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We introduce a general framework for reasoning about secrecy and privacy requirements in mul-
tiagent systems. Our definitions extend earlier definitions of secrecy and nondeducibility given by

Shannon and Sutherland. Roughly speaking, one agent maintains secrecy with respect to another
if the second agent cannot rule out any possibilities for the behavior or state of the first agent.
We show that the framework can handle probability and nondeterminism in a clean way, is useful

for reasoning about asynchronous systems as well as synchronous systems, and suggests general-
izations of secrecy that may be useful for dealing with issues such as resource-bounded reasoning.
We also show that a number of well-known attempts to characterize the absence of information

flow are special cases of our definitions of secrecy.
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1. INTRODUCTION

In the past two decades there have been many attempts to define what it means for
a system to be perfectly secure, in the sense that one group of agents is unable to
deduce anything at all about the behavior of another group. More generally, many
papers in computer science have, in a variety of different settings, defined properties
of “secrecy” or “privacy” and have discussed techniques for achieving these prop-
erties. In the computer-security literature, early definitions of “perfect security”
were based on two different intuitions. Noninterference [Goguen and Meseguer
1982] attempted to capture the intuition that an agent at a high security level is
unable to interfere with an agent at a lower security level, while nondeducibility
[Sutherland 1986] attempted to capture the intuition that an agent at a low secu-
rity level is unable to deduce anything about the state of agents at a higher security
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level. Others definitions have involved a notion of “information flow”, and taken
a system to be secure if it is impossible for information to flow from a high-level
user to a low-level user. With these basic ideas in mind, definitions of security have
been provided for a wide variety of system models, including semantic models that
encode all possible input/output behaviors of a computing system and language-
based models that deal with process algebras and with more traditional constructs
such as imperative programming languages. (Focardi and Gorrieri [2001] provide a
classification of security properties expressed using process algebras; Sabelfeld and
Myers [2003] give a survey of language-based techniques.)

Sutherland’s definition of nondeducibility was based on a simple idea: a system
can be described as a set of “worlds” that encode the local states of users, and
security is maintained if high-level and low-level states are independent in the sense
that a low-level user can never totally rule out any high-level state based on his own
local state. As we shall see, nondeducibility is closely related to Shannon’s [1949]
probabilistic definition of secrecy in the context of cryptography, which requires
high-level and low-level events to be (probabilistically) independent. In other words,
the low-level agent’s posterior probability of a high-level event should be the same
as his prior probability of that event before he began interacting with the system.

Definitions of noninterference based on Goguen and Meseguer’s early work are
quite different in flavor from the definitions of Shannon and Sutherland. Typically,
they represent the system as a set of input/output traces, and deem the system
secure if the set of traces is closed under operations that add or remove high-level
events. Variants of this idea have been proposed to deal with issues such as verifi-
cation, system composition, timing attacks, and so on. Although these definitions
have been useful for solving a variety of technical problems, the complexity of some
of this work has, in our view, obscured the simplicity of earlier definitions based
on the notion of independence. While nondeducibility has been criticized for its
inability to deal with a variety of security concerns, we claim that the basic idea
captures notions of secrecy and privacy in an elegant and useful way.

In this paper we define secrecy in terms of an agent’s knowledge, using the
“runs-and-systems” framework [Fagin et al. 1995]. The runs-and-systems frame-
work generalizes the standard input/output trace models that have been used in
many definitions of noninterference. The trace-based approach has been concerned
primarily with the input and output values exchanged as a user or observer inter-
acts with the system. Thus, with a trace-based approach, it is possible to define
secrecy only for systems that can be characterized by observable input and output
events. This is insufficient for modeling a variety of interesting systems. As Focardi
and Gorrieri [2001] point out, for example, it is difficult to deal with issues such as
deadlock using a purely trace-based approach. It is also difficult to represent an
agent’s notion of time in systems that may exhibit differing degrees of synchrony.
As we shall see, the added generality of the runs-and-systems approach lets us deal
with these issues in a straightforward way.

Many frameworks for reasoning about secrecy and information flow have as-
sumed, often implicitly, a very coarse notion of uncertainty. Either an agent knows,
with certainty, that some fact is true, or she does not; a definition of secrecy (with
respect to some agent) amounts to a characterization of which facts the agent must
ACM Journal Name, Vol. V, No. N, Month 20YY.
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not know, or which facts she must think are possible. Indeed, this is precisely the
intuition that we make precise in Section 3.2. In the literature, such definitions
are called possibilistic, because they consider only what agents consider possible
or impossible. In practice, however, such a coarse-grained notion of uncertainty is
simply too weak; it is easy to concoct examples where one agent has possibilistic
secrecy, but where intuition suggests that secrecy is not maintained. We extend our
definitions of secrecy to incorporate probability, a much more fine-grained notion
of uncertainty. Just as Shannon’s definitions of secrecy can be viewed as a proba-
bilistic strengthening of Sutherland’s definition of nondeducibility, our definitions
of probabilistic secrecy generalize the possibilistic definitions we give. In fact, there
is a sense in which they are the same definitions, except with a different measure of
uncertainty. In fact, there is a sense in which they are the same definitions, except
with a different measure of uncertainty—a point made precise when we generalize
to plausibilistic secrecy in Section 5.

Our approach has an additional advantage: it enables us to provide syntactic
characterizations of secrecy, using a logic that includes modal operators for rea-
soning about knowledge and probability. We discuss what it means for a fact to
“depend on” the state of an agent and show that secrecy can be characterized as the
requirement that low-level agents never know any fact that depends on the state
of a high-level agent. (In the probabilistic case, the requirement is that low-level
agents must think that any such fact is equally likely at all points of the system.)
This knowledge-based characterization lets us make precise the connection between
secrecy (of the high-level agent with respect to the low-level agent) and the no-
tion of a “secret”, that is, a fact about the system that an agent is not allowed
to know. This syntactic approach also opens the door to natural generalizations
of information-flow properties that require secrecy for only some facts, as well as
allowing us to consider notions of secrecy based on more computational notions of
knowledge, which may be more appropriate for resource-bounded agents.

As we show in Section 6, our approach provides insight into a number of other
definitions of secrecy, privacy, and noninterference that have been proposed in the
literature. We illustrate this point by considering separability [McLean 1994], gen-
eralized noninterference [McLean 1994], nondeducibility on strategies [Wittbold and
Johnson 1990], and probabilistic noninterference [Gray and Syverson 1998]. One of
our goals in this section, obviously, is to convince the reader that our definitions
are in fact as general as we claim they are. More importantly, we hope that pro-
viding a unified framework for comparing definitions of secrecy will facilitate the
cross-fertilization of ideas.

We believe that it is important to provide broad, general definitions of secrecy
and noninterference for a general class of multiagent systems—definitions that em-
phasize the underlying unity of the notions we are trying to capture. Our work
is intended to to do just that. Although our definitions should be appropriate for
a wide variety of settings, to motivate our various definitions we discuss example
programs written in a simple imperative language with input and output opera-
tors that allow high-level users and low-level users to interact with the system at
runtime. (We are currently working on providing a type system for a similar lan-
guage and proving that well-typed programs satisfy one of the secrecy conditions
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discussed in this paper [O’Neill et al. 2005].) We hope the examples will make it
clear that the definitions apply equally well in other settings.

The rest of the paper is organized as follows. Section 2 reviews the multiagent
systems framework and the definition of knowledge in multiagent systems. In Sec-
tion 3 we define secrecy and relate it to Sutherland’s notion of nondeducibility. We
also consider syntactic definitions of secrecy using a logic of knowledge. Section 4
considers probabilistic secrecy, while Section 5 considers plausibilistic secrecy. In
Section 6 we compare our definitions with others that have been given in the secu-
rity literature. We conclude in section 7. Most proofs are deferred to the appendix.

2. KNOWLEDGE AND MULTIAGENT SYSTEMS

A multiagent system consists of n agents, each of whom is in some local state at
a given point in time. We assume that an agent’s local state encapsulates all the
information to which she has access. In a security setting the local state of an
agent might include initial information regarding keys, the messages she has sent
and received, and perhaps the reading of a clock. The basic framework makes no
assumptions about the precise nature of the local state.

We can view the whole system as being in some global state, which is a tuple
consisting of the local state of each agent and the state of the environment, where
the environment consists of everything relevant to the system that is not contained
in the state of the agents. Thus, a global state has the form (se, s1, . . . , sn), where
se is the state of the environment and si is agent i’s state, for i = 1, . . . , n.

A run is a function from time to global states. Intuitively, a run is a complete
description of what happens over time in one possible execution of the system. A
point is a pair (r,m) consisting of a run r and a time m. For simplicity, we take
time to range over the natural numbers. At a point (r,m), the system is in some
global state r(m). If r(m) = (se, s1, . . . , sn), then we take ri(m) to be si, agent
i’s local state at the point (r,m). Formally, a system consists of a set of runs (or
executions). Let PT (R) denote the points in a system R.

Given a system R, let Ki(r,m) be the set of points in PT (R) that i thinks are
possible at (r,m); that is,

Ki(r,m) = {(r′,m′) ∈ PT (R) : r′i(m
′) = ri(m)}.

The set Ki(r,m) is often called an i-information set because, intuitively, it corre-
sponds to the system-dependent information encoded in i’s local state at the point
(r,m).

A natural question to ask is where these runs come from. While the framework
itself does not deal with this issue, in practice we are interested in systems where
the runs are generated by a simple set of rules, such as a communication or security
protocol, a program written in some programming language, or a process described
in a concurrent process language. Translating such rules to a set of runs is not
always straightforward, but doing so is often useful inasmuch as it forces us to
think carefully about what features of the system are essential and relevant to the
safety or correctness issues that we are interested in. With respect to secrecy, the
way in which we model the local states of various agents is especially important.
In particular, if we want the actions or choices made by one agent not to affect the
state of another agent, we should include sufficient information in the local state of
ACM Journal Name, Vol. V, No. N, Month 20YY.
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the first agent to reason about those actions or choices. (We return to this issue in
Sections 4.4 and 6.2.)

To reason formally about secrecy in multiagent systems, we use a logic of knowl-
edge and time. Starting with a set Φ of primitive propositions, we close off under
negation, conjunction, the modal operators Ki for i = 1, . . . , n, and 3- . In the
context of security protocols, the set Φ might consist of primitive propositions cor-
responding to facts such as “the key is n” or “agent A sent the message m to B”.
As usual, Kiϕ means that agent i knows ϕ; Kiϕ at a point (r,m) if ϕ is true at
all points in Ki(r,m). Finally, 3- ϕ is true at a point (r,m) if ϕ is true at some
point on run r (either before, at, or after time m). While it is, of course, possible
to define other temporal operators, the 3- operator will prove particularly useful in
our definitions.

We use the standard approach [Fagin et al. 1995] to give semantics to this lan-
guage. An interpreted system I consists of a pair (R, π), where R is a system
and π is an interpretation for the primitive propositions in Φ that assigns truth
values to the primitive propositions at the global states. Thus, for every p ∈ Φ and
global state s that arises in R, we have (π(s))(p) ∈ {true, false}. Of course, π
also induces an interpretation over the points in PT (R): simply take π(r,m) to be
π(r(m)). We now define what it means for a formula ϕ to be true at a point (r,m)
in an interpreted system I, written (I, r,m) |= ϕ, by induction on the structure of
formulas:

—(I, r,m) |= p iff (π(r,m))(p) = true;
—(I, r,m) |= ϕ ∧ ψ iff (I, r,m) |= ϕ and (I, r,m) |= ψ;
—(I, r,m) |= ¬ϕ iff (I, r,m) 6|= ϕ;
—(I, r,m) |= Kiϕ iff (I, r′,m′) |= ϕ for all (r′,m′) ∈ Ki(r,m);
—(I, r,m) |= 3- ϕ iff there exists n such that (I, r, n) |= ϕ.

As usual, we say that ϕ is valid in I and write I |= ϕ if (I, r,m) |= ϕ for all points
(r,m) in I; similarly, ϕ is satisfiable in I if (I, r,m) |= ϕ for some point (r,m)
in I. We abbreviate ¬Ki¬ϕ as Piϕ. We read Piϕ as “(according to agent i) ϕ is
possible”. Note that (I, r,m) |= Piϕ if there exists a point (r′,m′) ∈ Ki(r,m) such
that (I, r′,m′) |= ϕ.

The systems framework lets us express in a natural way some standard assump-
tions about systems. For example, we can reason about synchronous systems, where
agents always know the time. Formally, R is synchronous if, for all agents i and
points (r,m) and (r′,m′), if ri(m) = r′i(m

′), then m = m′.
Another standard assumption (implicitly made in almost all systems models con-

sidered in the security literature) is that agents have perfect recall. Roughly speak-
ing, an agent with perfect recall can reconstruct his complete local history. In
synchronous systems, for example, an agent’s local state changes with every tick
of the external clock, so agent i’s having perfect recall implies that the sequence
〈ri(0), . . . , ri(m)〉 must be encoded in ri(m + 1). To formalize this intuition, let
agent i’s local-state sequence at the point (r,m) be the sequence of local states she
has gone through in run r up to time m, without consecutive repetitions. Thus,
if from time 0 through time 4 in run r agent i has gone through the sequence
〈si, si, s

′
i, si, si〉 of local states, where si 6= s′i, then her local-state sequence at (r, 4)
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is 〈si, s
′
i, si〉. Intuitively, an agent has perfect recall if her current local state encodes

her local-state sequence. More formally, we say that agent i has perfect recall in
system R if, at all points (r,m) and (r′,m′) in PT (R), if (r′,m′) ∈ Ki(r,m), then
agent i has the same local-state sequence at both (r,m) and (r′,m′). Thus, agent i
has perfect recall if she “remembers” her local-state sequence at all times. It is easy
to check that perfect recall has the following key property: if (r′,m′

1) ∈ Ki(r,m1),
then for all m2 ≤ m1, there exists m′

2 ≤ m′
1 such that (r′,m′

2) ∈ Ki(r,m2). (See
[Fagin et al. 1995] for more discussion of this definition.)

3. SECRECY IN NONPROBABILISTIC SYSTEMS

3.1 Defining Secrecy

In this section we give abstract definitions of secrecy for systems described using
the runs-and-systems model. Roughly speaking, we define secrecy so as to ensure
that low-level agents do not know anything about the state of high-level agents. In
Section 3.2, we formalize these intuitions using the epistemic logic of Section 2.

To motivate our definitions, we use programs expressed in a simple imperative
programming language. We assume that these programs are executed sequentially
on a single machine, and that users with different security clearances can interact
with the machine via channels appropriate to their security level. For example,
the command inH(x) prompts the high-level channel H for an input and stores the
input value in program variable x, while the command outL(e) outputs the value
of the expression e on the low-level channel L.

All the programs that we consider determine systems in an obvious way, once
we decide whether to model the systems synchronously or asynchronously. For
example, in a synchronous system determined by the following program:

outL(0); outL(1),

the system consists of exactly one run.1 In this run, L’s local state is initially empty
(i.e., 〈 〉) and is then updated with a new output event at each time step, so that at
time 1 it is 〈outL(1)〉 and at time 2 it is 〈outL(1), outL(2)〉. Since there is no output
event at subsequent steps, at time 4, L’s local state is 〈outL(1), outL(2), , 〉. L’s
local state is different at time 2 and time 4, since L is aware that time has passed.
By way of contrast, one way to translate programs to asynchronous systems is to
model agents’ local states so that they are modified only when input and output
event occurs on channels to which they have access. In an asynchronous system
determined by the program above, L’s state would be unchanged after time 2.

The strongest notion of secrecy that we consider in this section is the requirement
that an agent, based on her local state, must not be able to infer anything about
the local state of another agent. To guarantee that an agent i is unable to rule out
any possible local states for another agent j, we require that every possible local
state for j be compatible with every possible local state for i:

Definition 3.1. Agent j maintains total secrecy with respect to i in system R if,
for all points (r,m) and (r′,m′) in PT (R), Ki(r,m) ∩ Kj(r′,m′) 6= ∅.

1Though for simplicity we ignore timing variations arising due to blocking input commands, our
system model can easily handle such timing issues.
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Total secrecy is a strong property. For almost any imaginable system, it is, in fact,
too strong to be useful. There are two important respects in which it is too strong.
The first respect has to do with the fact that total secrecy protects everything about
the state of the high-level agent. In some systems, we might want only some part of
the high-level agent’s state to be kept secret from the low-level agent. For example,
we might want the high-level agent to be able to observe details about the state of
the low-level agent, in which case our definitions are too strong because they rule
out any correlation between the states of the high-level and low-level agents.

To make this more concrete, consider the following program:

inL(x); outH(x); outL(1).

H does not maintain total secrecy with respect to L because after L sees outL(1)
he knows that H has already seen L’s first input value as her output. (Note that
in a synchronous setting the final output is irrelevant: L would know that H had
seen L’s input value at the second time step.) If we want to protect only the
input values provided by H, total secrecy is too strong. We may be interested in
a weaker notion of secrecy, which allows L to realize that H knows L’s input value
but still keeps all of the “significant” part of H’s state secret. Rather than trying
to define “significant”, we characterize significance abstractly using what we call
an “information function”.

Definition 3.2. A j-information function on R is a function f from PT (R) to
some range that depends only on j’s local state; that is f(r,m) = f(r′,m′) if
rj(m) = r′j(m

′).

Thus, for example, if j’s local state at any point (r,m) includes a list of input and
output operations, f(r,m) could consist of only the output values contained in j’s
local state. Intuitively, f(r,m) is intended to represent that part of j’s local state
that is significant to whomever is doing the reasoning.

Definition 3.3. If f is a j-information function, agent j maintains total f-secrecy
with respect to i in system R if, for all points (r,m) and values v in the range of f ,
Ki(r,m)∩ f−1(v) 6= ∅ (where f−1(v) is simply the preimage of v, that is, all points
(r,m) such that f(r,m) = v).

Of course, if f(r,m) = rj(m), then f−1(r′j(m
′)) = Kj(r′,m′), so total secrecy is a

special case of total f -secrecy.
To see how f -secrecy handles the example program above, suppose that we intro-

duce an information function f that extracts only the input events from H’s state.
Because f(r,m) is always empty, it is easy to see that H maintains total f -secrecy
with respect to L. If our goal is to protect only the input values provided by H,
any program that never reads input values from H is trivially secure.

Total f -secrecy is a special case of nondeducibility, introduced by Sutherland [1986].
Sutherland considers “abstract” systems that are characterized by a set W of
worlds. He focuses on two agents, whose views are represented by information
functions g and h on W . Sutherland says that no information flows from g to h if,
for all worlds w,w′ ∈W , there exists some world w′′ ∈W such that g(w′′) = g(w)
and h(w′′) = h(w′). This notion is often called nondeducibility (with respect to g
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and h) in the literature. To see how total f -secrecy is a special case of nondeducibil-
ity, let W = PT (R), the set of all points of the system. Given a point (r,m), let
g(r,m) = ri(m). Then total f -secrecy is equivalent to nondeducibility with respect
to g and f .

