a
privacy loss would be acceptable to Pi. In this work we leave open the interesting
question whether such forwarding-based protocols remain coercible in settings
that employ forward-security or against different adversarial models.

In Section 3.2 we focused on selective tracing in protocols based on DC-Nets,
in part because of the reliance of those protocols on cryptographic techniques
that are amenable to tracing. For similar reasons, both of those protocols are co-
ercible. Here we show how participants in those protocols are able to prove easily
that they did not send particular messages that were sent by other participants
during an execution of the protocol.

In a GJ DC-Net, player Pi can prove that he didn’t send a message during
session s by publishing the quantity zi(s) = xiQs. (Note that zi(s) doesn’t
reveal anything about Pi’s private key xi.) From zi(s), Pi’s pad pi(s) can be
publicly computed as pi(s) =

∏
j ki,j(s)δi,j =

∏
j ê(yj , zi(s))δi,j . Wi(s) — the

value publically declared by Pi — will be the same as pi(s) if and only if Pi did
not send the message.

In k-AMT, player Pi broadcasts commitments Ci,j = Cri,j
(si,j) of the ran-

dom shares si,1, ..., si,n broadcast to the other players when Pi sends message
Xi. If Pi wants to prove that she did not send a message, i.e., that Xi = 0, she
needs only to open the commitments Ci,j by announcing the shares si,j and the
random values ri,j . (Opening a commitment Ci,j to some value s′i,j 6= si,j is as
computationally hard as computing logg(h), where g and h are the generators
used in the commitment scheme.) Other users can easily check that

∑
j si,j = 0,

thus proving that Pi did not send the message in question.
We note, however, that k-AMT can be modified to be noncoercible. The

key idea is that when logg h is known, a player can open a commitment to any

12

value (Pedersen commitments are thus equivocable), and in particular can show
that his commitments sum to zero, even if they do not. We can thus modify
the k-AMT protocol to start each round by choosing a new h so that loggh is
uniformly chosen and can be recovered exactly when 2n/3 players reveal their
secret information; each round continues as before, and at the end of each round
loggh is revealed. We note that Pedersen [Ped91b] gives an appropriate protocol
for choosing h with these properties. We also note that this modification to k-
AMT is incompatible with the tracing modification of Section 3.2. Thus, while
applying the generic transformation to this modification of k-AMT can result in
a strong selectively traceable protocol, no efficient construction is known.

4.2 Coercibility Preservation

Here we show that the general transformations in Section 3 preserve (up to
a negligible additive factor) the coercibility of the underlying (non-traceable)
anonymous communications protocol, given that the selected group signature
scheme is noncoercible. That is, we will show that any proof system that has
an acceptance gap of ρ in the transformed protocol can be converted into a
proof system with acceptance gap at least ρ− µ for the underlying anonymous
protocol if the group signature scheme is at most µ-coercible. This implies that
using a noncoercible anonymous protocol will result in a noncoercible selectively
traceable protocol.

Group Signature transformation. Let Π denote an anonymous commu-
nication protocol and let Π∗ denote the protocol that results from applying
Transformation 1 to Π. Suppose that Π∗ is ρ-coercible and that the group sig-
nature scheme GS used in the transformation is at most µ-coercible. Then there
must be a proof procedure P∗ = (P∗,V∗) for Π∗ with acceptance gap ρ, for some
adversary A∗ and a pair of players Pi and Pj . We construct a proof procedure P
for Π, which “simulates” the group signature part of Π∗ so that it can run P∗:

– On input the public parameters from Π, V plays the role of the group man-
ager in GS to pick a group public key GPK. V appends GPK to the param-
eters (producing a set of public parameters consistent with Π∗) and runs
V∗ to choose a message m∗. V computes a signing key for Pj and computes
σ∗ = SIGNj(m∗). V also chooses the message m = (m∗, σ∗).

