
TYPE THEORETICAL FOUNDATIONS

FOR

DATA STRUCTURES, CLASSES, AND OBJECTS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Alexei Pavlovich Kopylov

January 2004

This document is in the public domain.

TYPE THEORETICAL FOUNDATIONS
FOR

DATA STRUCTURES, CLASSES, AND OBJECTS

Alexei Pavlovich Kopylov, Ph.D.
Cornell University 2004

In this thesis we explore the question of how to represent programming data structures in a constructive
type theory. The basic data structures in programing languages are records and objects. Most known
papers treat such data structure as primitive. That is, they add new primitive type constructors and sup-
porting axioms for records and objects. This approach is not satisfactory. First of all it complicates a type
theory a lot. Second, the validity of the new axioms is not easily established. As we will see the naive
choice of axioms can lead to contradiction even in the simplest cases.

We will show that records and objects can bedefinedin a powerful enough type theory. We will also
show how to use these type constructors to define abstract data structure.

BIOGRAPHICAL SKETCH

Alexei Kopylov was born in Moscow State University on April 2, 1974. His parents were students in the
Department of Mathematics and Mechanics there. First year of his life Alexei lived in a student dormitory
in the main building of the Moscow State University. Then his parents moved to Chernogolovka, a cozy
scientific town near Moscow.

Alexei returned to Moscow State University as a student in 1991. Five years later he graduated from
the Department of Mathematics and Mechanics and entered the graduate school of the same Department.
He passed all qualifying exam and almost finish his thesis there, but in 1998 he dropped the graduate
school in Moscow and enrolled in the PhD program at Cornell University.

Now in January 2004 he is looking forward to move to Caltech as a post doctoral fellow.

iii

ACKNOWLEDGEMENTS

I would like to thank here my teachers I had in my life. First of all, I am thankful to my parents Pavel
Kopylov and Ekaterina Gamazova. They inculcated in me a taste for mathematics in my early ages. For
example, when I was a little boy, my father brought me a pair of sand-glasses. I played with them and
came up with different puzzles, likehow to measure eleven minutes using sand-glasses for three and ten
minutes?My father also taught me programming in Pascal when we did not have a computer.

I am also thankful to Raymond Smullyan, although I never met him in person. My early interest in
mathematics is partially due to his great book —What Is the Name of This Book?— with logical puzzles
about knights and knaves. My father read me the problems from this book (I could hardly read at that
time) and I competed with my mother trying to solve the problems first.

My special thanks are due to my school math teacher Alexandr Nikolaevich Zemlyakov “Zemmm”. I
admire his mathematical taste and his teaching style.

Unfortunately some people who had great influence on me are already passed away. I am very grateful
to my grandfather Andrei Konstantinovich Gamazov, who was a great teacher, I am very proud of him. I
am also very grateful to my other grandfather Nikolai Georgievivh Kopylov, who taught me chess. My
schoolfriend Ivan Soloviev had a big influence on me. He was one year older than me and was always a
step ahead of me in mathematical Olympics.

I am thankful to my Moscow adviser Sergei Artemov. He helped me alot both in Moscow and at
Cornell. Thanks to him I am here. I owe many thanks to my Cornell adviser Robert Constable for his
guidance and many useful discussions.

I was very pleased to work with my colleague and namesake (although he spells his name differently)
Aleksey Nogin. Part of the thesis is a joint work with Aleksey. Many thanks are due to my other colleague
Jason Hickey for his discussions and early appreciation of my work.

I am also thankful to Christoph Kreitz and Stuart Allen for reading and reviewing my work. I want
to thank many other Cornellians included: Anil Nerode and Jon Kleinberg for serving on my committee,
Dexter Kozen who said that “a computer scientist is a mathematician with a job”, Evan Moran for his
comments on my work during PRL seminars, Mark Bickford, working with him was a pleasure, Pavel
Naumov and Lena Safirova for their help during my first year at Cornell, Alexandre Evfimievski for his
sharp criticism, and many others.

I also want to thank the PRL seminar for giving me a forum for presenting my ideas and helping me
refine them — especially the long series on objects.

I also acknowledge support from the DoD Multidisciplinary University Research Initiative (MURI)
program administered by the Office of Naval Research (ONR) under Grant N00014-01-1-0765, the De-
fense Advanced Research Projects Agency (DARPA) under Grant F30602-98-2-0198, and by NSF Grant
CCR 0204193.

iv

TABLE OF CONTENTS

1 Introduction 1
1.1 Records . 1
1.2 Objects . 1
1.3 Organization of the Thesis . 2

2 Constructive Type Theory 3
2.1 Martin-Löf Type Theory . 3

2.1.1 Types . 3
2.1.2 Dependent Types . 3
2.1.3 Universe Types . 4

2.2 Functionality . 4
2.2.1 Pointwise Functionality . 4
2.2.2 Pairwise Functionality . 4
2.2.3 Comparing . 5

2.3 Additional Types . 5
2.3.1 Squiggle Equality . 5
2.3.2 The Set Type Constructor . 6
2.3.3 Subtyping . 6
2.3.4 Intersection . 6
2.3.5 Union . 7
2.3.6 Elimination Rules for Intersections and Unions in Different Functionalities . . . 10

3 Record Type and Dependent Intersection 11
3.1 Dependent Intersection . 12

3.1.1 Semantics . 12
3.1.2 The Inference Rules . 13

3.2 Records . 14
3.2.1 Plain Records . 14
3.2.2 Dependent Records . 16

3.3 The Record Calculus . 17
3.3.1 The Formal Definition . 17
3.3.2 The Rules . 20
3.3.3 Examples . 21

4 Elimination Rule for Independent Records 23
4.1 Weak Elimination Rule . 23
4.2 Naive Elimination Rule . 23
4.3 Strong Elimination Rule . 24
4.4 Functions with Limited Polymorphism . 25

4.4.1 Non-polymorphic Definition of Record Type 25
4.5 Functionality . 27

4.5.1 Elimination Rule in Pairwise Functionality . 27
4.5.2 Elimination Rule in Pointwise Functionality . 27

5 Other Possible Applications 29
5.1 Sets and Dependent Intersections . 29
5.2 Variant Type . 30

5.2.1 Definitions . 30
5.2.2 Properties . 31

5.3 Abstract Algebra . 31
5.4 Join Operator . 32

v

6 Red–Black Trees 33
6.1 Introduction . 33
6.2 Binary Trees . 33
6.3 Sorted Trees . 35
6.4 Red–Black Trees . 36
6.5 Sorted Red–Black Trees . 38

7 Objects 40
7.1 Object instances . 40

7.1.1 The operations with objects . 40
7.1.2 Formal definitions . 42
7.1.3 Additional Properties . 43
7.1.4 Notations . 44
7.1.5 Recursion . 44

7.2 Typing . 44
7.3 Definition of Object Types . 45
7.4 Extensibility . 46
7.5 Updatable Fields . 46
7.6 Topology . 47

7.6.1 Continuous functions . 47
7.6.2 Semicontinuous functions . 47
7.6.3 Closed properties and sets . 48

7.7 Extensible objects: Formal definitions . 48
7.8 Object Calculus . 50
7.9 Example . 52

Bibliography 53

vi

LIST OF TABLES

2.1 Inference rules for the binary intersection type . 7
2.2 Inference rules for the family intersection type . 8
2.3 Inference rules for the union type . 9
2.4 Inference rules for the family union type . 9

3.1 Rules for dependent intersection . 13
3.2 Inference rules for records . 19

7.1 Reduction rules for object calculus . 43
7.2 Basic typing rules of object calculus . 51
7.3 Some derived rules of object calculus . 51

vii

Chapter 1
Introduction
This thesis is done in the framework of a certain constructive type theory, which is an extension of Martin-
Löf type theory. Type theory is powerful tool for formalizing programming languages. It already contains
the functional programming language (λ-calculus) and typing systems. The typing system is powerful
enough to represent any program specification. In this thesis we research the question of expanding type
theory with more programming tools.

1.1 Records

One of the important tools of any programming languages is the record type. We also will consider a
dependent record type, that is, a record type where the types of components may depend of previous
components (like{x : A; y : B[x]}). Records and especially dependent records are a powerful tool for
programming, representing mathematical concepts and data structures. In the last decade several type
systems with records as primitive types were proposed. We will see that the record type is too complex
a type to be primitive, and naive axiomatization leads to contradiction (see Section 4.2). The question
arose: whether it is possible to define the record type in existent type theories using standard types without
introducing new primitives.

It was known thatindependentrecords can be defined in type theories with dependent functions or
intersection. On the other handdependentrecords cannot be formed using standard types [5]. Hickey [20]
introduced a complex notion ofvery dependent functionsto represent dependent records. Here we extend
the constructive type theory with a simpler type constructordependent intersection, i.e., the intersection
of two types, where the second type may depend on elements of the first one (not to be confused with the
intersection of a family of types). This new type constructor allows us to define dependent records in a
very simple way.

Dependent intersection is very simple and natural type constructor. It also allows us to define the set
type constructor (which is primitive in the original theory), thus it simplifies the overall type theory.

Also it turns out that natural join operator (on) is just an intersection of sets of records.

1.2 Objects

Another important concept in programming languages is object-oriented programming. Unfortunately
object-oriented languages are hard to represent in the type theories due to self-application. (See [1, 17].)

In the last decade several encodings of objects in type theory were proposed. See a comparison among
the most basic ones in [7]. Almost every existing encoding uses an extension of systemF [14] as a target
type theory.

We show how to embed object types in the constructive type theory using intersection and union. The
object encoding in this system has its own specific characters.

Objects may have recursive methods. In our system we have total functions. That is, we allow
recursive functions as soon as we can prove that they terminate. So we are looking for a definition of a
type of objects, such that it allows recursive methods and at the same time allows for a type of objects
with a certain method, application of this method to any object of this type should always terminate. Note
that inF -like systems application of a method does not necessary terminate. Therefore we can not simply
follow the encoding of objects inF -like systems. It also shows that there is no simple way to define
objects as primitives.

We will also see similarities with the existing encodings. Most of the known encodings of the type of
object use an existential type inF -like type theories. In our type theory, the union type (Section 2.3.5)
could be used instead of an existential quantifier. That is, we could use

⋃
X:Ui

A[X] instead of∃X.A[X],

whereUi is the universe (a type of types, Section 2.1.3) of leveli. On the one hand, the union type is
more powerful: we can take a union over types satisfying some condition. This feature allows us to find

1

2

a simpler encoding of objects. Also the union type does not require packing/unpacking its elements as
does an existential type. On the other hand, the unions type has its own restrictions. We cannot take union
over all types, but only over types of a particular leveli. This union will be a type of leveli + 1 (i.e.,⋃
X:Ui

A[X] ∈ Ui+1). That means we are not allowed to substitute this type in place ofX. That is, for

example, we cannot prove thatA[
⋃

X:Ui

A[X]] ⊆ ⋃
X:Ui

A[X]. This problem significantly complicates our

theory of objects. In particular, it requires that types of methods should depend continuously on theSelf
type.

Our encoding of object types has most of the standard object-oriented features such as polymorphism,
inheritance, method abstraction, method overriding and so on. Also our object type allows full abstraction.
That is, users do not have access to abstract fields. So two different implementations of an object may be
equal from the interface point of view. Moreover, this can be formally proved inside system itself. We do
not allow binary methods on objects, since it would contradict full abstraction.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 gives an overview of Martin-Löf type
theory and the constructive type theory extension of it implemented in MetaPRL.

In Chapter 3 we introduce the new type constructordependent intersectionand show that record types
can be defined using this constructor. Even with this new definition of the record type, finding the right
elimination rule a for record calculus is challenging. In Chapter 4 we will show that a naive elimination
rule for records is contradictory. We will discuss how functionality affects the elimination rule. We also
introduce an idea of functions with limited polymorphism.

In Section 5.1 we show that our dependent intersection can replace the set type constructor. In Sec-
tion 5.2 we will show the definition of the variant type which is dual to the record type. In Section 5.3
we show that our record calculus could be used to define abstract algebraic structures. In Section 5.4 we
show that natural join operator (on) is just an intersection of sets of records.

In Chapter 6 we show an example of an abstract data structure,Set, and give a formally correct
implementation of this data structure using red-black trees.

In Chapter 7 we encode objects into the type theory.

Chapter 2
Constructive Type Theory
Our work is done in the setting of constructive type theory as implemented in the MetaPRL logical
framework [22, 19, 23]. Our type theory is an extension of the constructive type theory implemented
in NuPRL [8, 9], which is an extension of Martin-Löf’s type theory [30].

In this chapter we give a short overview of our type theory.

2.1 Martin-L öf Type Theory

First let us give an overview of the original Martin-Löf Type Theory [30].

2.1.1 Types

The basic notion in the theory istype. Type is a primitive notion. Two main judgments about types are
A Type meaning thatA is a type anda ∈ A meaning thata has typeA. Each typeA is associated with
an equality relation on elements of this type,a = b ∈ A. There is also the equivalence relation on types:
A = B. So, Martin-L̈of’s type theory has the following four forms of judgments:

A Type A is a well-formed type
A = B A andB are equal types
a ∈ A a has typeA
a = b ∈ A a andb are equal as elements of typeA

The examples of types include simple types likeZ for integers0, 1, −1 andB for booleans. We can
also construct new types using basic type constructors, like productA×B for the type of pairs〈a, b〉 and
function typeA → B for the type of functionsλx.b[x].

Some notations: we will useT [x1, . . . , xn] for expressions that may contain free variablesx1, . . . ,xn

(and probably some other free variables), andT [t1, . . . , tn] for the substitution of termsti’s for all free
occurrences ofxi’s. We call such variables that stands for termssecond order variables. If a second-order
variable is in scope of a bound variable we will always write all variables it may contain. For example
we will write λx.f [x] for generalλ-expressions. The expressionλx.f means thatf does not contain free
variables.

Functions types representtotal computable functions. For example,λx.b[x] has typeZ → Z if for
any integera evaluation ofb[a] terminates and returns an integer. Thus, we are allowed to have recursive
functions as long as we can prove that they terminate on any input from their domain. Of course that
makes type-checking undecidable.

Membership and equality in a type is extensional. In particular it means that two functionsf andg
are equal in the typeA → B if f(a) = g(a) ∈ B for anya ∈ A.

Our type theory uses the proposition-as-types principle. That is, we will consider any type as a
proposition which is true when this type is non-empty.

2.1.2 Dependent Types

Martin-Löf’s type theory also has dependent types, namely dependent product and dependent function
type.

