TYPE THEORETICAL FOUNDATIONS
FOR

DATA STRUCTURES, CLASSES, AND OBJECTS

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Alexei Pavlovich Kopylov

January 2004

This document is in the public domain.

TYPE THEORETICAL FOUNDATIONS
FOR
DATA STRUCTURES, CLASSES, AND OBJECTS

Alexei Pavlovich Kopylov, Ph.D.
Cornell University 2004

In this thesis we explore the question of how to represent programming data structures in a constructive
type theory. The basic data structures in programing languages are records and objects. Most known
papers treat such data structure as primitive. That is, they add new primitive type constructors and sup-
porting axioms for records and objects. This approach is not satisfactory. First of all it complicates a type
theory a lot. Second, the validity of the new axioms is not easily established. As we will see the naive
choice of axioms can lead to contradiction even in the simplest cases.

We will show that records and objects candedinedin a powerful enough type theory. We will also
show how to use these type constructors to define abstract data structure.

BIOGRAPHICAL SKETCH

Alexei Kopylov was born in Moscow State University on April 2, 1974. His parents were students in the

Department of Mathematics and Mechanics there. First year of his life Alexei lived in a student dormitory
in the main building of the Moscow State University. Then his parents moved to Chernogolovka, a cozy
scientific town near Moscow.

Alexei returned to Moscow State University as a student in 1991. Five years later he graduated from
the Department of Mathematics and Mechanics and entered the graduate school of the same Department.
He passed all qualifying exam and almost finish his thesis there, but in 1998 he dropped the graduate
school in Moscow and enrolled in the PhD program at Cornell University.

Now in January 2004 he is looking forward to move to Caltech as a post doctoral fellow.

ACKNOWLEDGEMENTS

| would like to thank here my teachers | had in my life. First of all, | am thankful to my parents Pavel
Kopylov and Ekaterina Gamazova. They inculcated in me a taste for mathematics in my early ages. For
example, when | was a little boy, my father brought me a pair of sand-glasses. | played with them and
came up with different puzzles, likeow to measure eleven minutes using sand-glasses for three and ten
minutes?My father also taught me programming in Pascal when we did not have a computer.

| am also thankful to Raymond Smullyan, although | never met him in person. My early interest in
mathematics is partially due to his great bookRAhat Is the Name of This Book? with logical puzzles
about knights and knaves. My father read me the problems from this book (I could hardly read at that
time) and | competed with my mother trying to solve the problems first.

My special thanks are due to my school math teacher Alexandr Nikolaevich Zemlyakov “Zemmm”. |
admire his mathematical taste and his teaching style.

Unfortunately some people who had great influence on me are already passed away. | am very grateful
to my grandfather Andrei Konstantinovich Gamazov, who was a great teacher, | am very proud of him. |
am also very grateful to my other grandfather Nikolai Georgievivh Kopylov, who taught me chess. My
schoolfriend Ivan Soloviev had a big influence on me. He was one year older than me and was always a
step ahead of me in mathematical Olympics.

I am thankful to my Moscow adviser Sergei Artemov. He helped n@t &oth in Moscow and at
Cornell. Thanks to him | am here. | owe many thanks to my Cornell adviser Robert Constable for his
guidance and many useful discussions.

| was very pleased to work with my colleague and namesake (although he spells his name differently)
Aleksey Nogin. Part of the thesis is a joint work with Aleksey. Many thanks are due to my other colleague
Jason Hickey for his discussions and early appreciation of my work.

| am also thankful to Christoph Kreitz and Stuart Allen for reading and reviewing my work. | want
to thank many other Cornellians included: Anil Nerode and Jon Kleinberg for serving on my committee,
Dexter Kozen who said that “a computer scientist is a mathematician with a job”, Evan Moran for his
comments on my work during PRL seminars, Mark Bickford, working with him was a pleasure, Pavel
Naumov and Lena Safirova for their help during my first year at Cornell, Alexandre Evfimievski for his
sharp criticism, and many others.

| also want to thank the PRL seminar for giving me a forum for presenting my ideas and helping me
refine them — especially the long series on objects.

| also acknowledge support from the DoD Multidisciplinary University Research Initiative (MURI)
program administered by the Office of Naval Research (ONR) under Grant NO0014-01-1-0765, the De-
fense Advanced Research Projects Agency (DARPA) under Grant F30602-98-2-0198, and by NSF Grant
CCR 0204193.

TABLE OF CONTENTS

Introduction 1
1.1 Records e e e 1
1.2 Objects e 1
1.3 Organizationofthe Thesis e 2
Constructive Type Theory 3
2.1 Martin-Lof Type Theory o e 3
211 TYPES . o e e e e e 3
2.1.2 DependentTYPES v v i i i e e e e e e 3
2.1.3 Universe TYPES o v v i i i e e e e 4
2.2 Functionality e 4
2.2.1 Pointwise Functionality 4
2.2.2 Pairwise Functionality 4
223 Comparing e e e e e 5
2.3 Additional Types 5
231 Squiggle Equality 5
2.3.2 The SetType Constructor i 6
2.3.3 Subtyping e 6
2.3.4 Intersection e 6
235 Union e 7
2.3.6 Elimination Rules for Intersections and Unions in Different Functionalities . .. 10
Record Type and Dependent Intersection 11
3.1 Dependentintersection 12
3.1.1 SemantiCs e e e e 12
3.1.2 Thelnference Rules e 13
3.2 ReCOrds e 14
3.2.1 PlainRecords e e 14
3.2.2 DependentRecords e 16
3.3 TheRecordCalculus 17
3.3.1 The Formal Definition 17
3.3.2 TheRuUles e e 20
3.3.3 Examples e 21
Elimination Rule for Independent Records 23
4.1 Weak EliminationRuleo 23
4.2 Naive EliminationRule e 23
4.3 Strong EliminationRule 24
4.4 Functions with Limited Polymorphism L. 25
4.4.1 Non-polymorphic Definition of Record Type 25
4.5 Functionality 27
4.5.1 Elimination Rule in Pairwise Functionality 27
4.5.2 Elimination Rule in Pointwise Functionality 27
Other Possible Applications 29
5.1 Sets and Dependent Intersections 29
5.2 VariantType o e e 30
5.2.1 Definitions e e 30
5.2.2 Properties 31
5.3 AbstractAlgebra 31
5.4 JoinOperator e 32

6 Red-Black Trees 33

6.1 Introduction e 33
6.2 Binary Trees. 33
6.3 Sorted Trees o o e e e e e 35
6.4 Red-BlackTrees e 36
6.5 Sorted Red-Black Trees i i i e 38
7 Objects 40
7.1 Objectinstances e 40
7.1.1 Theoperationswithobjects 40
7.1.2 Formal definitions 42
7.1.3 Additional Properties 43
7.1.4 Notations e e e 44
7.1.5 ReCUrsion e e e e e 44
7.2 TYPING . . o o e e e 44
7.3 Definition of Object Types e 45
7.4 Extensibility 46
7.5 Updatable Fields 46
7.6 Topology 47

7.6.1 Continuousfunctions 47

7.6.2 Semicontinuous functions L L 47

7.6.3 Closedpropertiesandsets 48

7.7 Extensible objects: Formal definitions oL oo 48

7.8 ObjectCalculus 50

7.9 Example e e 52
Bibliography 53

Vi

21
2.2
2.3
24

3.1
3.2

7.1
7.2
7.3

LIST OF TABLES

Inference rules for the binary intersectiontype 7
Inference rules for the family intersectiontype 8
Inference rules forthe uniontype 9
Inference rules for the family uniontype L 9

Rules for dependentintersection 13
Inferencerulesforrecords 19
Reduction rules for objectcalculus 43
Basic typing rules of objectcalculus L L 51
Some derived rules of objectcalculus L L 51

vii

Chapter 1
Introduction

This thesis is done in the framework of a certain constructive type theory, which is an extension of Martin-
Lof type theory. Type theory is powerful tool for formalizing programming languages. It already contains
the functional programming languagg-¢alculus) and typing systems. The typing system is powerful
enough to represent any program specification. In this thesis we research the question of expanding type
theory with more programming tools.

1.1 Records

One of the important tools of any programming languages is the record type. We also will consider a
dependent record type, that is, a record type where the types of components may depend of previous
components (likdx : A;y : B[x]}). Records and especially dependent records are a powerful tool for
programming, representing mathematical concepts and data structures. In the last decade several type
systems with records as primitive types were proposed. We will see that the record type is too complex
a type to be primitive, and naive axiomatization leads to contradiction (see Section 4.2). The question
arose: whether it is possible to define the record type in existent type theories using standard types without
introducing new primitives.

It was known thaindependentecords can be defined in type theories with dependent functions or
intersection. On the other haddpendentecords cannot be formed using standard types [5]. Hickey [20]
introduced a complex notion ekry dependent functions represent dependent records. Here we extend
the constructive type theory with a simpler type construdependent intersectione., the intersection
of twotypes, where the second type may depend on elements of the first one (not to be confused with the
intersection of a family of types). This new type constructor allows us to define dependent records in a
very simple way.

Dependent intersection is very simple and natural type constructor. It also allows us to define the set
type constructor (which is primitive in the original theory), thus it simplifies the overall type theory.

Also it turns out that natural join operatox] is just an intersection of sets of records.

1.2 Objects

Another important concept in programming languages is object-oriented programming. Unfortunately
object-oriented languages are hard to represent in the type theories due to self-application. (See [1, 17].)

In the last decade several encodings of objects in type theory were proposed. See a comparison among
the most basic ones in [7]. AImost every existing encoding uses an extension of yidijas a target
type theory.

We show how to embed object types in the constructive type theory using intersection and union. The
object encoding in this system has its own specific characters.

Objects may have recursive methods. In our system we have total functions. That is, we allow
recursive functions as soon as we can prove that they terminate. So we are looking for a definition of a
type of objects, such that it allows recursive methods and at the same time allows for a type of objects
with a certain method, application of this method to any object of this type should always terminate. Note
that in F-like systems application of a method does not necessary terminate. Therefore we can not simply
follow the encoding of objects ii’-like systems. It also shows that there is no simple way to define
objects as primitives.

We will also see similarities with the existing encodings. Most of the known encodings of the type of
object use an existential type I-like type theories. In our type theory, the union type (Section 2.3.5)

could be used instead of an existential quantifier. That is, we could\ysel[X] instead of3X.A[X],

X:U;
whereU; is the universe (a type of types, Section 2.1.3) of léveDn the one hand, the union type is
more powerful: we can take a union over types satisfying some condition. This feature allows us to find

a simpler encoding of objects. Also the union type does not require packing/unpacking its elements as
does an existential type. On the other hand, the unions type has its own restrictions. We cannot take union
over all types, but only over types of a particular levelThis union will be a type of level + 1 (i.e.,

U A[X] € U;41). That means we are not allowed to substitute this type in plac€.oThat is, for
X:U;

example, we cannot prove thdf | J A[X]] € |J A[X]. This problem significantly complicates our
; X:U

theory of objects. In particular, it reauires that types of methods should depend continuouslySeif the
type.

Our encoding of object types has most of the standard object-oriented features such as polymorphism,
inheritance, method abstraction, method overriding and so on. Also our object type allows full abstraction.
That is, users do not have access to abstract fields. So two different implementations of an object may be
equal from the interface point of view. Moreover, this can be formally proved inside system itself. We do
not allow binary methods on objects, since it would contradict full abstraction.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 gives an overview of Mafrtiypke
theory and the constructive type theory extension of it implemented in MetaPRL.

In Chapter 3 we introduce the new type construdigpendent intersecticand show that record types
can be defined using this constructor. Even with this new definition of the record type, finding the right
elimination rule a for record calculus is challenging. In Chapter 4 we will show that a naive elimination
rule for records is contradictory. We will discuss how functionality affects the elimination rule. We also
introduce an idea of functions with limited polymorphism.

In Section 5.1 we show that our dependent intersection can replace the set type constructor. In Sec-
tion 5.2 we will show the definition of the variant type which is dual to the record type. In Section 5.3
we show that our record calculus could be used to define abstract algebraic structures. In Section 5.4 we
show that natural join operatok{ is just an intersection of sets of records.

In Chapter 6 we show an example of an abstract data strucfiare,and give a formally correct
implementation of this data structure using red-black trees.

In Chapter 7 we encode objects into the type theory.

Chapter 2
Constructive Type Theory

Our work is done in the setting of constructive type theory as implemented in the MetaPRL logical
framework [22, 19, 23]. Our type theory is an extension of the constructive type theory implemented
in NuPRL [8, 9], which is an extension of Martinéf's type theory [30].

In this chapter we give a short overview of our type theory.

2.1 Martin-L of Type Theory

First let us give an overview of the original Martirdf. Type Theory [30].

2.1.1 Types

The basic notion in the theory tgpe Type is a primitive notion. Two main judgments about types are
AType meaning thatl is a type andi € A meaning that: has typeA. Each typeA is associated with
an equality relation on elements of this type= b € A. There is also the equivalence relation on types:
A = B. So, Martin-Lof’s type theory has the following four forms of judgments:
AType Ais a well-formed type
A=B A andB are equal types
ac A a has typed
a=be A aandbare equal as elements of tyde
The examples of types include simple types likéor integers), 1, —1 andB for booleans. We can
also construct new types using basic type constructors, like preflucB for the type of pairga, b) and
function typeA — B for the type of functions\z.b[x].
Some notations: we will usg|z, . .., x,] for expressions that may contain free variables. .., z,,
(and probably some other free variables), did,, .. ., t,,] for the substitution of terms’s for all free
occurrences aof;’s. We call such variables that stands for tesesond order variabledf a second-order
variable is in scope of a bound variable we will always write all variables it may contain. For example
we will write Ax. f[x] for general\-expressions. The expressian. f means thaf does not contain free
variables.
Functions types represetuttal computable functions. For exampley.b[z] has typeZ — Z if for
any intege evaluation ob|a] terminates and returns an integer. Thus, we are allowed to have recursive
functions as long as we can prove that they terminate on any input from their domain. Of course that
makes type-checking undecidable.
Membership and equality in a type is extensional. In particular it means that two fungtiandg
are equal in the typd — Bif f(a) = g(a) € B foranya € A.
Our type theory uses the proposition-as-types principle. That is, we will consider any type as a
proposition which is true when this type is non-empty.

2.1.2 Dependent Types

Martin-Lof’s type theory also has dependent types, namely dependent product and dependent function
type.

Suppose, we have a type expressi®n] that contains a free variableranging over a typel. For
example,B[z] may be[0..z] which represents an initial sequence of natural numbers. This expression is
atype wherr € N.

Then we can form a dependent product typeA x Blz] (also known as &-type) which is a type of
all pairs(a, b) wherea € A andb € Bla]. For example, ifA = N andB[z] = [0..z] thenz : A x B[z] is
a type of pairs of natural numbefs, m), wherem < n.

We can also form a dependent function type A — B[z] (also known as &l-type) which is a type
of all functionsAxz.b[x] whereb[a] € Bla] for anya € A. For example, ifA = N andB[x] = [0..z] then
x: A — Blz] is atype of functiong’(n), s.t.0 < f(n) < n.

Dependent types make the theory powerful enough to represent any mathematical statement.