– V and P jointly execute the JOIN protocol from GS to produce Pi’s signing
key. This is so that when P runs P∗ he can supply a transcript of the JOIN
protocol. (Note however, that if Pi sends m in Π, this view will be slightly
different than if Pi sent m∗ in Π∗, because m is signed by Pj . We prove,
essentially, that the noncoercibility of GS means that this doesn’t matter for
the acceptance probabilities.)

– V appends GPK and σ∗ to his input viewA to form a view view∗
A consistent

with Π∗. Similarly, P appends GPK and his signing key and σ∗ to viewi to
form a view view∗

i consistent with Π∗.
– V executes V∗(m∗, view∗

A), and P executes P∗(m∗, view∗
i).

13

– P proves in zero-knowledge that his actions are consistent with the extra
inputs computed with V. If this proof fails, or P aborts the protocol, V
outputs reject. Otherwise V outputs the decision of V∗. This ensures that
P does not “cheat” by using different inputs to increase the acceptance
probability.

Let us compute the acceptance gap of P. To do so, we will imagine an experiment
in which Π∗ delivers m∗ with a group signature from either Pi or Pj . Denote
the event that Pi’s signing key is used by Si, and the event that Pj ’s key is used
by Sj . Then we have that:

ρ ≤ |Pr[P∗i (Pi : m) = accept | Si]− Pr[P∗i (Pj : m) = accept | Sj]|
≤ |Pr[P∗i (Pi : m) = accept | Si]− Pr[P∗i (Pi : m) = accept | Sj]|

+ |Pr[P∗i (Pi : m) = accept | Sj]− Pr[P∗i (Pj : m) = accept | Sj]|
= |Pr[P∗i (Pi : m) = accept | Si]− Pr[P∗i (Pi : m) = accept | Sj]|

+ |Pr[Pi(Pi : m) = accept]− Pr[Pi(Pj : m) = accept]|
≤ µ + |Pr[Pi(Pi : m) = accept]− Pr[Pi(Pj : m) = accept]|

where the second line follows by the triangle inequality, the third follows
from the definition of the proof procedure P — it is running P∗ exactly in the
(imaginary) case that Sj happens — and the last follows because GS is at most
µ-coercible.4 Thus we have that

|Pr[Pi(Pi : m) = accept]− Pr[Pi(Pj : m) = accept]| ≥ ρ− µ .

NIZK transformation. Let Π denote an anonymous communication protocol
that results from applying Transformation 1, and let Π∗ denote the result of
applying Transformation 2 to Π, that is, adding the NIZK proofs to the proto-
col. We will show that if Π∗ is ρ-coercible then Π is at least ρ− ε coercible, for
a negligible function ε. Informally, this is because NIZK proofs are simulatable:
a party who can choose the common reference string used for the proof can,
without a witness, produce simulated proofs that are indistinguishable from ac-
cepting proofs. Because both P and V may need to generate proofs on strings
that the other has not seen, they will use a secure two-party computation proto-
col [Yao86] to generate the CRS and any simulated proofs so that neither learns
anything about the CRS except the proofs they need to emulate Π∗.

Formally, let P∗ = (P∗,V∗) have acceptance gap ρ for Π∗. Then we construct
the system P for Π as follows:

– P and V jointly execute a secure two-party computation to choose a simu-
lated CRS Σ∗ and random shares (sP , sV) of the trapdoor for Σ∗.

– V appends Σ∗ to the public parameters for Π to produce parameters con-
sistent with Π∗. V runs V ∗ on these parameters and outputs the message
m∗ chosen by V ∗.

4 Suppose that |Pr[P∗
i (Pi : m) = accept | Si] − Pr[P∗

i (Pi : m) = accept | Sj]| > µ.
Then P gives a way for Pi to prove that he did not generate the group signature σ∗

with acceptance gap greater than µ: V and P run Π∗ together, with V playing the
roles of other parties, and P sends m∗ using the group signature σ∗. Then they run
P on their views of this execution; the acceptance gap will be preserved.