Note that nondeducibility is symmetric: no information flows from g to h iff
no information flows from h to g. Since most standard noninterference properties
focus only on protecting the state of some high-level agent, symmetry appears to
suggest that if the actions of a high-level agent are kept secret from a low-level
agent, then the actions of a low-level agent must also be kept secret from the
high-level agent. Our definitions help to clarify this issue. Total secrecy as we
have defined it is indeed symmetric: j maintains total secrecy with respect to i iff i
maintains total secrecy with respect to j. However, total f -secrecy is not symmetric
in general. If j maintains total f -secrecy with respect to i, it may not even make
sense to talk about i maintaining total f -secrecy with respect to j, because f may
not be an i-information function. Thus, although f -secrecy is an instantiation of
nondeducibility (with respect to an appropriate g and h), the symmetry at the level
of g and h does not translate to symmetry at the level of f -secrecy, which is where
it matters.

While f -secrecy is useful conceptually, it is essentially a trivial technical gener-
alization of the basic notion of secrecy, because for any agent j and j-information
function f , we can reason about a new agent jf whose local state at any point
(r,m) is rjf

(m) = f(rj ,m). Therefore, every theorem we prove involving secrecy
holds for f -secrecy as well. For this reason, and to simplify the definitions given in
the remainder of the paper, we ignore information functions and deal only with se-
crecy of one agent with respect to another. Indeed, all our definitions hold without
change for any agent “created” by identifying an agent with a function on global
states.

The second respect in which total secrecy is too strong involves time. To under-
stand the issue, consider synchronous systems (as defined in Section 2). In such
systems, the low-level agent knows the time and knows that the high-level agent
knows it too. Thus, the low-level agent can rule out all high-level states except
those that occur at the current time. Even in semisynchronous systems, where
agents know the time to within some tolerance ε, total secrecy is impossible, be-
cause low-level agents can rule out high-level states that occur only in the distant
past or future.

Total secrecy may be an unreasonable condition even in asynchronous systems.
To see this, consider the following program:

inH(x); outL(1).

Even though L does not know which value was entered by H, H does not maintain
total secrecy with respect to L in this program simply because L knows, after
seeing his output value, that H has already entered some input value. Indeed, total
secrecy—and also total f -secrecy, for an information function f that extracts high
input values—rules out any program where low output events follow high input
events.

We now consider two distinct ways of resolving this problem. The first way
weakens total secrecy by considering runs instead of points. Total secrecy (of j
ACM Journal Name, Vol. V, No. N, Month 20YY.
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with respect to i) says that at all times, agent i must consider all states of j to
be (currently) possible. A weaker version of total secrecy says that at all times, i
must consider it possible that every possible state of j either occurs at that time,
or at some point in the past or future. We formalize this in the following definition.
Given a set U of points, let R(U) consist of the runs in R going through a point in
U . That is, R(U) = {r ∈ R : (r,m) ∈ U for some m}.

Definition 3.4. Agent j maintains run-based secrecy with respect to j in system
R if, for all points (r,m) and (r′,m′) in PT (R), R(Ki(r,m)) ∩R(Kj(r′,m′)) 6= ∅.

It is easy to check that j maintains run-based secrecy with respect to j in system
R iff for all points (r,m) and (r′,m′) in PT (R), there exists a run r′′ and times n
and n′ such that r′′i (n) = ri(m) and r′′j (n′) = r′j(m

′). To relate the formal definition
to its informal motivation, note that every state of j that occurs in the system has
the form r′j(m

′) for some point (r′,m′). Suppose that i’s state is ri(m). If there
exists a point (r′′, n′′) such that r′′i (n′′) = ri(m) and r′′j (n′′) = r′j(m

′), agent i
considers it possible that j currently has state r′j(m

′). If instead r′′j (n) = r′j(m
′)

for n < n′′, then i currently considers it possible that j was in state r′j(m
′) at some

point in the past; similarly, if n > n′′, then i thinks that j could be in state r′j(m
′)

at some point in the future. Note that total secrecy implies run-based secrecy, but
the converse is not necessarily true (as shown in Example A.2). While run-based
secrecy is still a very strong security property, it seems much more reasonable than
total secrecy. In particular, H maintains run-based secrecy with respect to L in the
system corresponding to the program inH(x); outL(1)—as far as L is concerned, all
the runs in this system look identical. However, run-based secrecy does not hold in
systems derived from the kinds of programs typically used to demonstrate indirect
information flows, such as:

inH(x); if (x > 0) then outL(1) else outL(0),

where run-based secrecy does not hold because L’s output gives information about
whether H’s input value was greater than 0.

The second way to weaken total secrecy is to relax the requirement that the low-
level agent cannot rule out any possible high-level states. We make this formal as
follows.

Definition 3.5. An i-allowability function on R is a function C from PT (R) to
subsets of PT (R) such that Ki(r,m) ⊆ C(r,m) for all (r,m) ∈ PT (R).

Intuitively, PT (R)−C(r,m) is the set of points that i is allowed to “rule out” at the
point (r,m). It seems reasonable to insist that the points that i considers possible
at (r,m) not be ruled out, which is why we require that Ki(r,m) ⊆ C(r,m).

Definition 3.6. If C is an i-allowability function, then j maintains C-secrecy
with respect to i if, for all points (r,m) ∈ PT (R) and (r′,m′) ∈ C(r,m), we have
Ki(r,m) ∩ Kj(r′,m′) 6= ∅.

If C(r,m) = PT (R) for all points (r,m) ∈ PT (R), then C-secrecy reduces to
total secrecy. Synchrony can be captured by the allowability function S(r,m) =
{(r′,m) : r′ ∈ R}. Informally, this says that agent i is allowed to know what time
it is. We sometimes call S-secrecy synchronous secrecy. It is easy to see that H
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maintains synchronous secrecy with respect to L in the system generated by the
program inH(x); outL(1).

In synchronous systems, synchronous secrecy has a simple characterization.

Proposition 3.7. Agent j maintains synchronous secrecy with respect to i in
a synchronous system R iff, for all runs r, r′ ∈ R and times m, we have that
Ki(r,m) ∩ Kj(r′,m) 6= ∅.

Proof. This follows trivially from the definitions.

In synchronous input/output trace systems, synchronous secrecy is essentially
equivalent to the standard notion of separability [McLean 1994]. (Total secrecy can
be viewed as an asynchronous version of separability. See Section 6.1 for further
discussion of this issue.) The security literature has typically focused on either
synchronous systems or completely asynchronous systems. One advantage of our
framework is that we can easily model both of these extreme cases, as well as
being able to handle in-between cases, which do not seem to have been considered
up to now. Consider a semisynchronous system where agents know the time to
within a tolerance of ε. At time 5, for example, an agent knows that the true
time is in the interval [5 − ε, 5 + ε]. This corresponds to the allowability function
SS(r,m) = {(r′,m′) : |m − m′| ≤ ε}, for the appropriate ε. We believe that any
attempt to define security for semisynchronous systems will require something like
allowability functions.
C-secrecy and run-based secrecy represent two quite different approaches to weak-

ening total secrecy: allowability functions restrict the set of j-information sets that i
must consider possible, while run-based secrecy focuses on runs rather than points.
Even if we focus on synchronous secrecy, the two notions are distinct. In sys-
tems without perfect recall, for example, we may have synchronous secrecy without
having run-based secrecy, while in asynchronous systems we may have run-based
secrecy without having synchronous secrecy. (See Appendix A for examples.) How-
ever, there are contexts in which the definitions do coincide, suggesting that they
are capturing some of the same intuitions. Consider, for example, our definition
of synchronous secrecy. Intuitively it might at first seem that synchronous secrecy
goes too far in weakening total secrecy. Informally, j maintains total secrecy with
respect to i if i never learns anything not only about j’s current state, but also
his possible future and future states. Synchronous secrecy seems only to say that
i never learns anything about j’s state at the current time. However, when agents
have perfect recall, it turns out that synchronous secrecy implies run-based secrecy,
thus addressing this concern.

To make this precise for a more general class of allowability functions, we need
the following definition, which captures the intuition that an allowability function
depends only on timing. Given any two runs, we want the allowability function to
map points on the first run to contiguous, nonempty sets of points on the second
run in a way that respects the ordering of points on the first run and covers all
points on the second run.

Definition 3.8. An allowability function C depends only on timing if it satisfies
the following three conditions: (a) for all runs r, r′ ∈ R, and all times m′, there
exists m such that (r′,m′) ∈ C(r,m); (b) if (r′,m′) ∈ C(r,m), and n ≥ m (resp.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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n ≤ m), there exists n′ ≥ m′ (resp. n′ ≤ m′) such that (r′, n′) ∈ C(r, n); (c) if
(r′, n1) ∈ C(r,m), (r′, n2) ∈ C(r,m), and n1 ≤ m′ ≤ n2, then (r′,m′) ∈ C(r,m).

It is easy to check that both synchronous and semi-synchronous allowability func-
tions depend only on timing. We now show that C-secrecy implies run-based secrecy
if C depends only on timing.

Proposition 3.9. If R is a system where i and j have perfect recall, C depends
only on timing, and j maintains C-secrecy with respect to i, then j maintains run-
based secrecy with respect to i.

In synchronous systems with perfect recall, synchronous secrecy and run-based
secrecy agree. This reinforces our claim that both definitions are natural, useful
weakenings of total secrecy.

Proposition 3.10. If R is a synchronous system where both i and j have perfect
recall, then agent j maintains synchronous secrecy with respect to i iff j maintains
run-based secrecy with respect to i.

The requirement in Proposition 3.10 that both agents have perfect recall is neces-
sary; see Example A.1 for details. Without perfect recall, two things can go wrong.
First, if i does not have perfect recall, she might be able to determine at time n
what j’s state is going to be at some future time n′ > n, but then forget about
it by time n′, so that j maintains synchronous secrecy with respect to i, but not
run-based secrecy. Second, if j does not have perfect recall, i might learn some-
thing about j’s state in the past, but j might still maintain synchronous secrecy
with respect to i because j has forgotten this information by the time i learns it.
These examples suggest that secrecy is less interesting when agents can forget facts
that they once knew. At any rate, it makes sense to model agents as if they have
perfect recall, since not doing so requires us to trust that agents will forget facts
when we need them to, leading to weaker security guarantees.

3.2 Characterizing Secrecy Syntactically

Our definition of secrecy is semantic; it is given in terms of the local states of the
agents. As we shall see, it is helpful to reason syntactically about secrecy, using the
logic of knowledge discussed in Section 2. Our goal in this section is to characterize
secrecy in terms of the knowledge—or more precisely, the lack of knowledge—of
the agent with respect to whom secrecy is maintained. To this end, we show that
the state of an agent j is kept secret from an agent i exactly if i does not know any
formulas that depend only on the state of j, or, dually, if i always thinks that any
formula that depends on the state of j is currently possible.

For this characterization, we use the modal logic of knowledge described in Sec-
tion 2. But first, we need to define what it means for a formula to depend on the
local state of a particular agent. Given an agent j, a formula ϕ is j-local in an
interpreted system I if, for all points (r,m) and (r′,m′) such that rj(m) = r′j(m

′),
(I, r,m) |= ϕ iff (I, r′,m′) |= ϕ. It is easy to check that ϕ is j-local in I iff
I |= Kjϕ ∨Kj¬ϕ; thus, j-locality can be characterized syntactically. (See [Engel-
hardt et al. 1998] for an introduction to the logic of local propositions.) The notion
of j-locality has another useful semantic characterization:
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Proposition 3.11. A formula ϕ is j-local in an interpreted system I = (R, π)
iff there exists a set Ω of j-information sets such that (I, r,m) |= ϕ exactly when
(r,m) ∈

⋃
K∈ΩK.

The following theorem shows that the semantic characterizations of secrecy given
in Section 3.1 correspond closely to our intuitions of what secrecy should mean: agent
j maintains secrecy with respect to i precisely if i cannot rule out any satisfiable
facts that depend only on the local state of j.

Theorem 3.12. Suppose that C is an i-allowability function. Agent j maintains
C-secrecy with respect to agent i in system R iff, for every interpretation π and
point (r,m), if ϕ is j-local and (I, r′,m′) |= ϕ for some (r′,m′) ∈ C(r,m), then
(I, r,m) |= Piϕ.

Since total secrecy is just C-secrecy for the allowability function C such that
C(r,m) consists of all point in R, the following corollary, which gives an elegant
syntactic characterization of total secrecy, is immediate.

Corollary 3.13. Agent j maintains total secrecy with respect to agent i in
system R iff, for every interpretation π, if the formula ϕ is j-local and satisfiable
in I = (R, π), then I |= Piϕ.

Corollary 3.13 says that total secrecy requires i not to know any j-local fact that
is not valid in I. A similar result holds for synchronous secrecy. For brevity, and
because we prove more general results in later sections, we ignore the details here.

We can also give a similar syntactic characterization of run-based secrecy. For j
to maintain total secrecy with respect to i, if ϕ is j-local, it is always necessary for
i to think that ϕ was possible. For run-based secrecy, we require only that i think
that ϕ is possible sometime in the current run. Recall that the formula 3- ϕ means
“ϕ is true at some point in the current run”.

Theorem 3.14. Agent j maintains run-based secrecy with respect to agent i in
system R iff, for every interpretation π, if ϕ is j-local and satisfiable in I = (R, π),
then I |= Pi3- ϕ.

The results of this section show that secrecy has a syntactic characterization
that is equivalent to the semantic characterization. There are several significant
advantages to having such a syntactic characterization. For one thing, it sug-
gests that secrecy can be checked by applying model-checking techniques (although
techniques would have to be developed to allow checking Piϕ for all formulas ϕ).
Perhaps more importantly, it suggests some natural generalizations of secrecy that
may be of practical interest. For example, it may not be relevant that i not know
all satisfiable formulas. It may be enough for a system designer that i does not
know only certain formulas. This may be particularly relevant for declassification
or downgrading: if a noninterference property corresponds to a set of formulas that
must be kept secret from the low-level agent, formulas can be declassified by remov-
ing them the set. Another significant generalization involves replacing knowledge
by a more computational notion, such as algorithmic knowledge [Fagin et al. 1995;
Halpern and Pucella 2003a]. Recall that the definition of knowledge described in
Section 2 suffers from the logical omniscience problem: agents know all tautologies
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and know all logical consequences of their knowledge [Fagin et al. 1995]. In the
context of security, we are more interested in what resource-bounded agents know.
It does not matter that an agent with unbounded computational resources can fac-
tor and decrypt a message as long as a resource-bounded agent cannot decrypt the
message. By requiring only that an agent does not algorithmically know various
facts, we can capture secrecy with respect to resource-bounded agents.

4. SECRECY IN PROBABILISTIC SYSTEMS

The definitions of secrecy that we have considered up to now are possibilistic; they
consider only whether or not an event is possible. They thus cannot capture what
seem like rather serious leakages of information. As a motivating example, consider
a system R with two agents Alice and Bob, who we think of as sitting at separate
computer terminals. Suppose that L is a language with n words. At time 1, Bob
inputs a string x ∈ L chosen uniformly at random. At time 2, with probability
1− ε, the system outputs x directly to Alice’s terminal. However, with probability
ε, the system is struck by a cosmic ray as Bob’s input is transmitted to Alice, and in
this case the system outputs a random string from L. (Bob receives no information
about what Alice sees.) Thus, there are n(n + 1) possible runs in this system: n
runs where no cosmic ray hits, and n2 runs where the cosmic ray hits. Moreover, it
is immediate that Bob maintains (possibilistic) synchronous secrecy with respect to
Alice even though, with very high probability, Alice sees exactly what Bob’s input
was.

Although this example may seem somewhat contrived, it is easy to implement in
a programming language that includes operators for randomization. For example,
suppose that we extend the input/output language from the last section to include
an infix operator 8p, where the program C1 8p C2 executes C1 with probability p
and C2 with probability 1 − p, and an operator rand that generates a completely
random integer. The following program implements the cosmic-ray system:

inB(w); (outA(rand()) 8ε outA(w)).

To reason about the unwanted information flow in this example, we need to add
probability to the framework. We can do that by putting the obvious probability
measure on the runs in R:

—for each x ∈ L, the run where Bob inputs x and no cosmic ray hits (so that Alice
sees x) gets probability (1− ε)/n.

—for each pair (x, y) ∈ L × L, the run where the cosmic ray hits, Bob inputs x,
and Alice sees y gets probability ε/n2.

If Alice sees x, her posterior probability that Bob’s input was x is

PrAlice(Bob typed x |Alice sees x) =
ε+ n− nε

n
= 1− n− 1

n
ε.

If Alice sees x, her posterior probability that Bob’s input was y 6= x is

PrAlice(Bob typed x |Alice sees y) =
ε

n
.

Thus, if ε > 0, even though Alice never learns with certainty that Bob’s input was
x, her probability that it was x rises from 1/n to almost 1 as soon as she sees an x.
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In this section we introduce definitions of probabilistic secrecy. The definitions
and the technical results we obtain closely resemble the definitions and results of
the previous two sections. This is no coincidence. As we show in Section 5,
probabilistic and possibilistic secrecy are instances of a definition of plausibilistic
secrecy for which similar results can be proved in more generality.

4.1 Defining Probabilistic Secrecy

To reason about probabilistic security, we need a way to introduce probability into
the multiagent systems framework. There are actually two ways of doing this: we
can either put a probability on points or a probability on runs. We consider putting
a probability on points first, using a general approach described by Halpern [2003].

Given a system R, define a probability assignment PR to be a function that as-
signs to each agent i and point (r,m) a probability space PR(r,m, i) = (Wr,m,i,Fr,m,i, µr,m,i),
where Wr,m,i ⊆ PT (R) is i’s sample space at (r,m) and µr,m,i is a probability mea-
sure defined on the subsets of Wr,m,i in Fr,m,i. (That is, Fr,m,i is a σ-algebra that
defines the measurable subsets of Wr,m,i.) We call a pair (R,PR) a probability
system.

Given a probability system, we can give relatively straightforward definitions of
probabilistic total secrecy and synchronous secrecy. Rather than requiring that
an agent i think that all states of another j are possible, we require that all of
those states be measurable and equally likely according to i’s subjective probability
measure.

Definition 4.1. Agent j maintains probabilistic total secrecy with respect to agent
i in (R,PR) if, for all points (r,m), (r′,m′), and (r′′,m′′) in PT (R), we have
Kj(r′′,m′′) ∩ Ki(r,m) ∈ Fr,m,i, Kj(r′′,m′′) ∩ Ki(r′,m′) ∈ Fr′,m′,i, and

µr,m,i(Kj(r′′,m′′) ∩ Ki(r,m)) = µr′,m′,i(Kj(r′′,m′′) ∩ Ki(r′,m′).

Probabilistic total secrecy is a straightforward extension of total secrecy. Indeed,
if for all points (r,m) we have µr,m,i({(r,m)}) > 0, then probabilistic total secrecy
implies total secrecy (as in Definition 3.1).