2.1.3 Universe Types

Introduction of a type of all types leads to contradiction (Girard’s paradox [15]). But we can introduce
a sequence of universe typBs, Us, WherelU; is the universe of the first level, a type of all types
constructed without using universéds; is the universe of the second level, a type of all types constructed
without using universes of any level above 1. And so on.

In this thesis we will assume that we fix some universe I&vet U;, and we will writeU’ for U,
andU” for U, 5.

2.2 Functionality

In our type theory we deriveequentsEach sequent has a form:
21 Hyyoo s Holaql; . csan : Hylz; .o s 2n—1] F Clzy; .. xy) (2.2)

Herez;'s are declared variableg];’s are hypotheses ard is a conclusion. The-th hypothesis may
depend on the variables declared before it, and conclusion may depend on all variables.

Roughly speaking the sequent (2.1) is true wiién;; .. .;z,] is true (i.e. non-empty) for alt;’s
from H;[z1;...;2;—_1]. The formal definition of the truth of the sequent deals with functionality. Basi-
cally, we say that a typ€[«] is functional overr : T if t; =ty € T impliesC[t1] = C[ta].

There are different nonequivalent approaches to define what it means for a sequent to be true. Orig-
inally Martin-Lof required that any hypothesi$; must be functional over previous hypotheses and the
conclusion must be functional over all hypotheses.

The type theory implemented in NUPRL uses a weaker requirement that allows one to formulate
stronger rules (for example a rule for induction over natural numbers). This approach ispratiedse
functionalityand was discovered by Stuart Allen in [3].

Another version of functionality was used in [31]. Aleksey Nogin later independently rediscovered it
and called ifpairwise functionality

In the thesis we will consider pairwise and pointwise functionality.

2.2.1 Pointwise Functionality

Pointwise functionality is fairly complicated notion. We will use Aleksey Nogin’s presentation of it.
Let we are given a list of hypothesEs

Hl,ﬂfg HQ[xl] ;Tn :Hn[xl;---;'rn—l]~
Then we writet for a list of termsty, to, . . . , t,,. We will also write
t e T[] forVi € [l.n]. t; € H[ty;...;ti1];

t—t/ F[] fOfVZE[ln]tL:tQEHL[tl,,tl_l],

Then a sequerdt - C[Z] said to berue in pointwise functionalityf
r[f)) =
/

Vi.(FeT[E] AVE. (F=1 € T[] = T[] =
= C[t']))

vil.(F =1t e T[t] = C[t] A C[F]
2.2.2 Pairwise Functionality

The alternative definition of the truth of a sequent is pairwise functionality. Using the above notation, we
say that a sequeitt C[Z] is true in pairwise functionalityff

VEvE . (T[E] = T[] A £ = e T[t]) = (C[f] AC[t] = C[H))

2.2.3 Comparing

Most of the rules are true in both functionalities. But some rules are true only in pointwise functionality,
and some rules are true only in pairwise functionality.
The most important rule that holds only in pairwise functionality is fla¢ rule (a form of theC'ut
rule):
Tz A; Alz] F Cla] 'Fac A
T; Ala] - Clal

In pointwise functionality this rule is invalid, only a weaker form of this rule (whienloes not depend
onz) is valid:

(Letz =a€ A)

Tiz: A;AF Cla] 'Fac A
I AF Clal
(Note that according to our notations the above rule meang\hates not contain free occurrencescof

The following corollary of thelLet rule is also invalid in pointwise functionality (but of course holds
in pairwise functionality):

Tz : B; Alz] - Clx] r'HACB
Ty A; Alz] F Cla]
On the other hand, the following rule is true in pointwise, but not in pairwise:

Tyt Tt x: Al At Ht =t €T
Tyt Tt x : Alt']; Alx; t] = Ct;] (PointwiseSubstitute)
Ty;¢: T 0olt]s o - Aft]; Alzs €] B Cle;

This rule states that we can replace a variable declared @sby a termt’ if we know thatt =’ € T.
Sometimes this rule is stronger than a general substitution rule (which is true in both functionalities). The
later rule requires that typé([¢] is functional over : T"

D : Aft]; Alx]; 2 : T F Alz] Type
Diz: Alt]; Azl Ft=t €T
Tya: Alt']; Alz] = Clx)

Iyx o Alt]; Alz] F Clz)

Rules stated in this thesis are true for both functionalities, unless otherwise mentioned.

2.3 Additional Types

The constructive type theory implemented in MetaPRL has some additional type constructors, some of
them inherited form the NuPRL type theory.

2.3.1 Squiggle Equality

The squiggle equality on terms = b is defined as the symmetric transitive closure of the reduction
relation. Howe showed that it is a congruence [24].
For example we can prove that for any elemenf type A x B

p = (mip, map) .

Also we haven-reduction for anyf € A — B:

f=xz.(fx)

2.3.2 The Set Type Constructor

Our type theory has a primitive type constructor for set types [9]. By definition, the seftyp&| P[x]}
is a subtype of”", which contains only such element®f T' that satisfy property?[x] (see [9]).

Example 2.1 The type of natural numbers is defined¥s- {n : Z|n > 0}. Without set types we would
have to defin& asn : Z x (n > 0). In this case we would not have the subtyping propBrty Z.

Later in the thesis (Section 5.1) we will replace this primitive type constructor by more fundamental
primitive type, thus simplifying the type theory.

2.3.3 Subtyping

Our type theory also has a subtyping relation [31]. The subtyping relation as well as the membership
relation are extensional. That means tAat B does not say anything about structure of these types, but
only means that all elements of typeare also elements of typg and if two elements are equal i

then they are also equal 1. As a result the subtyping relation is undecidable (as well as type checking).

Example 2.2 If A C Bthen(B — C) C (A — C). It may seem strange at a first: suppo$éeB and

C are finite types and, b andc are the number of elements in these types correspondinglyZhenC

hasc’ elements andl — C hasc® < ¢’ elements. This example shows that a subtype may have more
elements than a supertype!

Remark Of course, when we say that a tygehasn elements, we mean that typehasn differentelements.
Actually this type may have many elements that are equal from the point of view of this type.

After the subtyping is defined, the natural question arises: what is the biggest (w.r.t. subtyping)
common subtype of two or more types and what is the smallest supertype of two or more types?

2.3.4 Intersection
Binary Intersection

It is easy to see thatcan be in a common subtype dfand B only if t € A andt € B. Also, t; may

be equal td, in a common subtype only if they are equal in batland B. Since the more elements the

type has and the more elements are equal in a type, the "greater” the type is (in the sense of subtyping), in
order to get the biggest common subtypeiaind B, we need to take all the objects that are botH iand

in B and make all elements that are equal in hdtand B equal in our type. In other words, the biggest
common subtype of two types is a type whose set of members is an intersection of sets of members of
those types and whose equivalence relation is an intersection (as sets of pairs) of equivalence relations of
those two types. We call such type intersectiorof A and B, written: AN B.

Example 2.3 Az.z + 1 is an element of the tyg& — Z) N (N — N).

Example2.4LetA = N —- Nand B = Z~ — Z (whereZ~ is a type of negative integers). Let
id = Az.x andabs = A\x.|z|. Thenid andabs are both elements of the typen B. Althoughid andabs
are equal as elements of the tylNe— N (because these two functions do not diffeNynid andabs are
different as elements @~ — Z. Thereforejd # abs € AN B.

Example 2.5 Let A = {0} — B, where{0} is a singleton subset &. ThenA is a type of functions that
maps0 to a boolean value. Obviously, this type has two elements. Naf/{et{1} — B. This type also
has two elements. But their intersectiordis B = {0, 1} — B has four elements!

The inference rules for the intersection type are presented in Table 2.1.

Table 2.1: Inference rules for the binary intersection type

' AType I' - BType

FCAT BTy (TypeFormation)
: '_FAl—:AJLer/ B :FA5 f B = (upebauatity)

'+ arel_/: = Arml—; €B (Introduction)

'rzre ANB IFzecAnB (Elimination)!

I'FzeA I'zeB

1See also Section 2.3.6

Intersection of a Family of Types

It is easy to see that the same is true if we take the largest common subtype of more than two types or if
we take a largest common subtype of a whole family of types. We call the biggest common subtype of
several types or of a family of types intersection typef those types.

Example 2.6 Az.z has typed — A for any typeA. Therefore

Az.x € ﬂAH A
A:U

Example 2.7 LetTop= () Woid. This type contains anything, and any two element of this type are
z:Void

equal. This is similar to the typéoid — Void, but the later type contains onl+terms. Again any two
elements are equal oid — Void.

It seems very strange thabp € Top, and anyU; € Top, evenU; C Top, wheneveifop € U;. But
it does not contradict anything. The reason is similar to the reasonwh¥; € Void — Void does not
lead to a contradiction. Althoughopis a supertype of any type itis very trivial, because it has the trivial
equality. So, we can not define something like “the type of all types” Ugipg

The inference rules for the family intersection type are presented in Table 2.2.
Note that we can define binary intersection as a partial case of of family intersection:

AmB:ﬂif b then A else B
b:B
2.3.5 Union
Binary Union

A similar argument shows that whenever either A ort € B, t should also be in common supertype
of A and B, and whenevet; = t, in either A or B, t; should be equal t6, in any common supertype.
Similarly, for the intersection type, the the set of all members of the smallest common supertype of two

Table 2.2: Inference rules for the family intersection type

' AType Tz : AF Blz] Type

I't N Blz] Type (TypeFormation)
x:A
'FA=A" Tix:AF Bla] = B'[2] :
' Blz] = N B'[«] (TypeEquality)
x:A A’
Iz: AF b€ Bla] |
I'tbe N Blz] (Introduction)
z:A
Iyz: AFb=1V € Blx] |
FE
I'-b=10 € () Blz] (Equality)
z:A
I'Fac A F}—bemB[x]
= (Elimination)!

I' b€ Bla)

ISee also Section 2.3.6

types is just a union of the sets of members of those types. However the union of two equivalence relations
is not necessary an equivalence relation (it is not necessarily transitive). So the equivalence relation of the
smallest common supertype is the smallest equivalence relation containing the union of the equivalence
relations of the two types — the transitive closure of that union of the equivalence relations. We call this
type theunionof A andB and denote it byd U B.

The union considered as a proposition is a disjunctiény B is true iff A is true orB is true. But
unlike the standard disjunction, union is not constructive. Knowing B we cannot always say what is

true: A or B. Therefore the rule
z:AFC z:BFC

r: AUBFC
is not constructively true. Indeed if a withess@fis constructed differently in case whence A and in
case when: € B then we have no way to construct a witness if we now only thatA U B. But in case
whenC does not have the computational context, like membership, this rule would be true.
The inference rules for the union type are presented in Table 2.3.
The following holds for union. Iff € A — C andf € B — C then
feAUB —C.

Union of a Family of Types

Similarly we can define the union of a family of types.
The inference rules for the family union type are presented in Table 2.4.

Example 2.8 Let P[z] be a predicate on some € A. Then |J Plx] is a true proposition (i.e., non

z:A
empty type) if there is an element A, s.t. P[a]. Therefore union could be considered as an existential
quantifier. The difference between union type and standard existential quagtifierA.P[z] = «x :
A x P[x] is that union type “hides” thdirst component of the existential quantifier. That is, the witness
of the union type is just a witness Bfz] for somer € A, but it does not contain itself. Compare with
the set type{x : A | P[z]}. The set type hides the second component of the existential quantifier. The
witness of this type is justfrom 4, s.t. P[x].

Table 2.3: Inference rules for the union type

' AType I' - BType
I'- Au BType

r-A=A4A r'-B=D0B
r-AuB=A"UB

F'Fac A I'F BType I'tbeB '+ AType
I'rae AUB 'kbe AUB

N'Fa=d €A 't BType 'kb=beB 't AType
'Fa=a" € AUB 'Fb=b € AUB

Tiu: A A clu] € Clul Tiu: B,At clu] € Clu]
Tiu: (AUB); AR clu] € Clu)

1See also Section 2.3.6

(TypeFormation)

(TypeEquality)

(Introduction)

(Equality)

(Elimination)!

Table 2.4: Inference rules for the family union type

'+ AType Tz : AF Blz] Type
'+ | Blz] Type
x:A

rA=A I';z: AR Blz] = B[]

T U Bl = U Bl

F'aec A I'+b € Bla Iz : AF Blz] Type
'kbe | Blz]
T:A
'FaeA TFb=10 € Bld I';z: A+ Blz] Type
b=V e | Blz]
z:A
Tz : Ayu: Blz], At clu] € Clu)
T;u: J Blz],AF clu] € Clu]
z: A

1See also Section 2.3.6

(TypeFormation)

(T'ype Equality)

(Introduction)

(Equality)

(Elimination)!

10

By analogy with intersection we can define binary union as a partial case of of family union:

AuB=|Jif bthen A else B
b:B

2.3.6 Elimination Rules for Intersections and Unions in Different Functionalities

All of the above rules for union and intersection hold in both functionalities. In pairwise functionality
we can prove a stronger elimination rule for intersections and in pointwise functionality we can prove a
stronger elimination rule for unions.

In pairwise functionality we have théet rule (Section 2.2.3). Using this rule and the elimination
rules for intersection from Tables 2.1 and 2.2 we can prove stronger elimination rules:

Iz Ay : By Alwsyl - Clas g
Tiu: (z: AN B); Alusu] B Clu; ul

T u: OAB[;L'};A[U;U] FacA T;u OAB[QL'};U : Bla]; Alu; v]); u=veBla] F Clu; v]
I u: QB[x];A[u; v| F Clu; v

In pointwise functionality using the weaket rule, we can only prove weak versions of the above
rules whereA does not depend amn
T;z: A;y: B;AE Clx;y
Tyu:(z: ANB); A Clu;u]

Tyu: () Blzl;AFac A T;u: () Blz];v: Blal; Ayu = v € Bla] - Clu; v)
z:A z:A
T;u: () Blx]; A F Clu;]
z:A

Oppositely, the elimination rules for union type are stronger in pointwise functionality. In the elim-
ination rules from Tables 2.3 and 224 does not depend on. In the pointwise functionality using
PointwiseSubstitute rule (Section 2.2.3) we can make these rules stronger by allatvitmydepend on

" Tyu: A Afu] - cfu] € Clu] Tiu: B Au] - cfu] € C[y]

T;u: (AU B); Afu] F clu] € Clul

T;z: Ayu: Blz]; Alu] b cu] € Clu]
Tu: Li‘B[x];A[u] Fclu] € Clul

These rules are invalid in pairwise functionality.

Remark 2.9 Intersection of types was introduced in [11] and [37]. Our interpretation of intersection
and union is most close to [34]. The understanding of semantics and rules for intersection and union is
our join work with Aleksey Nogin.

Chapter 3
Record Type and Dependent Intersection

In general, records are tuples of labeled fields, where each field may have its own type. In dependent
records (or more formally, dependently typed records) the type of some components may depend on
values of the other components. Since we have the type of typgalues of record components may

be types. This makes the notion of dependent records very powerful. Dependent records may be used
to represent algebraic structures (such as groups) and modules in programming languages like SML or
Haskell (see for example [4, 18]).