14

– On inputs viewi,m
∗ and viewA,m∗ to P,V respectively, the parties simulate

NIZK proofs for all messages in each of their views:
• For each protocol message m ∈ viewi, P and V run a secure two-party

computation in which P’s input is (m, sP), and V’s input is sV ; P’s
output is a simulated proof that m ∈ LΠ(GPK), and V’s output is ε.
• For each protocol message m ∈ viewA, P and V run a secure two-party

computation in which V’s input is (m, sV), and P’s input is sP ; V’s
output is a simulated proof that m ∈ LΠ(GPK), and P’s output is ε.

At the end of this process, P knows a list πP of proofs and V knows a list πV
of proofs. Each party incorporates these proofs into his view appropriately,
producing views view∗

i , view∗
A consistent with Π∗.

– P and V run P∗(m∗, view∗
i),V∗(m∗, view∗

A).
– P proves in (interactive) zero knowledge that his actions in P∗ are consistent

with the additional information computed previously. If this proof fails, or if
at any point P aborts the protocol, V outputs reject, otherwise V outputs
the decision of V∗.

Since the simulated proofs πP , πV are indistinguishable from proofs produced
in Π∗, it should be clear that the acceptance probabilities of P in either case
are the same as those of P∗, up to a negligible additive factor ε, which is the
negligible probability that the simulation procedure for (Σ∗, t) fails. Thus the
acceptance gap for P is at least ρ− ε, as claimed.

5 Conclusion
In this paper we have discussed selective tracing and coercibility as two is-
sues that designers of anonymity protocols should bear in mind. We have de-
scribed a framework for describing tracing policies that we believe to be general
enough to capture most situations where fair and sensible tracing policies are
desired. We have shown that, in principle, strong selectively traceable anonymity
schemes for any tracing policy can be implemented by modifying a recent pro-
tocol of [ABH03].

Extending this work to protocols based on mixes is one possible direction
for future work. Our proposed “Transformation 2” (in Section 3) is extremely
inefficient in both space and time — more efficient transformations that apply
to specific protocols (or at least to mix-style protocols) are highly desirable.

We are not advocating anonymity tracing as a necessary feature of anonymity
protocols, but rather suggesting that any tracing — whether implicit (e.g., co-
ercible protocols) or explicit — should be examined carefully so that system
designers can make more specific anonymity guarantees. While it is rarely a
good idea to have tracing possible by the action of a single trusted authority, it
may be easier to deploy an anonymity protocol in some contexts if it includes
some tracing functionality. To that end, we want to develop systems that pro-
vide flexible tracing policies that are less likely to be abused. Finally, the issue
of traceable anonymity presents interesting technical problems that may help to
further the goals of anonymity research. We hope that this will be the case.

References

[Acq04] A. Acquisti. Receipt-Free Homomorphic Elections and Write-in Ballots.
Cryptology ePrint Archive Report 2004/105, 2004.

15

[ABH03] L. von Ahn, A. Bortz, and N. J. Hopper. k-anonymous message transmis-
sion. In 10th ACM Conference on Computer and Communications Security,
pages 122–130, 2003.

[ACJT00] G. Ateniese, J. Camenisch, M. Joye and G. Tsudik. A Practical and Prov-
ably Secure Coalition-Resistant Group Signature Scheme. Advances in
Cryptology, CRYPTO 2000. Pages 255-270.

[BMW03] M. Bellare, D. Micciancio and B. Warinschi. Foundations of Group Sig-
natures: Formal Definitions, Simplified Requirements, and a Construction
Based on General Assumptions. In: Advances in Cryptology — Eurocrypt
2003, Lecture Notes in Computer Science Vol. 2656, pages 614–629.

[BGW88] M. Ben Or, S. Goldwasser and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing (STOC
1988), 1988.

[BT94] J.C. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections (ex-
tended abstract). In: Proceedigns of the Twenty-Sixth Annual ACM Sym-
posium on Theory of Computing, pages 544–553, 1994.

[BDMP91] M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive Zero-
Knowledge Proof Systems. SIAM Journal on Computation, 20(6): 1084–
1118, 1991.