Proposition 4.2. If (R,PR) is a probability system such that µr,m,i({(r,m)}) >
0 for all points (r,m) and j maintains probabilistic total secrecy with respect to i
in (R,PR), then j also maintains total secrecy with respect to i in R.

Like total secrecy, probabilistic total secrecy is an unrealistic requirement in
practice, and cannot be achieved in synchronous systems. To make matters worse,
the sets Kj(r′′,m′′) ∩ Ki(r,m) are typically not measurable according to what is
perhaps the most common approach for defining PR, as we show in the next section.
Thus, even in completely asynchronous systems, total secrecy is usually impossible
to achieve for measurability reasons alone. Fortunately, the obvious probabilistic
analogue of synchronous secrecy is a more reasonable condition.

Definition 4.3. Agent j maintains probabilistic synchronous secrecy with respect
to agent i in (R,PR) if, for all runs r, r′, r′′ and all times m, we have Kj(r′′,m) ∩
Ki(r,m) ∈ Fr,m,i, Kj(r′′,m) ∩ Ki(r′,m) ∈ Fr′,m,i, and

µr,m,i(Kj(r′′,m) ∩ Ki(r,m)) = µr′,m,i(Kj(r′′,m) ∩ Ki(r′,m)).
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Note that if we set up the cosmic-ray system of the previous section as a probability
system in such a way that Alice’s probability on points reflects the posterior prob-
abilities we described for the system, it is immediate that Bob does not maintain
probabilistic synchronous secrecy with respect to Alice.

We now consider definitions of probabilistic secrecy where we start with a proba-
bility on runs. Define a run-based probability system to be a triple (R,F , µ), where
R is a system, F is a σ-algebra of subsets of R, and µ is a probability measure
defined on F . Note that a run-based probability system requires only one proba-
bility measure, rather than a probability measure at each point for each agent. In
practice, such a measure is often relatively easy to come by. In the same way that
a set of runs can be generated by a protocol, a runs-based probability system can
be generated by a probabilistic protocol: the probability of a set of runs sharing
a common prefix can be derived by multiplying the probabilities of the protocol
transitions necessary to generate the prefix (see [Halpern 2003; Halpern and Tuttle
1993] for further discussion).

Here and throughout the paper, we assume for simplicity that in a run-based
probability system (R,F , µ), F contains all sets of the form R(Ki(r,m)), for all
points (r,m) and all agents i. That is, if a set of runs is generated by an agent’s
local state, it is measurable. We also assume that µ(R(Ki(r,m))) > 0, so that we
can condition on information sets.

Recall from Section 3.1 that run-based total secrecy requires that, for all points
(r,m) and (r′,m′), we have R(Ki(r,m)) ∩R(Kj(r′,m′)) 6= ∅. In other words, run-
based total secrecy is a property based on what can happen during runs, rather
than points. In a run-based probability system where all information sets have
positive measure, it is easy to see that this is equivalent to the requirement that
µ(R(Kj(r′,m′)) |R(Ki(r,m))) > 0. We strengthen run-based total secrecy by re-
quiring that these probabilities be equal, for all i-information sets.

Definition 4.4. Agent j maintains run-based probabilistic secrecy with respect to
i in (R,F , µ) if for any three points (r,m), (r′,m′), (r′′,m′′) ∈ PT (R),

µ(R(Kj(r′′,m′′)) |R(Ki(r,m))) = µ(R(Kj(r′′,m′′)) |R(Ki(r′,m′))).

The probabilities for the cosmic-ray system were defined on sets of runs. More-
over, facts such as “Alice sees x” and “Bob typed y” correspond to information
sets, exactly as in the definition of run-based probabilistic secrecy. It is easy to
check that Bob does not maintain run-based probabilistic secrecy with respect to
Alice.

In Section 4.2, we consider the connection between probability measures on points
and on runs, and the corresponding connection between probabilistic secrecy and
run-based probabilistic secrecy. For the remainder of this section, we consider sym-
metry in the context of probabilistic secrecy. In Section 3.1, we mentioned that our
definitions of secrecy were symmetric in terms of the agents i and j. Perhaps sur-
prisingly, probabilistic secrecy is also a symmetric condition, at least in most cases
of interest. This follows from a deeper fact: under reasonable assumptions, secrecy
(of j with respect to i) implies the probabilistic independence of i-information sets
and j-information sets. (See Lemma C.1 in the appendix for more details.)

Consider probabilities on points: if there is no connection whatsoever between
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PR(r,m, i) and PR(r,m, j) in a probability system (R,PR), there is obviously
no reason to expect secrecy to be symmetric. However, if we assume that the
probabilities of i and j at (r,m) are derived from a single common probability
measure by conditioning, then symmetry follows. This assumption, which holds
for the probability systems we will consider here (and is standard in the economics
literature [Morris 1995]), is formalized in the next definition.

Definition 4.5. A probability system (R,PR) satisfies the common prior as-
sumption if there exists a probability space (PT (R),Fcp , µcp) such that for all
agents i and points (r,m) ∈ PT (R), we have Ki(r,m) ∈ FW , µcp(Ki(r,m)) > 0,
and

PRi(r,m) = (Ki(r,m), {U ∩Ki(r,m) |U ∈ FW }, µcp | Ki(r,m)).2

In probability systems that satisfy the common prior assumption, probabilistic
secrecy is symmetric.

Proposition 4.6. If (R,PR) is a probability system (resp., synchronous prob-
ability system) that satisfies the common prior assumption with prior probability
µcp, the following are equivalent:

(a) Agent j maintains probabilistic total (resp., synchronous) secrecy with respect
to i.

(b) Agent i maintains probabilistic total (resp., synchronous) secrecy with respect
to j.

(c) For all points (r,m) and (r′,m′), µcp(Kj(r′,m′) | Ki(r,m)) = µcp(Kj(r′,m′))
(resp., for all points (r,m) and (r′,m), µcp(Kj(r′,m) | Ki(r,m)) = µcp(Kj(r′,m) | PT (m)),
where PT (m) is the set of points occurring at time m; that is, the events Ki(r,m)
and Kj(r′,m) are conditionally independent with respect to µcp, given that the
time is m).

In run-based probability systems there is a single measure µ that is independent
of the agents, and we have symmetry provided that the system is synchronous or
both agents have perfect recall. (If neither condition holds, secrecy may not be
symmetric, as illustrated by Example A.2.)

Proposition 4.7. If (R,F , µ) is a run-based probability system that is either
synchronous or one where agents i and j both have perfect recall, then the following
are equivalent:

(a) Agent j maintains run-based probabilistic secrecy with respect to i.

(b) Agent i maintains run-based probabilistic secrecy with respect to j.

(c) For all points (r,m), (r′,m′) ∈ PT (R), R(Ki(r,m)) and R(Kj(r′,m′)) are
probabilistically independent with respect to µ.

2Actually, it is more standard in the economics literature not to require that µcp(Ki(r, m)) > 0.
No requirements are placed on µr,m,i if µcp(Ki(r, m)) = 0. See [Halpern 2002] for a discussion of

this issue.
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4.2 From Probability on Runs to Probability on Points

In the last section we described two ways of adding probability to systems: putting
a probability on points and putting a probability on runs. In this section, we discuss
an approach due to Halpern and Tuttle [1993] for connecting the two approaches.

Given an agent i and a point (r,m), we would like to derive the probability
measure µr,m,i from µ by conditioning µ on Ki(r,m), the information that i has at
the point (r,m). The problem is that Ki(r,m) is a set of points, not a set of runs,
so straightforward conditioning does not work. To solve this problem, we condition
µ on R(Ki(r,m)), the set of runs going through Ki(r,m), rather than on Ki(r,m).
Conditioning is always well-defined, given our assumption that R(Ki(r,m)) has
positive measure.

We can now define a measure µr,m,i on the points in Ki(r,m) as follows. If S ⊆ R
and A ⊆ PT (R), let A(S) be the set of points in A that lie on runs in S; that is,

A(S) = {(r′,m′) ∈ A : r′ ∈ S}.

In particular, Ki(r,m)(S) consists of the points in Ki(r,m) that lie on runs in S.
Let Fr,m,i consist of all sets of the form Ki(r,m)(S), where S ∈ F . Then define

µr,m,i(Ki(r,m)(S)) = µ(S |R(Ki(r,m)).

It is easy to check that if U ⊆ Ki(r,m) is measurable with respect with respect to
µr,m,i, then µr,m,i(U) = µ(R(U) |R(Ki(r,m))). We say that the resulting proba-
bility system (R,PR) is determined by the run-based probability system (R,F , µ),
and call µ the underlying measure. We call a probability system standard if it is
determined by a run-based probability system.

Note that synchronous standard probability systems satisfy the common prior
assumption, as defined in the previous section. If we assume that all runs are
measurable, then we can simply take µcp(r,m) = µ(r)/2m+1. This ensures that
the time m points have the same relative probability as the runs, which is exactly
what is needed. More generally, if PT (m) is the set of time m points and S is a
measurable subset of R, we take µcp(PT (m)(S)) = µ(S)/2m+1. It follows from
Proposition 4.6 that probabilistic synchronous secrecy is symmetric in synchronous
standard systems.

In synchronous standard systems with perfect recall, probabilistic secrecy and
run-based probabilistic secrecy coincide. (We remark that Example A.1 shows that
the requirement of perfect recall is necessary.) This provides further evidence that
our notion of synchronous secrecy is appropriate in synchronous systems.

Proposition 4.8. If (R,PR) is the standard system determined by the syn-
chronous run-based probability system (R,F , µ), and agents i and j have perfect
recall in R, then agent j maintains run-based probabilistic secrecy with respect to
i in (R,F , µ) iff j maintains probabilistic synchronous secrecy with respect to i in
(R,PR).

4.3 Characterizing Probabilistic Secrecy

We now demonstrate that we can characterize probabilistic secrecy syntactically,
as in the nonprobabilistic case. To do so, we must first explain how to reason about
probabilistic formulas. Define an interpreted probability system I to be a tuple
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(R,PR, π), where (R,PR) is a probability system. In an interpreted probability
system we can give semantics to syntactic statements of probability. We are most
interested in formulas of the form Pri(ϕ) = α (or similar formulas with ≤, >, etc.,
instead of =). Such formulas were given semantics by Fagin, Halpern, and Megiddo
[1990]; we follow their approach here. Intuitively, a formula such as Pri(ϕ) = α is
true at a point (r,m) if, according to µr,m,i, the probability that ϕ is true is given
by α. More formally, (I, r,m) |= Pri(ϕ) = α if

µr,m,i({(r′,m′) ∈ Ki(r,m) : (I, r′,m′) |= ϕ}) = α.

Similarly, we can give semantics to Pri(ϕ) ≤ α and Pr(ϕ) > α, etc., as well as
conditional formulas such as Pr(ϕ |ψ) = α. Note that although these formulas talk
about probability, they are either true or false at a given state.

The semantics for a formula such as Pri(ϕ) implicitly assumes that the set of
points in Ki(r,m) where ϕ is true is measurable. While there are ways of dealing
with nonmeasurable sets (see [Fagin et al. 1990]), here we assume that all relevant
sets are measurable. This is certainly true in synchronous standard systems de-
termined by a a run-based system where all sets of runs are measurable. More
generally, it is true in a probability system (R,PR) where, for all r, m, i, all the
sets in the probability space PR(r,m, i) are measurable.

The first result shows that we can characterize probabilistic total and synchronous
secrecy.

Theorem 4.9. (a) If (R,PR) is a probabilistic system, then agent j maintains
probabilistic total secrecy with respect to agent i iff, for every interpretation π
and formula ϕ that is j-local in I = (R,PR, π), there exists a constant σ such
that I |= Pri(ϕ) = σ.

(b) If (R,PR) is a synchronous probabilistic system, then agent j maintains proba-
bilistic synchronous secrecy with respect to agent i iff, for every interpretation π,
time m, and formula ϕ that is j-local in I = (R,PR, π), there exists a constant
σm such that (I, r,m) |= Pri(ϕ) = σm for all runs r ∈ R.

We can also characterize run-based secrecy in standard systems using the 3-
operator. For this characterization, we need the additional assumption of perfect
recall.

Theorem 4.10. If (R,PR) is a standard probability system where agent j has
perfect recall, then agent j maintains run-based probabilistic secrecy with respect
to agent i iff, for every interpretation π and every formula ϕ that is j-local in
I = (R,PR, π), there exists a constant σ such that I |= Pri(3- ϕ) = σ.

Example A.3 demonstrates that the assumption of perfect recall is necessary in
Theorem 4.10 and that synchrony alone does not suffice.

4.4 Secrecy in Adversarial Systems

It is easy to capture our motivating cosmic-ray system example using a synchronous
standard system because we assumed a probability on the set of runs. Furthermore,
it is not hard to show that Bob does not maintain synchronous secrecy with respect
to Alice in this system. However, there is an important and arguably inappropriate
assumption that was made when we modeled the cosmic-ray system, namely, that
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we were given the probability with which Bob inputs various strings. While we took
that probability to be uniform, it was not necessary to do so: any other probability
distribution would have served to make our point. The critical assumption was that
there is some well-defined distribution that is known to the modeler. However, in
many cases the probability distribution is not known. In the cosmic-ray example,
if we think of the strings as words in natural language, it may not be reasonable to
view all strings as equally likely. Moreover, the probability of a string may depend
on the speaker: it is unlikely that a teenager would have the same distribution as an
adult, or that people having a technical discussion would have the same distribution
as people discussing a movie.

There are many settings in which it makes sense to reason about the nonde-
terminism of a system in terms of an initial nondeterministic step followed by a
sequence of deterministic or probabilistic steps. The nondeterministic step could
determine the choice of speaker, the adversary’s protocol, or the input to a prob-
abilistic protocol. Indeed, it has been argued [Rabin 1982; Vardi 1985] that any
setting where there is a mix of nondeterministic, probabilistic, and deterministic
moves can be reduced to one where there is an initial nondeterministic move fol-
lowed by probabilistic or deterministic moves. In such a setting, we do not have
one probability distribution over the runs in a system. Rather, we can partition the
set of runs according to the nondeterministic initial step, and then use a separate
probability distribution for the set of runs corresponding to each initial step. For
example, consider a setting with a single agent and an adversary. Suppose that the
agent uses a protocol p and the adversary uses one of a set {q1, . . . , qn} of protocols.
The system R consists of all the runs generated by running (p, qk) for k = 1, . . . , n.
R can then be partitioned into n subsets D1, . . . , Dn, where Dj consists the runs of
the joint protocol (p, qj). While we may not want to assume a probability on how
likely the adversary is to use qj , typically there is a natural probability distribution
on each set Dj . Note that we can capture uncertainty about a speaker’s distribu-
tion over natural language strings in the same way; each protocol corresponds to a
different speaker’s “string-production algorithm”.

Situations where there is a nondeterministic choice followed by a sequence of prob-
abilistic or deterministic choices can be characterized by an adversarial probability
system, which is a tuple (R,D,∆), where R is a system, D is a countable partition
of R, and ∆ = {(D,FD, µD) : D ∈ D} is a set of probability spaces, where µD is
a probability measure on the σ-algebra FD (on D ∈ D) such that, for all agents i,
points (r,m), and cells D, R(Ki(r,m))∩D ∈ FD and, if R(Ki(r,m))∩D 6= ∅, then
µD(R(Ki(r,m))) > 0.3

There are several ways of viewing the cosmic-ray example as an adversarial prob-
ability system. If we view the input as a nondeterministic choice, then we can take
D(x) to consist of all runs where the input is x, and let D = {D(x) : x ∈ L}.
The measure µx on D(x) is obvious: the one run in D(x) where the cosmic ray
does not strike gets probability 1 − ε; the remaining n runs each get probability
ε/n. Note that we can assign a probability on D(x) without assuming anything

3We actually should have written µD(R(Ki(r, m)) ∩D) rather than µD(R(Ki(r, m))) here, since

R(Ki(r, m)) is not necessarily in FD (and is certainly not in FD if R(Ki(r, m)) is not a subset of
D). For brevity we shall continue to abuse notation and write µD(U) as shorthand for µD(U ∩D).
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about Bob’s input distribution. Alternatively, we can assume there are k “types”
of agents (child, teenager, adult, etc.), each with their own distribution over inputs.
Then the initial nondeterministic choice is the type of agent. Thus, the set of runs
is partitioned into sets Dj , j = 1, . . . , k. We assume that agents of type j generate
inputs according to probability Prj . In each set Dj , there is one run where Bob
inputs x and the cosmic ray does not strike; it has probability Prj(x)(1− ε). There
are n runs where Bob inputs x and the cosmic ray strikes; each gets probability
Prj(x)ε/n.

For another example of a system where initial nondeterministic choices play an
important role, consider the following program, which implements a system similar
to one first described by Wittbold and Johnson [1990]:

while (true) do {(x := 0 8 1
2
x := 1); outH(x); inH(y); outL(x⊕ y)}.

(We assume that H can input only 0s and 1s; ⊕ is the exclusive-or operator.) Note
that, in every iteration of this loop, H can transmit a bit b to L by choosing x⊕ b
as his input value. More generally, given a bitstring z = z1 . . . zk, H can transmit z
to L by inputting xi⊕ zi at the ith iteration (where xi is H’s output value). Thus,
even thoughH’s input values are kept completely secret from L—they are encrypted
with a one-time pad that L cannot see—H can transmit arbitrary messages to L.
Clearly there is a sense in which this program is completely insecure.

To model the system generated by this program in a way that demonstrates the
lack of secrecy, we need somehow to reason about the “intention” of H. One way
to do so is to assume that a string z is encoded in H’s initial local state and that H
follows the protocol suggested above, choosing the input value xi⊕zi. If fstring is an
H-information function that extracts the string from H’s local state, then requiring
H to maintain some form of fstring -secrecy with respect to L would disallow the
information leak in the program above.

Although it may seem strange to be concerned about preserving the secrecy
of an agent who is actively attempting to transmit secret information, this turns
out to be a reasonable way to capture threats such as “rogue agents” or Trojan-
horse programs whose goal is to leak confidential information to public users. Such
a threat model has been the motivation for many definitions of noninterference.
Intuitively, an agent j can interfere with another agent i if i’s state might depend
on what j does. Though some papers have suggested otherwise [McCullough 1987],
we claim that nondeducibility-based definitions of secrecy provide a sensible way
to reason about noninterference. If i’s state depends on what j does, a reasonable
model of j’s local state should include information about the actions she can take
that affect i. When this is the case, i’s local state is correlated with j’s local state
if j interferes with i, so j preserves secrecy with respect to i only if j does not
interfere with i.