Example 3.1 One can define the signature for an ordered set as a dependent record type:

OrdSetSig = {t:U;less:t —» t — B}

This definition can be understood as an algebraic structure as well as an interface of a module in a
programing language.

Example 3.2 The proposition-as-type principle allows us to add the property of order as a new compo-
nent:
OrdSet 2 {t:U;less:it — t — B;axm: Ord(t,less)}

whereOrd(t, less) is a predicate stating thatess is a transitive irreflexive relation on. Hereaxm is
a new field that defines the axiom of the algebraic structure of ordered sets (or specification of the module
typeOrdSet).

Example 3.3 In type theories with equality, manifested fields ([28]) may be also represented in the spec-
ification.
IntOrdSetSig 2 {t:U;less:t—t—B;mnf:t=7}

is a signature where is bound to be the type of integers.

From a mathematical point of view the record type is similar to the product type. The essential
difference is the subtyping property: we can extend a record type with new fields and get a subtype of the
original record type. E.gOrdSet andIntOrdSetSig defined above are subtypes@fdSetSig. The
subtyping property is important in mathematics: we can apply all theorems about monoids to included
types such as groups. It is also essential in programing for inheritance and abstractions.

Different type theories with records were proposed both for proof systems as well as for programming
languages ([18, 28, 13, 4, 5, 36] and others). These systems treat the record type as a new primitive. In
the current thesis we are interested in the following natural quessigpossible to express the notion of
records in usual type theories without the record type as primitiiAi@ question is especially interesting
for pure mathematical proof systems. As we saw, the record type is a handy tool for representing algebraic
structures. On the other hand records do not seem to be the basic mathematical concept that should be
included in the foundation of mathematics. Rather records should be defined in terms of more abstract
mathematical concepts.

It is known that it is possible to definedependent recordm a sufficiently powerful type theory
that has dependent functions [20] or intersection [38]. On the other hand, there is no known way to form
dependent records in standard Martiofk type theory [5]. However, Hickey [20] showed thdgpendent
recordscan be formed in an extension of Martirid’s type theory. Namely, he introduced a new type of
very dependent function typeghis type is powerful enough to express dependent records in a type theory
and provides a mathematical foundation of dependent records. Unfortunately the type of very dependent
functions is very complex itself. The rules and the semantics are probably more complicated for this type
than for dependent records. The question is whether there is a simpler way to add dependent records to a
type theory.

In this thesis we extend the NuPRL type theory with a simpler and easier to understand primitive
type constructordependent intersectionThis is a natural generalization of the standard intersection

11

12

introduced in [11] and [37]. Dependent intersection is an intersectibmatypes, where the second type

may depend on elements of the first one. This type constructor is built by analogy to dependent products:
elements of dependent products are pairs where the type of the second component may depend on the
first component. We will show that dependent intersection allows us to define the record type in a very
simple way. Our definition of records is extensionally equal to Hickey’s, but is far simpler. Moreover
our constructors (unlike Hickey's) allow us to extend record types. For example, having a definition of
monoids we can define groups by extending this definition rather than repeating the definition of monoid.

3.1 Dependent Intersection

We extend the definition of intersectiohn B to a case when the typB can depend on elements of
the typeA. Let A be a type and3[x] be a type for alk: of type A. We define a new typalependent
intersectionz: A N B[z]. This type contains all elementsfrom A such that is also inB[a] (see below
for equality).

Remark 3.4 Do not confus¢éhe dependent intersectiarith the intersection of a family of typ€3,,. , B[z].
The latter refers to an intersection of typ&sz| for all x in A. The difference between these two type
constructors is similar to the difference between dependent produdtsc B[z] = ¥,.4 B[z] and the
product of a family of typeH,. 4 B[z] = : A — Blx].

Example 3.5 The ordinary binary intersection is just a special case of a dependent intersection with a
constant second argumer:N B =z : AN B.

Example 3.6 Let A = Z and B[z] = [0 .. #2—5]. Thenx : A N Blx] is a set of all integers, such that
0<ax<z?-—5.

Two elements: anda’ are equal in the dependent intersectiod N B[z] when they are equal both
in A andBa].

Example 3.7 LetAbe{0} — NandB[f]be{1} — [0 .. f(0)], where{0} and{1} are types that contain
only one element(and1 respectively). Them: A N B[z] is a type of functiong that map0 to a natural
numberny and mapl to a natural number; € [0 .. ng]. Two such functiong and f’ are equal in this
type, when firstf = f' € {0} — N, i.e. f(0) = f’(0), and secondf = f' € {1} — [0..f(0)], i.e.
) = /(1) < £(0).

3.1.1 Semantics

We are going to give the formal semantics for dependent intersection types based on the predicative
PER semantics, for the NuPRL type theory [2, 3]. In the PER semantics types are interpreted as partial
equivalence relations (PERS) over terms. Partial equivalence relations are relations that are transitive and
symmetric, but not necessary reflexive.

According to [3], to give the semantics for a type expressibme need to determine when this
expression is a well-formed type, define elements of this type, and specify the partial equivalence relation
on terms for this typed = b € A). We should also give an equivalence relation on types, i.e. determine
when two types are equal. See [3] for details.

Extension of the Semantics We introduce a new term constructor for dependent intersectiof N B|x].
This constructor bounds the variahlén B|x]. We extend the semantics of [3] as follows.

e The expression : AN B[z] is a well-formed type if and only il is a type andB[z] is a functional
type overz : A. Thatis, for any: from A the expressio3[x] should be a type andif =2’ € A
thenB[z] = B[z/].

e The elements of the well-formed type: A N Blz] are such terma thata is an element of both
typesA and Bla).

13

Table 3.1: Rules for dependent intersection

' AType Tz : AF Blz] Type

T'F (z - AN Bla]) Type (TypeFormation)

r-A=A4 I';z: AR Blz] = B[] .
TF (z: ANBa)) = (v : A N B'a)) (TypeEquality)

'Fac A 't a € Bla 'tz : AN Bz] Type ,
Trac(@: AN B (Introduction)
'Fa=d €A I'ta=d € Blq] 'z : An Blx] Type (Equality)
'Fa=d € (z: AN B[z ety
Tiu:(z: AN Blz]); Az Ay - Blz] F Clz,] (Elimination)!

Tiu: (z: AN Blz]); A F Clu, u]

HIn pairwise functionality we can make this rule stronger, cf. Section 2.3.6

e Two elements: anda’ are equal in the well-formed type : A N Blz] iff a = o/ € A and
a=d € Blal.

e Two typesz : AN Blz] andz : A’ N B'[z] are equal wheml and A’ are equal types and for all
andy from A if x =y € AthenB[z] = B'[y].
3.1.2 The Inference Rules

The corresponding inference rules are shown in Table 3.1.
Theorem 3.8 All rules of Table 3.1 are valid in the semantics given above.
This theorem is proved by straightforward application of the semantics definition.

Theorem 3.9 The following rules can be derived from the primitive rules of Table 3.1 in a type theory
with the appropriate cut rule.
'Fa=d € (z: AN Blz])
'ta=da € A
I'Fa=d € (z: AN Blzx])
I'ka=d € Bla

Theorem 3.10 Dependent intersection is associative, i.e.
x: AN (y: Blz]NClx,y]) =c z: (x: AN Blz]) N Clz, 2]

The formal proof is checked by the MetaPRL system. We show here a sketch of a proof. An element
has typer : AN(b: Bla]NCla, b)) iffithas typesA andb : B[z] N C[z, b]. The latter is a case iff € B[x]
andz € C[xz,z]. On the other hand; has typezd : (a : AN Bla]) N Clab, ab] iff © € (a : AN B[a]) and
x € Clz, z]. The former means thate A andx € B[z]. Thereforex € a : AN (b: Bla] N Cla, b)) iff
z € Aandzx € B[z|andz € C[xz,z]iff z € ab: (a : AN Bla]) N Clab, ab).

14

3.2 Records

We are going to define record types using dependent intersection. In this section we informally describe
what properties we are expecting from records. The formal definitions are presented in Section 3.3.

3.2.1 Plain Records

Records are collections of labeled fields. We use the following notations for records:
{x1 =a1;...;%, = an} (3.1)

wherexq,...,x, arelabelsanday,...a, are corresponding field values. Usually labels have a string
type, but generally speaking labels can be of any fixed fygie! with a decidable equality. We will use
thetrue type font for labels.

The selection operator.x is used to access record fields.rIfs a record them.x is a field of this
record labeled. That is we expect the following reduction rule:

{x1 =a1;...;2p = an}.x; — a; (3.2)
Fields may have different types. If eaghhas typeA; then the whole record (3.1) has the type
{x1:Ay;. 5%, 0 Ap e (3.3)

Also we want the natural typing rule for the field selection: for any recodd the type (3.3) we
should be able to conclude thak; € A;.

The main difference between record types and proddg¢ts - - - x A, is the that record type has the
subtyping propertyGiven two recordd?; and Rs, if any label declared iR, as a field of typed is also
declared inR, as a field of typeB, such thatB C A, thenRs is subtype ofR;. In particular,

{x1: A1 %0t An C{xr s Ars % 0 A} (3.4)
wherem < n.
Example 3.11 Let
Point = {x:Z;y : Z} andColorPoint = {x : Z;y : Z; color : Color}.

Then the recordx = 0;y = 0;color = red} is not only aColorPoint, but it is also aPoint, SO

we can use this record whenevBbint is expected. For example, we can use it as an argument of the
function of the typePoint — T. Further the result of this function does not depend whether we use
{x = 0;y = 0;color = red} or {x = 0;y = 0;color = green}. Thatis, these two records are equal
as elements of the typ@oint, i.e.

{x =0;y =0;color =red} =
{x=0;y =0;color = green} € {x:Z;y: 7}

Using subtyping one can model the private fields. Consider a rectirat has one “private” fielet
of the typeA and one “public” fieldy of the typeB. This record has the typgx : A;y : B}. Using the
subtyping property we can conclude that it also has fype B}. Now we can consider typgy : B} as
a public interface for this record. A user knows only that {y : B}. Therefore the user has access to
field y, but access to field would be type invalid (i.e. untyped). Formally it means that a function of the
type{y : B} — T can access only the fiejdon its argument (although an argument of this function can
have other fields).

Further, records’ equality does not depend on field ordering. For exafixpte,0; y = 1} should be
equal to{y = 1;x = 0}, moreover{x : A;y : B} and{y : B;x : A} should define the same type.

15

Records as Dependent Functions

Records may be considered as mappings from labels to the corresponding fields. Therefore it is natural to
define a record type as a function type with the doniaihel (cf. [8]). Since the types of each field may

vary, one should use dependent function type (ileype). LetField[l] be a type of a field labeleld For
example, for the record type (3.3) take

Field|l] 2if 1=x then A, else

if I=x, then A, else Top
Then define the record type as the dependent function type:
{x1: A1 %0t Ay} 2 11 Label — Field[l). (3.5)

Now records may be defined as functions:

{x1=a1;...;%, = an} 2
ALif [=x; then a; else (3.6)
if l=x, then a,
And selection is defined as application:
rl 2l 3.7

One can see that these definitions meet the expected properties mentioned above including the sub-
typing property.

Records as Intersections

Using the above definitions we can prove that in the case whefisire distinct labels
{x1: A1 sz Apt = {1 A1} NN {x, s An) (3.8)

This property provides us a simpler way to define records. First, let us define the type of records with
only one field. We define it as a function type like we did it in the last section, but for single-field records
we do not need dependent functions, so we may simplify the definition:

(x:A} 2 (x} > A (3.9)

where{x} is the singleton subset of typkabel. Now we may take (3.8) and (3.9) as a definition of
an arbitrary record type instead of (3.5) and keep definitions (3.6) and (3.7). This way was used in [38]
where{x : A} was a primitive type.

Example 3.12 The record{x = 1;y = 2} by definition (3.6) is a function that mapsto 1 andy to 2.
Therefore it has typg¢x} — Z = {x : Z} and also has typéy} — Z = {y : Z}. Hence it has type

{x:Z;y:Z}={x:Z}n{y: Z}.

One can see that when all labels are distinct, definitions (3.5) and (3.8)+(3.9) are equivalent. That
is, for any record expressiofry : Aq;...;x, : A,} Wherex; # z;, these two definitions define two
extensionally equal types.

However, definitions (3.8)+(3.9) differ from the traditional ones in the case when labels coincide.
Most record calculi prohibit repeating labels in the declaration of record types, e.g., they do not recognize
the expressiofix : A;x : B} as a valid type. On the other hand, in [20] in the case when labels coincide

16

the last field overlaps the previous ones, €.g.; A; x : B} is equal to{x : B}. In both these cases many
typing rules of the record calculus need some additional conditions that prohibit coincident labels. For
example, the subtyping relation (3.4) would be true only when all lahedse distinct.

We will follow the definition (3.8) and allow repeated labels and assume that

{x:A;x: B} ={x: AN B}. (3.10)

This may look unusual, but this notation significantly simplifies the rules of the record calculus, because
we do not need to worry about coincident labels. Moreover, this allows us to have multiple inheritance
(see Section 3.3.3 for an example). Note that the equation (3.10) holds also in [10].

3.2.2 Dependent Records

We want to be able to represent abstract data types and algebraic structures as records. For example,
a semigroup may be considered as a record with the figdds(representing a carrier) angroduct
(representing a binary operation). The typecat is the universéJ. The type ofproduct should be
car X car — car. The problem is that the type @froduct depends on the value of the fietdr.
Therefore we cannot use plain record types to represent such structures.

We need dependent records [5, 20, 36]. In general a dependent record type has the following form

{x:A4;y:Blx];z:Clx,y];...} (3.11)

That is, the type of a field in such records can depend on the values of the previous fields.
The following main property shows the intended meaning of this type.

The record{x = a;y = b;z = ¢;... } has type (3.11) if and only if

a€A, beBlal, ceCClab],
Example 3.13 Let SemigroupSig be the record type that represents the signature of semigroups:

SemigroupSig = {car : U;product : car x car — car}.

Semigroups are elements®fmigroupSig satisfying the associativity axiom. This axiom may be repre-
sented as an additional field:

Semigroup 2 {car: U;
product : car x car — car;
axm: Vz,y, 2 : car. (x-y)-z = x-(y-2)}

wherez - y stands foproduct(z, y).

Dependent Records as Very Dependent Functions

We cannot define the dependent record type using the ordinary dependent function type, because the type
of the fields depends not only on labels, but also on values of other fields.
To represent dependent records Hickey [20] introduced¢ing dependent functidype constructor:

{f|x:A— B[f,x]} (3.12)

Here A is the domain of the function type and the ranggf,] can depend on the argumentnd the
function f itself. That is, type (3.12) refers to the type of all functignsith the domainA and the range
Blg, a] on any argument € A.

For instanceSemigroupSig can be represented as a very dependent function type

SemigroupSig = {r|l: Label — Field[r,1]} (3.13)

17

whereField[r,1] 2

if !=car then U else
if [=product then r.car x r.car — r.car

else Top

Not every very dependent function type has a meaning. For example the range of the function on
argument: cannot depend ofi(a) itself. For instance, the expression

{flz:A— f(x)}

is not a well-formed type.

The type (3.12) is well-formed if there is some well-founded ordem the domaird, and the range
type B[z, f] onaz = a depends only on valuegb), whereb < a. The requirement of well-founded order
makes the definition of very-dependent functions very complex. See [20] for more details.