[Bon98] D. Boneh. The Decision Diffie-Hellman Problem. Third Algorithmic Num-
ber Theory Symposium, pp 48–63, 1998.

[CG04] J. Camenisch and J. Groth. Group Signatures: Better Efficiency and New
Theoretical Aspects. In Fourth Conference on Security in Communication
Networks - SCN ’04, 2004.

[CDNO97] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable Encryption.
In: Advances in Cryptology – CRYPTO 97, pages 90–104, 1997.

[CFGN96] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively Secure Mul-
tiparty Computation. MIT LCS Technical Reports TR96-682, 1996.

[Cha81] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. In Communications of the ACM 4(2), February 1981.

[Cha88] D. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[CEGP86] D. Chaum, J. Evertse, J. van de Graaf and R. Peralta. Demonstrating
Possession of a Discrete Logarithm Without Revealing It. Advances in
Cryptology: CRYPTO’86, pages 200-212, 1987.

[CvH91] D. Chaum and E. van Heyst. Group Signatures. Advances in Cryptology,
EUROCRYPT ’91, pages 257-265.

[DC05] G. Danezis and J. Clulow. Compulsion Resistant Anonymous Communi-
cations. In: 7th Information Hiding Workshop, June 2005.

[DKNS04] Y. Dodis, A. Kiayias, A. Nicolosi and V. Shoup. Anonymous Identification
in Ad-Hoc Groups. In: Advances in Cryptology - EUROCRYPT 2004, May
2004.

[GJ04] P. Golle and A. Juels. Dining Cryptographers Revisited. Advances in
Cryptology – Eurocrypt ’04, 2004.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game.
In Proc. 19th ACM Symp. on Theory of Computing, pages 218–229, 1987.

[Gre03] T.C. Greene. Net anonymity service back-doored. The Register, 21 August,
2003.

[GOS05] J. Groth, R. Ostrovsky and A. Sahai. Perfect Non-Interactive Zero Knowl-
edge for NP Electronic Colloquium on Computational Complexity, technical
report TR05-097, 2005.

16

[JJ02] A. Juels and. M. Jakobsson. Coercion-Resistant Electronic Elections. Cryp-
tology ePrint Archive Report 2002/165, 2002.

[KY02] J. Katz and M. Yung. Threshold Cryptosystems Based on Factoring. In:
Advances in Cryptology – Asiacrypt 2002, pages 192–205, 2002.

[KTY04] A. Kiayias, Y. Tsiounis and M. Yung. Traceable Signatures. In: Advances
in Cryptology – Eurocrypt 2004, 2004.

[Ped91a] T.P. Pedersen. A threshold cryptosystem without a trusted party. In
Advances in Cryptology — Eurocrypt ’91, pages 522–526, 1991.

[Ped91b] T.P. Pedersen. Efficient and information theoretic secure verifiable secret
sharing. In Advances in Cryptology — CRYPTO ’91, 1991.

[RW04] M.K. Reiter and X. Wang. Fragile Mixing. In: Proc. 11th ACM CCS,
2004.

[RR98] M. Reiter and A. Rubin. Crowds: Anonymity for web transactions. ACM
Transactions on Information and System Security, 1(1):66–92, 1998.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22:612–
613, 1979.

[Sho00] V. Shoup. Practical Threshold Signatures. In: Advances in Cryptology –
Eurocrypt 2000, 2000.

[Wai89] M. Waidner. Unconditional sender and recipient untraceability in spite
of active attacks. In: Advances in Cryptology – EUROCRYPT’89, pages
302-319, 1989.

[WP89] M. Waidner and B. Pfitzmann. The Dining Cryptographers in the Disco -
Unconditional Sender and Recipient Untraceability with Computationally
Secure Serviceability (Abstract). In: Advances in Cryptology – EURO-
CRYPT 1989, page 690, 1989.

[Yao86] A. C. Yao. How to Generate and Exchange Secrets. In Proceedings of the
27th IEEE Symposium on Foundations of Computer Science, 1986, pages
162–167.