We can identify an adversarial probability system with a set of run-based prob-
ability systems, by viewing the measures in ∆ as constraints on a single measure
on R. Let FD = σ(

⋃
D∈D FD), the σ-algebra generated by the measurable sets

of the probability spaces of ∆. (It is straightforward to check that U ∈ FD iff
U =

⋃
D∈D UD, where UD ∈ FD.) Let M(∆) consist of all measures µ on F

such that (1) for all D ∈ D, if µ(D) > 0 then µ |D = µD (i.e., µ conditioned
on D is µD) and (2) for all agents i and points (r,m), there exists some cell D
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such that R(Ki(r,m)) ∩D 6= ∅ and µ(D) > 0. It follows from these requirements
and our assumption that if R(Ki(r,m)) ∩ D 6= ∅ then µD(R(Ki(r,m) ∩ D) > 0
that µ(R(Ki(r,m)) > 0 for all agents i and points (r,m). We can thus associate
(R,D,∆) with the set of run-based probability systems (R,FD, µ), for µ ∈M(∆).

Rather than defining secrecy in adversarial systems directly, we give a slightly
more general definition. Define a generalized run-based probability system to be a
tuple (R,F ,M), where M is a set of probability measures on the σ-algebra F .
Similarly, define a generalized probability system to be a tuple (R,PR), where PR
is a set of probability assignments. We can define secrecy in generalized (run-
based) probability systems by considering secrecy with respect to each probability
measure/probability assignment.

Definition 4.11. Agent j maintains probabilistic total (resp. synchronous) se-
crecy with respect to agent i in the generalized probabilistic system (R,PR) if,
for all PR ∈ PR, j maintains probabilistic total (resp. synchronous) secrecy with
respect to i in (R,PR). Agent j maintains run-based secrecy with respect to agent
i in the generalized probabilistic run-based system (R,F ,M) if, for all µ ∈ M, j
maintains run-based probabilistic secrecy with respect to i in (R,F , µ).

It is now straightforward to define secrecy in an adversarial systems by reducing
it to a generalized probabilistic system. Agent j maintains run-based probabilis-
tic secrecy with respect to i in (R,D,∆) if j maintains run-based probabilistic
secrecy with respect to i in (R,FD,M(∆)). Similarly, agent j maintains total
(resp. synchronous) secrecy with respect to i in (R,D,∆) if j maintains total
(resp. synchronous) secrecy with respect to i in (R,PR), where PR consists of
all the probability assignments determined by the run-based probability systems
(R,FD, µ) for µ ∈ M(∆). A straightforward analogue of Proposition 4.7 holds
for adversarial systems; again, secrecy is symmetric in the presence of assumptions
such as perfect recall or synchrony.

4.5 Secrecy and Evidence

Secrecy in adversarial probability systems turns out to be closely related to the
notion of evidence in hypothesis testing (see [Kyburg 1983] for a good overview of
the literature). Consider this simple example: someone gives you a coin, which may
be fair or may be double-headed. You have no idea what the probability is that the
coin is fair, and it may be exceedingly unlikely that the coin is double-headed. But
suppose you then observe that the coin lands heads on each of 1,000 consecutive
tosses. Clearly this observation provides strong evidence in favor of the coin being
double headed.

In this example there are two hypotheses: that the coin is fair and that it is
double-headed. Each hypothesis places a probability on the space of observations.
In particular, the probability of seeing 1000 heads if the coin is fair is 1/21000, and
the probability of seeing 1000 heads if the coin is double-headed is 1. While we
can talk of an observation being more or less likely with respect to each hypothesis,
making an observation does not tell us how likely an hypothesis is. No matter how
many heads we see, we do not know the probability that the coin is double-headed
unless we have the prior probability of the coin being double headed. In fact, a
straightforward computation using Bayes’ Rule shows that if the prior probability
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of the coin being double-headed is α, then the probability of the coin being double-
headed after seeing 1000 heads is α

α+((1−α)/21000 .
In an adversarial probability system (R,D,∆), the initial nondeterministic choice

plays the role of an hypothesis. For each D ∈ D, µD can be thought of as placing a
probability on observations, given that choice D is made. These observations then
give evidence about the choice made. Agent i does not obtain evidence about which
choice was made if the probability of any sequence of observations is the same for
all choices.

Definition 4.12. Agent i obtains no evidence for the initial choice in the adver-
sarial probability system (R,D,∆) if, for all D,D′ ∈ D and all points (r,m) such
that R(Ki(r,m)) ∩D 6= ∅ and R(Ki(r,m)) ∩D′ 6= ∅, we have

µD(R(Ki(r,m))) = µD′(R(Ki(r,m))).

Roughly speaking, i obtains no evidence for initial choices if the initial choices (other
than i’s own choice) are all secret. The restriction to cells such that R(Ki(r,m))∩
D 6= ∅ and R(Ki(r,m)) ∩D′ 6= ∅ ensures that D and D′ are both compatible with
i’s initial choice.

To relate this notion to secrecy, we consider adversarial probability systems with
a little more structure. Suppose that for each agent i = 1, . . . , n, there is a set INIT i

of possible initial choices. (For example, INIT i could consist of a set of possible
protocols or a set of possible initial inputs.) Let INIT = INIT 1 × · · · × INITn

consist of all tuples of initial choices. For yi ∈ INIT i, let Dyi
consist of all runs in

R where agent i’s initial choice is yi; if y = (y1, . . . , yn) ∈ INIT , then Dy = ∩n
i=1Dyi

consists of all runs where the initial choices are characterized by y. Let D = {Dy :
y ∈ INIT}. To model the fact that i is aware of his initial choice, we require that
for all points (r,m) and agents i, there exists y such that R(Ki(r,m)) ⊆ Dy. If D
has this form and each agent i is aware of his initial choice, we call (R,D,∆) the
adversarial system determined by INIT .

If i obtains no evidence for the initial choice, she cannot learn anything about
the initial choices of other agents. To make this precise in our framework, let
MINIT

i (∆) consist of the measures µ ∈ M(∆) such that for all cells D(y1,...,yn),
we have µ(D(y1,...,yn)) = µ(Dyi

) · µ(∩j 6=iDyj
), that is, such that the initial choices

made by agent i are independent of the choices made by other agents. Intuitively,
if the choices of i and the other agents are correlated, i learns something about
the other agents’ choices simply by making his own choice. We want to rule out
such situations. Note that because all the information sets have positive probability
(with respect to all µ ∈M(∆)) and, for all i, there exists an information setKi(r,m)
such that Dyi

⊇ R(Ki(r,m)), the sets Dyi
must also have positive probability. It

follows that INIT and D must be countable.
Given i, let i− denote the “group agent” consisting of all agents other than i. (In

particular, if the system consists of only two agents, then i− is the agent other than
i.) The local state of i− is just the tuple of local states of all the agents other than
i. Let fi− be the i−-information function that maps a global state to the tuple of
(i−)’s initial choice. As we observed in Section 3.1, our definitions apply without
change to new agents that we “create” by identifying them with functions on global
states. In particular, our definitions apply to i−.
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Theorem 4.13. Let (R,D,∆) be the adversarial probability system determined
by INIT and suppose that R is either synchronous or a system where i has perfect
recall. Agent i obtains no evidence for the initial choice in (R,D,∆) iff agent
i− maintains generalized run-based probabilistic fi−-secrecy with respect to i in
(R,MINIT

i (∆)).

The assumption of either synchrony or perfect recall is necessary because the
proof relies on the symmetry of run-based secrecy (as established by Proposi-
tion 4.7). We do not need to assume perfect recall for agent i− because the theorem
deals with fi− -secrecy and, on every run, fi− is constant. It therefore follows that
the “agent” associated with fi− (in the sense described in Section 3.1) has perfect
recall even if i− does not.

Thinking in terms of evidence is often simpler than thinking in terms of run-based
probabilistic secrecy. Moreover, the evidence-based definition of secrecy is well-
defined even when the set INIT of initial choices is uncountable. The connection
between evidence and secrecy is particularly relevant when it comes to relating our
work to that of Gray and Syverson [1998]; see Section 6.2.

5. PLAUSIBILISTIC SECRECY

So far, we have given definitions of secrecy for nonprobabilistic systems, for prob-
ability systems (where uncertainty is represented by a single probability measure),
and for generalized probability systems (where uncertainty is represented by a set
of probability measures). All of these definitions turn out to be special cases of
secrecy with respect to a general representation of uncertainty called a plausibility
measure [Friedman and Halpern 1995; 2001]. By giving a general definition, we
can focus on the essential features of all the definitions, as well as point the way
to defining notions of secrecy with respect to other representations of uncertainty
that may be useful in practice.

Recall that a probability space is a tuple (W,F , µ), where W is a set of worlds,
F is an algebra of measurable subsets of W , and µ maps sets in F to elements
of [0, 1] such that the axioms of probability are satisfied. A plausibility space is
a direct generalization of a probability space. We simply replace the probability
measure µ with a plausibility measure Pl, which maps from sets in F to elements of
an arbitrary partially ordered set. If Pl(A) ≤ Pl(B), then B is at least as plausible
as A. Formally, a plausibility space is a tuple (W,F ,D,Pl), where D is a domain
of plausibility values partially ordered by a relation ≤D, and where Pl maps from
sets in F to elements of D in such a way that if U ⊆ V , then Pl(U) ≤D Pl(V ).
We assume that D contains two special elements denoted >D and ⊥D, such that
Pl(W ) = >D and Pl(∅) = ⊥D.

As shown in [Friedman and Halpern 1995; Halpern 2003], all standard repre-
sentations of uncertainty can be viewed as instances of plausibility measures. We
consider a few examples here that will be relevant to our discussion:

—It is straightforward to see that a probability measure is a plausibility measure.

—We can capture the notion of “possibility” using the trivial plausibility measure
Pltriv that assigns the empty set plausibility 0 and all other sets plausibility 1.
That is, D = {0, 1}, Pltriv(∅) = 0, and Pltriv(U) = 1 if U 6= ∅.
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—A setM of probability measures on a space W can be viewed as a single plausibil-
ity measure. In the special case where M is a finite set, say M = {µ1, . . . , µn},
we can take DM to consist of n-tuples in [0, 1]n, with the pointwise ordering,
and define PlM(U) = (µ1(U), . . . , µn(U)). Clearly PlM(∅) = (0, . . . , 0) and
PlM(W ) = (1, . . . , 1), so ⊥DM = (0, . . . , 0) and >DM = (1, . . . , 1). If M is
infinite, we consider a generalization of this approach. Let DM consist of all
functions from M to [0, 1]. The pointwise order on functions gives a partial or-
der on DM; thus, ⊥DM is the constant function 0, and >DM is the constant
function 1. Define the plausibility measure PlM by taking PlM(U) to be the
function fU such that fU (µ) = µ(U), for all µ ∈M.

We can define secrecy using plausiblity measures by direct analogy with the
probabilistic case. Given a system R, define a plausibility assignment PL on R
to be a function that assigns to each agent i and point (r,m) a plausibility space
(Wr,m,i,Fr,m,i,Plr,m,i); define a plausiblity system to be a pair (R,PL), where
PL is a plausibility assignment on R. We obtain definitions of total plausibilistic
secrecy and synchronous plausibilistic secrecy by simply replacing “probability” by
“plausibility” in Definitions 4.1 and 4.3.

Given a plausibility measure Pl on a system R, we would like to define run-based
plausibilistic secrecy and repeat the Halpern-Tuttle construction to generate stan-
dard plausibilistic systems. To do this, we need a notion of conditional plausibility.
To motivate the definitions to come, we start by describing conditional probability
spaces. The essential idea behind conditional probability spaces, which go back
to Popper [1968] and de Finetti [1936], is to treat conditional probability, rather
than unconditional probability, as the primitive notion. A conditional probability
measure µ takes two arguments V and U ; µ(V,U) is generally written µ(V |U).
Formally, a conditional probability space is a tuple (W,F ,F ′, µ) such that F is a
σ-algebra over W , F ′ is a nonempty subset of F that is closed under supersets in
F (so that if U ∈ F ′, U ⊆ V , and V ∈ F , then V ∈ F ′), the domain of µ is F ×F ′,
and the following conditions are satisfied:

—µ(U |U) = 1 if U ∈ F ′.
—if U ∈ F ′ and V1, V2, V3, . . . are pairwise disjoint elements of F , then µ(∪∞i=1Vi |U) =∑∞

i=1 µ(Vi |U);
—µ(U1 ∩ U2 |U3) = µ(U1 |U2 ∩ U3) · µ(U2 |U3) if U1 ∈ F and U2 ∩ U3 ∈ F ′.

The first two requirements guarantee that, for each fixed U ∈ F ′, µ(· |U) is an
unconditional probability measure. The last requirement guarantees that the var-
ious conditional probability measures “fit together”. As is standard, we identify
unconditional probability with conditioning on the whole space, and write Pr(U)
as an abbreviation for Pr(U |W ).

Given an unconditional probability space (W,F , µ), we immediately obtain a
conditional probability space by taking F ′ to consist of all sets U such that µ(U) 6= 0
and defining conditional probability in the standard way. However, starting with
conditional probability is more general in the sense that it is possible to extend an
unconditional probability space to a conditional probability space where F ′ contains
sets U such that µ(U) = 0. In other words, there exist conditional probability spaces
(W,F ,F ′, µ) such that µ(U |W ) = 0 for some U ∈ F ′. This generality is useful for
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reasoning about secrecy, because (as we shall see) it is sometimes useful to be able
to condition on sets that have a probability of 0.

To generalize conditional probability to the plausibilistic setting, we need to
define operators ⊕ and ⊗ that act as analogues of + and × for probability; these
operators add useful algebraic structure to the plausibility spaces we consider. We
extend the notion of an algebraic plausibility spaces [Friedman and Halpern 1995;
Halpern 2001; 2003] to allow an analogue of countable additivity. We briefly sketch
the relevant details here.

A countably-additive algebraic conditional plausibility space (cacps) is a tuple
(W,F ,F ′,Pl) such that

—F is a σ-algebra of subsets of W ;
—F ′ is a nonempty subset of F that is closed under supersets in F ;
—there is a partially-ordered domain D such that, for each V ∈ F ′, Pl(· |V ) is a

plausibility measure on (W,F) with range D (so, intuitively, the events in F ′ are
the ones for which conditioning is defined); and

—there are functions ⊕ : D∞ → D and ⊗ : D×D → D such that:
—if U ∈ F ′, V1, V2, . . ., are pairwise disjoint elements of F , and J is some subset

of {1, 2, 3, . . .} such that Pl(Vi) = ⊥ for i ∈ J , then

Pl(∪∞i=1(Vi |U) = ⊕∞i=1Pl(Vi |U)⊕i/∈J Pl(Vi |U).

—if U1, U2, U3 ∈ F and U2 ∩ U3 ∈ F ′, then

Pl(U1 ∩ U2 |U3) = Pl(U1 |U2 ∩ U3)⊗ Pl(U2 |U3).

—⊗ distributes over⊕, more precisely, a⊗(⊕∞i=1bi) = ⊕∞i=1(a⊗bi) if (a, bi), (a,⊕∞i=1bi) ∈
Dom(⊗) and (b1, b2, . . .), (a ⊗ b1, a ⊗ b2, . . .) ∈ Dom(⊕), where Dom(⊕) =
{(Pl(V1 |U),Pl(V2 |U), . . .) : V1, V2, . . . ∈ F are pairwise disjoint and U ∈ F ′}
and Dom(⊗) = {(Pl(U1 |U2 ∩U3),Pl(U2 |U3)) : U2 ∩U3 ∈ F ′, U1, U2, U3 ∈ F}.
(The reason that this property is required only for tuples in Dom(⊕) and
Dom(⊗) is discussed shortly.)

—if (a, c), (b, c) ∈ Dom(⊗), a⊗ c ≤ b⊗ c, and c 6= ⊥, then a ≤ b.

To understand the reason for the restriction to Dom(⊕) and Dom(⊗), consider
probability. In that case, D is [0, 1], and we take ⊕∞i=1bi to be max(

∑∞
i=1 b1, 1). It

is not too hard to show that the distributive property does not hold in general if∑∞
i=1 bi > 1 (consider, for example a = 1/2, b1 = b2 = 2/3, and bi = 0 for i ≥ 3);

however, it does hold if
∑∞

i=1 bi ≤ 1, a property that is guaranteed to hold if there
exist sets V1, V2, . . . that are pairwise disjoint and a set U such that bi = µ(Vi |U)
for some probability measure µ.

It can be shown (see [Halpern 2001; 2003]) that the constraints on cacps’s imply
that ⊥ acts as an identity element for ⊕ and that > acts as an identity element
for ⊗, just as 0 and 1 do for addition and multiplication, as long as we restrict
to tuples in Dom(⊕) and Dom(⊗), respectively, which is all we care about in our
proofs. The constraints also imply that Pl(U |U) = > for U ∈ F .

All the plausibility measures we considered earlier can be viewed as examples of
cacps’s. First, the trivial plausibility measure Pltriv is a cacps if we take ⊕ to be
max and ⊗ to be min. A conditional probability space (as just defined) is a cacps
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simply by defining ⊕ as above, so that ⊕∞i=1bi = max(
∑∞

i=1 bi, 1), and taking ⊗
to be multiplication. If we have a set M of probability measures on a space W ,
we can construct a conditional plausibility measure PlM in essentially the same
way that we constructed an unconditional plausibility measure from the set M,
so that PlM(V |U) is the function fV |U from measures in M to [0, 1] such that
fV |U (µ) = µ(V |U) if µ(U) 6= 0, and fV |U (µ) = ∗, where ∗ is a special “undefined”
value, if µ(U) = 0. To get a cacps, we simply define ⊕ and ⊗ pointwise (so that,
for example, f ⊕ g is that function such that (f ⊕ g)(µ) = f(µ) ⊕ g(µ)). There
are subtleties involved in defining the set F ′ on which conditioning is defined—in
particular, care is required when dealing with sets U such that µ(U) > 0 for some,
but not all, of the measures in M. These issues do not affect the results of this
paper because we assume that the information sets on which we condition have
positive probability, so we ignore them here. See Halpern [2003] for more details.

Define a run-based plausibility system to be a cacps (R,F ,F ′,Pl). Instead of
requiring that µ(R(Ki(r,m))) > 0 as in the probabilistic case, we now require that
R(Ki(r,m)) ∈ F ′ for all agents i and points (r,m). This requirement guarantees
that conditioning on R(Ki(r,m)) is defined, but is easier to work with than the
requirement that µ(R(Ki(r,m))) > 0. We can now repeat the Halpern-Tuttle
construction to generate standard plausibilistic systems. With this construction,
we can explain how the results of Sections 4.1, 4.2, and 4.3 carry over to the more
general plausibilistic setting. In general, the results extend by replacing + and ×
consistently in the proofs by ⊕ and ⊗, but some care is required. We summarize the
details here without stating them as formal results; a technical discussion appears
in the appendix.

—Proposition 4.8 generalizes to run-based plausibility systems.
—Theorems 4.9 and 4.10 carry over to the plausibilistic setting (with essentially

the same proofs) once we define a language for reasoning about plausibility anal-
ogous to the language for reasoning about probability, with formulas of the form
Pli(ϕ) = α.