Dependent Records as Dependent Intersection

By using dependent intersection we can avoid the complex concept of very dependent functions. For
example, we may define

SemigroupSig 2 self : {car : U} N
{product : self.car X self.car — self .car}

Here self is a bound variable that is used to refer to the record itself considered as a record of the type
{car : U}. This definition can be read as follows:

r has typeSemigroupSig, when first,r is a record with a fieldcar of the typeU, and
secondy is a record with a fiel¢product of the typer.car x r.car — r.car.

This definition of theSemigroupSig type is extensionally equal to (3.13), but it has two advantages.
First, it is much simpler. Second, dependent intersection allows us to exteSdsthgroupSig type to
the Semigroup type by adding an extra fiekkm:

Semigroup 2 self : SemigroupSig N
{axm :Va,y,z: self .car (x-y)-z=z-(y-2)}

wherez - y stands forself .product(zx, y).

We can define a dependent record type of an arbitrary length in this fashion as a dependent intersection
of single-field records associated to the left.

Note thatSemigroup can be also defined as an intersection associated to the $ightigroup =

re: {car:U}N
(rp : {product : r..car X r..car — r..car} N
{axm:Vz,y,z :recar (z-y)-z=z-(y-2)})

wherez - y stands for,.product(z,y). Herer, andr, are bound variables. Both of them refer to the
record itself, but. has type{car : U} andr, has type{product : ... }. These two definitions are equal,
because of associativity of dependent intersection (Theorem 3.10).

Note that Pollack [36] considered two types of dependent records: left associating records and right
associating records. However, in our framework left and right association are just two different ways of
building the same type. We will allow using both of them. Which one to choose is the matter of taste.

3.3 The Record Calculus
3.3.1 The Formal Definition

Now we are going to give the formal definition of records using dependent intersection.

18

Records

Elements of record types are defined as functions from labels to the corresponding fields. We need three
primitive operations:

1. Empty record{} 2\
(We could pick any function as a definition of an empty record.)

2. Field update/extension:

r.(x:=a) = (M.if l=x then a else r1l)

. . A
3. Field selectionr.x = rz

We can construct any record by these operations: we défine- a;;...;x, = a,} as
{}.(x1 :=a1).(x2 1= a2). ... (% :=ap)

Record Types

Single-field record type is defined as
{x: A} 2 {x}— A
where{x} a {l: Label | | = x € Label} is a singleton set.

Independent concatenation of record types is defined as

{R1;Rs} 2 RiNR, (3.14)

This definition is a partial case of the below definition of left associating records ®whenes not depend
on self.

Left associating dependent concatenation of record types is defined as
{self : Ry; Raself]} 2 self : Ry N Ry|self] (3.15)

Syntactical RemarksHere variableself is bounded ink,. When we use the name “self” for this
variable, we can use the shortenifl; ; Ro[self]} for this type. Further, we will omit&elf.” in the body
of Ry, e.g. we will write justx for self.x, when such notation does not lead to misunderstanding. We
assume that this concatenation is a left associative operation and we will omit inner braces. For example,
we will write {x : A;y : B[self];z : C[self]} instead of{{{x : A};{y : B[self]}}; {z : Clself]}}. Note
that in this expression there are two distinct bound variatdés The first one is bound i3 and refers
to the record itself as a record of the tyfre: A}. The secondelf is bound inC; it also refers to the
same record, but it has tyge : A;y : B[self]}.

Right associating dependent concatenation. The above definitions are enough to form any record
type, but to complete the picture we give the definition of right associating record constructor:

{z:x: A;R[z]} 2 self : {x: A} N Rlself x| (3.16)

19

Table 3.2: Inference rules for records

Reduction rules
(rx:=a)x —a
(r.y:=b).x — r.xwhenx #y.

In particular:{x; = as;...; %, = a,}.x; — a; when allx;’s are distinct.

Type formation

Single-field record:
'+ AType Tt x € Label
'k {x: A} Type

Independent record:
I'- R,y Type T F Ry Type
'k {Rl; RQ} Type

Introduction (membership rules)

Single-field record:

Dependent record:
' Ry Type Tself : Ry - Ro[self] Type
'+ {Ry; Ra[self]} Type

Right associating record:
Pt{x:A}Type T;z: Al R[x]Type
I'F{z:x:A;R[x]} Type

'aec A I' = x € Label F'kFre{x: A} 't x # y € Label

FFrx:=ae{x: A} 'k (ry:=b=rec{x:A}

Independent record:

Dependent record:
'kreR

I'kre Ry I'kre Ry

I'kre {Rl;RQ}

I'Fr e Ralr I'F {Rq; Ra[self]} Type

Right associating record:
F'kre{x: A}

I'Fr € {Ry; Ro[self]}

I'tre R[rx] 't {z:x: A; R[z]} Type

Elimination (inverse typing rules)!

Single-field record:

I'kFre{x: A}
'krxe A

Independent record:

FFTE{Rl;RQ}
I'tre Ry I'treR,

ISee also Chapter 4

I'tre{z:x: A;R[x]}

Dependent record:
'k r € {Ry; Ro[self]}
I're R Ik r € Rylr]

Right associating record:
'Fre{z:x: A R[z]}
'Frxe A I'kr € Rlr.x]

20

Syntactical RemarksHerex is a variable bound iR that represents a field Note that we may
a-convert the variable;, but not a labek, e.g.,{z : x : A;R[z]} = {y : x : A;R[y]}, but{z :
x: A R[z]} # {y : y: A;R[y]}. We will usually use the same name for labels and corresponding
bound variables. This connection is right associative, €0:,x : A;y : y : Blz];z : C[z,y]} stands for

{w:x: A{y y: Bla];{z : Clz,y]}}}.

3.3.2 The Rules

The basic rules of our record calculus are shown in Table 3.2. The elimination rules in this table are weak.
We will discuss stronger rule in Chapter 4.

Theorem 3.14 All the rules of Table 3.2 are derivable from the definitions given above.

From the reduction rules we get:
{x1=a1;.. 5z =an}xi —

when allx;’s are distinct.
We do not show the equality rules here, because in fact, these rules repeat rules in Table 3.2 and can
be derived from them using substitution rules in our type theory. For example, we can prove the following

rules
I'Fa=d €A I'x=x' € Label

'k (rx:=a)=0x:=d)e{x: A}
F'tr=7r"€R F'tr=1"€Ry
FFT’:’I‘/G{Rl;RQ}

In particular, we can prove that

{x=0;y =0;color =red} =
{x=0;y =0;color =green} € {x:Z;y: 7}

We can also derive the following subtyping properties:

{Ri; R} C By
{Ri;R2} C Ry
{Rl;Rg[self}} g R1
{z:x: A R[z]} C {x: A}

F Ry C R, self: Ry Ry[self] C Rj[self]
= { Ry Rofself]} C {RY; Ry[self]}
FACA z:AF Rlz] C R[]

Flz:x: A R[z]} C{zx:x: A R[z]}

Further, we can establish two facts that state the equality of left and right associating records.
{z:x: A;R[z]} = {x: A; R[self x|},
and
{Ry; {x : x: Alself); Rolself 2]} } =.
{{Rq;x : A[self]}; Ra[self, self .x]}.
For example, using these two equalities we can prove that
{x: A;y: B[self x];z : C[self .x; self .y|} =
{z:x:Ajy:y: Blz];z: Clx;y]}.

21

3.3.3 Examples
Semigroup Example

Now we can define th€emigroupSig type in two ways:

{car : U;product : car x car — car} of

{car : car : U;product : car x car — car}

Note that in the first definitiorar in the declaration oproduct stands forself.car, and in the second
definitioncar is just a bound variable.
We can definéemigroup by extendingSemigroupSig:

{SemigroupSig;axm : V,y,z : car (x-y)z=x(y-2)}
or as a right associating record:

{car : car : U;
product : product : car X car — car;

axm: Vx,y,z:car (z-y)-z=x-(y-2)}

In the first caser - y stands forself .product(x, y) and in the second case for jystoduct(z, y).

Multiply Inheriting Example

A monoid is a semigroup with a unit. So,
MonoidSig = {SemigroupSig;unit : car}

A monoid is an element af/ onoidSig which satisfies the axiom of semigroups and an additional prop-
erty of the unit. That ispM onoid inherits fields from both\f onoidSig and Semigroup. We can define
the Monoid type as follows:
Monoid é{{ MonoidSig; Semigroup;
unit_axm:Vz:car z-unit=ax}

Note that sincé\f onoidSig and Semigroup share the fieldsar andproduct, these two fields are
present in the definition aff onoid twice. This does not create problems, since we allow repeating labels
(Section 3.2.1).

Now we have the following subtyping relations:

SemigroupSig DO MonoidSig
@] @]
Semigroup D Monoid

Abstract Data Type

We can also represent abstract data types as dependent records. Consider for example a data structure
collection of elements of a tyge. This data structure consists of an abstract tyge for collections

of elements of the typ&’, a constant of this typempty to construct an empty collection, and functions
member s a to inquire if element is in collections, andinsert s a to add element into collections.

These functions should satisfy certain properties that guarantee their intended behavior:

1. The empty collection does not have elements.

2. insert s a has all elements thathas and elementand nothing more.

22

A formal definition of the data structure of collections could be written as a record:

Collection(T) =
{car: U;
empty : car;
member : car — T — B;
insert : car — T — car;
emp.-axm:Va:T a ¢ empty
ins_axm:Vs:car Va,b:T (member (insert sa)b)
< (member sb)V(a=beT)}

It Section 6 we will show an example of an implementation of this data structure.

Chapter 4
Elimination Rule for Independent Records

In this chapter we consider the question what should be the right elimination rule for the record type. As
we will see this question is not as simple as it looks. While the introduction rule for records is very natural
and simple, the right elimination rule is not obvious.

In this chapter we will consider independent records for the sake of simplicity.

We will use the following notations: in the inference rules we will dge] for A[z] - C[z]. For
example instead of the rule:

a1 : Ay ag : Ag; Al{ar, a2)] F Cl{ar, az)]
T;a: Ay x Ag; Ala] - Cla)

we would just write:
P; aq - Al; asg AQ; <I>[<a17a2>]

Ta: Ay x Ag; @[]

4.1 Weak Elimination Rule

In Table 3.2 we showed a weak elimination rule for records:

I'Fre{x: AR}
'krxeA

(Weak Elimination)

It just said that ifr € {x : A; R} thenr.x € A. This rule is valid and easy to prove, but it turns out
that it is too weak in practice.
The correct elimination rule should have a conclusion of the form

Dirc{xy: Ar;. 5% 0 Ay} @[]

4.2 Naive Elimination Rule

The elimination rule for records should be dual to the introduction rule. Let us look at the introduction
rule. It follows from the rules of Table 3.2 that

I'a € A I'ta,cA,

4.1
PH{x1=a1;...;%p =an} €{x1: A1;...;%, : Ap} (4.1)

This rule is just an analog of the introduction rule for products:

I'ka; € A I'kag € Ay
'k (a1,a2) € A1 x Ay

The elimination rule for products is

Tiay : Ay as @ Ag; @[(ar, az)]
Iia: Ay x Ag; ®lal

One can expect the following elimination rule for records:

Fiap: Ays..osap An;q)[{xl =ay;...;Xp :anH
Tir:{x1: A1 . o5xn 0 Ant; O]
But this rule is not valid! Moreover this rule contradicts other basic rules of records. Indeed, consider
the simple case whem = 1. In this case this rule says that any record of the t{pe A} has a form

{x = a}. But this is clearly not true. For example, the recggd= a;y = b} also has this type. So
the above elimination rule would be invaliddfr] refers to fields of- other thanx. For example, there

(Naive Elimination)

23

24

is a propositionC|[z] such thatC|[z] is true whenz is {x = a}.y, but is not true for allz. E.g. let
Clz] = (z = {}.y). Then the sequent

a:AF Cl{x=a}.y]
would be true. Applying the Naive Elimination rule, we get:
r:{x: A} F Clr.y]

Therefore, sincéx = a;y = b} € {x: A}, we get thatC[b] for anyb. Contradiction.

This example shows us that one should be careful when choosing elimination rules for records. It also
shows why it is important to define records and prove all rules, rather than take them as a primitive type
with a bunch of new axioms.

4.3 Strong Elimination Rule

The mistake made in the last section is that (4.1) does not actually capture the whole introduction rule. It
does not say that records of type; : A;} could have additional fields. The complete introduction rule
(derived from the rules of Table 3.2) is the following:

T'kFa € A I'ta,cA, re{}
FH{x1=a1;...;xn =an;7} €{x1: A1;.. ;2 : An}

where{} is the record type with empty declaration (it contains all records). The dual rule would be:

Tiay: Av;e.ian s Apsr {1 Pz = a1 005 %0 = an; 1}

Eliminati
Dir:{x1: A1 5%, 0 Ap) @[7] (Strong Elimination)

The Strong Elimination rule captures our intuition of record types. We can also state it as two rules:

Tia: Ajr: Ry ®[{x =a;r}]
Iir:{x: A; R}; ®[r]

(Strong Elimination)
and
Tia: Ayr: {};@[{x=a;r}]
Tir:{x: A}; r]
It follows from this rule that ifr € {x : A} then

(Strong Elimination)

r={x=rxr}

We will call this n-reduction for records. We will see that this reduction is actually equivalent to the
Strong Elimination rule.

Unfortunately thej-reduction (and therefore the Strong Elimination rule) is invalid when records are
defined as functions (definition (3.9)) and

{x=a;r} 2 (\if l=x then a else r)

Indeed, the)-reduction says that any element of a record type has the farm r.x;r}. But this is not

true for all functions with domaiabel. For example, it: € A then by definition (3.9\.a € {x : A}.

Note that this function could be applied to any argurienbt only to labels. On the other hand, function
AlLif 1=x then a else r [couldbe applied only tdfrom the typeLabel, because it ¢ Label

then the expressioh= x would be undefined, therefore the application would be undefined. Therefore
r #Z {x = r.x;r} forr = Al.a. Contradiction.

Note that the Naive Elimination rule contradicts the basic introduction rule of records. Therefore it is
not valid for any possible definition of records. On the other hand, the Strong Elimination Rule contradicts
only our definition of records. Therefore there is still a hope that we can find a better definition to satisfy
this rule.

25

4.4 Functions with Limited Polymorphism

Let us consider the problem with the Strong Elimination rule more closely. Wesraaguction rule for
functions: if f is a function then

f=xz.(f2).
That means that any function is\aexpression. The-reduction for records says thatrifis a record of
the type{x : A} then
r=MN.if l=xthen r x else r .

So, we would like to have the following reduction:
AL.(rl) = AN.if l=x then r x else r 1. 4.2)
We can prove only that for anyfrom typeLabel:
rl=if |=xthen r x else r 1. (4.3)

Unfortunately, (4.3) does not hold for ahynd therefore (4.2) is not true.

The problem is that our definition uspslymorphicfunctions. As a result we may potentially apply
the functionr to any argument, not only to labels. On the other hand, we never apply it to anything other
than labels. We need to have some form of type of functions mitted polymorphismThat is, we need
a type of functions that can be applied only to elements of a particular type (in ouf.cass.