A Threshold El Gamal decryption

Let Gq be a group of prime order q, generated by g (e.g., let p, q be primes
such that q|(p − 1), and let Gq be the unique order q subgroup of Z∗p). Let x
be an integer between 0 and q − 1. An El Gamal private key is the pair (g, x)
and its corresponding public key is the tuple (Gq, q, g, y) where y = gx. (When
q, Gq, and g are clear we refer to x and y as the public and private keys.) To
encrypt a plaintext message M ∈ Gq, a random integer k ∈ Zq is selected,
and the ciphertext is the pair C = (a, b), where a = gk and b = Myk. To
decrypt a ciphertext C = (a, b), just take M = b/ax. The encryption process is
semantically secure under the Decisional Diffie-Hellman assumption [Bon98].

El Gamal encryption can be generalized so that the private key is distributed
among n different principals or voters, and all n must agree to participate for
each act of decryption. We describe the case for n = 2; the generalization to n
is straightforward. Let voters v1 and v2 generate private keys x1 and x2, and
publish the public keys y1 = gx1 and y2 = gx2 . Let y = y1y2 be the aggregate
public key. To decrypt the El Gamal ciphertext C = (a, b) = (gk,Myk), vi

publishes di = yk
i = (ak)xi for i = 1, 2, and the ciphertext C can be decrypted

as b/d1d2 = Myk/yk = M . The “aggregate private key” is x = x1 + x2, but it is
never computed explicitly.

17

Now suppose that we have n voters v1, . . . , vn and a threshold t, and we
want decryption to occur if and only if there are t voters who take part in the
decryption process. As before let vi choose a private key xi and publish yi = gxi

so that an aggregate public key y =
∏

i yi can be computed by anyone. (The
private key x =

∑
i xi cannot be computed explicitly.) Now let vi generate shares

si[1], . . . si[n] of xi according to a linear threshold secret-sharing scheme such as
Shamir’s [Sha79], send si[j] securely to vj , and publish gsi[1], . . . , gsi[n]. After this
procedure each voter can compute Xi =

∑
j sj [i], and the quantity Yi =

∏
j gsj [i]

is publicly computable.
If we want to decrypt a ciphertext C = (a, b), suppose that V is a set of

voters with |V | ≥ t. Because the secret-sharing scheme is linear there exists
a publicly computable vector wV such that wV [i] 6= 0 only if vi ∈ V , and∑

i wV [i] · Xi = x. (For example, in Shamir’s scheme, wV [i] is computed by
Lagrangian interpolation: wV [i] =

∏
vj∈V,j 6=i

vj

vj−vi
) Voters in V vote to decrypt

C by publishing di = aXi . To decrypt they then calculate
∏

i d
wV [i]
i = ax. As

before, M = b/ax.

B A NIZK Primer

NIZK proofs allow a party to demonstrate noninteractively that some value y
is in a language L for any L ∈ NP . An NIZK proof holds in relation to a
randomly chosen common reference string (CRS), Σ, which can be obtained
prior to the proof by a distributed computation. Σ essentially serves as a series
of random challenges that a prover can only answer if he has a witness for
y ∈ L. NIZK proofs also have the property that they can be simulated: if the
prover is allowed to choose the CRS by himself, he can choose it along with
some trapdoor information t such that having t will later allow him to prove,
relative to Σ, arbitrary statements about L. (That is, he can show that y′ ∈ L for
any y′, without a witness.) These “simulated” proofs are then indistinguishable
from actual proofs to any other party. It follows that an NIZK proof is secure
only when the prover is not allowed to choose the CRS. For our transformation,
the CRS should be chosen as a distributed computation when the other public
parameters are produced. For a more thorough introduction to NIZK proofs, see
[BDMP91].