—Proposition 4.6 generalizes, given a common prior Plcp , provided that ⊗ is
commutative. For total secrecy we require that for all points (r,m) we have
Plcp(Ki(r,m) | PT (R)) 6= ⊥ and Plcp(Kj(r,m) | PT (R)) 6= ⊥; similarly, for syn-
chronous secrecy we require that for all points we have Plcp(Ki(r,m) | PT (m)) 6=
⊥ and Plcp(Kj(r,m) | PT (m)) 6= ⊥.

—Proposition 4.7 generalizes provided that ⊗ is commutative and that for all points
(r,m) we have Pl(R(Ki(r,m)) |R) 6= ⊥ and Pl(R(Kj(r,m)) |R) 6= ⊥.

—Theorem 4.13 can be extended once define adversarial plausibility systems ap-
propriately.

These results demonstrate the essential unity of our definitions and theorems in
the probabilistic and nonprobabilistic cases, and suggest further generalizations.
In particular, it may be worthwhile to consider definitions of secrecy that use rep-
resentations of uncertainty that are based on representations of uncertainty that
are more qualitative than probability. For example, in the cosmic-ray example, we
might consider a measure with three degrees of likelihood: “impossible”, “possi-
ble but very unlikely”, “possible and likely”. This would let us handle examples
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where strange, unlikely things might happen, while maintaining the simplicity of
the nonprobabilistic definitions presented in Section 3.1.

6. RELATED WORK

We are certainly not the first to discuss formal definitions of secrecy: many defi-
nitions have been proposed over the last two decades. One reason for this is that
researchers have sought an “ideal” definition of security that has a variety of use-
ful properties (such as verifiability and composability). While we certainly agree
that verifiability and composability are important properties, we believe that the
intuition behind secrecy should be isolated from stronger properties that happen
to imply secrecy—especially when we have to worry about subtle issues such as
probability and nondeterminism.

In this section we consider how our definitions relate to other information-flow
conditions. We show in particular how they can capture work that has been done
in the synchronous setting, the asynchronous setting, and the probabilistic setting.
Because there are literally dozens of papers that have, in one way or another,
defined notions of secrecy or confidentiality, this section is in no way meant to be
comprehensive or representative. Rather, we have chosen examples that inspired
our definitions, or examples for which our definitions give some insight. In light of
our earlier comments, we also focus on definitions that have tried to capture the
essence of secrecy rather than notions that have been more concerned with issues
like composability and verification.

One important strand of literature to which we do not compare our work directly
here is the work on defining information flow and noninterference using process alge-
bras related to CCS and CSP [Focardi and Gorrieri 1994; 2001; Ryan and Schneider
1999; Ryan et al. 2001]. Although we believe that the intuitions behind many of
these definitions are closely related to our notions of secrecy, a careful discussion of
this issue would take us too far afield. In future work we plan to consider the issue
in detail, by describing how processes can be translated to the runs-and-systems
framework in a way that captures their semantics and then showing how some of
the process-algebraic definitions can be recast as examples of secrecy. In [Halpern
and O’Neill 2003] we give one instance of such a translation: we show how defini-
tions of anonymity given using CSP by Schneider and Sidiropoulos [1996] can be
captured in the runs-and-systems framework.

6.1 Secrecy in Trace Systems

Many papers in computer security define notions of secrecy (often referred to as
“noninterference”) using using trace-based models. Traces are usually defined as
sequences of input and output events, where each event is associated with some
agent (either as an input that she provides or an output that she sees). However,
there have been some subtle differences among the trace-based models. In some
cases, infinite traces are used; in others, the traces are finite. Similarly, some
models assume that the underlying systems are synchronous while others do not.
Although asynchronous system models have been more common, we first consider
synchronous trace-based systems.

Both McLean [1994] and Wittbold and Johnson [1990] present their definitions
of security in the context of synchronous input/output traces. These traces are
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essentially restricted versions of the runs introduced in this paper. Here we consider
a slightly simplified version of McLean’s framework and describe two well-known
noninterference properties within the framework.

Let HI be a set of possible high-level values, let LI be a set of possible low-level
input values, let HO be a set of possible high-level output values, and LO be a
set of possible low-level output values. We assume that these sets are pairwise
disjoint and finite. A tuple t = 〈li, hi, lo, ho〉 (with li ∈ LI, hi ∈ HI, lo ∈ LO, and
ho ∈ HO) represents a snapshot of a system at a given point in time; it describes
the input provided to the system by a low-level agent L and a high-level agent H,
and the output sent by the system to L and H. A synchronous trace τ = 〈t1, t2, . . .〉
is an infinite sequence of such tuples. It represents an infinite execution sequence
of the entire system by describing the input/output behavior of the system at any
given point in time.4 A synchronous trace system is a set Σ of synchronous traces,
representing the possible execution sequences of the system.

In a synchronous trace system, the local state of an agent can be defined using a
trace projection function. For example, let |L be the function projecting τ onto the
low-level input/output behavior of τ , so that if

τ = 〈〈l(1)i , h
(1)
i , l(1)o , h(1)

o 〉, 〈l(2)i , h
(2)
i , l(2)o , h(2)

o 〉, . . .〉,

then

τ |L = 〈〈l(1)i , l(1)o 〉, 〈l(2)i , l(2)o 〉, . . .〉.

Similarly, we can define a function |H that extracts high-level input/output traces
and a function |HI that extracts just high-level input traces.

Given a trace τ = 〈t1, t2, . . .〉, the length k prefix of τ is τk = 〈t1, t2, . . . , tk〉,
that is, the finite sequence containing the first k state tuples of the trace τ . Trace
projection functions apply to trace prefixes in the obvious way.

It is easy to see that synchronous trace systems can be viewed as systems in
the multiagent systems framework. Given a trace τ , we can define the run rτ

such that rτ (m) = (τm|L, τm|H). (For simplicity, we have omitted the environment
state from the global state in this construction, since it plays no role.) Given a
synchronous trace system Σ, let R(Σ) = {rτ : τ ∈ Σ}. It is easy to check that
R(Σ) is synchronous, and that both agents L and H have perfect recall.

McLean defines a number of notions of secrecy in his framework. We consider
two of the best known here: separability [McLean 1994] and generalized nonin-
terference [McCullough 1987]. Separability, as its name suggests, ensures secrecy
between the low-level and high-level agents, whereas generalized noninterference
ensures that the low-level agent is unable to know anything about high-level input
behavior.

Definition 6.1. A synchronous trace system Σ satisfies separability if, for every
pair of traces τ, τ ′ ∈ Σ, there exists a trace τ ′′ ∈ Σ such that τ ′′|L = τ |L and
τ ′′|H = τ ′|H .

4The traces are said to be synchronous because the input and output values are specified for each
agent at each time step, and both agents can infer the time simply by looking at the number of

system outputs they have seen.
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Definition 6.2. A synchronous trace system Σ satisfies generalized noninterfer-
ence if, for every pair of traces τ, τ ′ ∈ Σ, there exists a trace τ ′′ ∈ Σ such that
τ ′′|L = τ |L and τ ′′|HI = τ ′|HI .

These definitions are both special cases of nondeducibility, as discussed in Sec-
tion 3.1: take the set of worlds W to be Σ, the information function g to be |L,
and the information function h to be |H (for separability) and |HI (for generalized
noninterference).5 In our framework, separability essentially corresponds to syn-
chronous secrecy, whereas generalized noninterference corresponds to synchronous
|HI -secrecy. The following proposition makes this precise. Let fhi be the informa-
tion function that extracts a high-level input trace prefix from a point in exactly
the same way that |HI extracts it from the infinite trace.

Proposition 6.3. If a synchronous trace system Σ satisfies separability (resp.,
generalized noninterference), then H maintains synchronous secrecy (resp., syn-
chronous fhi-secrecy) with respect to L in R(Σ).

Proof. We prove the result for separability. The proof for generalized nonin-
terference is similar and left to the reader. Suppose that Σ satisfies separability.
Let rτ and rτ ′ be runs in R(Σ). We want to show that, for all times m, we have
that KL(rτ ,m) ∩ KH(rτ ′ ,m) 6= ∅. Since σ satisfies separability, there exists a
trace τ ′′ ∈ Σ such that τ ′′|L = τ |L and τ ′′|H = τ ′|H . It follows immediately that
τ ′′m|L = τm|L and τ ′′m|H = τ ′m|H . Thus, (rτ ′′ ,m) ∈ KL(rτ ,m) ∩ KH(rτ ′ ,m).

The converse to Proposition 6.3 is not quite true. There is a subtle but sig-
nificant difference between McLean’s framework and ours. McLean works with
infinite traces; separability and generalized noninterference are defined with re-
spect to traces rather than sets of points (i.e., trace prefixes). To see the impact of
this, consider a system Σ where the high-level agent inputs either infinitely many
0s or infinitely many 1s. The output to the low-level agent is always finitely many
0s followed by infinitely 1s, except for a single trace where the high-level agent
inputs infinitely many 0s and the low-level agent inputs infinitely many 0s. Thus,
the system consists of the following traces, where we have omitted the low-level
inputs since they do not matter, and the high-level outputs, which can taken to be
constant:

(0k1∞, 0∞), k = 0, 1, 2, 3, . . .
(0k1∞, 1∞), k = 0, 1, 2, 3, . . .
(0∞, 0∞).

In the system R(Σ), H maintains synchronous secrecy and thus synchronous fhi-
secrecy with respect to L, because by looking at any finite trace prefix, L cannot
tell whether the high-level inputs have been 0s or 1s. However, Σ does not satisfy
separability or generalized interference. If L “sees” infinitely many 0s, he imme-
diately knows that the high-level inputs have been 0s. This seems unreasonable.
After all, agents only makes observations at finite points in time.

5Actually, it is not difficult to see that if the information functions g and h are restricted to
trace projection functions, then nondeducibility is essentially equivalent in expressive power to
selective interleaving functions, the mechanism for defining security properties introduced by

McLean [1994].
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Note that if τ is a trace where the low-level outputs are all 0s and the high-level
inputs are all 1s, each finite prefix of the trace τ is a prefix of a trace in Σ, even
though τ is not in Σ. This turns out to be the key reason that the system satisfies
synchronous secrecy but not separability.

Definition 6.4. A synchronous trace system Σ is limit closed [Emerson 1983] if,
for all synchronous traces τ , we have τ ∈ Σ iff for every time k there exists a trace
τ ′ ∈ Σ such that τ ′k = τk.

Under the assumption of limit closure, we do get the converse to Proposition 6.3.

Proposition 6.5. A limit-closed synchronous trace system Σ satisfies separabil-
ity (resp. generalized noninterference) iff H maintains synchronous secrecy (resp.,
synchronous fhi-secrecy) with respect to L in R(Σ).

While we believe that it is unreasonable in general to assume that an agent’s
view includes the entire run (as McLean’s definitions implicitly do), these results
nonetheless demonstrate the close connection between our definition of synchronous
f -secrecy and security properties such as separability and generalized noninterfer-
ence.

Up to now we have considered a synchronous trace model, where the input and
output events of high and low users occur in lockstep. However, many trace-based
definitions of security are given in an asynchronous setting. We consider a number
of definitions of secrecy in this setting. For uniformity we use the terminology
of Mantel [2003], who has carefully compiled a variety of well-known trace-based
properties into a single framework.

In Mantel’s framework, traces are not infinite sequences of input/output value
tuples, but finite sequences of input/output events. For example, if l and l′ are
low-level events while h and h′ are high-level events, a possible system trace could
be

τ = 〈l, h, l, h′, h′, l′, l′, l, h〉.

As with synchronous trace systems, we denote a projection function for a set A by
|A. Thus, if τ is defined as above, we have

τ |L = 〈l, l, l′, l′, l〉,

where |L is the low-level projection function. Note that because asynchronous traces
are sequences of events rather than tuples, the low-level projection function ignores
high-level events altogether. This means that a low-level view of the system may
remain completely unchanged even as many, many high-level input events occur.

An asynchronous trace system is a set of traces that is closed under trace prefixes.
There is a straightforward way of associating with each system a set of runs. A
set T of traces is run-like if, for all traces τ1 and τ2 in T , either τ1 is a prefix of τ2
or τ2 is a prefix of τ1. Intuitively, a run corresponds to a maximal run-like set of
traces. More formally, let T be a maximal set of run-like traces. Note that if T is
infinite, then for all n ≥ 0 there exists exactly one trace in T of length n (where
the length of 〈t0, . . . , tn−1〉 is n); if T is finite, then there is some N ≥ 0 such that
T has exactly one trace of length n for all n ≤ N . If T is infinite, let the run rT be
such that rT (m) = 〈τm|L, τm|H〉, where τm is the unique trace in T of length m.
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If T is finite, let rT be such that rT (m) = 〈τm|L, τm|H〉 if m ≤ N , where N is the
length of the longest trace in T , and rT (m) = rT (N) if m ≥ N ; that is, the final
state repeats forever. Given an asynchronous trace system Σ, let R(Σ) denote the
set of all runs of the form rT , where T is a maximal set of run-like traces in Σ.

Trace-based security properties are usually expressed as closure properties on
sets of traces, much like our possibilistic definitions of secrecy; see [Mantel 2000]
for more details. We focus here on the definitions of asynchronous separability and
generalized noninterference given by Zakinthinos and Lee [1997].

Definition 6.6. An asynchronous trace system Σ satisfies asynchronous separa-
bility if, for all traces τ, τ ′ ∈ Σ, if τ ′′ is a trace that results from an arbitrary
interleaving of the traces τ |L and τ ′|H , then τ ′′ ∈ Σ.

The definition of generalized noninterference is slightly more complicated, because
the trace that results from interleaving does not include high inputs:

Definition 6.7. An asynchronous trace system Σ satisfies asynchronous general-
ized noninterference if, for all traces τ, τ ′ ∈ Σ, if τ ′′ is a trace that results from an
arbitrary interleaving of the traces τ |L and τ ′|HI , there exists a trace τ ′′′ such that
τ ′′′|L∪HI = τ ′′|L∪HI .

It is straightforward to relate these definitions to secrecy. Exactly as in the
synchronous case, let fhi be an information function that extracts a high-level
input trace prefix from a point: if rT (m) = 〈τ |L, τ |H〉, let fhi(rT ,m) = τ |HI .

Proposition 6.8. If Σ is an asynchronous trace system that satisfies asyn-
chronous separability (resp. asynchronous generalized noninterference), then H
maintains total secrecy (resp. total fhi-secrecy) with respect to L in R(Σ).

The converse of Proposition 6.8 does not necessarily hold. We demonstrate this
by providing a counterexample that works for both separability and generalized
noninterference. Suppose that there are no high output events, only one low output
event lo, and arbitrary sets LI and HI of low and high input events, respectively.
Consider the system consisting of all traces τ involving these events such that lo
occurs at most once in τ , and when it occurs, it does not follow any high input
events. In R(Σ), H maintains total secrecy and fhi-secrecy with respect to L, be-
cause any local state for L is compatible with any local state for H. (Because the
system is asynchronous, L learns nothing by seeing lo: when L sees lo, he thinks it
possible that arbitrarily many high input events could have occurred after lo. Fur-
thermore, L learns nothing about H when he does not see lo: it is always possible
that no high input events have occurred and that lo may yet occur.) However, Σ
does not satisfy asynchronous separability or asynchronous generalized noninterfer-
ence, because interleavings where a high input event precedes lo are ruled out by
construction.

This example illustrates a potential weakness of our approach to secrecy. Al-
though H maintains total secrecy with respect to L in R(Σ), there is a sense in
which L learns something about H. Consider a point (r,m) in R(Σ) at which L has
not seen lo. At that point, L knows that if a high event has occurred, he will never
see lo. This knowledge does not violate secrecy, because it does not depend on the
local state of H; it is not an H-local fact. But there is a sense in which this fact can
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be said to be “about” H: it is information about a correlation between high events
and a particular low event. Is such information leakage a problem? We have not
been able to construct an example where it is. But it is worth pointing out that all
of our definitions of secrecy aim to protect the local state of some particular user,
and therefore that any “secret information” that cannot be characterized as a local
proposition is not protected.

In any case, we can show that total secrecy and separability are equivalent if
we assume a particularly strong form of asynchrony that rules out a temporal
dependence between high and low events. Formally, Σ is closed under interleavings
if for all asynchronous traces τ and τ ′, if τ ∈ Σ, τ ′|L = τ |L and τ ′|H = τ ′|H ,
then τ ′ ∈ Σ. Though this requirement allows L to learn about high events that
may occur in the future (or that have possibly occurred in the past), it rules out
any knowledge of the ordering of high and low events in a given run. With this
requirement, total secrecy and asynchronous separability coincide.

Proposition 6.9. If Σ is an asynchronous trace system that is closed under in-
terleavings, then Σ satisfies asynchronous separability iff H maintains total secrecy
with respect to L in R(Σ).

A similar result is true for generalized noninterference and fhi-secrecy if we mod-
ify the definition of closure under interleavings to allow L to learn something about
the ordering of high output events; we omit the details here.

6.2 Secrecy and User Protocols

In Section 4.4 we described a program that allows a high-level agent H to transmit
arbitrarily long data strings directly to a low-level agent L even though H’s actual
input values remain secret. We then described one possible way to model the lack
of secrecy in the system, by assuming that the string that H wants to transmit
is included in his initial local state. This example demonstrates that generalized
noninterference (as defined in the previous section) is insufficient to ensure that one
agent cannot interfere with another, even if we restrict our concern to possibilistic
information flows. By using a clever-enough protocol, an agent may be able to
exploit the nondeterminism of a system to transmit data to another agent.

This problem was noted by Wittbold and Johnson [1990], who introduced nond-
educibility on strategies to protect the protocol (or “strategy”) employed by high-
level agents. We modify their definition slightly so that it is compatible with
McLean’s framework of synchronous traces. A protocol H is a function from a
high-level input/output trace prefix τk|H to a high-level input value hi ∈ HI. In-
tuitively, a protocol tells the agent H what to do at each step, given what he
has already seen and done. A trace τ is consistent with a protocol H if, for all
k, H(τk−1|H) = h

(k)
i , where h(k)

i is the high-level input value of the kth tuple in
τ . A synchronous trace system Σ satisfies nondeducibility on strategies if, for all
traces τ ∈ Σ and every high-level protocol H consistent with some trace in Σ,
there exists a trace τ ′ that is consistent with H such that τ ′|L = τ |L. If the pro-
tocol of the high-level agent is included as part of her local state, and fprot is an
H-information function that extracts the protocol of the high-level agent from the
local state, then it is straightforward to show that nondeducibility on strategies is
simply synchronous fprot -secrecy.
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Gray and Syverson [1998] extend nondeducibility on strategies to probabilistic
systems using the Halpern-Tuttle framework. In Gray and Syverson’s terminology,
low-level and high-level agents use probabilistic protocols L and H, respectively.
Again, the protocols (H and L) determine what the agents H and L will input next,
given what they have seen and done so far. The system is assumed to have a fixed
probability distribution O that determines its output behavior, given the inputs
and outputs seen so far. Formally, for each trace prefix τ of length k, H(· | (τ |H))
is a probability measure on high-level input events that occur at time k + 1, given
the projection of τ onto the high-level input/output; similarly, L(· | (τ |L)) is a
probability measure on low-level input events that occur at time k+ 1 and O(· | τ)
is a probability measure on output events that occur at time k+1, given τ . Gray and
Syverson require that the choices made by H, L, and the system at each time step
be probabilistically independent. With this assumption, H, L, and O determine a
conditional distribution that we denote µH,L,O, where

µL,H,O(〈li, hi, lo, ho〉 | τ) = L(li | (τ |L)) ·H(hi | (τ |H)) ·O(lo, ho | τ).