There is no such type in our type theory. The interesting questions are whether we can add such type,
what would be the semantics for it and what would be inference rules for this type. We will not discuss
these questions here. But we aafinesuch a type in current type theory for some particular cases, e.g.,
whenLabel is the type of natural numbers. Informally speaking we can define “integer functions” as long
tuples:

f="{(fo, (fr, (f2s-- D)
and applications as takingth element of the tuple. That is,
1(0) 2 mf
f(U = 7T1(772f)
f(2) a m1(m2(m2 f)) and so on. We will not give the formal definition, but rather just use the idea

of non-polymorphic functions. We are going define records as tuples. It may help intuition to view these
tuples as “integer functions”.

4.4.1 Non-polymorphic Definition of Record Type

Without loss of generality we can assume that labels are natural numbergahel,= N (or we can
assume that there is a given injection of the label typelifjto

We will give a new definition of the typén : A} for any natural numbet and any typed. Then we
define an arbitrary record type (dependent or not dependent) using intersection as in Section 3.3.1.

New definition of records

The type{n : A} is a type of tuples where theth element has the typé. We define it by induction:
A
{0: A} = A x Top,
(n+1:A} 2 Topx {n: A}
Thatis,{1: A} =Topx A x Top,{2: A} = Top x Topx A x Top, and so on.
Note that Top contain everything. So for example i€ A then(t, (a,t2)) isin {1 : A} as well as

<t0’ <a7 <t27 <t3’t4>>>>

Then we define application (field selection)y. as then-th element of tuple. We define it by
induction:

26

A
r.0 = mr
A
rin+1) = (mer)mn
Finally, we define record extension/update := « as updating the-th component to be.
r0:=a 2 (@, mar)
r(n+1):=a 2 (mir, (wor).n 1= a)
These definitions with the definitions (3.14), (3.15), and (3.16) of an arbitrary record type as an inter-
section of single record types provide the formal account of record types in our theory.

Old rules are still valid

The reductions for records from Table 3.2 could be easily proved by induction for our new definitions:
(r.x:=a).x — aforanyx € Label.
(r.y:=b).x — r.xforanyx,y € Label whenx # y.
We can also prove by induction the rules for single-record types from Table 3.2:

'+ AType TI'F x € Label
'k {x: A} Type

I'ae A T'tx € Label
'kFrx:=ac{x:A}

Fkre{x:A} THEx+#ye Label
F'F(ry:=b)=rec{x:A}

F'kre{x:A}
'krxeA
All these rules were proven by induction erfandy) and checked in MetaPRL.
All remaining rules from Table 3.2 are still valid, because we have not changed the definition of the
record type as an intersection of single record types.

The n-reduction for records

Then-reduction that was invalid for the old definition, could be easily proven for the new definition:
For anyx € Label if r € {x: A} thenr = {x = r.x;r}
The proof is based on the fact that
If p e A x Bthenp = (mp, map)
The proof was checked in MetaPRL.

New equalities

Another advantage of out new definitions is that now we can exchange record fields. That is, we can prove
the following squiggle equality:
{x=a;y=b;r} ={y =a;x =b;r} foranyx,y € Label whenx # y
We can also prove that
{x=a;x=0b;r} = {x =a;r}foranyx € Label

These equalities were proved by inductionoandy in MetaPRL.

Note that these equalities were invalid for the old definitions. We could only prove the equalities in
a record type. The squiggle equalities gives us more freedom in using them: we can change the order of
fields of a record without worrying about its type.

27

Efficiency

Note that our new definition of records assumes that there is an injection (coding function) ahifyyie

into N. It may seems to be very inefficient. Indeed, assume dhatis a label with a huge number,
say 333148. Then it means that rec§echr = A} is a huge tuple with at least 333148 elements. And
{car = A}.car is reduced tod in 333148 steps. Fortunately we do not need to unfold the definition and
does all these steps, since we have proven the(rute:= a).x — a for any labelx. MetaPRL uses
this rule and do the reductidrear = A}.car — A in just one step. Therefore we do not need to worry
about these huge numbers, there is no difference in the efficiency between old and new definitions.

4.5 Functionality

Now let us come back to the record calculus. In the Section 4.4.1 we gave the new definition of records
that satisfies the-reduction. Our goal was the Strong Elimination rule:
Tia: Ajr: R ®[{x = a;r}]
Iyr:{x: A; R}; D[r]

The question is: can we prove this rule from tqeeduction rule? It turns out that the answer depends on
functionality.

4.5.1 Elimination Rule in Pairwise Functionality

It is very easy to prove the Strong Elimination rule using fh# rule (Section 2.2.3) in pairwise func-
tionality. Indeed, we need to prove:
Tir:{x: A; R}; Or].

Usingn-reduction to replace by {x = r.x; r} we get
Tir:{x: A R}; [{x =rx;r}].

Then noting that.x € A andr € R we can apply ruled.et a = r.x € AandLet v’ = r € R. Then we
get
T;r:Rya: A;r' : Ry ®[{x=a;r'}]

Then thinning the : R hypothesis and renamingto » we get the original assumption:

Tia: Ajr: R ®[{x = a;r}]

4.5.2 Elimination Rule in Pointwise Functionality

The above reasoning does not hold in pointwise functionality. We can prove the weak form of the Strong
Elimination rule:
Tia:Ayr: Ry AR Cl{x=a;r}]
Tir:{x: AR} AFRC[r]

whereA does not depend an

The original Strong Elimination rule is invalid in pointwise functionality. But we can get almost
Strong Elimination rule in pointwise functionality if we introduce a new notion of orthogonality.
Orthogonality

Basically we say that a record typeis orthogonal to{x = a} if the declaration of? does not contain.
Formally, for any typeR, for any labek and for any element we define a predicate:

{x=0a} LR éVT:R.T:(T.X::a)GR

28

Itis clear thatifR = {x; : A1;...;%, : Ay} and allx;’s differ fromx then{x = a} L R.
In pointwise functionality we can prove that
Mia: A-{x=a} L R Tia:A;r: R, ®{x =a;r}]
Iyr:{x: A; R}; D[r]

This is the closest version of Strong Elimination rule valid in pointwise functionality. The proof is
fairly complicated and uses the rulintwiseSubstitute (Section 2.2.3). It was checked by MetaPRL.

Chapter 5
Other Possible Applications

5.1 Sets and Dependent Intersections

The set type constructor allows us to hide part of a witness.

Example 5.1 Instead of definingemigroup type as an extension SfemigroupSig type with an addi-
tional fieldaxm, we could define th8emigroup type as a subset &femigroupSig:

Semigroup = {S : SemigroupSig |Vz,y,z: S.car...}

Now we will show that the set type constructor (which is primitive in our original type theory) may
be defined as a dependent intersection as well.
Now consider the following type (squash operator):

[P] £ {a:Top| P}
[P] is an empty type whe is false, and is equal tBop whenP is true.

Theorem 5.2
{x:T|Plz]} =c z: TN[P[]] (5.1)

We can not take (5.1) as a definition of sets yet, because we defined the squash operator as a set. But
actually the squash operator is defined in our type theory as a primitive constructor and rules for the set
type depend on the squash operator. (See [32] for the rules for the squash type and explanations why this
is a primitive type.) Thus, we can take (5.1) as a definition.

Moreover, the squash operator could be defined using other primitives. For example, one can define

the squash type using union:
[P] 2 | Top.
x:P

Remark In is interesting to note that in the presence of Markov’s principle [27] there is an alternative way to
define[P]:
[P] £ (P => Void) => Void)

whereA => B 2 () B. We will not give any details here, since it is beyond the scope of the thesis.

x: A
We can also define sets withdlibp and squash type. First, defimelependensets:
{A1B} & |JA
z:B

Then define the set type:

{z:A|B[z]} 2 z: An{A|Bz]}.

The Mystery of Notations It is very surprising that brace§ .. } were used for sets and for records
independently for a long time. But now it turns out that sets and records are almost the same thing,
namely, dependent intersection! Compare the definitions for sets and records:
A
{z:T| Plz]} = z:T N[P[z]]

{self : Ry; Ra[self]} = self : Ry N Ralself]

The only differences between them are that we use squash in the first definition and'\foteséts and
“."for records.

29

30

So, we will use the following definitions for records:

{self : Ry | Ra[self]} & {self : Ry;[Rafself]]} = self : Ry 0 [Rolself]]

{z:x:A|R[x]} = {z:x: A[R[z]]} =
self : {x : A} N[R[self x]]

This gives us the right to use the shortening notations as in Section 3.3.1 to omit inner braces and
“self”. For example, we can rewrite the definition of themigroup type as

) A
Semigroup = {car : U;
product : car X car — car |

Vr,y,z:car (x-y)-z=xz-(y-2)}
Remark Note that we cannot define dependent intersection as a set:

2:ANBz] 2 {z:A|x € Bla]}. (wrong!)

First of all, this set is not well-formed in our type theory (this set would be a well-formed type, only when

x € Blx] is a type for allz € A, but the membership is a well-formed type in the our type theory, only
when it is true). Second, this set type does not have the expected equivalence relation. Two elements are
equal in this set type when they are equal justijrbut to be equal in the intersection they must be equal

in both typesA and B (see Example 2.4).

5.2 Variant Type

In the same way that the union type is dual to the intersection type, there exists a type dual to the records
type —the variant type. The variant type is an expression of the fermof A;|x2 of As|...|x, of A,),
wherex; are labels andl; are types. The elements of this type are expressions of thedfgumnwhere

a € A;.

Example 5.3 We can define the type of binary trees
BinTree(A) = uT.(node of T xT x A|emptytree of Unit}

Here pu-operator is an inductive recursive type constructor, i.e. the least fixpoint [31][and is a type
that contains only one elemeet

We will abbreviatex; (o) asx; andx;({aj,as,...,a,)) asx;(a1,as, ..., a,). For example, the type
BinTree(A)includesemptytree, tree(emptytree, emptytree, ag), tree(tree(emptytree, emptytree, a;), tree(em
wherea;’s are of typeA.

5.2.1 Definitions

We can define the variant type as a dependent productize.gf A | y of B) =

l:Label x (if l=x then A else if [=y then B else \oid)

Or we can first definéx of A) 2 {x} x A, and then define

= (

(x of A|y of B) x of A)U(y of B)

In any case the constructor for this type is defined as a pair:

x(a) £ (x,a)

31

We also need to define a destructor:

match ¢ with
x1(a1) => fila1] |
x2(az) => falas] |

X (@) => fulas] |
as
let (l,a)=t in
if l=x then fi[d]
if = X9 then fg [a]

i.f” l=x, then f,[a]

5.2.2 Properties

The variant type has a subtyping property which is dual to the subtyping property of record types:
(x; of Aj)lier C (x; of A)lies

whenl C JandA; C A, foranyi € I.

Example 5.4 Let

Week 2 (Sunday of Unit|Monday of Unit|Tuesday of Unit|
Wednesday of Unit|Thursday of Unit |
Friday of Unit|Saturday of Unit)

ThenWeekend 2 (Sunday of Unit|Saturday of Unit|)is asubtype ofVeek.

There is a general formula about variant types and union that is dual to the formula about records and
intersection:

(Xl of A1|...|Xk of Ak‘YI of Bl‘---|Yn of BH)U
(xq of Aj|...|xg of Al |z of Ci]... |2z Of Cp)=
(x1 of AJUAL| ... |xx of A UA]|

y1 of By|...|yn Of Bplzy of Ci|...|zm of Cp)

So, the intersection of two record types is alway a record type, and the union of two variant types is
always a variant type.

5.3 Abstract Algebra

In this section we outline a way how one can define general abstract algebraic structures using our record
type.

Our encoding of records uses the typebel for names of the fields. In all of the above examples
names were constants. But we are allowed to use variables oveLtyjpé In fact, we may even use
arbitrary terms of the typd.abel as the name of the fields. It could be useful to define an algebraic
structure of an arbitrary signature.

A signature is a list of operations with their arity:

Signature = (Label x N) List

We can define an algebraic structure of any signature:

A
Algebra(opy,ny =i ... opg,ng) = {car:U;opy:car™ —car;...;opg:car™ —car}

32

Now we can define standard notions from abstract algebra. For example, homomorphism between
two algebraic structured and B of the same sighaturgig is defined as:

Hom (A, B, Sig) 2
{ f:A.car — B.car|
V{op,n) € Sig.Vx € A.car™. f(A.op(z)) = B.op(fn(z)) € B.car }

wheref,, ((x1,...,2,)) = (f(x1),..., f(zn)).
We can prove some general properties about homomorphisms, like composition of two homomor-
phisms is a homomorphism. Then we can apply this theorem to concrete algebraic structures.

5.4 Join Operator

In this section we outline possible applications of records and intersections to databases. One of the basic
operation for relation databases is a join operator.

We can represent a relation with attributas A,, ..., A, as a finite subset of a type\; : T1; 4, :
Ty;... A, : T}, whereT; is a type of an attribut@;. That means that a relatidi is represented by a set
of records that has fields, ..., A, that coincide with one of the tuples iR, and probably other fields.
Then one can easily see that the intersection of two relafigrend R, is exactly the natural join of these
relations! That is, we can very easily define the natural join for the relations:

R1NR2=R10R2!

Chapter 6
Red-Black Trees

In this section we will show an example of how one can define an abstract data structure in the constructive
type theory, and formally prove the correctness of the concrete implementation. We will consider red—

black trees [16], one of the most popular implementation of a data structure of collections of elements of

a certain type.

6.1 Introduction

In the end of Section 3.3.3 we gave a definition of the data strucétwiéection(T), a collection of
elements of the typ#. Here we repeat the definition using set type (using notations of Section 5.1):

Collection(T') 2
{car : U;
empty : car;
member : car — T — B;
insert : car — T — car |
Va:T a ¢ empty |
Vs:car Va,b:T (member (insert sa)b)
<= (member sb)V(a=beT)}

We can implement this data structure in several ways. The simplest but inefficient implementation of
sets uses lists. Each set is represented by an unordered list. Formally wartatebeT List, empty
to benil and define operationssert andmember correspondingly. In this implementation, functions
insert andmembertakeO(n) time, wheren is a number of elements of the set.

A more efficient implementation of sets is binary search trees. Each set is represented by a binary
tree, where elements are stored at the nodes, such that the element at any given node is greater than each
element in its left subtree and less than each element in its right subtree. In this implementation, functions
insert andmember takeO(d) time, whered is a depth of the tree. On random data the heights of the
tree islog(n). But in the worst case the tree will be imbalanced, and an individual operation will take up
to O(n) time.

The solution to this problem is to ubalancedinary trees. The most popular balanced binary search
trees are red-black trees [16]. We will show how the implementation of red—black trees could be written
as a term in type theory.

Red-black trees could be defined only on an ordered set. We have defined ordered structures in
Example 3.2. Thus the implementation of red—black trees shouldfinector (i.e. a function from one
data structure to another) that takes an ordered set and returns a data structure of collections of elements
of this set. That is, it has the following type:

ord : OrdSet — Collection(ord.car).
The implementation of red-black trees in a functional programming setting is a little bit different (and

simpler) than the typical presentation in imperative programming languages (as for example in [12]). We
will follow the presentation of red—black trees in functional languages from [33].