Suppose, we have a type expressionB[x] that contains a free variablex ranging over a typeA. For
example,B[x] may be[0..x] which represents an initial sequence of natural numbers. This expression is
a type whenx ∈ N.

Then we can form a dependent product typex : A×B[x] (also known as aΣ-type) which is a type of
all pairs〈a, b〉 wherea ∈ A andb ∈ B[a]. For example, ifA = N andB[x] = [0..x] thenx : A×B[x] is
a type of pairs of natural numbers〈n,m〉, wherem ≤ n.

We can also form a dependent function typex : A → B[x] (also known as aΠ-type) which is a type
of all functionsλx.b[x] whereb[a] ∈ B[a] for anya ∈ A. For example, ifA = N andB[x] = [0..x] then
x : A → B[x] is a type of functionsf(n), s.t.0 ≤ f(n) ≤ n.

3

4

Dependent types make the theory powerful enough to represent any mathematical statement.

2.1.3 Universe Types

Introduction of a type of all types leads to contradiction (Girard’s paradox [15]). But we can introduce
a sequence of universe typesU1, U2, WhereU1 is the universe of the first level, a type of all types
constructed without using universes.U2 is the universe of the second level, a type of all types constructed
without using universes of any level above 1. And so on.

In this thesis we will assume that we fix some universe levelU = Ui, and we will writeU′ for Ui+1

andU′′ for Ui+2.

2.2 Functionality

In our type theory we derivesequents. Each sequent has a form:

x1 : H1; x2 : H2[x1]; . . . ;xn : Hn[x1; . . . ; xn−1] ` C[x1; . . . ; xn] (2.1)

Herexi’s are declared variables,Hi’s are hypotheses andC is a conclusion. Thei-th hypothesis may
depend on the variables declared before it, and conclusion may depend on all variables.

Roughly speaking the sequent (2.1) is true whenC[x1; . . . ; xn] is true (i.e. non-empty) for allxi’s
from Hi[x1; . . . ;xi−1]. The formal definition of the truth of the sequent deals with functionality. Basi-
cally, we say that a typeC[x] is functional overx : T if t1 = t2 ∈ T impliesC[t1] = C[t2].

There are different nonequivalent approaches to define what it means for a sequent to be true. Orig-
inally Martin-Löf required that any hypothesisHi must be functional over previous hypotheses and the
conclusion must be functional over all hypotheses.

The type theory implemented in NuPRL uses a weaker requirement that allows one to formulate
stronger rules (for example a rule for induction over natural numbers). This approach is calledpointwise
functionalityand was discovered by Stuart Allen in [3].

Another version of functionality was used in [31]. Aleksey Nogin later independently rediscovered it
and called itpairwise functionality.

In the thesis we will consider pairwise and pointwise functionality.

2.2.1 Pointwise Functionality

Pointwise functionality is fairly complicated notion. We will use Aleksey Nogin’s presentation of it.
Let we are given a list of hypothesesΓ:

x1 : H1;x2 : H2[x1]; . . . ; xn : Hn[x1; . . . ; xn−1].

Then we write~t for a list of termst1, t2, . . . , tn. We will also write

~t ∈ Γ[~t] for ∀i ∈ [1..n]. ti ∈ Hi[t1; . . . ; ti−1];
~t = ~t′ ∈ Γ[~t] for ∀i ∈ [1..n]. ti = t′i ∈ Hi[t1; . . . ; ti−1];
Γ[~t] = Γ[~t′] for ∀i ∈ [1..n]. Hi[t1; . . . ; ti−1] = Hi[t′1; . . . ; t

′
i−1].

Then a sequentΓ ` C[~x] said to betrue in pointwise functionalityiff

∀~t. (~t ∈ Γ[~t] ∧ ∀~t′. (~t = ~t′ ∈ Γ[~t] ⇒ Γ[~t] = Γ[~t′]) ⇒
∀~t′.(~t = ~t′ ∈ Γ[~t] ⇒ C[~t] ∧ C[~t] = C[~t′])

)

2.2.2 Pairwise Functionality

The alternative definition of the truth of a sequent is pairwise functionality. Using the above notation, we
say that a sequentΓ ` C[~x] is true in pairwise functionalityiff

∀~t.∀~t′. (Γ[~t] = Γ[~t′] ∧ ~t = ~t′ ∈ Γ[~t]) ⇒ (C[~t] ∧ C[~t] = C[~t′])

5

2.2.3 Comparing

Most of the rules are true in both functionalities. But some rules are true only in pointwise functionality,
and some rules are true only in pairwise functionality.

The most important rule that holds only in pairwise functionality is theLet rule (a form of theCut
rule):

Γ;x : A;∆[x] ` C[x] Γ ` a ∈ A

Γ;∆[a] ` C[a]
(Let x = a ∈ A)

In pointwise functionality this rule is invalid, only a weaker form of this rule (when∆ does not depend
onx) is valid:

Γ;x : A;∆ ` C[x] Γ ` a ∈ A

Γ;∆ ` C[a]

(Note that according to our notations the above rule means that∆ does not contain free occurrences ofx.)
The following corollary of theLet rule is also invalid in pointwise functionality (but of course holds

in pairwise functionality):
Γ;x : B;∆[x] ` C[x] Γ ` A ⊆ B

Γ;x : A;∆[x] ` C[x]

On the other hand, the following rule is true in pointwise, but not in pairwise:

Γ1; t : T ; Γ2[t];x : A[t];∆[x; t] ` t = t′ ∈ T
Γ1; t : T ; Γ2[t]; x : A[t′];∆[x; t] ` C[t; x]
Γ1; t : T ; Γ2[t];x : A[t];∆[x; t] ` C[t;x]

(PointwiseSubstitute)

This rule states that we can replace a variable declared ast : T by a termt′ if we know thatt = t′ ∈ T .
Sometimes this rule is stronger than a general substitution rule (which is true in both functionalities). The
later rule requires that typeA[t] is functional overt : T :

Γ;x : A[t];∆[x]; z : T ` A[z] Type
Γ;x : A[t];∆[x] ` t = t′ ∈ T

Γ;x : A[t′];∆[x] ` C[x]
Γ; x : A[t];∆[x] ` C[x]

Rules stated in this thesis are true for both functionalities, unless otherwise mentioned.

2.3 Additional Types

The constructive type theory implemented in MetaPRL has some additional type constructors, some of
them inherited form the NuPRL type theory.

2.3.1 Squiggle Equality

The squiggle equality on termsa ≡ b is defined as the symmetric transitive closure of the reduction
relation. Howe showed that it is a congruence [24].

For example we can prove that for any elementp of typeA×B

p ≡ 〈π1p, π2p〉 .

Also we haveη-reduction for anyf ∈ A → B:

f ≡ λx.(fx)

6

2.3.2 The Set Type Constructor

Our type theory has a primitive type constructor for set types [9]. By definition, the set type{x : T |P [x]}
is a subtype ofT , which contains only such elementsx of T that satisfy propertyP [x] (see [9]).

Example 2.1 The type of natural numbers is defined asN = {n : Z |n ≥ 0}. Without set types we would
have to defineN asn : Z× (n ≥ 0). In this case we would not have the subtyping propertyN ⊆ Z.

Later in the thesis (Section 5.1) we will replace this primitive type constructor by more fundamental
primitive type, thus simplifying the type theory.

2.3.3 Subtyping

Our type theory also has a subtyping relation [31]. The subtyping relation as well as the membership
relation are extensional. That means thatA ⊆ B does not say anything about structure of these types, but
only means that all elements of typeA are also elements of typeB and if two elements are equal inA
then they are also equal inB. As a result the subtyping relation is undecidable (as well as type checking).

Example 2.2 If A ⊆ B then(B → C) ⊆ (A → C). It may seem strange at a first: supposeA, B and
C are finite types anda, b andc are the number of elements in these types correspondingly, thenB → C
hascb elements andA → C hasca < cb elements. This example shows that a subtype may have more
elements than a supertype!

Remark Of course, when we say that a typeA hasn elements, we mean that typeA hasn differentelements.
Actually this type may have many elements that are equal from the point of view of this type.

After the subtyping is defined, the natural question arises: what is the biggest (w.r.t. subtyping)
common subtype of two or more types and what is the smallest supertype of two or more types?

2.3.4 Intersection

Binary Intersection

It is easy to see thatt can be in a common subtype ofA andB only if t ∈ A andt ∈ B. Also, t1 may
be equal tot2 in a common subtype only if they are equal in bothA andB. Since the more elements the
type has and the more elements are equal in a type, the ”greater” the type is (in the sense of subtyping), in
order to get the biggest common subtype ofA andB, we need to take all the objects that are both inA and
in B and make all elements that are equal in bothA andB equal in our type. In other words, the biggest
common subtype of two types is a type whose set of members is an intersection of sets of members of
those types and whose equivalence relation is an intersection (as sets of pairs) of equivalence relations of
those two types. We call such typean intersectionof A andB, written: A ∩B.

Example 2.3 λx.x + 1 is an element of the type(Z→ Z) ∩ (N→ N).

Example 2.4 Let A = N → N and B = Z− → Z (whereZ− is a type of negative integers). Let
id = λx.x andabs = λx.|x|. Thenid andabs are both elements of the typeA ∩B. Althoughid andabs
are equal as elements of the typeN→ N (because these two functions do not differ onN), id andabs are
different as elements ofZ− → Z. Therefore,id 6= abs ∈ A ∩B.

Example 2.5 LetA = {0} → B, where{0} is a singleton subset ofZ. ThenA is a type of functions that
maps0 to a boolean value. Obviously, this type has two elements. Now letB = {1} → B. This type also
has two elements. But their intersection isA ∩B = {0, 1} → B has four elements!

The inference rules for the intersection type are presented in Table 2.1.

7

Table 2.1: Inference rules for the binary intersection type

Γ ` A Type Γ ` B Type
Γ ` A ∩B Type

(TypeFormation)

Γ ` A = A′ Γ ` B = B′

Γ ` A ∩B = A′ ∩B′ (TypeEquality)

Γ ` a ∈ A Γ ` a ∈ B

Γ ` a ∈ A ∩B
(Introduction)

Γ ` a = a′ ∈ A Γ ` a = a′ ∈ B

Γ ` a = a′ ∈ A ∩B
(Equality)

Γ ` x ∈ A ∩B

Γ ` x ∈ A

Γ ` x ∈ A ∩B

Γ ` x ∈ B
(Elimination)1

1See also Section 2.3.6

Intersection of a Family of Types

It is easy to see that the same is true if we take the largest common subtype of more than two types or if
we take a largest common subtype of a whole family of types. We call the biggest common subtype of
several types or of a family of typesan intersection typeof those types.

Example 2.6 λx.x has typeA → A for any typeA. Therefore

λx.x ∈
⋂

A:U
A → A

Example 2.7 Let Top =
⋂

x:Void
Void. This type contains anything, and any two element of this type are

equal. This is similar to the typeVoid → Void, but the later type contains onlyλ-terms. Again any two
elements are equal inVoid → Void.

It seems very strange thatTop ∈ Top, and anyUi ∈ Top, evenUi ⊆ Top, wheneverTop ∈ U1. But
it does not contradict anything. The reason is similar to the reason whyλx.Ui ∈ Void → Void does not
lead to a contradiction. AlthoughTop is a supertype of any type it is very trivial, because it has the trivial
equality. So, we can not define something like “the type of all types” usingTop.

The inference rules for the family intersection type are presented in Table 2.2.
Note that we can define binary intersection as a partial case of of family intersection:

A ∩B =
⋂

b:B
if b then A else B

2.3.5 Union

Binary Union

A similar argument shows that whenever eithert ∈ A or t ∈ B, t should also be in common supertype
of A andB, and whenevert1 = t2 in eitherA or B, t1 should be equal tot2 in any common supertype.
Similarly, for the intersection type, the the set of all members of the smallest common supertype of two

8

Table 2.2: Inference rules for the family intersection type

Γ ` A Type Γ;x : A ` B[x] Type
Γ ` ⋂

x:A

B[x] Type
(TypeFormation)

Γ ` A = A′ Γ;x : A ` B[x] = B′[x]
Γ ` ⋂

x:A

B[x] =
⋂

x:A′
B′[x]

(TypeEquality)

Γ;x : A ` b ∈ B[x]
Γ ` b ∈ ⋂

x:A

B[x]
(Introduction)

Γ;x : A ` b = b′ ∈ B[x]
Γ ` b = b′ ∈ ⋂

x:A

B[x]
(Equality)

Γ ` a ∈ A Γ ` b ∈ ⋂
x:A

B[x]

Γ ` b ∈ B[a]
(Elimination)1

1See also Section 2.3.6

types is just a union of the sets of members of those types. However the union of two equivalence relations
is not necessary an equivalence relation (it is not necessarily transitive). So the equivalence relation of the
smallest common supertype is the smallest equivalence relation containing the union of the equivalence
relations of the two types — the transitive closure of that union of the equivalence relations. We call this
type theunionof A andB and denote it byA ∪B.

The union considered as a proposition is a disjunction:A ∪ B is true iff A is true orB is true. But
unlike the standard disjunction, union is not constructive. KnowingA ∪B we cannot always say what is
true:A or B. Therefore the rule

x : A ` C x : B ` C

x : A ∪B ` C

is not constructively true. Indeed if a witness ofC is constructed differently in case whenx ∈ A and in
case whenx ∈ B then we have no way to construct a witness if we now only thatx ∈ A∪B. But in case
whenC does not have the computational context, like membership, this rule would be true.

The inference rules for the union type are presented in Table 2.3.
The following holds for union. Iff ∈ A → C andf ∈ B → C then

f ∈ A ∪B → C.

Union of a Family of Types

Similarly we can define the union of a family of types.
The inference rules for the family union type are presented in Table 2.4.

Example 2.8 Let P [x] be a predicate on somex ∈ A. Then
⋃
x:A

P [x] is a true proposition (i.e., non

empty type) if there is an elementa ∈ A, s.t.P [a]. Therefore union could be considered as an existential
quantifier. The difference between union type and standard existential quantifier∃x : A.P [x] = x :
A × P [x] is that union type “hides” thefirst component of the existential quantifier. That is, the witness
of the union type is just a witness ofP [x] for somex ∈ A, but it does not containx itself. Compare with
the set type:{x : A | P [x]}. The set type hides the second component of the existential quantifier. The
witness of this type is justx fromA, s.t.P [x].