Let Λ and Γ be countable sets of protocols for the low-level and high-level agents,
respectively.6 Given Λ, Γ, and O (and, implicitly, sets of low and high input and
output values), we can define an adversarial probability system R∗(Λ,Γ,O) in a
straightforward way. Let Σ consist of all synchronous traces over the input and
out values. For each joint protocol (L,H) ∈ Λ × Γ, let R(Σ,L,H) consist of all
runs defined as in our earlier mapping from synchronous traces to runs, except
that now we include L in the low-level agent’s local state and H in the high-level
agent’s local state. Let R(Σ,Λ × Γ) = ∪(L,H)∈Λ×ΓR(Σ,L,H). We can partition
R(Σ,Λ×Γ) according to the joint protocol used; let D(Λ,Γ) denote this partition.
Given the independence assumptions, the joint protocol (L,H) also determines a
probability µL,H,O on R(Σ,L,H). Let ∆(Λ,Γ,O) = {µL,H,O : L ∈ Λ,H ∈ Γ}. Let
R∗(Λ,Γ,O) = (R(Σ,Λ×Γ),D,∆}. We can now define Gray and Syverson’s notion
of secrecy in the context of these adversarial systems.

Definition 6.10. An adversarial system R∗(Λ,Γ,O) satisfies probabilistic non-
interference if, for all low-level protocols L ∈ Λ, points (r,m) where L’s pro-
tocol is L, and high-level protocols H,H′ ∈ Γ, we have µ(L,H,O)(KL(r,m)) =
µ(L,H′,O)(KL(r,m)).

Theorem 6.11. The following are equivalent:

(a) R∗(Λ,Γ,O) satisfies probabilistic noninterference;
(b) L obtains no evidence about H’s protocol (in the sense of Definition 4.12) in
R∗(Λ,Γ,O);

(c) H maintains generalized run-based probabilistic fprot -secrecy with respect to L
in (R(Σ,Λ × Γ),MINIT (∆(Λ,Γ,O))), where fprot is the information function
that maps from H’s local state to H’s protocol;

6Gray and Syverson take Λ and Γ to consist of all possible probabilistic protocols for the low-level

and high-level agent, respectively, but their approach still makes sense if Λ and Γ are arbitrary
sets of protocols, and it certainly seems reasonable to assume that there are only countably many
protocols that H and L can be using.
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(d) H maintains generalized probabilistic synchronous fprot -secrecy with respect
to L in the standard generalized probability system determined by (R(Σ,Λ ×
Γ),MINIT (∆(Λ,Γ,O))).

Proof. The fact that (a) implies (b) is immediate from the definitions, since
H’s initial choice is the protocol H. The equivalence of (b) and (c) follows from
Theorem 4.13. Finally, since the traces in Σ are synchronous, the equivalence of
(c) and (d) follows from Proposition 4.8.

7. CONCLUSION

We have defined general notions of secrecy for systems where multiple agents inter-
act over time, and have given syntactic characterizations of our definitions that con-
nect them to logics of knowledge and probability. We have applied our definitions to
the problem of characterizing the absence of information flow, and have shown how
our definitions can be viewed as a generalization of a variety of information-flow
definitions that have been proposed in the past.

We are not the first to attempt to provide a general framework for analyzing
secrecy; see, for example, [Focardi and Gorrieri 2001; Mantel 2000; McLean 1994;
Ryan and Schneider 1999; Zakinthinos and Lee 1997] for some other attempts.
However, we believe that our definitions are more closely related to the intuitions
that people in the field have had, because those definitions have often been expressed
in terms of the knowledge of the agents who interact with a system.

Our definitions of probabilistic secrecy (and their plausibilistic generalizations)
demonstrate the underlying simplicity and unity of our definitions. Likewise, our
results on the symmetry of secrecy illustrate the close connection between notions
of secrecy and independence. The definitions and results that we have presented,
and their underlying intuitions of knowledge and independence, do not depend
on the particular system representation that we describe here, so they should be
broadly applicable. Indeed, one major theme of our work is the importance of
having good system models. Given the right system model and the right measure
of uncertainty, a reasonable definition of secrecy—often some form of run-based f -
secrecy—usually follows quite easily. By providing a general, straightforward way
to model systems, the runs-and-systems framework provides a useful foundation for
appropriate definitions of security.

Although we have discussed secrecy largely with respect to the kinds of input and
output systems that have been popular with the theoretical security community, our
definitions of secrecy apply in other contexts, such as protocol analysis, semantics
for imperative programming languages, and database theory. Chor, Goldreich,
Kushilevitz, and Sudan [1998], for example, consider the situation where a user
wants to query a replicated database for some specific database item, but wants a
guarantee that no one will be able to determine, based on his query, which item he
wants. It is not hard to show that the definition of privacy given by Chor et al. is
a special case of secrecy in an adversarial system with a cell corresponding to each
possible item choice.

There are several possible directions for future work. One is the verification of
secrecy properties. Because we have provided syntactic characterizations of several
secrecy properties in terms of knowledge and local propositions, it would seem that
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model-checking techniques could be applied directly. (Van der Meyden [1998] gives
some recent results on model-checking in the runs-and-systems framework.) How-
ever, verifying a secrecy property requires verifying an infinite set of formulas, and
developing techniques to do this efficiently would seem to require some nontrivial
advances to the state of the art in model checking. Of course, to the extent that we
are interested in more limited forms of secrecy, where an agent is restricted from
knowing a small set of formulas, knowledge-based model-checking techniques may
be immediately applicable. At any rate, we emphasize that it is our goal in this pa-
per to provide general techniques for the specification, rather than the verification,
of secrecy.

Another direction for future work is a careful consideration of how secrecy def-
initions can be weakened to make them more useful in practice. Here we briefly
consider some of the issues involved:

—Declassification: Not all facts can be kept secret in a real-world computer system.
The canonical example is password checking, where a system is forced to release
information when it tells an attacker that a password is invalid. Declassifica-
tion for information-flow properties has been addressed by, for example, Myers,
Sabelfeld, and Zdancewic [2004]. It would be interesting to compare their ap-
proach to our syntactic approach to secrecy, keeping in mind that our syntactic
definitions can be easily weakened simply by removing facts from the set of facts
that an agent is required to think are possible.

—Computational secrecy: Our definitions of secrecy are most appropriate for at-
tackers with unlimited computational power, since agents “know” any fact that
follows logically from their local state, given the constraints of the system. Such
an assumption is unreasonable for most cryptographic systems, where secrecy
depends on the inability of attackers to solve difficult computational problems.
The process-algebraic approach advocated by Mitchell, Ramanathan, Scedrov,
and Teague [2004] and the work on probabilistic algorithm knowledge of Halpern
and Pucella [2003b] may help to shed light on how definitions of secrecy can be
weakened to account for agents with computational limitations.

—Quantitative secrecy: Our definitions of probabilistic secrecy require indepen-
dence: an agent’s posterior probability distribution on the possible local states of
a secret agent must be exactly the same as his prior distribution. This require-
ment can be weakened using the information-theoretic notions of entropy and mu-
tual information. Rather than requiring that no information flow from one user
to another, we can quantitatively bound the mutual information between their
respective local states. Information-theoretic approaches to secrecy have been
discussed by Wittbold and Johnson [1990], and more recently by Clark, Hunt,
and Malacaria [2002], Lowe [2002], and Di Pierro, Hankin, and Wiklikcy [2002].

—Statistical privacy: In some systems, such as databases that release aggregate
statistical information about individuals, our definitions of secrecy are much too
strong because they rule out the release of any useful information. Formal defi-
nitions of secrecy and privacy for such systems have recently been proposed by
Evfimievski, Gehrke, and Srikant [2003] and by Chawla, Dwork, McSherry, Smith
and Wee [2005]. These definitions seek to limit the information that an attacker
can learn about a user whose personal information is stored in the database. It
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would be interesting to cast those definitions as weakenings of secrecy.

These weakenings of secrecy are all conceptually different, but it seems highly
likely that there are relations and connections among them. We hope that our work
will help to clarify some of the issues involved.

A. EXAMPLES OF SYSTEMS

In this section, we give examples of simple systems that show the limitations of
various theorems. All the systems involve only two agents, and we ignore the
environment state. We describe each run using the notation

〈(Xi,1, Xj,1), (Xi,2, Xj,2), (Xi,3, Xj,3), . . .〉,

where Xi,k is the local state of agent i at time k. For asynchronous systems, we
assume that the final global state—(Xi,3, Xj,3), in the example above—is repeated
infinitely. For synchronous systems we need different states at each time step, so
we assume that global states not explicitly listed encode the time in some way, so
change at each time step. For notational simplicity, we use the same symbol for a
local state and its corresponding information set.

Example A.1.: Suppose that the synchronous systemR consists of the following
two runs:

r1 = 〈(X,A), (Y1, B1), (Y2, B2), . . .〉
r2 = 〈(Z,A), (Y1, C1), (Y2, C2), . . .〉

Note that agent 2 has perfect recall in R, but agent 1 does not (since at time 0
agent 1 knows the run, but at all later times, he does not). It is easy to check that
agent 2 maintains synchronous secrecy with respect to 1, but not run-based secrecy,
since R(B1) ∩R(Z) = ∅.

For the same reasons, if we take the probability measure µ on R with µ(r1) =
µ(r2) = 1/2, probabilistic synchronous secrecy and run-based probabilistic secrecy
do not coincide. This shows that the perfect recall requirement is necessary in both
Propositions 3.10 and 4.8.

Example A.2.: Suppose that the R consists of the following three runs (where,
in each case, the last state repeats infinitely often):

r1 = 〈(X,A) . . .〉
r2 = 〈(X,B), (Y,A) . . .〉
r3 = 〈(Y,A) . . .〉,

It is easy to see that agent 2 maintains run-based secrecy with respect to agent 1
in R, but not total secrecy or synchronous secrecy (since, for example, Y ∩B = ∅).

Now consider a probability measure µ on R such µ(r1) = µ(r3) = 2/5, and
µ(r2) = 1/5. Then µ(R(A) |R(X)) = µ(R(A) |R(Y )) = 1 and µ(R(B) |R(X)) =
µ(R(B) |R(Y )) = 1/3, so agent 2 maintains run-based probabilistic secrecy with
respect to 1 in R. 1 does not maintain probabilistic secrecy with respect to 2
in (R, µ), since µ(R(X) |R(A)) = 3/5, while µ(R(X) |R(B)) = 1. Thus, if the
agents do not have perfect recall and the system is not synchronous, then run-
based probabilistic secrecy is not necessarily symmetric.
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Example A.3.: Suppose that the synchronous systemR consists of the following
four runs:

r1 = 〈(X,A), (Y1, C1), (Y2, C2), . . .〉
r2 = 〈(X,B), (Y1, D1), (Y2, D2), . . .〉
r3 = 〈(Q,A), (R1, D1), (R2, D2), . . .〉
r4 = 〈(Q,B), (R1, C2), (R2, C2), . . .〉

Note that agent 2 does not have perfect recall in R, although agent 1 does. Let
µ give each of these runs equal probability. It is easy to check that for all i ≥ 1,
µ(R(A) |R(X)) = µ(R(A) |R(Q)) = 1/2, µ(R(B) |R(X)) = µ(R(B) |R(Q)) =
1/2, µ(R(Ci) |R(X)) = µ(R(Ci) |R(Q)) = 1/2, and µ(R(Di) |R(X)) = µ(R(Di) |R(Q)) =
1/2. Because R(X) = R(Yi) and R(Q) = R(Ri) for all i ≥ 1, it follows that agent
2 maintains run-based probabilistic secrecy with respect to 1 in (R, µ).

Now, let p be a primitive proposition and let π be an interpretation such that
p is true if 2’s local state is either A or D1. Thus, p is 2-local in I = (R, µ, π).
Since µ(R(A) ∪ R(D1) |R(X)) = 1 while µ(R(A) ∪ R(D1) |R(Q)) = 1/2, there is
no constant σ such that I |= Pr1(3- p) = σ. This shows that the assumption that
agent j has perfect recall is necessary in Theorem 4.10.

B. PROOFS FOR SECTION 3

Proposition 3.9. If R is a system where i and j have perfect recall, C depends
only on timing, and j maintains C-secrecy with respect to i, then j maintains run-
based secrecy with respect to i.

Proof. Given (r,m) and (r′,m′), we must find a run r′′ and times m1 and
m2 such that r′′i (m1) = ri(m) and r′′j (m2) = r′j(m

′). Because C depends only on
timing, there exists a point (r, n) such that (r′,m′) ∈ C(r, n). The proof now splits
into two cases:

—Suppose that n ≥ m. By C-secrecy, there exists a point (r′′,m2) such that
r′′i (m2) = ri(n) and r′′j (m2) = r′j(m

′). Because i has perfect recall, there exists
some m1 ≤ m2 such that r′′i (m1) = ri(m).

—Suppose that m > n. Because C depends only on timing, there exists n′ ≥ m′

such that (r′, n′) ∈ C(r,m). By C-secrecy, there exists a point (r′′,m2) such that
r′′i (m2) = ri(m) and r′′j (m2) = r′j(n

′). Because j has perfect recall, there exists
some m1 ≤ m2 such that r′′j (m1) = r′j(m

′).

Proposition 3.10. If R is a synchronous system where both i and j have perfect
recall, then agent j maintains synchronous secrecy with respect to i iff j maintains
run-based secrecy with respect to i.

Proof. Suppose that agent j maintains synchronous secrecy with respect to j
in R. Because both i and j have perfect recall, j maintains run-based secrecy with
respect to i by Proposition 3.9.

Conversely, suppose that j maintains run-based secrecy with respect to i. Given
runs r, r′ ∈ R and any time m, there exists a run r′′, and times n and n′, such
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that r′′i (n) = ri(m) and r′′j (n′) = r′j(m). By synchrony, m = n = n′, and we have
r′′i (m) = ri(m) and r′′j (m) = r′j(m). Thus j maintains synchronous secrecy with
respect to i.

Proposition 3.11. A formula ϕ is j-local in an interpreted system I = (R, π)
iff there exists a set Ω of j-information sets such that (I, r,m) |= ϕ whenever
(r,m) ∈

⋃
K∈ΩK.

Proof. Suppose that ϕ is j-local. Let

Ω = {Kj(r,m) | (I, r,m) |= ϕ}.

If (I, r,m) |= ϕ, then Kj(r,m) ∈ Ω by definition, so (r,m) ∈
⋃
K∈ΩK. Likewise, if

(r,m) ∈
⋃
K∈ΩK, then (r,m) ∈ Kj(r′,m′) for some (r′,m′) such that (I, r′,m′) |=

ϕ. By j-locality, (I, r,m) |= ϕ.
Conversely suppose that there exists a set of j-information sets Ω such that

(I, r,m) |= ϕ whenever (r,m) ∈
⋃
K∈ΩK. We need to show that ϕ is j-local.

Suppose that rj(m) = r′j(m
′). If (I, r,m) |= ϕ, then (r,m) ∈ Kj(r′′,m′′) for some

Kj(r′′,m′′) ∈ Ω, and clearly (r′,m′) ∈ Kj(r′′,m′′) ⊆
⋃
K∈ΩK too, so (I, r′,m′) |= ϕ

by assumption.

Theorem 3.12. Suppose that C is an i-allowability function. Agent j maintains
C-secrecy with respect to agent i in system R iff, for every interpretation π and
point (r,m), if ϕ is j-local and (I, r′,m′) |= ϕ for some (r′,m′) ∈ C(r,m), then
(I, r,m) |= Piϕ.

Proof. Suppose that j maintains C-secrecy with respect to i in R. Let π be
an interpretation, let (r,m) be a point, and let ϕ be a formula that is j-local such
that (I, r′,m′) |= ϕ for some (r′,m′) ∈ C(r,m). By C-secrecy, there exists a point
(r′′,m′′) ∈ Ki(r,m) ∩ Kj(r′,m′). Because ϕ is j-local, (I, r′′,m′′) |= ϕ. Thus
(I, r,m) |= Piϕ, as required.

For the converse, given (r,m) ∈ PT (R) and (r′,m′) ∈ C(r,m), let π be an
interpretation such that π(r′′,m′′)(p) = true iff (r′′,m′′) ∈ Kj(r′,m′). Let I =
(R, π). Clearly, p is j-local. By assumption, (I, r,m) |= Pip. Thus, there exists
some point (r′′,m′′) ∈ Ki(r,m) such that (I, r′′,m′′) |= p. By definition, (r′′,m′′) ∈
Kj(r′,m′). Because (r′′,m′′) ∈ Ki(r,m) ∩ Kj(r′,m′), j maintains C-secrecy with
respect to i in R.

Theorem 3.14. Agent j maintains run-based secrecy with respect to agent i in
system R iff, for every interpretation π, if ϕ is j-local and satisfiable in I = (R, π),
then I |= Pi3- ϕ.

Proof. Suppose that j maintains run-based secrecy with respect to i. Let π
be an interpretation and let ϕ be a j-local formula formula that is satisfiable in
I = (R, π). Choose a point (r,m). Because ϕ is satisfiable, there exists a point
(r′,m′) such that (I, r′,m′) |= ϕ. Because j maintains run-based secrecy with
respect to i, there exist a run r′′ and times n and n′ such that r′′i (n) = ri(m) and
r′′j (n′) = r′j(m

′). By j-locality, (I, r′′, n′) |= ϕ. It follows that (I, r′′, n) |= 3- ϕ, and
that (I, r,m) |= Pi3- ϕ, as desired.

For the converse, given points (r,m) and (r′,m′), let π be an interpretation
such that π(r′′,m′′)(p) = true iff (r′′,m′′) ∈ Kj(r′,m′). We must show that
ACM Journal Name, Vol. V, No. N, Month 20YY.



· 39

R(Ki(r,m))∩R(Kj(r′,m′)) 6= ∅. Clearly p is j-local and satisfiable, so (I, r,m) |=
Pi3- p. Thus, there exists a point (r′′, n) ∈ Ki(r,m) such that (I, r′′, n) |= 3- p.
By definition of p, there exists n′ such that (r′′, n′) ∈ Kj(r′,m′). It follows that
r′′ ∈ R(Ki(r,m)) ∩R(Kj(r′,m′)).