6.2 Binary Trees
Definition

We already gave the definition of binary trees in Example 5.3:

BinTree(A) 2 uT.(node of T xT x A|emptytree of Unit}

33

34

We have the following introduction rules about this type:

AType ac A l € BinTree(A) r € BinTree(A)
emptytree € BinTree(A) tree(l,r,a) € BinTree(A)
The elimination rule is the induction rule:

I'F Clemptytree] T;1: BinTree(A);r : BinTree(A) - Cltree(l,r,a))
I';t: BinTree(A) - Ct]

Operations with trees

We can define depth and weight (i.e. number of elements) of the tree by induction:

- weight(emptytree) 20

a

weight(tree(l,r,a)) = weight(l) + weight(r) + 1

depth(emptytree) 2

- depth(tree(l,r,a)) a

maz(weight(l); weight(r)) + 1

We can define quantifiers on the nodes of the tree Alkt-; a] be a proposition of nodesee(l, r, a).
Then we define by inductiovinode(l, r,a) € ¢ . P[l;r; a] as a proposition that says thatis true for all
nodes of the tre¢, and3node(l,r,a) € t. P[l;r;a] as a proposition that says th&tis true for at least
one node of the trege(l, » anda are bound variables). That is,

- Vnode(l,r,a) € emptytree. P[l;r;a] = True
- Vnode(l,r,a) € tree(ly,r1,a1) . Pll;7;4] 2
P[ll;Tl; al] A\
Vnode(l,r,a) € Iy . Pll;r;a] A
Vnode(l,r,a) € r1 . P[l;r;q]

1>

- Jnode(l,r,a) € emptytree. P[l;r;a] = False

- Jnode(l,r,a) € tree(ly,r1,a1) . Pll;r;a] =
Pllyirisaq] Vv
Inode(l,r,a) € ly . P[l;r;a] V
Jnode(l,r,a) € r1 . P[l;7;a]

We will store elements in the nodes of a tree. We define the proposition
in_tree(a; t; A) that states that nodeis stored in the tree

in_tree(a;t; A) 2 Jnode(l,r,d’) et.a=a € A

This proposition needs the typkas a parameter because we have different equalities in different types.
Finally, we can define a set of elements stored in a given tree:

It] A {a: Alin_tree(a;t; A)}

35

6.3 Sorted Trees

Assume we have an ordered setl. Sorted trees are binary trees satisfying the following property: for
any noderee(l, r, a) in the tree any element from the left subtieg less than the roet and any element
from the right subtree is greater than the roat Formally,

SortedT'ree(ord) =
{t : BinTree(ord.car) |
Vnode(l,r,a) € t.
Ve |l|ord.car T <ord @ A
Vy : |r|ord.car L0 <ord Y

}

Searching in balance trees

We can find whether an element is in tree by binary search:

- search(a; emptytree;ord) = falsep
- search(a;tree(l,r,data); ord) 2

if a<,rq data then search(a;l;ord)
if a=orq data then trueg

if a>,.qdata then search(a;r;ord)

Note that this function returns a boolean value, unlikeén_tree, which is a proposition.
Using the transitivity of order we can prove

Theorem 6.1 (Correctness of Search}or any ordered setrd € OrdSet, for any element € ord.car
and for any treg € SortedTree(ord)

search(a;t;ord) € B
and
search(a; t; ord) = trueg <= a € |t|ord.car
Insert function
To insert a new element into the tree we again use binary search to find an appropriate place:
- ins(a; emptytree; ord) a tree(emptytree, emptytree,a)
- insert(a;tree(l,r, data); ord) 2
if a<,rq data then tree(insert(a;l;ord),r,data)
(
(

if a=,qqdata then tree(l,r, a)
if a>,rq data then tree(l,insert(a;r;ord),data)

We can prove the following

Theorem 6.2 (Invarian of Insert) For any ordered setrd € OrdSet and for any element € ord.car
if t € SortedTree(ord) theninsert(a;t; ord) is also in
SortedTree(ord).

Theorem 6.3 (Correctness of Insert)For any ordered setrd € OrdSet, for any element € ord.car,
for any treet € SortedT'ree(ord)

\insert(a; t; 0Td)|ord.car e |t|ord.car U {a}ord.car~

36

6.4 Red-Black Trees
Definition

In a red—black tree each node is colored either red or black. A red—black tree should satisfy the following
invariants:

¢ Any child of a red color is black

¢ All paths from the root to any leaf have the same number of black nodes. (We will call this number
ablack depthof a tree).

We will consider trees that satisfy an additional property:
e The root of a tree is black
We start the formal definition with the definition of colors:

Color 2 (red of wnit|black of wunit)

That is,Color has two elementsted andblack. We also define two subtypes of this type:
Red 2 (red of wnit) has only one elemented

Black 2 (black of wnit) has only one elememflack
Then we defin€oloredTree(A) as a type of trees with colored nodes:

ColoredTree(A) = BinTree(Color x A)

Then we define three subtypes@bloredTree(A): RB,(A) for red—black trees of the black depth
n, B, (A) for red—black trees of the black depilthat have a black root, anfd,,(A) for red—black trees
of the black depth that have a red root. (For the sake of this definition we assume that empty tree has a
black root.) We define these types simultaneously by induction:

e By(A) = (emptytree of Unit) (only the empty tree has black depth 0);

and for any naturab

- Bpt1(A) = (tree of (RB,(A)x RB,(A)) x (Black x A)) (a black tree of the black depth
n + 1 has a black root and two sons of the black depth

- R, (A) = (tree of (B,(A) x B,(A)) x (Red x A)) (ared tree has a red root and black sons
of the same black depth);

- RB,(A) 2 R,(A)UB,(A) (ared-black tree is either red or black).

We can prove by induction that these definitions are well-formed for any natural

Vn : N. B, (A) TypeA R, (A) TypeA RB,,(A) Type

Finally we define a type of red—black trees as a union aBallA):

RedBlackTree(A) = | | Bn(A)
n:N

37

Insert Function

The insert function for red—black trees is similar to the insert function for sorted trees, but it maintains the
invariants.

When we insert a new node we will color it red. It satisfies the second invariant, but may break the
first invariant if the father of the new node is red.

Let us define an auxiliary function:

- ins(a; emptytree; ord) a tree(emptytree, emptytree,red, a)
- ins(a; tree(l, r, color, data); ord) =

if a <,rq data then lbalance(ins(a;l; ord); r; color; data)
if a=,qqdata then tree(l;r;color,a)

if a>,rq data then rbalance(l;ins(a;r; ord); color; data)

Wherelbalance andrbalance are functions that rebalance a tree without changing the order to enforce
invariants. They are defined as follows:

- lbalance(tree(tree(ty, ta, red, ay),ts, red, as);ty; color; as
tree(tree(ty,t2, black,ay), tree(ts, ts, black, az), red, as

)

)

- lbalance(tree(tr, tree(ts,ts, red, as), red, aj);ty; color; as)
tree(tree(ty,t2,black,ay), tree(ts, ty, black, as), red, as)

- For all other cases A
lbalance(l; r; color;a) = tree(l;r; color, a)

- rbalance(ty, tree(tree(ts, t3, red, as), ts, red, as); color; ay) a
tree(tree(t1,ts,black, a), tree(ts, t4, black, as), red, as)

- rbalance(tq, tree(to, tree(ts, t4, red, ag), red, as); color; ay) a
tree(tree(ty,t2,black,ay), tree(ts, ty, black, as), red, as)

- For all other cases
rbalance(l; r; color;a) = tree(l;r; color, a)

Functionins may break the first invariant. Namely it may return a tree ity onesingularityat
the root a red root may have a red son. The functiéhgance andrbalance then take care of this
singularity.

Formally let us define a type of trees with at most on one singularity at the root:

- IRRB,(4) = (tree of R,(A)x B,(A)x Redx A) (trees with a red root and a red left child);

- rRRB,(A) 2 (tree of B,(A) x R,(A) x Red x A) (trees with a red root and a red right
child);

- RRB,,(A) = RB,(A)UIRRB,(A)UrRRB,(A) (trees with at most one singularity at the root).

We will see that theéns function may return trees of the tygeéRB,,(A). Functionslbalance and
rbalance deal with such trees.

Lemma 6.4 For any naturaln and for any typeA the following is true:
l: RRB,(A);r: RB,(A) \- lbalance(l;r;black; a) € RB,11(A)
l:RB,(A);r: B,(A) | lbalance(l;r;red;a) € RRB,(A)
l:RB,(A);r: RRB,(A) F rbalance(l;r;black; a) € RBp11(A4)
l: Bp(A);r: RBy(A) F rbalance(l;r;red;a) € RB,(A)

38

This lemma could be proved by analyzing all possible cases.
Lemma 6.5 For any ordered setrd € OrdSet and for anya € ord.car
t: Ry(ord.car) - ins(a; t; ord) € RRB,(ord.car)
t: By(ord.car) b ins(a;t; ord) € RB,(ord.car)

This lemma could be easily proved by simultaneous induction using the previous lemma.
Finally, we need to correct the singularity in the root. It may be done by just painting the root black:

blackroot(tree(l,r, color, a)) = tree(l,r,black, a)
So,
rb_insert(a;t; ord) = blackroot(ins(a;t; ord))
It is easy to prove the following

Lemma 6.6
t: R,(A) F blackroot(t) € RedBlackTree(A).

Therefore we have the following
Theorem 6.7 (Invariant of the insert function) For any ordered seird € OrdSet foranya € ord.car
if tisin RedBlackTree(A) thenrb_insert(a;t; ord) is also inRed BlackTree(A).
Red-black trees are balanced
Lemma 6.8 The depth of a red—black tree is not more than 2 times its black depth. Formally,
Vn: NVt : RB,(A).depth(t) < 2n
Lemma 6.9 A red-black tree of the black depthcontains at leas2™ — 1 elements. Formally,
Vn : N.Vt : RB, (A).weight(t) > 2"~!

These lemmas are easily proved by inductiomoWe need to prove them also f&;, andB,,.)

It follows from these lemmas that the depth of any red—black tree is less than or eQuagte),
wheren is the number of nodes. Therefore searching and inserting in this tree(@gkesn) time. The
last argument is informal. In the current system there is no way to formally prove an upper bound for the
working time of an algorithm.

6.5 Sorted Red—-Black Trees

Now we define the type of sorted red—black trees just as an intersection of the types of sorted trees and
red—black trees:

SortedRedBlackTree(ord) = RedBlackTree(ord.car) N SortedTree(Top* ord)

whereT'op x ord is an ordered set of all paifsolor, a) for a € ord.car and the order relation ignoring
the first component. That is,

Top* ord = {car = Top x ord.car; less (c1,a1) (c2,as) = ord.less a; as}

Since SortedRedBlackTree(ord) is a subtype ofSortedTree(Top * ord) we can use the same
function for searching:

rb_search(a;t; ord) 2 search(a; t; Top* ord)

39

Theorem 6.10 (Correctness of Search)or any ordered setrd € OrdSet for any element € ord.car
for any treet € SortedRedBlackTree(ord)

rb_search(a;t;ord) € B

and
rb_search(a;t;ord) = trueg <= a € [t|ord.car

It immediately follows from Theorem 6.1 and the fact that kap-d € OrdSet.
We can prove thdbalance andrbalance do not change the order of elements in ¥@pd. Therefore
we can prove that

Lemma 6.11 For any ordered setrd € OrdSet for any element € ord.car if t € SortedTree(Topx
ord) thenrb_insert(a; t; ord) is also inSortedTree(Top * ord) and

‘Tb’insert(a; t; 0Td)|T0p><o7‘d.car —e |t|T0p><ord.car U {.7 a'}TopXord.car'

Finally, using the factthat if € A; — A; andf € By — By thenf € Ay N A; — By N By, we get

Theorem 6.12 (Correctness of Insert)For any ordered setrd € OrdSet for any element € ord.car
if t € SortedRedBlackTree(ord) thenrb_insert(a; t; ord) is also inSorted Red BlackTree(ord) and
for anyb € ord.car

rb_search(b;rb_insert(a;t; ord);ord) <= rb_search(t)V a =b € ord.car.

Collection
Finally we combine the above functions into the functor of the type: Ord — Collection(ord.car).

redblacktree_collection(ord) =
{car = SortedRedBlackTree(ord);
empty = emptytree;
member t a = rb_search(a;t; ord);
insert t a = rb_insert(a;t; ord)

}

Theorem 6.13 (Main) For any ordered setrd € OrdSet the structure
redblacktree_collection(ord) is a correct structure for collections of elements of the carrier of the or-
dered sebrd. Formally,

redblacktree_collection(ord) € Collection(ord.car).

Note that this theorem not only tells us that our functions have the right type, but also tells that this
function satisfies the specifications stated in the definition of collections.

Chapter 7
Objects

Note that the elements of the typ®llection(T') defined in the last chapter are not collections, but rather
implementations of collections, i.e., a bunches of functions. The actual collections are elements of type
C.car whereC' € Collection(T). If we have a function that need a collection as a parameter, it actually
should have two arguments: an implementation and a collection itself. So, it should have a type like:

C : Collection(T) — C.car — A (7.1)

Another disadvantage of this data structure is that it is not fully abstract. Functions of the type (7.1) may
have access to fielear, which is supposed to be abstract.

In this chapter we will define a notion of objects that removes these disadvantages. Note that the
theory of objects is not yet implemented MetaPRL.

7.1 Objectinstances

In this section we define object instances and basic operations with them. First we describe the intended
behavior of these operations and then we give a formal definition. The problem of the typing of these
object instances will be considered in the successive sections.

7.1.1 The operations with objects
Methods

The main difference between objects and records is that objects have methods. Methods can be understood
as functions that have a parameteif, that represents the object itself. That is, when we evaluate a
method of a particular object we substitute this object fors#ig parameter.

The main operation that we perform with methods is to apply them to an object. We will use circle
dot (0bj,l) for a method extraction (to distinguish it from field selection for recorelsl). Hereobj
is an object and is a name of a method. Thus,db; is an object instance that has a method nained
with a bodym(self) thenobj,l expands ton(obj). (Hereself is a variable, andn(obj) stands for the
substitutiorod; for the variableself.)

Fields of objects can be represented as methods that do not depe#ifi.on

So, object instances are lists of methods (including fields). We will use the following syntax for
objects:

oself {ln = ma(self);...;l, = my(self)}

whereself is a bound variablg,;’'s are names of the methods (fields) angls are bodies of the corre-
sponding methods (values of the fields).

Example 7.1 The following is an example of an objeginple F'lea. The flea lives on an integer line and
has a coordinatex, that can be obtained, by a methgdtX. MethodgetNextX returns a coordinate
where the flea wants to jump next time.

simpleFlea 2 self .
{x=0;
getX = self .x;
getNextX = self ,getX + 1

}

For the objeckimple F'lea we expect the following reductions:

40

41

stmpleFlea,getX — simpleFlea,x — 0
simpleFlea,getNextX — flea,getX+1—-0+1—1

In general, for object
object = vself {l; = my(self);...;l, = mp(self)} (7.2)
with distinct/;'s we have the following reduction rule:

object,l; — m;(object) (7.3)

Field update

Another basic operation that we need for objects is a field/method update.