9

Table 2.3: Inference rules for the union type

Γ ` A Type Γ ` B Type
Γ ` A ∪B Type

(TypeFormation)

Γ ` A = A′ Γ ` B = B′

Γ ` A ∪B = A′ ∪B′ (TypeEquality)

Γ ` a ∈ A Γ ` B Type
Γ ` a ∈ A ∪B

Γ ` b ∈ B Γ ` A Type
Γ ` b ∈ A ∪B

(Introduction)

Γ ` a = a′ ∈ A Γ ` B Type
Γ ` a = a′ ∈ A ∪B

Γ ` b = b′ ∈ B Γ ` A Type
Γ ` b = b′ ∈ A ∪B

(Equality)

Γ;u : A, ∆ ` c[u] ∈ C[u] Γ; u : B, ∆ ` c[u] ∈ C[u]
Γ; u : (A ∪B);∆ ` c[u] ∈ C[u]

(Elimination)1

1See also Section 2.3.6

Table 2.4: Inference rules for the family union type

Γ ` A Type Γ;x : A ` B[x] Type
Γ ` ⋃

x:A

B[x] Type
(TypeFormation)

Γ ` A = A′ Γ;x : A ` B[x] = B′[x]
Γ ` ⋃

x:A

B[x] =
⋃

x:A′
B′[x]

(TypeEquality)

Γ ` a ∈ A Γ ` b ∈ B[a] Γ; x : A ` B[x] Type
Γ ` b ∈ ⋃

x:A

B[x]
(Introduction)

Γ ` a ∈ A Γ ` b = b′ ∈ B[a] Γ; x : A ` B[x] Type
Γ ` b = b′ ∈ ⋃

x:A

B[x]
(Equality)

Γ; x : A, u : B[x],∆ ` c[u] ∈ C[u]
Γ;u :

⋃
x:A

B[x], ∆ ` c[u] ∈ C[u]
(Elimination)1

1See also Section 2.3.6

10

By analogy with intersection we can define binary union as a partial case of of family union:

A ∪B =
⋃

b:B
if b then A else B

2.3.6 Elimination Rules for Intersections and Unions in Different Functionalities

All of the above rules for union and intersection hold in both functionalities. In pairwise functionality
we can prove a stronger elimination rule for intersections and in pointwise functionality we can prove a
stronger elimination rule for unions.

In pairwise functionality we have theLet rule (Section 2.2.3). Using this rule and the elimination
rules for intersection from Tables 2.1 and 2.2 we can prove stronger elimination rules:

Γ;x : A; y : B;∆[x; y] ` C[x; y]
Γ;u : (x : A ∩B);∆[u; u] ` C[u; u]

Γ;u:
⋂
x:A

B[x];∆[u; u] ` a ∈ A Γ;u:
⋂
x:A

B[x]; v : B[a]; ∆[u; v];u=v∈B[a] ` C[u; v]

Γ;u:
⋂
x:A

B[x];∆[u; v] ` C[u; v]

In pointwise functionality using the weakLet rule, we can only prove weak versions of the above
rules where∆ does not depend onu:

Γ;x : A; y : B;∆ ` C[x; y]
Γ;u : (x : A ∩B);∆ ` C[u;u]

Γ;u :
⋂
x:A

B[x]; ∆ ` a ∈ A Γ; u :
⋂
x:A

B[x]; v : B[a];∆; u = v ∈ B[a] ` C[u; v]

Γ;u :
⋂
x:A

B[x];∆ ` C[u; v]

Oppositely, the elimination rules for union type are stronger in pointwise functionality. In the elim-
ination rules from Tables 2.3 and 2.4∆ does not depend onu. In the pointwise functionality using
PointwiseSubstitute rule (Section 2.2.3) we can make these rules stronger by allowing∆ to depend on
u:

Γ;u : A; ∆[u] ` c[u] ∈ C[u] Γ; u : B;∆[u] ` c[u] ∈ C[u]
Γ;u : (A ∪B);∆[u] ` c[u] ∈ C[u]

Γ;x : A, u : B[x];∆[u] ` c[u] ∈ C[u]
Γ;u :

⋃
x:A

B[x];∆[u] ` c[u] ∈ C[u]

These rules are invalid in pairwise functionality.

Remark 2.9 Intersection of types was introduced in [11] and [37]. Our interpretation of intersection
and union is most close to [34]. The understanding of semantics and rules for intersection and union is
our join work with Aleksey Nogin.

Chapter 3
Record Type and Dependent Intersection
In general, records are tuples of labeled fields, where each field may have its own type. In dependent
records (or more formally, dependently typed records) the type of some components may depend on
values of the other components. Since we have the type of typesU, values of record components may
be types. This makes the notion of dependent records very powerful. Dependent records may be used
to represent algebraic structures (such as groups) and modules in programming languages like SML or
Haskell (see for example [4, 18]).

Example 3.1 One can define the signature for an ordered set as a dependent record type:

OrdSetSig
∆= {t : U; less : t→ t→ B}

This definition can be understood as an algebraic structure as well as an interface of a module in a
programing language.

Example 3.2 The proposition-as-type principle allows us to add the property of order as a new compo-
nent:

OrdSet
∆= {t:U; less:t→ t→ B; axm : Ord(t, less)}

whereOrd(t, less) is a predicate stating thatless is a transitive irreflexive relation ont. Hereaxm is
a new field that defines the axiom of the algebraic structure of ordered sets (or specification of the module
typeOrdSet).

Example 3.3 In type theories with equality, manifested fields ([28]) may be also represented in the spec-
ification.

IntOrdSetSig
∆= {t:U; less:t→t→B; mnf:t=Z}

is a signature wheret is bound to be the type of integers.

From a mathematical point of view the record type is similar to the product type. The essential
difference is the subtyping property: we can extend a record type with new fields and get a subtype of the
original record type. E.g.OrdSet andIntOrdSetSig defined above are subtypes ofOrdSetSig. The
subtyping property is important in mathematics: we can apply all theorems about monoids to included
types such as groups. It is also essential in programing for inheritance and abstractions.

Different type theories with records were proposed both for proof systems as well as for programming
languages ([18, 28, 13, 4, 5, 36] and others). These systems treat the record type as a new primitive. In
the current thesis we are interested in the following natural question:is it possible to express the notion of
records in usual type theories without the record type as primitive?This question is especially interesting
for pure mathematical proof systems. As we saw, the record type is a handy tool for representing algebraic
structures. On the other hand records do not seem to be the basic mathematical concept that should be
included in the foundation of mathematics. Rather records should be defined in terms of more abstract
mathematical concepts.

It is known that it is possible to defineindependent recordsin a sufficiently powerful type theory
that has dependent functions [20] or intersection [38]. On the other hand, there is no known way to form
dependent records in standard Martin-Löf’s type theory [5]. However, Hickey [20] showed thatdependent
recordscan be formed in an extension of Martin-Löf’s type theory. Namely, he introduced a new type of
very dependent function types. This type is powerful enough to express dependent records in a type theory
and provides a mathematical foundation of dependent records. Unfortunately the type of very dependent
functions is very complex itself. The rules and the semantics are probably more complicated for this type
than for dependent records. The question is whether there is a simpler way to add dependent records to a
type theory.

In this thesis we extend the NuPRL type theory with a simpler and easier to understand primitive
type constructor,dependent intersection. This is a natural generalization of the standard intersection

11

12

introduced in [11] and [37]. Dependent intersection is an intersection oftwo types, where the second type
may depend on elements of the first one. This type constructor is built by analogy to dependent products:
elements of dependent products are pairs where the type of the second component may depend on the
first component. We will show that dependent intersection allows us to define the record type in a very
simple way. Our definition of records is extensionally equal to Hickey’s, but is far simpler. Moreover
our constructors (unlike Hickey’s) allow us to extend record types. For example, having a definition of
monoids we can define groups by extending this definition rather than repeating the definition of monoid.

3.1 Dependent Intersection

We extend the definition of intersectionA ∩ B to a case when the typeB can depend on elements of
the typeA. Let A be a type andB[x] be a type for allx of typeA. We define a new type,dependent
intersectionx:A ∩ B[x]. This type contains all elementsa from A such thata is also inB[a] (see below
for equality).

Remark 3.4 Do not confusethe dependent intersectionwith the intersection of a family of types
⋂

x:A B[x].
The latter refers to an intersection of typesB[x] for all x in A. The difference between these two type
constructors is similar to the difference between dependent productsx:A × B[x] = Σx:AB[x] and the
product of a family of typesΠx:AB[x] = x : A → B[x].

Example 3.5 The ordinary binary intersection is just a special case of a dependent intersection with a
constant second argument:A ∩B = x : A ∩B.

Example 3.6 Let A = Z andB[x] = [0 .. x2−5]. Thenx : A ∩ B[x] is a set of all integers, such that
0 ≤ x ≤ x2 − 5.

Two elementsa anda′ are equal in the dependent intersectionx:A ∩ B[x] when they are equal both
in A andB[a].

Example 3.7 LetA be{0} → N andB[f] be{1} → [0 .. f(0)], where{0} and{1} are types that contain
only one element (0 and1 respectively). Thenx:A ∩B[x] is a type of functionsf that map0 to a natural
numbern0 and map1 to a natural numbern1 ∈ [0 .. n0]. Two such functionsf andf ′ are equal in this
type, when first,f = f ′ ∈ {0} → N, i.e. f(0) = f ′(0), and second,f = f ′ ∈ {1} → [0 ..f(0)], i.e.
f(1) = f ′(1) ≤ f(0).

3.1.1 Semantics

We are going to give the formal semantics for dependent intersection types based on the predicative
PER semantics, for the NuPRL type theory [2, 3]. In the PER semantics types are interpreted as partial
equivalence relations (PERs) over terms. Partial equivalence relations are relations that are transitive and
symmetric, but not necessary reflexive.

According to [3], to give the semantics for a type expressionA we need to determine when this
expression is a well-formed type, define elements of this type, and specify the partial equivalence relation
on terms for this type (a = b ∈ A). We should also give an equivalence relation on types, i.e. determine
when two types are equal. See [3] for details.

Extension of the Semantics We introduce a new term constructor for dependent intersectionx : A ∩B[x].
This constructor bounds the variablex in B[x]. We extend the semantics of [3] as follows.

• The expressionx : A∩B[x] is a well-formed type if and only ifA is a type andB[x] is a functional
type overx : A. That is, for anyx from A the expressionB[x] should be a type and ifx = x′ ∈ A
thenB[x] = B[x′].

• The elements of the well-formed typex : A ∩ B[x] are such termsa thata is an element of both
typesA andB[a].

13

Table 3.1: Rules for dependent intersection

Γ ` A Type Γ;x : A ` B[x] Type
Γ ` (x : A ∩B[x]) Type

(TypeFormation)

Γ ` A = A′ Γ;x : A ` B[x] = B′[x]
Γ ` (x : A ∩B[x]) = (x : A′ ∩B′[x])

(TypeEquality)

Γ ` a ∈ A Γ ` a ∈ B[a] Γ ` x : A ∩B[x] Type
Γ ` a ∈ (x : A ∩B[x])

(Introduction)

Γ ` a = a′ ∈ A Γ ` a = a′ ∈ B[a] Γ ` x : A ∩B[x] Type
Γ ` a = a′ ∈ (x : A ∩B[x])

(Equality)

Γ;u : (x : A ∩B[x]);∆; x : A; y : B[x] ` C[x, y]
Γ;u : (x : A ∩B[x]);∆ ` C[u, u]

(Elimination)1

1In pairwise functionality we can make this rule stronger, cf. Section 2.3.6

• Two elementsa and a′ are equal in the well-formed typex : A ∩ B[x] iff a = a′ ∈ A and
a = a′ ∈ B[a].

• Two typesx : A ∩ B[x] andx : A′ ∩ B′[x] are equal whenA andA′ are equal types and for allx
andy from A if x = y ∈ A thenB[x] = B′[y].

3.1.2 The Inference Rules

The corresponding inference rules are shown in Table 3.1.

Theorem 3.8 All rules of Table 3.1 are valid in the semantics given above.

This theorem is proved by straightforward application of the semantics definition.

Theorem 3.9 The following rules can be derived from the primitive rules of Table 3.1 in a type theory
with the appropriate cut rule.

Γ ` a = a′ ∈ (x : A ∩B[x])
Γ ` a = a′ ∈ A

Γ ` a = a′ ∈ (x : A ∩B[x])
Γ ` a = a′ ∈ B[a]

Theorem 3.10 Dependent intersection is associative, i.e.

x : A ∩ (y : B[x] ∩ C[x, y]) =e z : (x : A ∩B[x]) ∩ C[z, z]

The formal proof is checked by the MetaPRL system. We show here a sketch of a proof. An elementx
has typea : A∩(b : B[a]∩C[a, b]) iff it has typesA andb : B[x] ∩ C[x, b]. The latter is a case iffx ∈ B[x]
andx ∈ C[x, x]. On the other hand,x has typeab : (a : A ∩B[a])∩C[ab, ab] iff x ∈ (a : A∩B[a]) and
x ∈ C[x, x]. The former means thatx ∈ A andx ∈ B[x]. Thereforex ∈ a : A ∩ (b : B[a] ∩ C[a, b]) iff
x ∈ A andx ∈ B[x] andx ∈ C[x, x] iff x ∈ ab : (a : A ∩B[a]) ∩ C[ab, ab].

14

3.2 Records

We are going to define record types using dependent intersection. In this section we informally describe
what properties we are expecting from records. The formal definitions are presented in Section 3.3.

3.2.1 Plain Records

Records are collections of labeled fields. We use the following notations for records:

{x1 = a1; . . . ; xn = an} (3.1)

wherex1, . . . , xn are labelsanda1, . . . an are corresponding field values. Usually labels have a string
type, but generally speaking labels can be of any fixed typeLabel with a decidable equality. We will use
thetrue type font for labels.

The selection operatorr.x is used to access record fields. Ifr is a record thenr.x is a field of this
record labeledx. That is we expect the following reduction rule:

{x1 = a1; . . . ; xn = an}.xi −→ ai (3.2)

Fields may have different types. If eachai has typeAi then the whole record (3.1) has the type

{x1 : A1; . . . ; xn : An}. (3.3)

Also we want the natural typing rule for the field selection: for any recordr of the type (3.3) we
should be able to conclude thatr.xi ∈ Ai.