C. PROOFS FOR SECTION 4

Proposition 4.2. If (R,PR) is a probability system such that µr,m,i({(r,m)}) >
0 for all points (r,m) and j maintains probabilistic total secrecy with respect to i
in (R,PR), then j also maintains total secrecy with respect to i in R.

Proof. Suppose that j maintains probabilistic total secrecy with respect to i
in (R,PR), and (r,m) and (r′,m′) are arbitrary points. Then (taking (r′′,m′′) =
(r′,m′) in the definition) we have µr,m,i(Kj(r′,m′)∩Ki(r,m)) = µr′,m′,i(Kj(r′,m′)∩
Ki(r′,m′)). But (r′,m′) ∈ Kj(r′,m′)∩Ki(r′,m′), so µr′,m′,i(Kj(r′,m′)∩Ki(r′,m′)) ≥
µr′,m′,i({(r′,m′)}) > 0, by assumption. Thus, µr,m,i(Kj(r′,m′) ∩ Ki(r,m)) > 0,
from which it follows that Kj(r′,m′) ∩ Ki(r,m) 6= ∅.

The following result is proved by Gill, van der Laan, and Robins [1997]; see also
Grünwald and Halpern [2003, Theorem 3.1]. (A more general version is stated
and proved as Proposition D.1.)

Lemma C.1. Suppose that µ is a probability on W , X,Y ⊆ W , Y1, Y2, . . . is a
countable partition of Y ⊆ W , and X,Y1, Y2, . . . are all measurable. The following
are equivalent:

(a) µ(X |Yi) = µ(X |Yj) for all Yi, Yj such that µ(Yi) > 0 and µ(Yj) > 0.

(b) µ(X |Yi) = µ(X |Y ) for all Yi such that µ(Yi) > 0, so that Yi is conditionally
independent of X given Y .

Proposition 4.6. If (R,PR) is a probability system (resp., synchronous prob-
ability system) that satisfies the common prior assumption with prior probability
µcp, the following are equivalent:

(a) Agent j maintains probabilistic total (resp., synchronous) secrecy with respect
to i.

(b) Agent i maintains probabilistic total (resp., synchronous) secrecy with respect
to j.

(c) For all points (r,m) and (r′,m′), µcp(Kj(r′,m′) | Ki(r,m)) = µcp(Kj(r′,m′))
(resp., for all points (r,m) and (r′,m), µcp(Kj(r′,m) | Ki(r,m)) = µcp(Kj(r′,m) | PT (m)),
where PT (m) is the set of points occurring at time m; that is, the events Ki(r,m)
and Kj(r′,m) are conditionally independent with respect to µcp, given that the
time is m).

Proof. We prove the synchronous case here. The proof for total secrecy is
almost identical and left to the reader. Recall that j maintains probabilistic syn-
chronous secrecy with respect to i if, for all times m and all runs r, r′, r′′,

µr,m,i(Kj(r′′,m) ∩ Ki(r,m)) = µr′,m,i(Kj(r′′,m) ∩ Ki(r′,m)).
ACM Journal Name, Vol. V, No. N, Month 20YY.



40 ·

Because (R,PR) satisfies the common prior assumption with prior probability µcp ,
this requirement can be restated as

µcp(Kj(r′′,m) | Ki(r,m)) = µcp(Kj(r′′,m) | Ki(r′,m)).

By Lemma C.1, taking Y = PT (m) and the Yi’s to be the i-information sets at
time m, it follows that j maintains probabilistic synchronous secrecy with respect
to i iff Kj(r′′,m) is conditionally independent of Ki(r,m) conditional on PT (m)
for all runs r and r′′. By the symmetry of conditional independence, it immediately
follows that this is true iff imaintains probabilistic synchronous secrecy with respect
to j.

Lemma C.2. If R is a system where agent i has perfect recall and Ω is an arbi-
trary set of i-information sets, then there exists a set Ω′ ⊆ Ω such that {R(K) | K ∈
Ω′} is a partition of

⋃
K∈ΩR(K).

Proof. Define a set K ∈ Ω to be dominated by a set K′ ∈ Ω if K 6= K′ and there
exists a run r and times m′ < m such that (r,m) ∈ K and (r,m′) ∈ K′. Let Ω′

consist of the information sets in Ω that are not dominated by another set in Ω.
Note that if r ∈ ∪K∈ΩR(K), then r ∈ R(K′) for some K′ ∈ Ω′. To see this, consider
the set Ω(K) consisting of K and all information sets in Ω that dominate K. By
perfect recall, i’s local state sequence at each information set in Ω(K) is a (not
necessarily strict) prefix of i’s local state sequence in K. Let K′ be the information
set in Ω(K) where i’s local state sequence is shortest. It follows that K′ is not
dominated by another information set in Ω(K). Furthermore, if there exists an
information set K′′ ∈ Ω− Ω(K) that dominates K′, then K′′ would dominate K as
well, contradicting the construction of Ω(K). Therefore, K′ ∈ Ω′ and r ∈ K′. Thus⋃
K∈Ω′ R(K) =

⋃
K∈ΩR(K). Moreover, if K and K′ are different sets in Ω′, then

R(K) and R(K′) must be disjoint, for otherwise one of K or K′ would dominate
the other.

Proposition 4.7. If (R,F , µ) is a run-based probability system that is either
synchronous or one where agents i and j both have perfect recall, then the following
are equivalent:

(a) Agent j maintains run-based probabilistic secrecy with respect to i.
(b) Agent i maintains run-based probabilistic secrecy with respect to j.
(c) For all points (r,m) and (r′,m′), R(Ki(r,m)) and R(Kj(r′,m′)) are probabilis-

tically independent with respect to µ.

Proof. First, note that if R is synchronous or if i has perfect recall, then there
exists a collection Ω of i-information sets such that the set {R(K) | K ∈ Ω} is a
partition of R. In the case of perfect recall, this follows by Lemma C.2 applied to
the set of all information sets (whose union is clearly R). With synchrony we can
take Ω to consist of sets of the form R(Ki(r,m)), for some fixed time m.

Now, suppose j maintains run-based probabilistic secrecy with respect to i. By
definition,

µ(R(Kj(r′′,m′′)) |R(Ki(r,m))) = µ(R(Kj(r′′,m′′)) |R(Ki(r′,m′)))

for all points (r,m), (r′,m′), and (r′′,m′′). In particular, for all K,K′ ∈ Ω, and all
points (r′,m′), µ(R(Kj(r′,m′) |R(K))) = µ(R(Kj(r′,m′)) |R(K′)). By Lemma C.1
ACM Journal Name, Vol. V, No. N, Month 20YY.



· 41

it follows that µ(R(Kj(r′,m′′)) |R(K)) = µ(R(Kj(r′,m′′))) for all information sets
K ∈ Ω. But then it follows by secrecy that µ(R(Kj(r′,m′)) |R(Ki(r,m))) =
µ(R(Kj(r′,m′)) for all i-information sets R(Ki(r,m)). Therefore R(Kj(r′,m′))
and R(Ki(r,m)) are independent for all information sets Kj(r′,m′) and Ki(r,m).
Thus secrecy implies independence, and this holds if we reverse the roles of i and
j.

It is also clear that independence implies secrecy. For suppose that (c) holds.
Then, for all points (r,m), (r′,m′), and (r′′,m′′), we have

µ(R(Kj(r′′,m′′)) |R(Ki(r,m))) = µ(R(Kj(r′′,m′′))) = µ(R(Kj(r′′,m′′)) |R(Ki(r′,m′))),

so that j maintains run-based probabilistic secrecy with respect to i. Similarly, i
maintains secrecy with respect to j.

Proposition 4.8. If (R,PR) is the standard system determined by the syn-
chronous run-based probability system (R,F , µ) and agents i and j have perfect
recall in R, then agent j maintains run-based probabilistic secrecy with respect to
i in (R,F , µ) iff j maintains probabilistic synchronous secrecy with respect to i in
(R,PR).

Proof. Clearly if j maintains run-based probabilistic secrecy with respect to i
in (R, µ) and (R,PR) is the standard system determined by (R, µ) then, at all
times m,

µr,m,i(Kj(r′′,m) ∩ Ki(r,m)) = µ(Kj(r′′,m) | Ki(r,m))
= µ(Kj(r′′,m) | Ki(r′,m))
= µr′,m,i(Kj(r′′,m) ∩ Ki(r′,m)),

so j maintains probabilistic synchronous secrecy with respect to i in (R,PR).
For the converse, suppose that j maintains probabilistic synchronous secrecy with

respect to i in (R,PR). We want to show that, for all points (r,m), (r′,m′), and
(r′′,m′′),

µ(R(Kj(r′′,m′′)) |R(Ki(r,m))) = µ(R(Kj(r′′,m′′)) |R(Ki(r′,m′))). (1)

We first show that, for all runs r and r′′ and times m and m′′,

µ(R(Kj(r′′,m′′)) |R(Ki(r,m))) = µ(R(Kj(r′′,m′′)) |R(Ki(r,m′′))). (2)

Since (2) also holds with r replaced by r′, (1) easily follows from (2) and the
assumption that j maintains probabilistic synchronous secrecy with respect to i.

To prove (2), we consider two cases: m ≤ m′′ and m′′ < m. If m ≤ m′′ then, by
synchrony and perfect recall, we can partition the runs in R(Ki(r,m)) according
to i’s local state at time m′′. Let Ω = {Ki(r∗,m′′) | r∗ ∈ R(Ki(r,m))}. By perfect
recall and synchrony, R(Ki(r,m)) is the disjoint union of the sets in Ω. Thus,

µ(R(Kj(r′′,m′′)) |R(Ki(r,m)))
=

∑
K∈Ω µ(R(Kj(r′′,m′′)) ∩R(K) |R(Ki(r,m)))

=
∑
K∈Ω µ(R(Kj(r′′,m′′)) |R(K)) · µ(R(K) |R(Ki(r,m)))

= µ(R(Kj(r′′,m′′)) |R(Ki(r,m′′))) ·
∑
K∈Ω µ(R(K) |R(Ki(r,m))) [by synchronous secrecy]

= µ(R(Kj(r′′,m′′)) |R(Ki(r,m′′))).
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The argument is similar if m′′ < m. We now partition the runs in R(Ki(r,m′′))
according to i’s local state at time m and the runs in R(Kj(r′′,m′′)) according to
j’s local state at time m. Define

Ωi = {Ki(r∗,m) | r∗ ∈ R(Ki(r,m′′)}.

and

Ωj = {Kj(r∗,m) | r∗ ∈ R(Kj(r′′,m′′))}.

We now have

µ(R(Kj(r′′,m′′)) |R(Ki(r,m′′)))
=

∑
Kj∈Ωj

µ(R(Kj) |R(Ki(r,m′′)))
=

∑
Kj∈Ωj

∑
Ki∈Ωi

µ(R(Kj) |R(Ki)) · µ(R(Ki) |R(Ki(r,m′′)))
=

∑
Kj∈Ωj

µ(R(Kj) |R(Ki)) ·
∑
Ki∈Ωi

µ(R(Ki) |R(Ki(r,m′′)))
=

∑
Kj∈Ωj

µ(R(Kj) |R(Ki(r,m)))
= µ(R(Kj(r′′,m′′)) |R(Ki(r,m))),

as needed.

Theorem 4.9. (a) If (R,PR) is a probabilistic system, then agent j maintains
probabilistic total secrecy with respect to agent i iff, for every interpretation π
and formula ϕ that is j-local in I = (R,PR, π), there exists a constant σ such
that I |= Pri(ϕ) = σ.

(b) If (R,PR) is a synchronous probabilistic system, then agent j maintains proba-
bilistic synchronous secrecy with respect to agent i iff, for every interpretation π,
time m, and formula ϕ that is j-local in I = (R,PR, π), there exists a constant
σm such that (I, r,m) |= Pri(ϕ) = σm for all runs r ∈ R.

Proof. We prove part (b) here. The proof of (a) is similar.
Suppose R is synchronous and that j maintains synchronous probabilistic se-

crecy with respect to i. Let π be an interpretation, m be an arbitrary time,
and ϕ be a j-local formula in I = (R, µ, π). Because ϕ is j-local, by Proposi-
tion 3.11, there exists a set Ω of j-information sets such that (I, r,m) |= ϕ iff
(r,m) ∈

⋃
K∈ΩK. Let Ψ =

⋃
K∈ΩK. Let S = {r′ ∈ R | (r′,m) ∈ Ψ}, and let

Ω(m) = {K ∈ Ω | (r′,m) ∈ K for some r′ ∈ R}. Since j maintains synchronous
probabilistic secrecy with respect to i, for every element K ∈ Ω(m), there is a con-
stant σ(K,m) such that, for all runs r ∈ R, µ(R(K) |R(Ki(r,m))) = σ(K,m). Let
σm =

∑
K∈Ω(m) σ(K,m), and fix r ∈ R. By synchrony, the set {R(K) | K ∈ Ω(m)}

partitions S, and

µ(S |R(Ki(r,m))) =
∑

K∈Ω(m)

µ(R(K) |R(Ki(r,m))) = σm.

Because Ψ ∩ Ki(r,m) = Ki(r,m)(S), we have µr,m,i(Ψ) = µ(S |R(Ki(r,m))), and
it follows that (I, r,m) |= Pri(ϕ) = σm, as desired.

For the converse, suppose that for every interpretation π and time m, if ϕ is
j-local in I = (R, µ, π), then there exists a constant σm such that (I, r,m) |=
Pri(ϕ) = σm for all runs r ∈ R. Fix a time m. Suppose that r, r′, r′′ ∈ R and
that π is an interpretation such that π(r∗, n)(p) = true iff (r∗, n) ∈ Kj(r′′,m).
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The proposition p is j-local, so there exists a constant σm such that (I, r,m) |=
Pri(p) = σm and (I, r′,m) |= Pri(p) = σm. It follows that

µr,m,i(Kj(r′′,m)) = σm = µr′,m,i(Kj(r′′,m)),

as desired.

Theorem 4.10. If (R,PR) is a standard probability system where agent j has
perfect recall, then agent j maintains run-based probabilistic secrecy with respect
to agent i iff, for every interpretation π and every formula ϕ that is j-local in
I = (R,PR, π), there exists a constant σ such that I |= Pri(3- ϕ) = σ.

Proof. Suppose that j maintains probabilistic secrecy with respect to agent i in
(R, µ). Given an interpretation π and a formula ϕ that is j-local in I = (R, µ, π), by
Proposition 3.11 there exists a set Ω of j-information sets such that (I, r,m) |= ϕ
whenever (r,m) ∈

⋃
K∈ΩK. Let Ψ =

⋃
K∈ΩR(K). Note that (I, r,m) |= 3- ϕ

iff r ∈ R(
⋃
K∈ΩK) = Ψ. By Lemma C.2, there exists a set Ω′ ⊆ Ω such that

{R(K) : K ∈ Ω} is a partition of Ψ. By probabilistic secrecy, for each K ∈ Ω′, there
exists a constant σK such that

µ(R(K) |R(Ki(r,m))) = σK

for all points (r,m). Let σ =
∑
K∈Ω′ σK. Because {R(K) | K ∈ Ω′} is a partition of

Ψ, for all points (r,m),

µ(Ψ |R(Ki(r,m))) =
∑
K∈Ω

µ(R(K) |R(Ki(r,m))) = σ.

Because µr,m,i(Ki(r,m)(Ψ)) = µ(Ψ |R(Ki(r,m))), it follows that I |= Pri(3- ϕ) =
σ.

For the converse, suppose that for every interpretation π and formula ϕ that is
j-local in I = (R, µ, π), there exists a constant σ such that I |= Pri(3- ϕ) = σ.
Given points (r,m), (r′,m′), and (r′′,m′′), let π be an interpretation such that
π(r∗, n)(p) = true iff (r∗, n) ∈ Kj(r′′,m′′). The proposition p is j-local, so I |=
Pri(3- p) = σ. It follows that

µ(R(Kj(r′′,m′′)) |R(Ki(r,m))) = µr,m,i(Ki(r,m)(R(Kj(r′′,m′′)))) = σ,

and the same holds if we replace (r,m) with (r′,m′), so

µ(R(Kj(r′′,m′′)) |R(Ki(r,m))) = µ(R(Kj(r′′,m′′)) |R(Ki(r′,m′))).

This gives us probabilistic secrecy.

Theorem 4.13. Let (R,D,∆) be the adversarial probability system determined
by INIT and suppose that R is either synchronous or a system where i has perfect
recall. Agent i obtains no evidence for the initial choice in (R,D,∆) iff agent
i− maintains generalized run-based probabilistic fi−-secrecy with respect to i in
(R,MINIT

i (∆)).

Proof. For the forward direction, we want to show that i− maintains generalized
run-based probabilistic fi− -secrecy with respect to i in (R,MINIT

i (∆)). Suppose
that µ ∈ MINIT

i (∆). The information function fi− maps an i−-information set to
the choices made by the agents other than i. Let an i−-choice set be a set of runs
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of the form ∩j 6=iDyj
. We must show that for arbitrary points (r,m) and (r′,m′)

and i−-choice sets Di− , we have

µ(Di− |R(Ki(r,m))) = µ(Di− |R(Ki(r′,m′))). (3)

Since, by assumption, i’s choice is encoded i’s local state, there exists a unique yi

such that R(Ki(r,m)) ⊆ Dyi
. Since i obtains no evidence for the initial choice, we

have that for all i−-choice sets Di− and D′
i− ,

µDyi
∩Di−

(R(Ki(r,m))) = µDyi
∩D′

i−
(R(Ki(r,m))). (4)

Thus, whenever µ(Dyi ∩Di−) > 0 and µ(Dyi ∩D′
i−) > 0, we have

µ(R(Ki(r,m)) |Dyi
∩Di−) = µDyi

∩Di−
(R(Ki(r,m)))

= µDyi
∩D′

i−
(R(Ki(r,m)))

= µ(R(Ki(r,m)) |Dyi
∩D′

i−).

It now follows by Lemma C.1 thatR(Ki(r,m)) is conditionally independent of every
i−-choice set given Dyi

. (Though Lemma C.1 actually shows only that R(Ki(r,m))
is conditionally independent of every i− choice set Di− such that µ(Di− ∩Dyi

) > 0,
conditional independence is immediate if µ(Di−∩Dyi

) = 0) Thus, for any i−-choice
set Di− , we have

µ(Di− |R(Ki(r,m))) = µ(Di− |R(Ki(r,m)) ∩Dyi
) = µ(Di− |Dyi

) = µ(Di−),

where the last equality follows because we have assumed that i’s choice is inde-
pendent of the choices made by other agents. Similarly, µ(Di− |R(Ki(r′,m′))) =
µ(Di−), so (3) follows, and i− does indeed maintain generalized run-based proba-
bilistic fi− -secrecy with respect to i.