We will use the following syntax for this operationb;,l := ¢, whereobj is an object instancé,is a
name of a field andis a new value. Note that we are working in a pure functional language. Field update
does not modify an existing object, but rather creates a new objects. For examplé; Flea,x := 17 is
a new object that coincides temple Flea in all fields excepk. Field update should obey the following
reduction rule:

(obj.l:=1),l —t (7.4)

For example(flea,x := 17),x — 17. This rule is the same as an analogous rule for records (3.2). On
the other hand, the analog of the record reduction rule form Table 3.2

(objl :=t),I" — obj,l', wheni # I’ (wrong!)

is wrong for objects. For examplésimpleFlea,x := 17),getX reduces td 7, not tosimple Flea,getX
which is0.
The right reduction rule is the following: fahject defined in (7.2) lebbject’ beobject,l := t, then

object’ ,l; — m;(object) (7.5)

wherei € 1..n andl # [;.
For example,
(flea,x := 17),getX — (flea,x := 17),x — 17

Example 7.2 Now we can define a methadve that moves a flea by step to the right.

movableFlea 2 o self .
{x = 0;
getX = self .x;
getNextX = self ,getX + 1;
move = (self .x := self ,getNextX)

}

In this examplemovable Flea,move move,getX evaluates to 2.

Method update
The generalization of the field update is a method update:
obj 1 := ¢ self .m(self)

Herel is a name of a methody is a new body of this method with a bound variakdéf .
The reduction rules for the method update are analogous to ones for field updatéjdeddefined
in (7.2) letobject’ beobject,l := < self .m(self), then

object’ ;1 — m(object’) (7.6)

42

and
object' ,l; — m;(object’) (7.7)

wherei € 1..n andl # ;.

Example 7.3 We can override methagktNextX in the last example:

fastFlea 2 movableFlea,getNextX := ¢ self .self ,getX + 2.
Now fastFlea moves twice faster thanovable Flea. For example,
fastFlea,move,move,getX — 0+ 2+ 2 = 4.

The operation method update could be used for extending an object with new methods. That is, we
can apply the operation of updating a method to an object that did not contain this method before.
We will use the following alternative syntax for method update. We will write

o(obj) self .
{l1 = mq(self);
27;.: mn(self)}

instead of
obj i =< self .mq(self)

oln = S self .my, (self)
For example we could definedovable Flea from Example 7.2 as an extensionsgfnple Flea:
movableFlea = o(simpleFlea) self {move = (self ,x := self ,getNextX)}.

Note that field update can be considered as a partial case of method update:wdbes not depend
on self.
These operations and the reduction rules are summarized in Table 7.1.

7.1.2 Formal definitions

It is relatively easy to define objects and their operations (method application and method update) in
lambda-calculus with records. We will define objects as functions thatstdkas a parameter and return
arecord:

oself. { L =mi(self);...;ln = mn(self)} £
Aself. { Iy=ma(self);... ;Lo = mu(self)} (7.8)
As one would expect, method application is a self application :
obj.l 2 (obj obj).L, (7.9)
i.e., we apply an object to itself and then get a record, and extract d frelh this record.
Field update is defined as
obj.li=t 2 \self. (obj self).l :=t. (7.10)
By analogy, method update is defined as
obj.l =< self m(self) 2 \self.((obj self).l := m(self)). (7.11)

Theorem 7.4 The definition47.8)(7.11)satisfy the intended reduction rules from Table 7.1.

43

Table 7.1: Reduction rules for object calculus

Canonical terms:
oself {1l = ma(self);...;ln = my(self)}

Operations:
Method applicationobj,l
Method update/extensionbj,l := < self .m(self)
Field update/extension is a partial case of method update:

obj. l:=f = obj,l := ¢ self.m
Reductions:
If obj = oself {l1 = my(self);...;l, = my(self)} then

Objoli — ml(ob]) Whenli 7£ li+17 R
obj,l = < self . m(self) — oself {1 = ma(self);...;l, = mp(self);l = m(self)}

Remark An alternative way would be to define an object as a record of methods, where each method is a
function that takeself as a parameter:

o self {li = ma(self);...;ln = mn(self)} =
{l1 = Aself . mi(self);...;ln = Aself .mn(self)}

This approach was used by Hickey in [21]. Although the latter definition may seem more natural, we choose the
former one, because the typing rules will be more elegant for it.

7.1.3 Additional Properties

From the above definitions it is easy to see that we can define any object as an extension of an empty
object{[}. For example, thebject defined in (7.2) is equal to

o({I[}) self.
{li = mq (self);

L = mn(self)}.
Also if we rewrite a method, then we can forget about the old method, i.e.,
oself {...;l=m;...;l=m/;...}=oself {...;...5l=m';...}

and
obj,(l:=m),(l :==m') = obj,l :=m/'.

The methods with different names commute. That is,

oself {...;l=m;l'=m/;... Y =oself {...;I' =m/;l=m;...}

44

and
obj,(l:=m), (" :=m") =obj,(I' :=m),(l:=m)

wherel # 1.

7.1.4 Notations

First, let us note that we use three types of dots in the thesis. The simpl¢idaiged for in expressions
like A\x.f, oself.{x = 0} to show binding variables. The bold da) {s used for records, e.gr,x,
r.x := 1. The circle dot () is used for objects, e.gp, %, 0,x := 1.

Like in many programming languages, we will usually owitf. That is, we will use the following
notations:

instead of writing:| we will write:

self ,x x
self ;x:=m X:=m
oself {...} {... 1

o(obj) self {...} | o(obg) {...[}

For instance, Example 7.2 can be rewritten as follows:

movableFlea =
{lx =0
getX = x;
getNextX = getX + 1;
move = (x := getNextX);

[}
7.1.5 Recursion

The above definition allows us to write recursive objects.

Example 7.5 We can write a recursive method that moves the flea &ieps.

advanceFlea 2 o(movableFlea).
{moveBy = (An.iff n =0 then self else move,moveBy (n—1))

}

ThenadvanceFlea,moveBy (17).getX evaluates td 7.

Example 7.6 We can also write objects with mutual recursion:

feeFoo a
{foo=An.if n=0 then 0 else fee(n—1);
fee=AMn.if n=0 then 1 else foo(n—1)

[

This object has two method&e and foo, which recursively call each other. According to rules of
Table 7.1feeFoo,foo(17) evaluates td.

7.2 Typing

As we saw, object instances can be defined fairly easily in lambda-calculus with records. However,

finding the right type for these objects is a difficult task. Indeed, how do we type even a simple object

simplestFlea = {lx = 1;getX = x[}? This object is a function from objects of this type to the record

45

type{x : Z;getX : Z}. Intuitively the type of this objecK should satisfy an equatioi = X — {x :
Z;getX : Z}. Unfortunately, this equation is not monotoneXn Therefore, we can not use standard
fixpoint operations such as the least fixpojm} ¢r the greatest{). Moreover, this equation may not have
a fixpoint at all!
First let us examine more carefully what we are looking for. We want to define the type of objects of
the form
oself {ly = ma(self);...;ln = mu(self)}

where we are given the type of the methods. L&tbe a type of a method naméd Let us denote the
type of such objects as
Of{ly : My;...5l, : My}

For examplesimplest F'lea should have typ&implest Fleas = Ox:Z;getX : Z}.

Note that some methods may return objects of the same typenevg. andmoveBy methods). In
this case we will use a bound varialfielf that represent the type of the object itself. We will use the
following syntax:

O Self {ly : My (Self);...;l, : M, (Self)} (7.12)

For example, we expeativanceF'lea to be of the following type

AdvanceFleas 2
O Self {x: Z;getX : Z; getNextX : Z;move : Self;moveBy : N — Self}.

We will call the record typeM [Self] = {l1 : Mi(Self);...;l, : M,(Self)} a declaration type
of an object type. Our goal is define a construclo$el f.M[Sel f] which is an object type of a given
declaration. First, let us describe the properties that we expect from this type constructor.

What does it mean that the method of an object has aiy@et means that if we apply this method
we get an element of typ&/. That is, ifobj has typeO{l; : M;;...;l, : M,} thenobj l; must have
type M;. More generally, if

Object = © Self {1y : My (Self);...;1l, : M, (Self)}

then we can apply methdgdto all objects of this type and the result must have typ€Object). That s,
the following rule is necessary:
obj € Object
obj,l; € M;(Object)
For example for albug € AdvanceFleaswe should havéug,getX € Z andbug,move € AdvanceFleas.

(7.13)

7.3 Definition of Object Types

In this section we are going to give a definition of a type of objects satisfying the properties outlined
above. We start with

Definition 7.7 Let X and A be types, then
X<Aff X C(X — A)

This definition says that il <« A then we can apply elements of typéto themselves. Therefore we
have the following

Lemma 7.8 If X < A thenifo € X theno(o) € A.
In particular, if
X <{ly: My;...;ln: My} (7.14)

then for anyo € X we have thab,l; € M;.

So intuitively, the typeX = © Self {l; : My(Self);...;l,, : M,(Self)} should satisfy the prop-
erty (7.14). Of course the empty type always satisfies (7.14), but we want the object type to contain as
many elements as possible. So we define the object type as a union of alkiygaisfying (7.14).

46

Definition 7.9 Generally, letM [X] be a type for any typ&. We define a typ® X.M[X] as a union of
all typesX that satisfyX < M[X]:

OX.M[X]=U{X :U| X < M[X]}.

We will also use the following abbreviationf|l, : M;j(Self);...;l, : M,(Self)[} for the type
O Self {11 : My(Self);...;ln : My (Self)}.

This definition does not satisfy the property (7.14), but it turns out that we do not need this property.
We still have the following lemma:

Lemma 7.10 If M[X] is monotone inX (w.r.t. subtyping relation) then for anye © X.M[X] we have
thato(o) € M[9 X.M[X]).

In particular, if M;[X] are monotone inX, then ifO = {|l; : My(Self);...; 1, : M, (Self)[} and
o € O theno,l; € Ml(O)

Proof If o € ©X.M[X] then there is a typ& € U, such that € X and X < M(X). By
Lemma 7.8,0(0) € M(X). SinceX C O X.M[X] and}M is monotone M (X) C M[OX.M[X]].
Thereforeo(o) € M [X.M[X]].

The second part of the lemma immediately follows form the first part.

This lemma provides us the elimination rule for objects (7.13).

obj € Object
obj l; € M;(Object)

whereObject = O Self {ly : My(Self);...;l, : My (Self)}.

The remaining question is how to prove that this type is nonempty? For example, how can one prove
that simplest Flea € SimplestFleas? This is nontrivial question. We should find a tyfesatisfying
0 € X < M(X). We will need another constructor.

7.4 Extensibility

Definition 7.9 has one important disadvantage: objects of the@yfiedf. M [Self] are not extensible, in
the sense that we cannot add new methods to them.

Example 7.11 Leta be an arbitrary object of the typfmove : Self[}. Consider another object
b = {move = al}.

Thenb is also an object of the typfmove : Self[}. The problem withb is thatb is not extensible. For
instance an extension
b = {move = a;new method = ¢|}

does not have a typmove : Self;newmethod : T’} becausé’ ,move,new method is undefined.

Extensible objects should have typesuch that not onl{” <t M (T'), but also any extensions (subtype)
X of T'should meefX < M (X).

7.5 Updatable Fields

Another problem with Definition 7.9 is that we can not update fields and methods of the objects of the
typeO X. M [X].

Example 7.12 Suppose we want to update a figldf an objectob; of the type{|x : Z;y : Z[}. That is,
we want to prove thatbj.x := 1 has the same type. We cannot always do that. For example let

o={x=0;y=if x=0 then 1 else errorf.

This object has typlx : Z;y : Z[}, butobj.x := 1 does not have this type.

47

So to be able to update fields, we will need some additional restrictions on the object type. To deal

with this problem we need

Definition 7.13 Letx be a label,A andT be types. Let us define the following relationagm, T":
{x: A} < TiffVa: AVt :T.(t.x:=a) €T
Note that this is a ternary relation, not a binary relation between types.

Informally speaking{|x : A[} < T gives a lower bound for a type of fieldin T'. It plays the same
role as Hickey’'s<-relation [21] and Zwanenburg#-relation [39].

We are going to define a type ektensibleobjects satisfying conditions of the for®(7T) = {x :
Al} < T. More precisely, for a given declaratidr (X) and a given conditiolP(X) we define a type
of extensible object§pr M. HereM € U — U and P(X) is a predicate on types. We cannot give this
definition for an arbitraryd and P. M should be monotone and continuous a@dhould be closed
under intersection (see below).

7.6 Topology

Subtyping relation forms a partial order over the type®irPartial order forms a topology: the topology
is formed by intervals

[4;B] 2 {X:U|AC X C B}
7.6.1 Continuous functions
Usually the following definition is used for continuity of monotone operators:

Definition 7.14 Monotone type operata¥/ is continuousff for any non-empty family of typdsX; }..
M(ﬂ X;) = ﬂ M(X;)
i1 i1

Most of the monotone type constructors are continudlis+ Y, X x Y, and most importanfx :
X;y: Y} are continuous.

7.6.2 Semicontinuous functions

We will need to iterateV(X) = X — M (X). Unfortunately, this operator is not monotone and not
continuous in any sense. For examplX) = —X is clearly not continuous. So we will need a less
strict definition.

Definition 7.15 A type operatorN is (upper) semicontinuousf for any non-empty family of types
{Xi}izl
N(ﬂXi) 2 ﬂN(Xi)
i1 i1

Itis clear that any continuous function is semicontinuous. We can also prove &if is semicon-
tinuous thenV(X) = X — M(X) is also semicontinuous. It follows from the following two lemmas.

Lemma 7.16 If F(X,Y) is a function that is anti-monotone in its first argument and semicontinuous in
its second argument, the¥M(X) = F(X,Y) is semicontinuous.
Lemma 7.17 X — Y is a monotone and continuous Yhand anti-monotone iX .

Note that a monotone function is semicontinuous iff it is continuous.

48

7.6.3 Closed properties and sets

Definition 7.18 We will say that a property’ of types isclosed (under intersectioifj for any family of
types{X;}..r if P is true for all X;’s then P is true for intersection oX;’s, i.e.

(Vi: I.P(X;)) = P(()X:)
[

In other words it means thd? is semicontinuous function frofid to propositions.

Definition 7.19 We will say that a subtyp¥ of U is closed (under intersectioifj for any family of types
{X;}:.1r whereX; € V, intersection of allX;’s is also inV'.

Note that it follows from this definition that i is closed thenP is true for Top and Top is in any
closed set of types (since Tep () Void).
LVOId

Example 7.20 P(T') = {jx : A} < T is a closed predicate.

7.7 Extensible objects: Formal definitions
Now we are going to give a formal definition &5 M.
Definition 7.21 Let P : U — P be a property of types. Defiriép = {X:U|P(X)}.
Definition 7.22 LetV be a subtype dfl, and A and B be types. Define
V[A;B] 2 {X:V|AC X C B}.