The main difference between record types and productsA1 × · · · ×An is the that record type has the
subtyping property. Given two recordsR1 andR2, if any label declared inR1 as a field of typeA is also
declared inR2 as a field of typeB, such thatB ⊆ A, thenR2 is subtype ofR1. In particular,

{x1 : A1; . . . ; xn : An} ⊆ {x1 : A1; . . . ; xm : Am} (3.4)

wherem < n.

Example 3.11 Let

Point = {x : Z; y : Z} andColorPoint = {x : Z; y : Z; color : Color}.

Then the record{x = 0; y = 0; color = red} is not only aColorPoint, but it is also aPoint, so
we can use this record wheneverPoint is expected. For example, we can use it as an argument of the
function of the typePoint → T . Further the result of this function does not depend whether we use
{x = 0; y = 0; color = red} or {x = 0; y = 0; color = green}. That is, these two records are equal
as elements of the typePoint, i.e.

{x = 0; y = 0; color = red} =
{x = 0; y = 0; color = green} ∈ {x : Z; y : Z}

Using subtyping one can model the private fields. Consider a recordr that has one “private” fieldx
of the typeA and one “public” fieldy of the typeB. This record has the type{x : A; y : B}. Using the
subtyping property we can conclude that it also has type{y : B}. Now we can consider type{y : B} as
a public interface for this record. A user knows only thatr ∈ {y : B}. Therefore the user has access to
field y, but access to fieldx would be type invalid (i.e. untyped). Formally it means that a function of the
type{y : B} → T can access only the fieldy on its argument (although an argument of this function can
have other fields).

Further, records’ equality does not depend on field ordering. For example,{x = 0; y = 1} should be
equal to{y = 1; x = 0}, moreover{x : A; y : B} and{y : B; x : A} should define the same type.

15

Records as Dependent Functions

Records may be considered as mappings from labels to the corresponding fields. Therefore it is natural to
define a record type as a function type with the domainLabel (cf. [8]). Since the types of each field may
vary, one should use dependent function type (i.e.,Π type). LetField[l] be a type of a field labeledl. For
example, for the record type (3.3) take

Field[l] ∆= if l = x1 then A1 else

. . .

if l = xn then An else Top

Then define the record type as the dependent function type:

{x1 : A1; . . . ; xn : An} ∆= l : Label → Field[l]. (3.5)

Now records may be defined as functions:

{x1 = a1; . . . ; xn = an} ∆=
λl.if l = x1 then a1 else

. . .

if l = xn then an

(3.6)

And selection is defined as application:

r.l ∆= r l (3.7)

One can see that these definitions meet the expected properties mentioned above including the sub-
typing property.

Records as Intersections

Using the above definitions we can prove that in the case when allxi’s are distinct labels

{x1 : A1; . . . ; xn : An} =e {x1 : A1} ∩ · · · ∩ {xn : An}. (3.8)

This property provides us a simpler way to define records. First, let us define the type of records with
only one field. We define it as a function type like we did it in the last section, but for single-field records
we do not need dependent functions, so we may simplify the definition:

{x : A} ∆= {x} → A (3.9)

where{x} is the singleton subset of typeLabel. Now we may take (3.8) and (3.9) as a definition of
an arbitrary record type instead of (3.5) and keep definitions (3.6) and (3.7). This way was used in [38]
where{x : A} was a primitive type.

Example 3.12 The record{x = 1; y = 2} by definition (3.6) is a function that mapsx to 1 andy to 2.
Therefore it has type{x} → Z = {x : Z} and also has type{y} → Z = {y : Z}. Hence it has type
{x : Z; y : Z} = {x : Z} ∩ {y : Z}.

One can see that when all labels are distinct, definitions (3.5) and (3.8)+(3.9) are equivalent. That
is, for any record expression{x1 : A1; . . . ;xn : An} wherexi 6= xj , these two definitions define two
extensionally equal types.

However, definitions (3.8)+(3.9) differ from the traditional ones in the case when labels coincide.
Most record calculi prohibit repeating labels in the declaration of record types, e.g., they do not recognize
the expression{x : A; x : B} as a valid type. On the other hand, in [20] in the case when labels coincide

16

the last field overlaps the previous ones, e.g.,{x : A; x : B} is equal to{x : B}. In both these cases many
typing rules of the record calculus need some additional conditions that prohibit coincident labels. For
example, the subtyping relation (3.4) would be true only when all labelsxi are distinct.

We will follow the definition (3.8) and allow repeated labels and assume that

{x : A; x : B} = {x : A ∩B}. (3.10)

This may look unusual, but this notation significantly simplifies the rules of the record calculus, because
we do not need to worry about coincident labels. Moreover, this allows us to have multiple inheritance
(see Section 3.3.3 for an example). Note that the equation (3.10) holds also in [10].

3.2.2 Dependent Records

We want to be able to represent abstract data types and algebraic structures as records. For example,
a semigroup may be considered as a record with the fieldscar (representing a carrier) andproduct
(representing a binary operation). The type ofcar is the universeU. The type ofproduct should be
car × car → car. The problem is that the type ofproduct depends on the value of the fieldcar.
Therefore we cannot use plain record types to represent such structures.

We need dependent records [5, 20, 36]. In general a dependent record type has the following form

{x : A; y : B[x]; z : C[x, y]; . . . } (3.11)

That is, the type of a field in such records can depend on the values of the previous fields.
The following main property shows the intended meaning of this type.

The record{x = a; y = b; z = c; . . . } has type (3.11) if and only if

a ∈ A, b ∈ B[a], c ∈ C[a, b], . . .

Example 3.13 LetSemigroupSig be the record type that represents the signature of semigroups:

SemigroupSig
∆= {car : U; product : car× car→ car}.

Semigroups are elements ofSemigroupSig satisfying the associativity axiom. This axiom may be repre-
sented as an additional field:

Semigroup
∆= {car : U;

product : car× car→ car;
axm : ∀x, y, z : car. (x·y)·z = x·(y·z)}

wherex · y stands forproduct(x, y).

Dependent Records as Very Dependent Functions

We cannot define the dependent record type using the ordinary dependent function type, because the type
of the fields depends not only on labels, but also on values of other fields.

To represent dependent records Hickey [20] introduced thevery dependent functiontype constructor:

{f | x : A → B[f, x]} (3.12)

HereA is the domain of the function type and the rangeB[f, x] can depend on the argumentx and the
functionf itself. That is, type (3.12) refers to the type of all functionsg with the domainA and the range
B[g, a] on any argumenta ∈ A.

For instance,SemigroupSig can be represented as a very dependent function type

SemigroupSig
∆= {r | l : Label → Field[r, l]} (3.13)

17

whereField[r, l] ∆=

if l = car then U else

if l = product then r.car× r.car→ r.car
else Top

Not every very dependent function type has a meaning. For example the range of the function on
argumenta cannot depend onf(a) itself. For instance, the expression

{f | x : A → f(x)}
is not a well-formed type.

The type (3.12) is well-formed if there is some well-founded order< on the domainA, and the range
typeB[x, f] onx = a depends only on valuesf(b), whereb < a. The requirement of well-founded order
makes the definition of very-dependent functions very complex. See [20] for more details.

Dependent Records as Dependent Intersection

By using dependent intersection we can avoid the complex concept of very dependent functions. For
example, we may define

SemigroupSig
∆= self : {car : U} ∩

{product : self .car× self .car→ self .car}
Hereself is a bound variable that is used to refer to the record itself considered as a record of the type
{car : U}. This definition can be read as follows:

r has typeSemigroupSig, when first,r is a record with a fieldcar of the typeU, and
second,r is a record with a fieldproduct of the typer.car× r.car→ r.car.

This definition of theSemigroupSig type is extensionally equal to (3.13), but it has two advantages.
First, it is much simpler. Second, dependent intersection allows us to extend theSemigroupSig type to
theSemigroup type by adding an extra fieldaxm:

Semigroup
∆= self : SemigroupSig ∩

{axm : ∀x, y, z : self .car (x · y) · z = x · (y · z)}
wherex · y stands forself .product(x, y).

We can define a dependent record type of an arbitrary length in this fashion as a dependent intersection
of single-field records associated to the left.

Note thatSemigroup can be also defined as an intersection associated to the right:Semigroup =

rc : {car : U} ∩(
rp : {product : rc.car× rc.car→ rc.car} ∩

{axm : ∀x, y, z : rc.car (x · y) · z = x · (y · z)})

wherex · y stands forrp.product(x, y). Hererc andrp are bound variables. Both of them refer to the
record itself, butrc has type{car : U} andrp has type{product : . . . }. These two definitions are equal,
because of associativity of dependent intersection (Theorem 3.10).

Note that Pollack [36] considered two types of dependent records: left associating records and right
associating records. However, in our framework left and right association are just two different ways of
building the same type. We will allow using both of them. Which one to choose is the matter of taste.

3.3 The Record Calculus

3.3.1 The Formal Definition

Now we are going to give the formal definition of records using dependent intersection.

18

Records

Elements of record types are defined as functions from labels to the corresponding fields. We need three
primitive operations:

1. Empty record:{} ∆= λl.l
(We could pick any function as a definition of an empty record.)

2. Field update/extension:

r.(x := a) ∆= (λl.if l = x then a else r l)

3. Field selection:r.x ∆= r x

We can construct any record by these operations: we define{x1 = a1; . . . ; xn = an} as

{}.(x1 := a1).(x2 := a2).(xn := an)

Record Types

Single-field record type is defined as

{x : A} ∆= {x} → A

where{x} ∆= {l : Label | l = x ∈ Label} is a singleton set.

Independent concatenation of record types is defined as

{R1; R2} ∆= R1 ∩R2 (3.14)

This definition is a partial case of the below definition of left associating records whenR2 does not depend
on self .

Left associating dependent concatenation of record types is defined as

{self : R1; R2[self]} ∆= self : R1 ∩R2[self] (3.15)

Syntactical RemarksHere variableself is bounded inR2. When we use the name “self” for this
variable, we can use the shortening{R1;R2[self]} for this type. Further, we will omit “self .” in the body
of R2, e.g. we will write justx for self .x, when such notation does not lead to misunderstanding. We
assume that this concatenation is a left associative operation and we will omit inner braces. For example,
we will write {x : A;y : B[self];z : C[self]} instead of{{{x : A}; {y : B[self]}}; {z : C[self]}}. Note
that in this expression there are two distinct bound variablesself . The first one is bound inB and refers
to the record itself as a record of the type{x : A}. The secondself is bound inC; it also refers to the
same record, but it has type{x : A; y : B[self]}.

Right associating dependent concatenation.The above definitions are enough to form any record
type, but to complete the picture we give the definition of right associating record constructor:

{x : x : A;R[x]} ∆= self : {x : A} ∩R[self .x] (3.16)

19

Table 3.2: Inference rules for records

Reduction rules
(r.x := a).x −→ a
(r.y := b).x −→ r.x whenx 6= y.

In particular:{x1 = a1; . . . ; xn = an}.xi −→ ai when allxi’s are distinct.

Type formation

Single-field record:

Γ ` A Type Γ ` x ∈ Label

Γ ` {x : A}Type

Independent record:

Γ ` R1 Type Γ ` R2 Type
Γ ` {R1; R2}Type

Dependent record:

Γ ` R1 Type Γ; self : R1 ` R2[self] Type
Γ ` {R1;R2[self]}Type

Right associating record:

Γ ` {x : A}Type Γ;x : A ` R[x] Type
Γ ` {x : x : A; R[x]}Type

Introduction (membership rules)

Single-field record:

Γ ` a ∈ A Γ ` x ∈ Label

Γ ` r.x := a ∈ {x : A}
Γ ` r ∈ {x : A} Γ ` x 6= y ∈ Label

Γ ` (r.y := b) = r ∈ {x : A}
Independent record:

Γ ` r ∈ R1 Γ ` r ∈ R2

Γ ` r ∈ {R1;R2}
Dependent record:

Γ ` r ∈ R1 Γ ` r ∈ R2[r] Γ ` {R1; R2[self]}Type
Γ ` r ∈ {R1;R2[self]}

Right associating record:

Γ ` r ∈ {x : A} Γ ` r ∈ R[r.x] Γ ` {x : x : A; R[x]}Type
Γ ` r ∈ {x : x : A; R[x]}

Elimination (inverse typing rules)1

Single-field record:

Γ ` r ∈ {x : A}
Γ ` r.x ∈ A

Independent record:

Γ ` r ∈ {R1; R2}
Γ ` r ∈ R1 Γ ` r ∈ R2

Dependent record:

Γ ` r ∈ {R1;R2[self]}
Γ ` r ∈ R1 Γ ` r ∈ R2[r]

Right associating record:

Γ ` r ∈ {x : x : A; R[x]}
Γ ` r.x ∈ A Γ ` r ∈ R[r.x]

1See also Chapter 4

20

Syntactical RemarksHerex is a variable bound inR that represents a fieldx. Note that we may
α-convert the variablex, but not a labelx, e.g.,{x : x : A;R[x]} = {y : x : A; R[y]}, but {x :
x : A;R[x]} 6= {y : y : A; R[y]}. We will usually use the same name for labels and corresponding
bound variables. This connection is right associative, e.g.,{x : x : A; y : y : B[x]; z : C[x, y]} stands for
{x : x : A; {y : y : B[x]; {z : C[x, y]}}}.

3.3.2 The Rules

The basic rules of our record calculus are shown in Table 3.2. The elimination rules in this table are weak.
We will discuss stronger rule in Chapter 4.

Theorem 3.14 All the rules of Table 3.2 are derivable from the definitions given above.

From the reduction rules we get:

{x1 = a1; . . . ; xn = an}.xi −→ ai

when allxi’s are distinct.
We do not show the equality rules here, because in fact, these rules repeat rules in Table 3.2 and can

be derived from them using substitution rules in our type theory. For example, we can prove the following
rules

Γ ` a = a′ ∈ A Γ ` x = x′ ∈ Label

Γ ` (r.x := a) = (r′.x′ := a′) ∈ {x : A}
Γ ` r = r′ ∈ R1 Γ ` r = r′ ∈ R2

Γ ` r = r′ ∈ {R1; R2}
In particular, we can prove that

{x = 0; y = 0; color = red} =
{x = 0; y = 0; color = green} ∈ {x : Z; y : Z}

We can also derive the following subtyping properties:

{R1; R2} ⊆ R1

{R1; R2} ⊆ R2

{R1; R2[self]} ⊆ R1

{x : x : A; R[x]} ⊆ {x : A}
` R1 ⊆ R′1 self : R1 ` R2[self] ⊆ R′2[self]

` {R1; R2[self]} ⊆ {R′1;R′2[self]}
` A ⊆ A′ x : A ` R[x] ⊆ R′[x]

` {x : x : A; R[x]} ⊆ {x : x : A′;R′[x]}
Further, we can establish two facts that state the equality of left and right associating records.
{x : x : A; R[x]} =e {x : A;R[self .x]},
and
{R1; {x : x : A[self];R2[self , x]}} =e

{{R1; x : A[self]}; R2[self , self .x]}.
For example, using these two equalities we can prove that
{x : A; y : B[self .x]; z : C[self .x; self .y]} =e

{x : x : A; y : y : B[x]; z : C[x; y]}.