For the converse, suppose that i− maintains generalized run-based probabilistic
fi− -secrecy with respect to i. Thus, for all points (r,m), i−-choice sets Di− , and
measures µ ∈ MINIT

i (∆), we have (3). Given two i−-choice sets Di− and D′
i−

and an i-information set Ki(r,m) such that R(Ki(r,m)) ⊆ Dyi , we want to show
(4). To do so we first show that there exists a measure µ ∈MINIT

i (∆) that places
positive probability on all the cells. (We will make use of this particular measure for
the duration of the proof.) Our strategy is to take a countable linear combination
of the cell-specific probability measures, such that the set of runs in each cell is
assigned positive probability by µ. Let yi1, yi2, . . . be a countable enumeration of
INIT i, and let D1, D2, . . . be a countable enumeration of the possible i−-choice
sets. Define the function µ such that for U ∈ F ,

µ(U) =
∑

j≥1,k≥1

µDyij
∩Dk

(U ∩Dyij ∩Dk)

2jk
.

It is straightforward to check that µ ∈ MINIT
i (∆) and that it places a positive

probability on all the cells in D. Furthermore, we have µDyi
∩Di−

(R(Ki(r,m))) =
µ(R(Ki(r,m)) |Dyi ∩Di−), and the same holds if we replace Di− with D′

i− .
Given an i-information set Ki(r,m), let yi be the initial choice for i such that

R(Ki(r,m)) ⊆ Dyi
. For all i− choice sets Di− , we have

µDyi
∩Di−

(R(Ki(r,m))) = µ(R(Ki(r,m) |Dyi
∩Di−).
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Thus, to prove (4), it suffices to show that

µ(R(Ki(r,m) |Dyi
∩Di−) = µ(R(Ki(r,m) |Dyi

∩D′
i−).

Standard probabilistic manipulations show that

µ(R(Ki(r,m)) |Dyi
∩Di−) · µ(Dyi

|Di−) = µ(R(Ki(r,m)) ∩Dyi
|Di−); (5)

a similar equation holds if we replace Di− by D′
i− . Since either R is synchronous

or i has perfect recall in R, there exists a set Ω of i-information sets such that
{R(K) : K ∈ Ω} partitions R. By Lemma C.1 and (3), it follows that i−-
choice sets are independent of the i-information sets in Ω. Applying (3) again,
it follows that i−-choice sets are independent of all i-information sets. Thus,
µ(R(Ki(r,m)) ∩ Dyi

|Di−) = µ(R(Ki(r,m)) |Di−) = µ(R(Ki(r,m))). Since Di−

and Dyi
are independent by assumption, it follows that µ(Dyi

|Di−) = µ(Dyi
).

Thus, (5) reduces to

µ(R(Ki(r,m)) |Dyi
∩Di−) · µ(Dyi

) = µ(R(Ki(r,m))).

The same is true forD′
i− , so because µ(Dyi

) > 0 it follows that µ(R(Ki(r,m)) |Dyi
∩

Di−) = µ(R(Ki(r,m)) |Dyi ∩D′
i−). (4) is now immediate.

D. GENERALIZING FROM PROBABILITY TO PLAUSIBILITY

In this section we give the details of the plausibilistic results presented in Section
5. All those results correspond to probabilistic results from the previous section;
in many cases the proofs are almost identical. For brevity we focus here on the
nontrivial subtleties that arise in the plausibilistic case.

To show that Proposition 4.8 generalizes to run-based plausibility systems is
straightforward. We simply replace all occurrences of multiplication and addition
in the proof of Proposition 4.8 with ⊗ and ⊕; all the resulting equations hold by
the properties of cacps’s.

To define analogues of Theorems 4.9 and 4.10, we need a language that allows
statements of the form Pli(ϕ) = c, where c is a constant that is interpreted as
a plausibility value. Once we do this, the proofs of these results transfer to the
plausibilistic setting with almost no change. We omit the straightforward details.

To prove Propositions 4.6 and 4.7, we first prove two results that generalize
Lemma C.1. To do so, we need the following definition, taken from [Halpern 2003].
Define a cacps to be acceptable if U ∈ F ′ and Pl(V |U) 6= ⊥ implies that V ∩U ∈ F ′.
To understand the intuition behind this definition, consider the special case where
U = W . Since W ∈ F ′ (this follows from the fact that F ′ is a nonempty and is
closed under supersets in F), we get that if Pl(V ) 6= ⊥, then V ∈ F ′. This is an
analogue of the situation in probability, where we can always condition on a set of
nonzero measure.

Lemma D.1. Let (W,F ,F ′,Pl) be an acceptable cacps. Suppose that Y1, Y2, . . .
is a partition of Y ∈ F ′, and that Yi ∈ F for i = 1, 2, 3, . . .. For all X ∈ F , the
following are equivalent:

(a) Pl(X |Yi) = Pl(X |Yj) for all Yi, Yj ∈ F ′.
(b) Pl(X |Yi) = Pl(X |Y ) for all Yi ∈ F ′.
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Proof. Clearly (b) implies (a). To see that (a) implies (b), first note that since
we are dealing with an acceptable cacps, if Yj /∈ F ′, then Pl(Yj |Y ) = ⊥ and hence,
for all X, Pl(X ∩ Yj |Y ) = ⊥. Given Yi ∈ F ′, it follows that

Pl(X |Y ) = ⊕{j:Yj∈F ′}Pl(X ∩ Yj |Y )
= ⊕{j:Yj∈F ′}(Pl(X |Yj)⊗ Pl(Yj |Y ))
= ⊕{j:Yj∈F ′}(Pl(X |Yi)⊗ Pl(Yj |Y ))
= Pl(X |Yi)⊗ (⊕{j:Yj∈F ′}Pl(Yj |Y ))
= Pl(X |Yi),

as needed.

In the probabilistic setting, if either part (a) or (b) of Proposition C.1 holds,
we are able to conclude that Yi is conditionally independent of X given Y . By
the symmetry of independence in the probabilistic setting, we can conclude that
X is also conditionally independent of Yi given Y , that is, that Pr(Yi |X ∩ Y ) =
Pr(Yi |Y ). In the plausibilistic setting, independence is not symmetric in general
unless we make an additional assumption, namely that ⊗ is symmetric. We say
that a cacps is commutative if its ⊗ operator is commutative.

Lemma D.2. Suppose that (W,F ,F ′,Pl) is a commutative acceptable cacps; Y1, Y2, . . .
is a partition of Y ∈ F ′; X ∈ F ′, X ⊆ Y , and Pl(X |Y ) 6= ⊥; and for all
Yi, Yj ∈ F ′, Pl(X |Yi) = Pl(X |Yj). Then, for all Yi ∈ F , Pl(Yi |X) = Pl(Yi |Y ).

Proof. First, suppose that Yi ∈ F ′. By Lemma D.1, we have that Pl(X |Yi) =
Pl(X |Y ). Since Yi ∩ Y = Yi and ⊗ is commutative, we have

Pl(X∩Yi |Y ) = Pl(X |Yi)⊗Pl(Yi |Y ) = Pl(X |Y )⊗Pl(Yi |Y ) = Pl(Yi |Y )⊗Pl(X |Y ).

Similarly, since X ⊆ Y , we have

Pl(X ∩ Yi |Y ) = Pl(Yi |X)⊗ Pl(X |Y ).

Thus, Pl(Yi |Y ) ⊗ Pl(X |Y ) = Pl(Yi |X) ⊗ Pl(X |Y ). Since Pl(X |Y ) 6= ⊥ by
assumption, it follows from the definition of a cacps that Pl(Yi |Y ) = Pl(Yi |X).

If Yi 6∈ F ′ but Yi ∈ F , then Yi∩X /∈ F ′ (since F ′ is closed under supersets in F).
Since we are working in an acceptable cacps, Pl(Yi |Y ) = ⊥ and Pl(Yi |X) = ⊥, so
again Pl(Yi |Y ) = Pl(Yi |X).

With these results, plausibilistic versions of Propositions 4.6 and 4.7 can be
proved with only minor changes to the proof in the probabilistic case, provided we
make the additional assumptions stated in the main text. We replace the use of
Lemma C.1 by Lemma D.1. The appeal to the symmetry of conditional indepen-
dence is replaced by an appeal to Lemma D.2. However, to use this lemma, we
need to assume that ⊗ is commutative and that for all points (r,m),

—Plcp(Ki(r,m) | PT (R)) 6= ⊥ and Plcp(Kj(r,m) | PT (R)) 6= ⊥ (in the proof of
total secrecy in the generalization of Proposition 4.6);

—Plcp(Ki(r,m) | PT (m)) 6= ⊥ and Plcp(Kj(r,m) | PT (m)) 6= ⊥ (in the the proof
of synchronous secrecy in the generalization of Proposition 4.6); and
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—Pl(R(Ki(r,m)) |R) 6= ⊥ and Pl(R(Kj(r,m)) |R) 6= ⊥ (in the generalization of
Proposition 4.7).

(We do not have to assume that the relevant cacps’s are acceptable for these propo-
sitions; it is enough that they are commutative. We used acceptability in the proof
of Lemma D.1 to show argue that if a set Yi is not in F ′, then Pl(Yi) = ⊥. Here,
the sets Yi are of the form R(Ki(r,m)), and our other assumptions guarantee that
they are in F ′.)

Turning to the generalization of Theorem 4.13, the first step is to define an
adversarial plausibility system. The definition is completely analogous to that of
that of an adversarial probability system, except that now the set ∆ consists of the
acceptable conditional plausibility spaces (D,FD,F ′D,PlD), for each cell D ∈ D.
Again, we assume that R(Ki(r,m)) ∩ D ∈ FD and that, if R(Ki(r,m)) ∩ D 6= ∅,
then R(Ki(r,m))∩D ∈ F ′D and PlD(R(Ki(r,m))∩D) 6= ⊥. We say that an agent i
obtains no plausibilistic evidence for the initial choice in (R,D,∆) if for all D,D′ ∈
D and all points (r,m) such that R(Ki(r,m)) ∩D 6= ∅ and R(Ki(r,m)) ∩D′ 6= ∅,
we have

PlD(R(Ki(r,m)) ∩D) = PlD(R(Ki(r,m)) ∩D′).

Suppose that D is determined by INIT (as in the probabilistic case), and that
the conditional plausibility spaces of ∆ are all defined with respect to the same
domain D of plausibility values and with the same operations ⊕ and ⊗, where ⊗ is
commutative. Let FD be the σ-algebra generated by ∪D∈DFD. Let MINIT ,Pl

i (∆)
consist of all the acceptable plausibility spaces (R,FD,F ′,Pl) such that

—F ′ is a nonempty subset of FD that is closed under supersets;
—if A ∈ FD and B ∈ F ′ ∩ F ′D , then Pl(A |B) = PlD(A |B);
—for all agents i and points (r,m), there exists a cell D such that Pl(D) 6= ⊥ and
R(Ki(r,m)) ∩D 6= ∅; and

—Pl(D(y1,...,yn)) = Pl(Dyi
)⊗ Pl(∩j 6=iDyj

).

We can now state and prove the plausibilistic analogue of Theorem 4.13.

Theorem D.3. Let (R,D,∆) be the adversarial plausibility system determined
by INIT and suppose that R is either synchronous or a system where i has perfect
recall. Agent i obtains no evidence for the initial choice in (R,D,∆) iff agent
i− maintains generalized run-based plausibilistic fi−-secrecy with respect to i in
(R,MINIT ,Pl

i (∆)).

Proof. The proof is basically the same as that of Theorem 4.13, but some
new subtleties arise because we are dealing with plausibility. For the forward
direction, we want to show that i− maintains generalized run-based plausibilis-
tic fi− -secrecy under the assumption that i obtains no evidence for the initial
choice in (R,D,∆). Much as in the proof of Theorem 4.13, we can show that
Pl(R(Ki(r,m)) |Dyi ∩ Di−) = Pl(R(Ki(r,m)) |Dyi ∩ D′

i−) if Di− ∩ Dyi ∈ F ′
and D′

i− ∩ Dyi ∈ F ′. Continuing in the spirit of that proof, we now want to
show that Pl(Di− |R(Ki(r,m)) ∩ Dyi

) = Pl(Di− |Dyi
) = Pl(Di−). For the sec-

ond equality, note that, by assumption, Pl(Di− ∩ Dyi
) = Pl(Di−) ⊗ Pl(Dyi

).
Since the properties of acceptable conditional plausibility spaces guarantee that
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Pl(Di− |Dyi
)⊗Pl(Dyi

) = Pl(Di− ∩Dyi
), it follows that Pl(Di− |Dyi

)⊗Pl(Dyi
) =

Pl(Di−)⊗ Pl(Dyi
). Since Pl(Dyi

) 6= ⊥, Pl(Di− |Dyi
) = Pl(Di−).

To prove the first equality, we want to apply Lemma D.2. To do so, we must
first show that Pl(R(Ki(r,m)) |Dyi) 6= ⊥. To see that this holds, recall that by
assumption there exists a cell D such that Pl(D) 6= ⊥, PlD(R(Ki(r,m))∩D) 6= ⊥,
and R(Ki(r,m))∩D ∈ F ′. Since R(Ki(r,m))∩D 6= ∅, we must have that D ⊆ Dyi

.
Indeed, we must have D = D̂i− ∩Dyi

for some i−-choice set D̂i− . Thus, we have

Pl(R(Ki(r,m)) |Dyi
) ≥ Pl(R(Ki(r,m)) ∩D |Dyi

)

= Pl(R(Ki(r,m)) |D)⊗ Pl(D̂i− |Dyi
)

= PlD(R(Ki(r,m)) ∩D)⊗ Pl(D̂i−)

By assumption PlD(R(Ki(r,m)) ∩ D) 6= ⊥. Since Pl(D) 6= ⊥ and D ⊆ D̂i− , it
follows that Pl(D̂i−) 6= ⊥. Thus, Pl(R(Ki(r,m)) |Dyi

) 6= ⊥.
For the converse, we must construct an acceptable measure Pl and a set F ′ such

that (R,FD,F ′,Pl) ∈MINIT ,Pl
i (∆). We take F ′ to consist of the sets U such that

U∩D ∈ F ′D for some cellD. For Pl, we start by taking some arbitrary total ordering
≺ of the cells in D. Given V ∈ F and U ∈ F ′, let Pl(V |U) = PlD(V ∩D |U ∩D)
where D is the highest-ranked cell such that U ∩ D ∈ FD. By construction, Pl
behaves identically to the cell-specific measures when we condition on subsets of
cells. It is easy to check that for all yi ∈ INIT i and i−-choice sets Di− , we have
Pl(Dyi

∩ Di−) = >, Pl(Dyi
) = >, and Pl(Di−) = >. The independence of the

choices made by i and i− follows immediately.
To see that the measure satisfies the conditioning axiom (in the definition of

a cacps), suppose that U1, U2, U3 ∈ F and U2 ∩ U3 ∈ F ′. We must show that
Pl(U1 ∩ U2 |U3) = Pl(U1 |U2 ∩ U3) ⊗ Pl(U2 |U3). There are two cases. If the
highest-ranked cell that intersects U3 (call it D) also intersects U2, then all three
terms in the equality are determined by PlD, and the equality follows by applying
the conditioning axiom to PlD with U1 ∩ D,U2 ∩ D, and U3 ∩ D. If the highest-
ranked cell D that intersects U3 does not intersect U2, then the first and third terms
in the equality are both determined by PlD and must be ⊥ because U2 ∩D = ∅.

Finally, the measure Pl is acceptable (as required) because the underlying cell-
specific measures are acceptable.

The remainder of the proof is a relatively straightforward extension of the prob-
abilistic case. That i−-choice sets are independent of i-information sets follows
from Lemma D.2, using the facts that agent i− maintains generalized run-based
plausibilistic fi− -secrecy, cells (and thus i−-choice sets) have non-⊥ plausibility by
construction, and all information sets are in F ′.

E. PROOFS FOR SECTION 6

Proposition 6.5. A limit-closed synchronous trace system Σ satisfies separabil-
ity (resp. generalized noninterference) iff H maintains synchronous secrecy (resp.,
synchronous fhi-secrecy) with respect to L in R(Σ).

Proof. We give the argument for separability here; the argument for generalized
noninterference is similar and left to the reader. The forward direction follows from
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Proposition 6.3. For the converse, suppose that H maintains synchronous secrecy
with respect to L in R(Σ). Given τ, τ ′ ∈ Σ, let τ ′′ be the trace such that τ ′′|L = τ |L
and τ ′′|H = τ ′|H . We must show that τ ′′ ∈ Σ. Since H maintains synchronous
secrecy with respect to L in R(Σ), for all m, there exists a run rm ∈ R(Σ) such
that rm

L (m) = rτ
L(m) and rm

H (m) = rτ ′

H (m). Thus, for all m, there exists a trace
τm ∈ Σ such that τm

m |L = τ |L and τm
m |H = τ ′|H . It follows that τ ′′m = τm

m for all m.
Since τm ∈ Σ for all m, it follows by limit closure that τ ′′ ∈ Σ, as desired.

Proposition 6.8. If Σ is an asynchronous trace system that satisfies asyn-
chronous separability (resp. asynchronous generalized noninterference), then H
maintains total secrecy (resp. total fhi-secrecy) with respect to L in R(Σ).

Proof. Suppose that Σ satisfies asynchronous separability, and let (r,m) and
(r′,m′) be arbitrary points. By the construction ofR(Σ), there exist traces τ, τ ′ ∈ T
such that rL(m) = τ |L and rH(m) = τ ′|H . Let τ ′′ be an interleaving of τ |L and
τ ′|H . Since Σ satisfies asynchronous separability, τ ′′ ∈ Σ. Let T ′′ be a run-like set
of traces that contains τ ′′. (Such a set must exist because Σ is closed under trace
prefixes.) By definition, rT ′′ ∈ R(Σ). Taking m to be the length of τ ′′, it follows
that r′′L(m′′) = rL(m) and r′′H(m′′) = r′H(m′). Thus, H maintains total secrecy
with respect to L.

The proof for asynchronous generalized noninterference (and total fhi-secrecy) is
analogous, and left to the reader.

Proposition 6.9. If Σ is an asynchronous trace system that is closed under in-
terleavings, then Σ satisfies asynchronous separability iff H maintains total secrecy
with respect to L in R(Σ).

Proof. We have already established the forward direction. For the converse,
suppose that H maintains total secrecy with respect to L in R(Σ), and that Σ is
closed under interleavings. Given τ, τ ′ ∈ Σ, there exist points (r,m) and (r′,m′)
in PT (R(Σ)) such that rL(m) = τ |L and r′H(m′) = τ ′|H . Since H maintains
total secrecy with respect to L in R(Σ), there exists a point (r′′,m′′) such that
r′′L(m′′) = rL(m) and r′′H(m′′) = r′H(m′). By the construction of R(Σ), there exists
a run-like set T of traces such that r′′ = rT . Taking τ ′′ to be the traces of length
m′′ in T , it follows that τ ′′|L = τ |L and τ ′′|H = τ ′|H . Because Σ is closed under
interleavings, τ ′′ ∈ Σ as required.
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