As an example, an NIZK proof can be used to prove that y is the result of a
polynomial-time computable function F on some input x known by the party. In
this case, an NIZK proof for some value y serves as proof that the party knows
x such that F (x) = y, and furthermore, it doesn’t reveal anything more about
x than is already revealed by y. If F is efficiently computable (say, polynomial
time), then generic constructions are available that allow us to construct NIZK
proofs for pairs (x, y) ∈ F . Because NP is closed under disjunction, NIZK proofs
can be given for disjunctive statements, i.e., that a value y ∈ L1 ∪ L2, for NP
languages L1 and L2. NIZK proofs are polynomial in length, but for general
languages of the type above, are long and not entirely practical (because the
polynomial functions characterizing the length have high degree and involve
large constants).

18

C Security proof sketch for traceable k-AMT

Theorem 1. Let A be a polynomial time adversary, and let B be the set of
players corrupted by A when attacking the selectively traceable modification of
k-AMT. Then, if B 6∈ V, A gains no advantage over an attack on unmodified
k-AMT.

Proof. (Sketch) The theorem follows from the security of threshold El-Gamal
encryption. Suppose A can distinguish between two possible senders in the mod-
ified k-AMT protocol, without corrupting a tracing set. Then we can design
an adversary A′ against the original protocol who can distinguish between the
senders with essentially the same advantage. A′ works as follows: after seeing ev-
ery message sent in the unmodified k-AMT protocol, A′ will submit a simulated
message from the modified protocol to A; whatever messages A decides to send
in the modified protocol can be sent in the original k-AMT protocol with tracing
information stripped out. As long as the simulated messages generated by A′ are
consistent with (speaking technically, indistinguishable from) the messages that
would be generated in the modified protocol, A will have the same advantage
in determining the actual sender of a message in the run of the original k-AMT
protocol. (Since all parties’ private inputs and outputs would be the same.) Thus
A′ can output the decision of A and correctly determine the true sender with
the same advantage.

Thus it remains to show that A′ can simulate messages from the modified
protocol given access to messages from the original protocol. The only step in the
original protocol that is modified is the commitment phase, in which each party
sends, in addition to his commitments from the original k-AMT, an ElGamal
encryption of the message sent on each slot, and a zero-knowledge proof that
his commitments and encryption are consistent. Using the fact that threshold
ElGamal is secure in the indistinguishability sense, we know that A′ can simulate
this portion of the modified commitment scheme by producing an encryption of
1. Using the fact that zero-knowledge proofs are simulatable, A′ can also make
a simulated (but possibly false) proof that the commitments and the encrypted
values in a given party’s broadcast message are consistent. Because true and
false statements are indistinguishable in this case, it will hold that the simulated
encryption and proof are indistinguishable from a consistent encryption and
correct proof. All other messages in the modified protocol can be passed directly
to A by A′.

D Formal description of modified GJ DC-Net

– Modified Setup Phase. As before Pi picks private key xi and publishes
public key yi = xiP . Pi also generates shares zi,1, . . . , zi,m to be sent to voters
v1, . . . , vm using a linear secret sharing scheme consistent with the tracing
policy V. Pi publishes the values Qi,t = zi,tP and sends vt the share zi,t.
All players verify that the published values are consistent (for example, that
there are at least m sufficient sets V ∈ V such that

∑
vt∈V wV [t]Qi,t = yi)

and each voter vt verifies that Qi,t = zi,tP for all i.

19

– Tracing Procedure. To “vote” to trace message m(s), voter vt publishes
the values Zi,t = zi,tQs for i ∈ [n]. Once a sufficient set V ∈ V have voted
to trace, the values ki,j(s) can be reconstructed by computing

ki,j(s) = ê(yi,
∑

vt∈V

wV [t]Zj,t) = ê(yi,
∑

vt∈V

wV [t]zj,tQs) = ê(yi, xjQs)

Once the values ki,j(s) are reconstructed, tracing proceeds as described
above: pi(s) is computed as in the Pad Construction phase, and Wi(s) is
compared to pi(s)m(s); if they are equal, Pi is responsible for the message
m(s). Notice that fraudulent voting can be detected in this protocol: it is
easy to verify that the value Zi,t published by vt is consistent by checking
that ê(Qi,t, Qs) = ê(P,Zi,t).

20