21

3.3.3 Examples

Semigroup Example

Now we can define theSemigroupSig type in two ways:

{car : U; product : car× car→ car} or

{car : car : U; product : car × car → car}

Note that in the first definitioncar in the declaration ofproduct stands forself .car, and in the second
definitioncar is just a bound variable.

We can defineSemigroup by extendingSemigroupSig:

{SemigroupSig; axm : ∀x, y, z : car (x·y)·z = x·(y·z)}

or as a right associating record:

{car : car : U;
product : product : car × car → car;
axm : ∀x, y, z : car (x · y) · z = x · (y · z)}

In the first casex · y stands forself .product(x, y) and in the second case for justproduct(x, y).

Multiply Inheriting Example

A monoid is a semigroup with a unit. So,

MonoidSig
∆= {SemigroupSig; unit : car}

A monoid is an element ofMonoidSig which satisfies the axiom of semigroups and an additional prop-
erty of the unit. That is,Monoid inherits fields from bothMonoidSig andSemigroup. We can define
theMonoid type as follows:

Monoid
∆= {{ MonoidSig; Semigroup;

unit axm : ∀x : car x · unit = x}
Note that sinceMonoidSig andSemigroup share the fieldscar andproduct, these two fields are

present in the definition ofMonoid twice. This does not create problems, since we allow repeating labels
(Section 3.2.1).

Now we have the following subtyping relations:

SemigroupSig ⊃ MonoidSig
∪ ∪

Semigroup ⊃ Monoid

Abstract Data Type

We can also represent abstract data types as dependent records. Consider for example a data structure
collection of elements of a typeT . This data structure consists of an abstract typecar for collections
of elements of the typeT , a constant of this typeempty to construct an empty collection, and functions
member s a to inquire if elementa is in collections, andinsert s a to add elementa into collections.
These functions should satisfy certain properties that guarantee their intended behavior:

1. The empty collection does not have elements.

2. insert s a has all elements thats has and elementa and nothing more.

22

A formal definition of the data structure of collections could be written as a record:

Collection(T) ∆=
{car : U;
empty : car;
member : car→ T → B;
insert : car→ T → car;
emp axm : ∀a : T a /∈ empty
ins axm : ∀s : car ∀a, b : T (member (insert s a) b)

⇐⇒ (member s b) ∨ (a = b ∈ T)}

It Section 6 we will show an example of an implementation of this data structure.

Chapter 4
Elimination Rule for Independent Records
In this chapter we consider the question what should be the right elimination rule for the record type. As
we will see this question is not as simple as it looks. While the introduction rule for records is very natural
and simple, the right elimination rule is not obvious.

In this chapter we will consider independent records for the sake of simplicity.
We will use the following notations: in the inference rules we will useΦ[x] for ∆[x] ` C[x]. For

example instead of the rule:

Γ; a1 : A1; a2 : A2;∆[〈a1, a2〉] ` C[〈a1, a2〉]
Γ; a : A1 ×A2;∆[a] ` C[a]

we would just write:
Γ; a1 : A1; a2 : A2; Φ[〈a1, a2〉]

Γ; a : A1 ×A2; Φ[a]

4.1 Weak Elimination Rule

In Table 3.2 we showed a weak elimination rule for records:

Γ ` r ∈ {x : A; R}
Γ ` r.x ∈ A

(Weak Elimination)

It just said that ifr ∈ {x : A; R} thenr.x ∈ A. This rule is valid and easy to prove, but it turns out
that it is too weak in practice.

The correct elimination rule should have a conclusion of the form

Γ; r : {x1 : A1; . . . ; xn : An}; Φ[r]

4.2 Naive Elimination Rule

The elimination rule for records should be dual to the introduction rule. Let us look at the introduction
rule. It follows from the rules of Table 3.2 that

Γ ` a1 ∈ A1 . . . Γ ` an ∈ An

Γ ` {x1 = a1; . . . ; xn = an} ∈ {x1 : A1; . . . ; xn : An} (4.1)

This rule is just an analog of the introduction rule for products:

Γ ` a1 ∈ A1 Γ ` a2 ∈ A2

Γ ` 〈a1, a2〉 ∈ A1 ×A2

The elimination rule for products is

Γ; a1 : A1; a2 : A2; Φ[〈a1, a2〉]
Γ; a : A1 ×A2; Φ[a]

One can expect the following elimination rule for records:

Γ; a1 : A1; . . . ; an : An; Φ[{x1 = a1; . . . ; xn = an}]
Γ; r : {x1 : A1; . . . ; xn : An}; Φ[r]

(Naive Elimination)

But this rule is not valid! Moreover this rule contradicts other basic rules of records. Indeed, consider
the simple case whenn = 1. In this case this rule says that any record of the type{x : A} has a form
{x = a}. But this is clearly not true. For example, the record{x = a; y = b} also has this type. So
the above elimination rule would be invalid ifΦ[r] refers to fields ofr other thanx. For example, there

23

24

is a propositionC[z] such thatC[z] is true whenz is {x = a}.y, but is not true for allz. E.g. let
C[z] = (z ≡ {}.y). Then the sequent

a : A ` C[{x = a}.y]
would be true. Applying the Naive Elimination rule, we get:

r : {x : A} ` C[r.y]

Therefore, since{x = a; y = b} ∈ {x : A}, we get thatC[b] for anyb. Contradiction.
This example shows us that one should be careful when choosing elimination rules for records. It also

shows why it is important to define records and prove all rules, rather than take them as a primitive type
with a bunch of new axioms.

4.3 Strong Elimination Rule

The mistake made in the last section is that (4.1) does not actually capture the whole introduction rule. It
does not say that records of type{xi : Ai} could have additional fields. The complete introduction rule
(derived from the rules of Table 3.2) is the following:

Γ ` a1 ∈ A1 . . . Γ ` an ∈ An r ∈ {}
Γ ` {x1 = a1; . . . ; xn = an; r} ∈ {x1 : A1; . . . ; xn : An}

where{} is the record type with empty declaration (it contains all records). The dual rule would be:

Γ; a1 : A1; . . . ; an : An; r : {}; Φ[{x1 = a1; . . . ; xn = an; r}]
Γ; r : {x1 : A1; . . . ; xn : An}; Φ[r]

(Strong Elimination)

The Strong Elimination rule captures our intuition of record types. We can also state it as two rules:

Γ; a : A; r : R; Φ[{x = a; r}]
Γ; r : {x : A; R}; Φ[r]

(Strong Elimination1)

and
Γ; a : A; r : {}; Φ[{x = a; r}]

Γ; r : {x : A}; Φ[r]
(Strong Elimination2)

It follows from this rule that ifr ∈ {x : A} then

r ≡ {x = r.x; r}
We will call this η-reduction for records. We will see that this reduction is actually equivalent to the
Strong Elimination rule.

Unfortunately theη-reduction (and therefore the Strong Elimination rule) is invalid when records are
defined as functions (definition (3.9)) and

{x = a; r} ∆= (λl.if l = x then a else r l)

Indeed, theη-reduction says that any element of a record type has the form{x = r.x; r}. But this is not
true for all functions with domainLabel. For example, ifa ∈ A then by definition (3.9)λl.a ∈ {x : A}.
Note that this function could be applied to any argumentl, not only to labels. On the other hand, function
λl.if l = x then a else r l could be applied only tol from the typeLabel, because ifl /∈ Label
then the expressionl = x would be undefined, therefore the application would be undefined. Therefore
r 6≡ {x = r.x; r} for r = λl.a. Contradiction.

Note that the Naive Elimination rule contradicts the basic introduction rule of records. Therefore it is
not valid for any possible definition of records. On the other hand, the Strong Elimination Rule contradicts
only our definition of records. Therefore there is still a hope that we can find a better definition to satisfy
this rule.

25

4.4 Functions with Limited Polymorphism

Let us consider the problem with the Strong Elimination rule more closely. We haveη-reduction rule for
functions: iff is a function then

f ≡ λz.(fz) .

That means that any function is aλ-expression. Theη-reduction for records says that ifr is a record of
the type{x : A} then

r ≡ λl.if l = x then r x else r l.

So, we would like to have the following reduction:

λl.(rl) ≡ λl.if l = x then r x else r l . (4.2)

We can prove only that for anyl from typeLabel:

r l ≡ if l = x then r x else r l . (4.3)

Unfortunately, (4.3) does not hold for anyl and therefore (4.2) is not true.
The problem is that our definition usespolymorphicfunctions. As a result we may potentially apply

the functionr to any argument, not only to labels. On the other hand, we never apply it to anything other
than labels. We need to have some form of type of functions withlimited polymorphism. That is, we need
a type of functions that can be applied only to elements of a particular type (in our caseLabel).

There is no such type in our type theory. The interesting questions are whether we can add such type,
what would be the semantics for it and what would be inference rules for this type. We will not discuss
these questions here. But we candefinesuch a type in current type theory for some particular cases, e.g.,
whenLabel is the type of natural numbers. Informally speaking we can define “integer functions” as long
tuples:

f = 〈f0, 〈f1, 〈f2, . . . 〉〉〉
and applications as takingn-th element of the tuple. That is,

f(0) ∆= π1f

f(1) ∆= π1(π2f)
f(2) ∆= π1(π2(π2f)) and so on. We will not give the formal definition, but rather just use the idea

of non-polymorphic functions. We are going define records as tuples. It may help intuition to view these
tuples as “integer functions”.

4.4.1 Non-polymorphic Definition of Record Type

Without loss of generality we can assume that labels are natural numbers, i.e.,Label = N (or we can
assume that there is a given injection of the label type intoN).

We will give a new definition of the type{n : A} for any natural numbern and any typeA. Then we
define an arbitrary record type (dependent or not dependent) using intersection as in Section 3.3.1.

New definition of records

The type{n : A} is a type of tuples where then-th element has the typeA. We define it by induction:

{0 : A} ∆= A× Top;
{n + 1 : A} ∆= Top× {n : A}.
That is,{1 : A} = Top×A× Top,{2 : A} = Top× Top×A× Top, and so on.
Note that Top contain everything. So for example ifa ∈ A then〈t0, 〈a, t2〉〉 is in {1 : A} as well as

〈t0, 〈a, 〈t2, 〈t3, t4〉〉〉〉
Then we define application (field selection)r.n as then-th element of tupler. We define it by

induction:

26

r.0 ∆= π1r

r.(n + 1) ∆= (π2r).n
Finally, we define record extension/updater.n := a as updating then-th component to bea.

r.0 := a
∆= 〈a, π2r〉

r.(n + 1) := a
∆= 〈π1r, (π2r).n := a〉

These definitions with the definitions (3.14), (3.15), and (3.16) of an arbitrary record type as an inter-
section of single record types provide the formal account of record types in our theory.

Old rules are still valid

The reductions for records from Table 3.2 could be easily proved by induction for our new definitions:
(r.x := a).x −→ a for anyx ∈ Label.
(r.y := b).x −→ r.x for anyx, y ∈ Label whenx 6= y.
We can also prove by induction the rules for single-record types from Table 3.2:

Γ ` A Type Γ ` x ∈ Label

Γ ` {x : A}Type

Γ ` a ∈ A Γ ` x ∈ Label

Γ ` r.x := a ∈ {x : A}
Γ ` r ∈ {x : A} Γ ` x 6= y ∈ Label

Γ ` (r.y := b) = r ∈ {x : A}
Γ ` r ∈ {x : A}

Γ ` r.x ∈ A

All these rules were proven by induction onx (andy) and checked in MetaPRL.
All remaining rules from Table 3.2 are still valid, because we have not changed the definition of the

record type as an intersection of single record types.

The η-reduction for records

Theη-reduction that was invalid for the old definition, could be easily proven for the new definition:
For anyx ∈ Label if r ∈ {x : A} thenr ≡ {x = r.x; r}

The proof is based on the fact that
If p ∈ A×B thenp ≡ 〈π1p, π2p〉

The proof was checked in MetaPRL.

New equalities

Another advantage of out new definitions is that now we can exchange record fields. That is, we can prove
the following squiggle equality:

{x = a; y = b; r} ≡ {y = a; x = b; r} for anyx, y ∈ Label whenx 6= y
We can also prove that

{x = a; x = b; r} ≡ {x = a; r} for anyx ∈ Label
These equalities were proved by induction onx andy in MetaPRL.
Note that these equalities were invalid for the old definitions. We could only prove the equalities in

a record type. The squiggle equalities gives us more freedom in using them: we can change the order of
fields of a record without worrying about its type.

27

Efficiency

Note that our new definition of records assumes that there is an injection (coding function) of typeLabel
into N. It may seems to be very inefficient. Indeed, assume thatcar is a label with a huge number,
say 333148. Then it means that record{car = A} is a huge tuple with at least 333148 elements. And
{car = A}.car is reduced toA in 333148 steps. Fortunately we do not need to unfold the definition and
does all these steps, since we have proven the rule(r.x := a).x −→ a for any labelx. MetaPRL uses
this rule and do the reduction{car = A}.car −→ A in just one step. Therefore we do not need to worry
about these huge numbers, there is no difference in the efficiency between old and new definitions.

4.5 Functionality

Now let us come back to the record calculus. In the Section 4.4.1 we gave the new definition of records
that satisfies theη-reduction. Our goal was the Strong Elimination rule:

Γ; a : A; r : R; Φ[{x = a; r}]
Γ; r : {x : A;R}; Φ[r]

The question is: can we prove this rule from theη-reduction rule? It turns out that the answer depends on
functionality.

4.5.1 Elimination Rule in Pairwise Functionality

It is very easy to prove the Strong Elimination rule using theLet rule (Section 2.2.3) in pairwise func-
tionality. Indeed, we need to prove:

Γ; r : {x : A; R}; Φ[r].

Usingη-reduction to replacer by {x = r.x; r} we get

Γ; r : {x : A; R}; Φ[{x = r.x; r}].