Definition 7.23 Let M be a continuous monotone type operator. Pdte a closed proposition aritl be
a type. Define a relation

TxpM 2 VX :Up. IV : Up[XNT; X].Y < M(Y).
We will refer to sucl” as M*(X).
Definition 7.24 Let M and P be as in definition 7.23. Define
€pM 2 | J{T:U | T ocp M}

We cannot prove that for any typeif T' ocp M thenT < M (T). But we can prove the following
Lemma 7.25 Let M and P be as in definition 7.23. For any ty@® if T' ocp M then there is a typ&”
inUp, such thatl’ C T" andT” < M (T").

Proof TakeT’ = M*(Top).

Corollary 7.26 €p M C O M
Lemma 7.27 T xp M is anti-monotone i’ and monotone i/, i.e.,
o T CTy xp M impliesT; «p M and
o If M1(X) C My(X) forall X thenT «p M; impliesT xp M,
Corollary 7.28 €p M is monotone in\{.
Lemma 7.29 T «p Top for any typeT'.
Lemma 7.30 Let{M; },.; be afamily of continuous functionsIIfp M; forall ¢ € IthenT xp (| M;

i1
(i.e. T ocp M is continuous in\/).

49

Proof SinceT xp X.M;(X) we have a family of functiond/;", s.t. M(X) € Up[X NT; X] and
M} (X) < M;(M}(X)) forany X € Up.
Now, we want to provd” «p X. [M;(X). We are givenX € Up. We want to findY” € Up[X N

T; X] such that” < [M;(Y). o

Let N;(X) = XZL M;(X). We now thatlV;'s are semicontinuous. Note thit < ﬂMi(Y) iff
Y C ON(Y). o

Dg‘ine a family of sequences of typE$ by induction:

o Yj=M;(X)

3

i Yqi+1 = Mz*(ﬂlyrf)
J:

Then we prove the following:
0., €Up
Proof: straightforward induction using facts tidf : Up — Up andUp is closed under intersection.
1.Y;,, C Y/ for any indexes, j.
Proof. ¥;i,, = M (1 Y/) € (Y{ C V{
g1 g:I

As a corollary we have:
2. N Y= Y/ foranyindexes, ;.
n:N n:N
Now, defineY” as this intersectiol = () Y,%.
n:N
3.V C N,(Y})
Proof: SinceN;(X) C N;(Nf (X)) foranyX € Up.

4.Y C Ny(Y) _ | |

Proof: N;(Y) = Ni((¥) 2 N Ni(¥}) 2 (| Vi =Y.
n:N n:N n:N

5Y/CX

Proof: By induction.

6.YiDXNT

Proof: By induction.
Sowe havethat € Up[X NT; X]andY C N;(Y).

Corollary 7.31 €p is continuous in\/.

In particular,
@P(Ml N MQ) = (@p Ml) n (@P MQ)

This establishes the following rule

o€ €p M o€ €Ep M
o GGP(Ml mMg)

Lemma 7.32 Let P be a closed proposition}/; be a continuous function frofip to Up and M be a
continuous monotone function. Let

T= (] M(X)
X:Up
XCMq(X)

Let No(X) = X — My(X). If Ny € {X : Up | X < M;(X)} — Up, then for anyT” such that
T «xp M; we have thal” N T ocp Mo.

50

Proof SinceT” «xp X.M;(X), thereis afunctiod];, s.t. M (X) € Up[XNT’; X]andM; (X)<
M, (M7 (X)) forany X € Up.

Let No(X) = X — My (X).

Now, we want to provd’ N T" «p X.No(X). That is for any typeX € Up we should find a typ&”
st.Y eUp[XNTNT; X]andY C No(Y).

Define the following sequence:

e Yy = M (Top)
o Yoir = M (Na(Y,) N X)

DefineY = () Y,,. Then we can prove the following:
n:N
1.Y, € Up andY,, < M;(Y,).
Proof: straightforward simultaneous induction.
2.T - NQ(Yn)
Proof: By definition ofT".
3. 7NT'NnX C X,
Proof: Two cases:
Yo=M;(Top) 2T'2TNT' NX

Yoi1=M;(No(Y)NX) D No(Y,)NXNT' DOTNT' NX

4. NZ(Yn) 2 Yn+1

Proof: Y, 41 = M (Na(Y) N X) C Na(Yy,).

5.Y C Ny(Y)

Proof: No(Y) 2 (N N2(Yn) 2 N Y1 2 Y.
n:N n:N

6.YCX

Proof:Y C Yy = M;(No(Yo) N X) C Nao(Yp) N X C X.
7.Y eUplXNTNT; X]

Proof: By (1), (3) and (6).

So we are done.

Corollary 7.33 If P, My, M5 andT are as in Lemma 7.32 then
TNEp M; C @p(Ml n Mg)
This corollary provides a main introduction rule for objects:

I'kFo S @PMl

): X <9 Mi(X) F o€ My(X)
): X < My(X) F P(Ma(X))
I'oe€p M NM

XU, P(X
X :U; P(X

)

b

7.8 Object Calculus

The rules that we proved above are represented in Table7.2.
We can make these rules more concrete substituting record types in plade @¥e will use the
notation
(%1 : Ma[Self];...:x : Mu[Self]l}

for p .(ASelf {x1 : M1[Self];...; %, : My[Self]}).

51

Table 7.2: Basic typing rules of object calculus

I'toe€p M
XU, P(X); X QMi(X) Foe My(X)
X :U; P(X); X 9 M (X) F P(M2(X))
'Foe€p M NMs
X U P(X) E My (X) € Ms(X)
I'-€p M, CEp M,y

Iii:ITFoe€pM;

F"OE@pﬂMi
a1

TtocCpM
TFocDXM(X)

In these rules are closed predicates afd’s are monotone continuous functions.

Table 7.3: Some derived rules of object calculus

' Fo(o){xn = mn[self][} € {x1 : Mi[Self];...;xn-1: Mn_1[Self]}p
X U P(X); X < {x:Mi[X]; .. 5 xn—1:Mn—1[X]}; self : X F my[self] € M, [X]
DX U P(X); X < {xi:Ma[XT; .. 5 xn—1:Mp 1 [X]} F P(X — M, [X])
I'Fo(0){xn = mn[self][} € {x1 : Mi[Self];...;xn : Mp[Self]}p

FEX <{xy: Mi[X];.. ;% : Mp[X]} 'Foe X
' o.x; EMZ[X]
I'o € obj € {x1 : Mi[Self];...;x, : My[Self]]}
I'Foe€obj € {x1: Mi[Self];...;xn : My[Self][}

'k o€ obj € {x1: Mi[Selfl];...;xn : M,[Self][}
I'to.x; € Ml[X]

FF{x: A} <X 'Foe X I'Fac A
I'Fox:=a€eX

FFx#y
PH{x: A} < (X —{y:B})

I'HFACB
PH{x: A} < (X — {x: B})

In these rules” is a closed predicates ad’s are monotone continuous functions.

52

7.9 Example

Now we show how rules of Table 7.3 works. Let us prove thatableF'lea has type

MovableFleas =
{ getX : Z;
getNextX : Z;
move : Self
[t
Remember
movableFlea =
{x=0;
getX = x;

getNextX = getX + 1;
move = (x := getNextX);

[

Let P(T)) = {x: Z[} < T. ltis enough to prove thahovableFlea € {|x : Z;getX : Z; getNextX :
Z;move : Self[} . Applying introduction four times we get four main subgoals:

X U P(X);self : XFO0€eZ

X U PX); X <{x:Z};self : X I self x €Z

X:U;P(X); X <{x:Z;getX:Z};self : X b self ,getX+1€Z

X Uy P(X); X <{x:Z;getX : Z;getNextX : Z}; self : X b self ;x := self ,getNextX € X

and four goals with the conclusion®(X — {z : Z}), P(X — {getX : Z}), and so on. These
subgoals are momentary proved by introduction rules<for

The first main subgoal is trivial. The second and the third one are proved by elimination rutes for
And finally, the last one is proved by the elimination rule for

BIBLIOGRAPHY

[1] Martin Abadi and Luca Cardelli. A semantics of object typesPmoceedings of @ IEEE Sympo-
sium on Logic in Computer Sciengages 332-341, Paris, France, July 1994. IEEE, IEEE Computer
Society Press.

[2] StuartF. Allen. A Non-type-theoretic Definition of MartinéE's Types. In D. Gries, editoProceed-
ings of the 2¢ IEEE Symposium on Logic in Computer Scignuages 215-224. IEEE Computer
Society Press, June 1987.

[3] Stuart F. Allen.A Non-Type-Theoretic Semantics for Type-Theoretic LanguRige thesis, Cornell
University, 1987.

[4] Lennart Augustsson. Cayenne — a language with dependent typkgetnational Conference on
Functional Programmingpages 239-250, 1998.

[5] Gustavo Betarte and Alvaro Tasistro. Extension of Martof4 type theory with record types and
subtyping. In Giovanni Sambin and Jan M. Smith, editdvsenty-Five Years of Constructive Type
Theory volume 36 ofOxford Logic Guidespages 21-39, Oxford, 1998. Clarendon Press.

[6] Mark Bickford and Jason J. Hickey. Predicate transformers for infinite-state automata in NuPRL
type theory. InProceedings 08" Irish Workshop in Formal Method4999.

[7] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodin§soteedings
of FOOL 3 1996.

[8] RobertL. Constable. Typesin logic, mathematics and programming. In Sam Buss, léditdhook
of Proof Theorychapter 10. Elsevier Science, 1998.

[9] Robert L. Constable et al.Implementing Mathematics with the NuPRL Development System
Prentice-Hall, NJ, 1986.

[10] Robert L. Constable and Jason Hickey. NuPRL'’s class theory and its applications. In Friedrich L.
Bauer and Ralf Steinbrueggen, editoFsundations of Secure ComputatjoNATO ASI Series,
Series F: Computer & System Sciences, pages 91-116. 10S Press, 2000.

[11] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality theory
for the A-calculus.Notre-Dame Journal of Formal Logi@1(4):685—-693, October 1980.

[12] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Ritesbduction to Algorithms MIT
Press/McGraw-Hill Book Company, Cambridge, Massachusetts, 1994.

[13] Judic@l Courant. An applicative module calculus. TAPSOFT Lecture Notes in Computer Sci-
ence, pages 622-636, Lille, France, April 1997. Springer-Verlag.

[14] J-Y. Girard. Une extension de l'interpretation dédgl a I'analyse, et son application a I'elimination
des coupures dans I'analyse et la theorie des type&ndrScandinavian Logic Symposiupages
63-69. Springer-Verlag, NY, 1971.

[15] J-Y. Girard. Interprétation fonctionnelle eélimination des coupures de I'arithetique d’ordre
sugerieur. PhD thesis, UnivergitParis VII, 1972.

[16] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced treesEHEnSym-
posium on Foundations of Computer Sciermages 8—21, October 1978.

[17] C. A. Gunter and J. C. Mitchell, editorsTheoretical Aspects of Object-Oriented Programming,
Types, Semantics and Language Desiypes, Semantics, and Language Design. MIT Press, Cam-
bridge, MA, 1994.

53

54

[18] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with shar-
ing. In Conference record of POPL '94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languagepages 123-137, Portland, OR, January 1994.

[19] Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli Barzilay, Yegor Bryukhov,
Richard Eaton, Adam Granicz, Alexei Kopylov, Christoph Kreitz, Vladimir N. Krupski, Lori Lorigo,
Stephan Schmitt, Carl Witty, and Xin Yu. MetaPRL — A modular logical environment. Accepted
to the TPHOLs 2003 Conference, 2003.

[20] Jason J. Hickey. Formal objects in type theory using very dependent tygesuridations of Object
Oriented Languages,3996. Available electronically through the FOOL 3 home page.

[21] Jason J. Hickey. A predicative type-theoretic interpretation of objects. Unpublished, 1997.

[22] Jason J. HickeyT'he MetaPRL Logical Programming EnvironmeRhD thesis, Cornell University,
Ithaca, NY, January 2001.

[23] Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et al. MetaPRL home plattye://metaprl.
org/ .

[24] Douglas J. Howe. Equality in lazy computation systemsPioceedings of the*4 IEEE Sympo-
sium on Logic in Computer Sciengeages 198—-203, Asilomar Conference Center, Pacific Grove,
California, June 1989. IEEE, IEEE Computer Society Press.

[25] T. B. Knoblock and R. L. Constable. Formalized metareasoning in type theoBroteedings of
the 1st Symposium on Logic in Computing Sciepages 237-248. IEEE, 1986.

[26] Alexei Kopylov. Dependent intersection: A new way of defining records in type theoBrdceed-
ings of 18" IEEE Symposium on Logic in Computer Scigi203.

[27] Alexei Kopylov and Aleksey Nogin. Markov’s principle for propositional type theory. In L. Fri-
bourg, editorComputer Science Logic, Proceedings of th& #nnual Conference of the EACSL
volume 2142 ot ecture Notes in Computer Scienpages 570-584. Springer-Verlag, 2001.

[28] Xavier Leroy. Manifest types, modules, and separate compilatioRrdoeedings of the 21st ACM
SIGPLAN-SIGACT symposium on Principles of programming langyausges 109-122. ACM
Press, 1994,

[29] Per Martin-Lof. Constructive mathematics and computer programming.Proceedings of the
Sixth International Congress for Logic, Methodology, and Philosophy of Sgipages 153—175,
Amsterdam, 1982. North Holland.

[30] Per Martin-Lof. Intuitionistic Type Theory Number 1 in Studies in Proof Theory, Lecture Notes.
Bibliopolis, Napoli, 1984.

[31] P.F. Mendlerinductive Definition in Type Thear?hD thesis, Cornell University, Ithaca, NY, 1988.

[32] Aleksey Nogin. Quotient types: A modular approach. In Victor A. GaoreCezar A. Muioz, and
Sophene Tahar, editor®roceedings of the 15 International Conference on Theorem Proving in
Higher Order Logics (TPHOLs 2002yolume 2410 ol ecture Notes in Computer Sciengages
263-280. Springer-Verlag, 2002.

[33] Chris Okasaki. Red-black trees un a functional settinlpurnal of Functional Programming
9(4):471-477, May 1999.

[34] Benjamin C. Pierce. Programming with intersection types, union types, and polymorphism. Tech-
nical Report CMU-CS-91-106, Carnegie Mellon University, February 1991.

55

[35] Benjamin C. Pierce. Programming with intersection types, union types, and polymorphism. Tech-
nical Report CMU-CS-91-106, Carnegie Mellon University, February 1991.

[36] Robert Pollack. Dependently typed records for representing mathematical structure. In J. Harrison
and M. Aagaard, editorsTheorem Proving in Higher Order Logics: #3International Confer-
ence, TPHOLs 200@olume 1869 of_ecture Notes in Computer Scienpages 461-478. Springer-
Verlag, 2000.

[37] Garrel Pottinger. A type assignment for the strongly normalizakierms. In Jonathan P. Seldin
and J. Roger Hindley, editorsp H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and
Formalism pages 561-577. Academic Press, London, 1980.

[38] John C. Reynolds. Design of the programming language forsythe. Technical Report CMU-CS-96-
146, Carnegie Mellon University, June 1996.

[39] Jan Zwanenburg. A type system for record concatenation and subtyping. In Kim Bruce and Giuseppe
Longo, editorsnformal proceedings of Third Workshop on Foundations of Object-Oriented Lan-
guages (FOOL 3)1996.