Then noting thatr.x ∈ A andr ∈ R we can apply rulesLet a = r.x ∈ A andLet r′ = r ∈ R. Then we
get

Γ; r : R; a : A; r′ : R; Φ[{x = a; r′}]
Then thinning ther : R hypothesis and renamingr′ to r we get the original assumption:

Γ; a : A; r : R; Φ[{x = a; r}]

4.5.2 Elimination Rule in Pointwise Functionality

The above reasoning does not hold in pointwise functionality. We can prove the weak form of the Strong
Elimination rule:

Γ; a : A; r : R;∆ ` C[{x = a; r}]
Γ; r : {x : A;R};∆ ` C[r]

where∆ does not depend onr.
The original Strong Elimination rule is invalid in pointwise functionality. But we can get almost

Strong Elimination rule in pointwise functionality if we introduce a new notion of orthogonality.

Orthogonality

Basically we say that a record typeR is orthogonal to{x = a} if the declaration ofR does not containx.
Formally, for any typeR, for any labelx and for any elementa we define a predicate:

{x = a} ⊥ R
∆= ∀r : R. r = (r.x := a) ∈ R

28

It is clear that ifR = {x1 : A1; . . . ; xn : An} and allxi’s differ from x then{x = a} ⊥ R.
In pointwise functionality we can prove that

Γ; a : A ` {x = a} ⊥ R Γ; a : A; r : R; Φ[{x = a; r}]
Γ; r : {x : A;R}; Φ[r]

This is the closest version of Strong Elimination rule valid in pointwise functionality. The proof is
fairly complicated and uses the rulePointwiseSubstitute (Section 2.2.3). It was checked by MetaPRL.

Chapter 5
Other Possible Applications
5.1 Sets and Dependent Intersections

The set type constructor allows us to hide part of a witness.

Example 5.1 Instead of definingSemigroup type as an extension ofSemigroupSig type with an addi-
tional fieldaxm, we could define theSemigroup type as a subset ofSemigroupSig:

Semigroup
∆= {S : SemigroupSig | ∀x, y, z : S.car . . . }

Now we will show that the set type constructor (which is primitive in our original type theory) may
be defined as a dependent intersection as well.

Now consider the following type (squash operator):

[P] ∆= {x : Top | P}

[P] is an empty type whenP is false, and is equal toTop whenP is true.

Theorem 5.2
{x : T | P [x]} =e x : T ∩ [P [x]] (5.1)

We can not take (5.1) as a definition of sets yet, because we defined the squash operator as a set. But
actually the squash operator is defined in our type theory as a primitive constructor and rules for the set
type depend on the squash operator. (See [32] for the rules for the squash type and explanations why this
is a primitive type.) Thus, we can take (5.1) as a definition.

Moreover, the squash operator could be defined using other primitives. For example, one can define
the squash type using union:

[P] ∆=
⋃

x:P

Top.

Remark In is interesting to note that in the presence of Markov’s principle [27] there is an alternative way to
define[P]:

[P] ∆
= ((P ≡> Void) ≡> Void)

whereA ≡> B
∆
=
T

x:A

B. We will not give any details here, since it is beyond the scope of the thesis.

We can also define sets withoutTop and squash type. First, defineindependentsets:

{A |B} ∆=
⋃

x:B

A.

Then define the set type:

{x : A |B[x]} ∆= x : A ∩ {A |B[x]}.

The Mystery of Notations It is very surprising that braces{. . . } were used for sets and for records
independently for a long time. But now it turns out that sets and records are almost the same thing,
namely, dependent intersection! Compare the definitions for sets and records:

{x : T | P [x]} ∆= x : T ∩ [P [x]]
{self : R1; R2[self]} ∆= self : R1 ∩R2[self]

The only differences between them are that we use squash in the first definition and write “|” for sets and
“ ;” for records.

29

30

So, we will use the following definitions for records:

{self : R1 |R2[self]} ∆= {self : R1; [R2[self]]} = self : R1 ∩ [R2[self]]
{x : x : A |R[x]} ∆= {x : x : A; [R[x]]} =

self : {x : A} ∩ [R[self .x]]
This gives us the right to use the shortening notations as in Section 3.3.1 to omit inner braces and

“self ”. For example, we can rewrite the definition of theSemigroup type as

Semigroup
∆= {car : U;

product : car× car→ car |
∀x, y, z : car (x · y) · z = x · (y · z)}

Remark Note that we cannot define dependent intersection as a set:

x : A ∩B[x] ∆= {x : A | x ∈ B[x]}. (wrong!)

First of all, this set is not well-formed in our type theory (this set would be a well-formed type, only when
x ∈ B[x] is a type for allx ∈ A, but the membership is a well-formed type in the our type theory, only
when it is true). Second, this set type does not have the expected equivalence relation. Two elements are
equal in this set type when they are equal just inA, but to be equal in the intersection they must be equal
in both typesA andB (see Example 2.4).

5.2 Variant Type

In the same way that the union type is dual to the intersection type, there exists a type dual to the records
type — the variant type. The variant type is an expression of the form(x1 of A1|x2 of A2| . . . |xn of An),
wherexi are labels andAi are types. The elements of this type are expressions of the formxi(a) where
a ∈ Ai.

Example 5.3 We can define the type of binary trees

BinTree(A) ∆= µT.(node of T × T ×A | emptytree of Unit}

Hereµ-operator is an inductive recursive type constructor, i.e. the least fixpoint [31], andUnit is a type
that contains only one element•.

We will abbreviatexi(•) asxi andxi(〈a1, a2, . . . , an〉) asxi(a1, a2, . . . , an). For example, the type
BinTree(A) includesemptytree, tree(emptytree, emptytree, a0), tree(tree(emptytree, emptytree, a1), tree(emptytree, emptytree, a2), a0)
whereai’s are of typeA.

5.2.1 Definitions

We can define the variant type as a dependent product, e.g.(x of A | y of B) ∆=

l : Label × (if l = x then A else if l = y then B else Void)

Or we can first define(x of A) ∆= {x} ×A, and then define

(x of A | y of B) ∆= (x of A) ∪ (y of B)

In any case the constructor for this type is defined as a pair:

x(a) ∆= 〈x, a〉

31

We also need to define a destructor:

match t with
x1(a1) => f1[a1] |
x2(a2) => f2[a3] |
. . .
xn(an) => fn[an] |

as
let 〈l, a〉 = t in

if l = x1 then f1[a]
if l = x2 then f2[a]
. . .
if l = xn then fn[a]

5.2.2 Properties

The variant type has a subtyping property which is dual to the subtyping property of record types:

(xi of Ai)|i∈I ⊆ (xi of A′i)|i∈J

whenI ⊆ J andAi ⊆ A′i for anyi ∈ I.

Example 5.4 Let

Week
∆= (Sunday of Unit | Monday of Unit | Tuesday of Unit |

Wednesday of Unit | Thursday of Unit |
Friday of Unit | Saturday of Unit)

ThenWeekend
∆= (Sunday of Unit | Saturday of Unit |) is a subtype ofWeek.

There is a general formula about variant types and union that is dual to the formula about records and
intersection:

(x1 of A1 | . . . | xk of Ak | y1 of B1 | . . . | yn of Bn) ∪
(x1 of A′1 | . . . | xk of A′k | z1 of C1 | . . . | zm of Cm) =
(x1 of A1 ∪A′1 | . . . | xk of Ak ∪A′k |
y1 of B1 | . . . | yn of Bn | z1 of C1 | . . . | zm of Cm)

So, the intersection of two record types is alway a record type, and the union of two variant types is
always a variant type.

5.3 Abstract Algebra

In this section we outline a way how one can define general abstract algebraic structures using our record
type.

Our encoding of records uses the typeLabel for names of the fields. In all of the above examples
names were constants. But we are allowed to use variables over typeLabel. In fact, we may even use
arbitrary terms of the typeLabel as the name of the fields. It could be useful to define an algebraic
structure of an arbitrary signature.

A signature is a list of operations with their arity:

Signature
∆= (Label × N) List

We can define an algebraic structure of any signature:

Algebra(op1, n1 :: . . . :: opk, nk) ∆= {car:U; op1:carn1→car; . . . ; opk:carnk→car}

32

Now we can define standard notions from abstract algebra. For example, homomorphism between
two algebraic structuresA andB of the same signatureSig is defined as:

Hom (A,B, Sig) ∆=
{ f : A.car→ B.car |

∀ 〈op, n〉 ∈ Sig. ∀x ∈ A.carn. f(A.op(x)) = B.op(fn(x)) ∈ B.car }

wherefn(〈x1, . . . , xn〉) = 〈f(x1), . . . , f(xn)〉.
We can prove some general properties about homomorphisms, like composition of two homomor-

phisms is a homomorphism. Then we can apply this theorem to concrete algebraic structures.

5.4 Join Operator

In this section we outline possible applications of records and intersections to databases. One of the basic
operation for relation databases is a join operator.

We can represent a relation with attributesA1, A2, . . . , An as a finite subset of a type{A1 : T1; A2 :
T2; . . . An : Tn}, whereTi is a type of an attributeAi. That means that a relationR is represented by a set
of records that has fieldsA1, . . . ,An that coincide with one of the tuples inR, and probably other fields.
Then one can easily see that the intersection of two relationsR1 andR2 is exactly the natural join of these
relations! That is, we can very easily define the natural join for the relations:

R1 on R2 = R1 ∩R2 !

Chapter 6
Red–Black Trees
In this section we will show an example of how one can define an abstract data structure in the constructive
type theory, and formally prove the correctness of the concrete implementation. We will consider red–
black trees [16], one of the most popular implementation of a data structure of collections of elements of
a certain type.

6.1 Introduction

In the end of Section 3.3.3 we gave a definition of the data structureCollection(T), a collection of
elements of the typeT . Here we repeat the definition using set type (using notations of Section 5.1):

Collection(T) ∆=
{car : U;
empty : car;
member : car→ T → B;
insert : car→ T → car |
∀a : T a /∈ empty |
∀s : car ∀a, b : T (member (insert s a) b)

⇐⇒ (member s b) ∨ (a = b ∈ T)}
We can implement this data structure in several ways. The simplest but inefficient implementation of

sets uses lists. Each set is represented by an unordered list. Formally we takecar to beT List, empty
to benil and define operationsinsert andmember correspondingly. In this implementation, functions
insert andmember takeO(n) time, wheren is a number of elements of the set.

A more efficient implementation of sets is binary search trees. Each set is represented by a binary
tree, where elements are stored at the nodes, such that the element at any given node is greater than each
element in its left subtree and less than each element in its right subtree. In this implementation, functions
insert andmember takeO(d) time, whered is a depth of the tree. On random data the heights of the
tree islog(n). But in the worst case the tree will be imbalanced, and an individual operation will take up
to O(n) time.

The solution to this problem is to usebalancedbinary trees. The most popular balanced binary search
trees are red–black trees [16]. We will show how the implementation of red–black trees could be written
as a term in type theory.

Red–black trees could be defined only on an ordered set. We have defined ordered structures in
Example 3.2. Thus the implementation of red–black trees should be afunctor (i.e. a function from one
data structure to another) that takes an ordered set and returns a data structure of collections of elements
of this set. That is, it has the following type:

ord : OrdSet → Collection(ord.car).

The implementation of red-black trees in a functional programming setting is a little bit different (and
simpler) than the typical presentation in imperative programming languages (as for example in [12]). We
will follow the presentation of red–black trees in functional languages from [33].

6.2 Binary Trees

Definition

We already gave the definition of binary trees in Example 5.3:

BinTree(A) ∆= µT.(node of T × T ×A | emptytree of Unit}

33

34

We have the following introduction rules about this type:

A Type
emptytree ∈ BinTree(A)

a ∈ A l ∈ BinTree(A) r ∈ BinTree(A)
tree(l, r, a) ∈ BinTree(A)

The elimination rule is the induction rule:

Γ ` C[emptytree] Γ; l : BinTree(A); r : BinTree(A) ` C[tree(l, r, a)]
Γ; t : BinTree(A) ` C[t]

Operations with trees

We can define depth and weight (i.e. number of elements) of the tree by induction:

- weight(emptytree) ∆= 0

- weight(tree(l, r, a)) ∆= weight(l) + weight(r) + 1

- depth(emptytree) ∆= 1

- depth(tree(l, r, a)) ∆= max(weight(l); weight(r)) + 1

We can define quantifiers on the nodes of the tree. LetP [l; r; a] be a proposition of nodestree(l, r, a).
Then we define by induction∀node(l, r, a) ∈ t . P [l; r; a] as a proposition that says thatP is true for all
nodes of the treet, and∃node(l, r, a) ∈ t . P [l; r; a] as a proposition that says thatP is true for at least
one node of the treet (l, r anda are bound variables). That is,

- ∀node(l, r, a) ∈ emptytree . P [l; r; a] ∆= True

- ∀node(l, r, a) ∈ tree(l1, r1, a1) . P [l; r; a] ∆=
P [l1; r1; a1] ∧
∀node(l, r, a) ∈ l1 . P [l; r; a] ∧
∀node(l, r, a) ∈ r1 . P [l; r; a]

- ∃node(l, r, a) ∈ emptytree . P [l; r; a] ∆= False

- ∃node(l, r, a) ∈ tree(l1, r1, a1) . P [l; r; a] ∆=
P [l1; r1; a1] ∨
∃node(l, r, a) ∈ l1 . P [l; r; a] ∨
∃node(l, r, a) ∈ r1 . P [l; r; a]

We will store elements in the nodes of a tree. We define the proposition
in tree(a; t;A) that states that nodea is stored in the treet:

in tree(a; t; A) ∆= ∃node(l, r, a′) ∈ t . a = a′ ∈ A

This proposition needs the typeA as a parameter because we have different equalities in different types.
Finally, we can define a set of elements stored in a given tree:

|t|A ∆= {a : A | in tree(a; t; A)}

35

6.3 Sorted Trees

Assume we have an ordered setord. Sorted trees are binary trees satisfying the following property: for
any nodetree(l, r, a) in the tree any element from the left subtreel is less than the roota and any element
from the right subtreer is greater than the roota. Formally,

SortedTree(ord) ∆=
{t : BinTree(ord.car) |
∀node(l, r, a) ∈ t.
∀x : |l|ord.car . x <ord a ∧
∀y : |r|ord.car . a <ord y

}

Searching in balance trees

We can find whether an element is in tree by binary search:

- search(a; emptytree; ord) ∆= falseB

- search(a; tree(l, r, data); ord) ∆=
if a <ord data then search(a; l; ord)
if a =ord data then trueB
if a >ord data then search(a; r; ord)

Note that this function returns a boolean value, unlikeis in tree, which is a proposition.
Using the transitivity of order we can prove

Theorem 6.1 (Correctness of Search)For any ordered setord ∈ OrdSet, for any elementa ∈ ord.car
and for any treet ∈ SortedTree(ord)

search(a; t; ord) ∈ B

and
search(a; t; ord) = trueB ⇐⇒ a ∈ |t|ord.car

Insert function

To insert a new element into the tree we again use binary search to find an appropriate place:

- ins(a; emptytree; ord) ∆= tree(emptytree, emptytree, a)

- insert(a; tree(l, r, data); ord) ∆=
if a <ord data then tree(insert(a; l; ord), r, data)
if a =ord data then tree(l, r, a)
if a >ord data then tree(l, insert(a; r; ord), data)

We can prove the following

Theorem 6.2 (Invarian of Insert) For any ordered setord ∈ OrdSet and for any elementa ∈ ord.car
if t ∈ SortedTree(ord) theninsert(a; t; ord) is also in
SortedTree(ord).

Theorem 6.3 (Correctness of Insert)For any ordered setord ∈ OrdSet, for any elementa ∈ ord.car,
for any treet ∈ SortedTree(ord)

|insert(a; t; ord)|ord.car =e |t|ord.car ∪ {a}ord.car.

36

6.4 Red–Black Trees

Definition

In a red–black tree each node is colored either red or black. A red–black tree should satisfy the following
invariants:

• Any child of a red color is black

• All paths from the root to any leaf have the same number of black nodes. (We will call this number
ablack depthof a tree).

We will consider trees that satisfy an additional property:

• The root of a tree is black

We start the formal definition with the definition of colors:

Color
∆= (red of unit | black of unit)

That is,Color has two elements:red andblack. We also define two subtypes of this type:

Red
∆= (red of unit) has only one elementred

Black
∆= (black of unit) has only one elementblack

Then we defineColoredTree(A) as a type of trees with colored nodes:

ColoredTree(A) ∆= BinTree(Color ×A)

Then we define three subtypes ofColoredTree(A): RBn(A) for red–black trees of the black depth
n, Bn(A) for red–black trees of the black depthn that have a black root, andRn(A) for red–black trees
of the black depthn that have a red root. (For the sake of this definition we assume that empty tree has a
black root.) We define these types simultaneously by induction:

• B0(A) ∆= (emptytree of Unit) (only the empty tree has black depth 0);

and for any naturaln

- Bn+1(A) ∆= (tree of (RBn(A)×RBn(A))× (Black × A)) (a black tree of the black depth
n + 1 has a black root and two sons of the black depthn);

- Rn(A) ∆= (tree of (Bn(A)×Bn(A))× (Red×A)) (a red tree has a red root and black sons
of the same black depth);

- RBn(A) ∆= Rn(A) ∪Bn(A) (a red–black tree is either red or black).

We can prove by induction that these definitions are well-formed for any naturaln:

∀n : N. Bn(A) Type∧Rn(A) Type∧RBn(A) Type

Finally we define a type of red–black trees as a union of allBn(A):

RedBlackTree(A) =
⋃

n:N
Bn(A)

37

Insert Function

The insert function for red–black trees is similar to the insert function for sorted trees, but it maintains the
invariants.

When we insert a new node we will color it red. It satisfies the second invariant, but may break the
first invariant if the father of the new node is red.

Let us define an auxiliary function:

- ins(a; emptytree; ord) ∆= tree(emptytree, emptytree, red, a)

- ins(a; tree(l, r, color, data); ord) ∆=
if a <ord data then lbalance(ins(a; l; ord); r; color; data)
if a =ord data then tree(l; r; color, a)
if a >ord data then rbalance(l; ins(a; r; ord); color; data)

Wherelbalance andrbalance are functions that rebalance a tree without changing the order to enforce
invariants. They are defined as follows:

- lbalance(tree(tree(t1, t2, red, a1), t3, red, a2); t4; color; a3)
∆=

tree(tree(t1, t2, black, a1), tree(t3, t4, black, a3), red, a2)

- lbalance(tree(t1, tree(t2, t3, red, a2), red, a1); t4; color; a3)
∆=

tree(tree(t1, t2, black, a1), tree(t3, t4, black, a3), red, a2)

- For all other cases
lbalance(l; r; color; a) ∆= tree(l; r; color, a)

- rbalance(t1, tree(tree(t2, t3, red, a2), t4, red, a3); color; a1)
∆=

tree(tree(t1, t2, black, a1), tree(t3, t4, black, a3), red, a2)

- rbalance(t1, tree(t2, tree(t3, t4, red, a3), red, a2); color; a1)
∆=

tree(tree(t1, t2, black, a1), tree(t3, t4, black, a3), red, a2)

- For all other cases
rbalance(l; r; color; a) ∆= tree(l; r; color, a)

Functionins may break the first invariant. Namely it may return a tree withonly onesingularityat
the root: a red root may have a red son. The functionslbalance andrbalance then take care of this
singularity.

Formally let us define a type of trees with at most on one singularity at the root:

- lRRBn(A) ∆= (tree of Rn(A)×Bn(A)×Red×A) (trees with a red root and a red left child);

- rRRBn(A) ∆= (tree of Bn(A) × Rn(A) × Red × A) (trees with a red root and a red right
child);

- RRBn(A) ∆= RBn(A)∪ lRRBn(A)∪rRRBn(A) (trees with at most one singularity at the root).

We will see that theins function may return trees of the typeRRBn(A). Functionslbalance and
rbalance deal with such trees.

Lemma 6.4 For any naturaln and for any typeA the following is true:

l : RRBn(A); r : RBn(A) ` lbalance(l; r; black; a) ∈ RBn+1(A)

l : RBn(A); r : Bn(A) ` lbalance(l; r; red; a) ∈ RRBn(A)

l : RBn(A); r : RRBn(A) ` rbalance(l; r; black; a) ∈ RBn+1(A)

l : Bn(A); r : RBn(A) ` rbalance(l; r; red; a) ∈ RBn(A)

38

This lemma could be proved by analyzing all possible cases.

Lemma 6.5 For any ordered setord ∈ OrdSet and for anya ∈ ord.car

t : Rn(ord.car) ` ins(a; t; ord) ∈ RRBn(ord.car)

t : Bn(ord.car) ` ins(a; t; ord) ∈ RBn(ord.car)

This lemma could be easily proved by simultaneous induction using the previous lemma.
Finally, we need to correct the singularity in the root. It may be done by just painting the root black:

blackroot(tree(l, r, color, a)) ∆= tree(l, r, black, a)

So,

rb insert(a; t; ord) ∆= blackroot(ins(a; t; ord))

It is easy to prove the following

Lemma 6.6
t : Rn(A) ` blackroot(t) ∈ RedBlackTree(A).

Therefore we have the following

Theorem 6.7 (Invariant of the insert function) For any ordered setord ∈ OrdSet for anya ∈ ord.car
if t is in RedBlackTree(A) thenrb insert(a; t; ord) is also inRedBlackTree(A).

Red–black trees are balanced

Lemma 6.8 The depth of a red–black tree is not more than 2 times its black depth. Formally,

∀n : N.∀t : RBn(A).depth(t) ≤ 2n

Lemma 6.9 A red–black tree of the black depthn contains at least2n − 1 elements. Formally,

∀n : N.∀t : RBn(A).weight(t) ≥ 2n−1

These lemmas are easily proved by induction onn. (We need to prove them also forRn andBn.)
It follows from these lemmas that the depth of any red–black tree is less than or equal to2 log(n),

wheren is the number of nodes. Therefore searching and inserting in this tree takesO(log n) time. The
last argument is informal. In the current system there is no way to formally prove an upper bound for the
working time of an algorithm.

6.5 Sorted Red–Black Trees

Now we define the type of sorted red–black trees just as an intersection of the types of sorted trees and
red–black trees:

SortedRedBlackTree(ord) ∆= RedBlackTree(ord.car) ∩ SortedTree(Top∗ ord)

whereTop ∗ ord is an ordered set of all pairs〈color, a〉 for a ∈ ord.car and the order relation ignoring
the first component. That is,

Top∗ ord
∆= {car = Top× ord.car; less 〈c1, a1〉 〈c2, a2〉 = ord.less a1 a2}

SinceSortedRedBlackTree(ord) is a subtype ofSortedTree(Top ∗ ord) we can use the same
function for searching:

rb search(a; t; ord) ∆= search(a; t; Top∗ ord)

39

Theorem 6.10 (Correctness of Search)For any ordered setord ∈ OrdSet for any elementa ∈ ord.car
for any treet ∈ SortedRedBlackTree(ord)

rb search(a; t; ord) ∈ B

and
rb search(a; t; ord) = trueB ⇐⇒ a ∈ |t|ord.car

It immediately follows from Theorem 6.1 and the fact that Top∗ ord ∈ OrdSet.
We can prove thatlbalance andrbalance do not change the order of elements in Top∗ord. Therefore

we can prove that

Lemma 6.11 For any ordered setord ∈ OrdSet for any elementa ∈ ord.car if t ∈ SortedTree(Top∗
ord) thenrb insert(a; t; ord) is also inSortedTree(Top∗ ord) and

|rb insert(a; t; ord)|Top×ord.car =e |t|Top×ord.car ∪ {•, a}Top×ord.car.

Finally, using the fact that iff ∈ A1 → A2 andf ∈ B1 → B2 thenf ∈ A1 ∩A2 → B1 ∩B2, we get

Theorem 6.12 (Correctness of Insert)For any ordered setord ∈ OrdSet for any elementa ∈ ord.car
if t ∈ SortedRedBlackTree(ord) thenrb insert(a; t; ord) is also inSortedRedBlackTree(ord) and
for anyb ∈ ord.car

rb search(b; rb insert(a; t; ord); ord) ⇐⇒ rb search(t) ∨ a = b ∈ ord.car.

Collection

Finally we combine the above functions into the functor of the typeord : Ord → Collection(ord.car).

redblacktree collection(ord) ∆=
{car = SortedRedBlackTree(ord);
empty = emptytree;
member t a = rb search(a; t; ord);
insert t a = rb insert(a; t; ord)
}

Theorem 6.13 (Main) For any ordered setord ∈ OrdSet the structure
redblacktree collection(ord) is a correct structure for collections of elements of the carrier of the or-
dered setord. Formally,

redblacktree collection(ord) ∈ Collection(ord.car).

Note that this theorem not only tells us that our functions have the right type, but also tells that this
function satisfies the specifications stated in the definition of collections.

Chapter 7
Objects
Note that the elements of the typeCollection(T) defined in the last chapter are not collections, but rather
implementations of collections, i.e., a bunches of functions. The actual collections are elements of type
C.car whereC ∈ Collection(T). If we have a function that need a collection as a parameter, it actually
should have two arguments: an implementation and a collection itself. So, it should have a type like:

C : Collection(T) → C.car→ A (7.1)

Another disadvantage of this data structure is that it is not fully abstract. Functions of the type (7.1) may
have access to fieldcar, which is supposed to be abstract.

In this chapter we will define a notion of objects that removes these disadvantages. Note that the
theory of objects is not yet implemented MetaPRL.

7.1 Object instances

In this section we define object instances and basic operations with them. First we describe the intended
behavior of these operations and then we give a formal definition. The problem of the typing of these
object instances will be considered in the successive sections.

7.1.1 The operations with objects

Methods

The main difference between objects and records is that objects have methods. Methods can be understood
as functions that have a parameterself , that represents the object itself. That is, when we evaluate a
method of a particular object we substitute this object for theself parameter.

The main operation that we perform with methods is to apply them to an object. We will use circle
dot (obj◦l) for a method extraction (to distinguish it from field selection for recordsrec.l). Hereobj
is an object andl is a name of a method. Thus, ifobj is an object instance that has a method namedl
with a bodym(self) thenobj◦l expands tom(obj). (Hereself is a variable, andm(obj) stands for the
substitutionobj for the variableself .)

Fields of objects can be represented as methods that do not depend onself .
So, object instances are lists of methods (including fields). We will use the following syntax for

objects:

o self .{l1 = m1(self); . . . ; ln = mn(self)}
whereself is a bound variable,li’s are names of the methods (fields) andmi’s are bodies of the corre-
sponding methods (values of the fields).

Example 7.1 The following is an example of an objectsimpleF lea. The flea lives on an integer line and
has a coordinatex, that can be obtained, by a methodgetX. MethodgetNextX returns a coordinate
where the flea wants to jump next time.

simpleF lea
∆= o self .

{x = 0;
getX = self ◦x;
getNextX = self ◦getX + 1
}

For the objectsimpleF lea we expect the following reductions:

40

41

simpleF lea◦getX→ simpleF lea◦x→ 0
simpleF lea◦getNextX→ flea◦getX + 1 → 0 + 1 → 1

In general, for object

object = o self .{l1 = m1(self); . . . ; ln = mn(self)} (7.2)

with distinctli’s we have the following reduction rule:

object◦li → mi(object) (7.3)

Field update

Another basic operation that we need for objects is a field/method update.
We will use the following syntax for this operation:obj◦l := t, whereobj is an object instance,l is a

name of a field andt is a new value. Note that we are working in a pure functional language. Field update
does not modify an existing object, but rather creates a new objects. For example,simpleF lea◦x := 17 is
a new object that coincides tosimpleF lea in all fields exceptx. Field update should obey the following
reduction rule:

(obj◦l := t)◦l → t (7.4)

For example,(flea◦x := 17)◦x → 17. This rule is the same as an analogous rule for records (3.2). On
the other hand, the analog of the record reduction rule form Table 3.2

(obj◦l := t)◦l′ → obj◦l
′, whenl 6= l′ (wrong!)

is wrong for objects. For example,(simpleF lea◦x := 17)◦getX reduces to17, not tosimpleF lea◦getX
which is0.

The right reduction rule is the following: forobject defined in (7.2) letobject′ beobject◦l := t, then

object′◦li → mi(object′) (7.5)

wherei ∈ 1..n andl 6= li.
For example,

(flea◦x := 17)◦getX→ (flea◦x := 17)◦x→ 17

Example 7.2 Now we can define a methodmove that moves a flea by1 step to the right.

movableF lea
∆= o self .

{x = 0;
getX = self ◦x;
getNextX = self ◦getX + 1;
move = (self ◦x := self ◦getNextX)
}

In this example,movableF lea◦move◦move◦getX evaluates to 2.

Method update

The generalization of the field update is a method update:

obj◦l := ς self .m(self)

Herel is a name of a method,m is a new body of this method with a bound variableself .
The reduction rules for the method update are analogous to ones for field update. Forobject defined

in (7.2) letobject′ beobject◦l := ς self .m(self), then

object′◦l → m(object′) (7.6)

42

and
object′◦li → mi(object′) (7.7)

wherei ∈ 1..n andl 6= li.

Example 7.3 We can override methodgetNextX in the last example:

fastF lea
∆= movableF lea◦getNextX := ς self .self ◦getX + 2.

NowfastF lea moves twice faster thanmovableF lea. For example,

fastF lea◦move◦move◦getX −→ 0 + 2 + 2 = 4.

The operation method update could be used for extending an object with new methods. That is, we
can apply the operation of updating a method to an object that did not contain this method before.

We will use the following alternative syntax for method update. We will write

o(obj) self .
{l1 = m1(self);
. . .
ln = mn(self)}

instead of
obj ◦l1 := ς self .m1(self)

. . .

◦ln := ς self .mn(self)

For example we could definedmovableF lea from Example 7.2 as an extension ofsimpleF lea:

movableF lea = o(simpleF lea) self .{move = (self ◦x := self ◦getNextX)}.
Note that field update can be considered as a partial case of method update whenm does not depend

on self .
These operations and the reduction rules are summarized in Table 7.1.

7.1.2 Formal definitions

It is relatively easy to define objects and their operations (method application and method update) in
lambda-calculus with records. We will define objects as functions that takeself as a parameter and return
a record:

o self . { l1 = m1(self); . . . ; ln = mn(self)} ∆=
λself . { l1 = m1(self); . . . ; ln = mn(self)} (7.8)

As one would expect, method application is a self application :

obj◦l
∆= (obj obj).l, (7.9)

i.e., we apply an object to itself and then get a record, and extract a fieldl from this record.
Field update is defined as

obj◦l := t
∆= λself . (obj self).l := t . (7.10)

By analogy, method update is defined as

obj◦l := ς self .m(self) ∆= λself .((obj self).l := m(self)). (7.11)

Theorem 7.4 The definitions(7.8)–(7.11)satisfy the intended reduction rules from Table 7.1.

43

Table 7.1: Reduction rules for object calculus

Canonical terms:
o self .{l1 = m1(self); . . . ; ln = mn(self)}

Operations:
Method application:obj◦l
Method update/extension:obj◦l := ς self .m(self)
Field update/extension is a partial case of method update:

obj◦l := f
∆= obj◦l := ς self .m

Reductions:
If obj = o self .{l1 = m1(self); . . . ; ln = mn(self)} then

obj◦li → mi(obj) whenli 6= li+1, . . . ln

obj◦l := ς self .m(self) → o self .{l1 = m1(self); . . . ; ln = mn(self); l = m(self)}

Remark An alternative way would be to define an object as a record of methods, where each method is a
function that takeself as a parameter:

o self .{l1 = m1(self); . . . ; ln = mn(self)} ∆
=

{l1 = λself .m1(self); . . . ; ln = λself .mn(self)}
This approach was used by Hickey in [21]. Although the latter definition may seem more natural, we choose the
former one, because the typing rules will be more elegant for it.

7.1.3 Additional Properties

From the above definitions it is easy to see that we can define any object as an extension of an empty
object{||}. For example, theobject defined in (7.2) is equal to

o({||}) self .
{l1 = m1(self);
. . .
ln = mn(self)}.

Also if we rewrite a method, then we can forget about the old method, i.e.,

o self {. . . ; l = m; . . . ; l = m′; . . . } ≡ o self .{. . . ; . . . ; l = m′; . . . }
and

obj◦(l := m)◦(l := m′) ≡ obj◦l := m′.

The methods with different names commute. That is,

o self .{. . . ; l = m; l′ = m′; . . . } ≡ o self .{. . . ; l′ = m′; l = m; . . . }

44

and
obj◦(l := m)◦(l′ := m′) ≡ obj◦(l′ := m′)◦(l := m)

wherel 6= l′.

7.1.4 Notations

First, let us note that we use three types of dots in the thesis. The simple dot (.) is used for in expressions
like λx.f , o self .{x = 0} to show binding variables. The bold dot (.) is used for records, e.g.,r.x,
r.x := 1. The circle dot (◦) is used for objects, e.g.,o◦x, o◦x := 1.

Like in many programming languages, we will usually omitself . That is, we will use the following
notations:

instead of writing: we will write:
self ◦x x

self ◦x := m x := m
o self .{. . . } {| . . . |}

o(obj) self .{. . . } o(obj) {| . . . |}

For instance, Example 7.2 can be rewritten as follows:

movableF lea =
{|x = 0;
getX = x;
getNextX = getX + 1;
move = (x := getNextX);
|}

7.1.5 Recursion

The above definition allows us to write recursive objects.

Example 7.5 We can write a recursive method that moves the flea byn steps.

advanceF lea
∆= o(movableF lea).

{moveBy = (λn.if n = 0 then self else move◦moveBy (n− 1))
}

ThenadvanceF lea◦moveBy (17)◦getX evaluates to17.

Example 7.6 We can also write objects with mutual recursion:

feeFoo
∆=

{|foo = λn.if n = 0 then 0 else fee(n− 1);
fee = λn.if n = 0 then 1 else foo(n− 1)
|}

This object has two methodsfee and foo, which recursively call each other. According to rules of
Table 7.1feeFoo◦foo(17) evaluates to1.

7.2 Typing

As we saw, object instances can be defined fairly easily in lambda-calculus with records. However,
finding the right type for these objects is a difficult task. Indeed, how do we type even a simple object

simplestF lea
∆= {|x = 1; getX = x|}? This object is a function from objects of this type to the record

45

type{x : Z; getX : Z}. Intuitively the type of this objectX should satisfy an equationX = X → {x :
Z; getX : Z}. Unfortunately, this equation is not monotone inX. Therefore, we can not use standard
fixpoint operations such as the least fixpoint (µ) or the greatest (ν). Moreover, this equation may not have
a fixpoint at all!

First let us examine more carefully what we are looking for. We want to define the type of objects of
the form

o self .{l1 = m1(self); . . . ; ln = mn(self)}
where we are given the type of the methods. LetMi be a type of a method namedli. Let us denote the
type of such objects as

O{l1 : M1; . . . ; ln : Mn}
For example,simplestF lea should have typeSimplestF leas

∆= O{x : Z; getX : Z}.
Note that some methods may return objects of the same type (e.g.,move andmoveBy methods). In

this case we will use a bound variableSelf that represent the type of the object itself. We will use the
following syntax:

OSelf .{l1 : M1(Self); . . . ; ln : Mn(Self)} (7.12)

For example, we expectadvanceF lea to be of the following type

AdvanceF leas
∆=

OSelf .{x : Z; getX : Z; getNextX : Z; move : Self ; moveBy : N→ Self }.
We will call the record typeM [Self] = {l1 : M1(Self); . . . ; ln : Mn(Self)} a declaration type

of an object type. Our goal is define a constructorOSelf.M [Self] which is an object type of a given
declaration. First, let us describe the properties that we expect from this type constructor.

What does it mean that the method of an object has a typeM? It means that if we apply this method
we get an element of typeM . That is, ifobj has typeO{l1 : M1; . . . ; ln : Mn} thenobj◦li must have
typeMi. More generally, if

Object = OSelf .{l1 : M1(Self); . . . ; ln : Mn(Self)}
then we can apply methodli to all objects of this type and the result must have typeMi(Object). That is,
the following rule is necessary:

obj ∈ Object

obj◦li ∈ Mi(Object)
(7.13)

For example for allbug ∈ AdvanceF leas we should havebug◦getX ∈ Z andbug◦move ∈ AdvanceF leas.

7.3 Definition of Object Types

In this section we are going to give a definition of a type of objects satisfying the properties outlined
above. We start with

Definition 7.7 LetX andA be types, then

X C A iff X ⊆ (X → A)

This definition says that ifX C A then we can apply elements of typeX to themselves. Therefore we
have the following

Lemma 7.8 If X C A then ifo ∈ X theno(o) ∈ A.
In particular, if

X C {l1 : M1; . . . ; ln : Mn} (7.14)

then for anyo ∈ X we have thato◦li ∈ Mi.

So intuitively, the typeX = OSelf .{l1 : M1(Self); . . . ; ln : Mn(Self)} should satisfy the prop-
erty (7.14). Of course the empty type always satisfies (7.14), but we want the object type to contain as
many elements as possible. So we define the object type as a union of all typesX satisfying (7.14).

46

Definition 7.9 Generally, letM [X] be a type for any typeX. We define a typeOX.M [X] as a union of
all typesX that satisfyX C M [X]:

OX.M [X] = ∪{X : U |X C M [X]}.
We will also use the following abbreviation:{|l1 : M1(Self); . . . ; ln : Mn(Self)|} for the type

OSelf .{l1 : M1(Self); . . . ; ln : Mn(Self)}.
This definition does not satisfy the property (7.14), but it turns out that we do not need this property.

We still have the following lemma:

Lemma 7.10 If M [X] is monotone inX (w.r.t. subtyping relation) then for anyo ∈ OX.M [X] we have
thato(o) ∈ M [OX.M [X]].

In particular, if Mi[X] are monotone inX, then ifO = {|l1 : M1(Self); . . . ; ln : Mn(Self)|} and
o ∈ O theno◦li ∈ Mi(O).

Proof If o ∈ OX.M [X] then there is a typeX ∈ U, such thato ∈ X andX C M(X). By
Lemma 7.8,o(o) ∈ M(X). SinceX ⊆ OX.M [X] andM is monotone,M(X) ⊆ M [OX.M [X]].
Thereforeo(o) ∈ M [OX.M [X]].

The second part of the lemma immediately follows form the first part.
This lemma provides us the elimination rule for objects (7.13).

obj ∈ Object

obj◦li ∈ Mi(Object)

whereObject = OSelf .{l1 : M1(Self); . . . ; ln : Mn(Self)}.
The remaining question is how to prove that this type is nonempty? For example, how can one prove

thatsimplestF lea ∈ SimplestF leas? This is nontrivial question. We should find a typeX satisfying
o ∈ X C M(X). We will need another constructor.

7.4 Extensibility

Definition 7.9 has one important disadvantage: objects of the typeOSelf .M [Self] are not extensible, in
the sense that we cannot add new methods to them.

Example 7.11 Leta be an arbitrary object of the type{|move : Self |}. Consider another object

b = {|move = a|}.
Thenb is also an object of the type{|move : Self |}. The problem withb is that b is not extensible. For
instance an extension

b′ = {|move = a; new method = t|}
does not have a type{|move : Self ; new method : T |} becauseb′◦move◦new method is undefined.

Extensible objects should have typeT such that not onlyT CM(T), but also any extensions (subtype)
X of T should meetX C M(X).

7.5 Updatable Fields

Another problem with Definition 7.9 is that we can not update fields and methods of the objects of the
typeOX.M [X].

Example 7.12 Suppose we want to update a fieldx of an objectobj of the type{|x : Z; y : Z|}. That is,
we want to prove thatobj◦x := 1 has the same type. We cannot always do that. For example let

o = {|x = 0; y = if x = 0 then 1 else error|}.
This object has type{|x : Z; y : Z|}, butobj◦x := 1 does not have this type.

47

So to be able to update fields, we will need some additional restrictions on the object type. To deal
with this problem we need

Definition 7.13 Letx be a label,A andT be types. Let us define the following relation onx, A, T :

{|x : A|} ≺ T iff ∀a : A.∀t : T.(t◦x := a) ∈ T

Note that this is a ternary relation, not a binary relation between types.

Informally speaking{|x : A|} ≺ T gives a lower bound for a type of fieldx in T . It plays the same
role as Hickey’s≺-relation [21] and Zwanenburg’s#-relation [39].

We are going to define a type ofextensibleobjects satisfying conditions of the formP (T) = {|x :
A|} ≺ T . More precisely, for a given declarationM(X) and a given conditionP (X) we define a type
of extensible objectsEP M . HereM ∈ U → U andP (X) is a predicate on types. We cannot give this
definition for an arbitraryM andP . M should be monotone and continuous andP should be closed
under intersection (see below).

7.6 Topology

Subtyping relation forms a partial order over the types inU. Partial order forms a topology: the topology
is formed by intervals

[A; B] ∆= {X : U |A ⊆ X ⊆ B}

7.6.1 Continuous functions

Usually the following definition is used for continuity of monotone operators:

Definition 7.14 Monotone type operatorM is continuousiff for any non-empty family of types{Xi}i:I

M(
⋂

i:I

Xi) =
⋂

i:I

M(Xi)

Most of the monotone type constructors are continuous:X + Y , X × Y , and most important{x :
X; y : Y } are continuous.

7.6.2 Semicontinuous functions

We will need to iterateN(X) = X → M(X). Unfortunately, this operator is not monotone and not
continuous in any sense. For example,N(X) = ¬X is clearly not continuous. So we will need a less
strict definition.

Definition 7.15 A type operatorN is (upper) semicontinuousiff for any non-empty family of types
{Xi}i:I

N(
⋂

i:I

Xi) ⊇
⋂

i:I

N(Xi)

It is clear that any continuous function is semicontinuous. We can also prove that ifM(X) is semicon-
tinuous thenN(X) = X → M(X) is also semicontinuous. It follows from the following two lemmas.

Lemma 7.16 If F (X, Y) is a function that is anti-monotone in its first argument and semicontinuous in
its second argument, thenN(X) = F (X, Y) is semicontinuous.

Lemma 7.17 X → Y is a monotone and continuous inY and anti-monotone inX.

Note that a monotone function is semicontinuous iff it is continuous.

48

7.6.3 Closed properties and sets

Definition 7.18 We will say that a propertyP of types isclosed (under intersection)iff for any family of
types{Xi}i:I if P is true for allXi’s thenP is true for intersection ofXi’s, i.e.

(∀i : I.P (Xi)) ⇒ P (
⋂

i:I

Xi)

In other words it means thatP is semicontinuous function fromU to propositions.

Definition 7.19 We will say that a subtypeV ofU is closed (under intersection)iff for any family of types
{Xi}i:I whereXi ∈ V , intersection of allXi’s is also inV .

Note that it follows from this definition that ifP is closed thenP is true for Top and Top is in any
closed set of types (since Top=

⋂
i:Void

Void).

Example 7.20 P (T) = {|x : A|} ≺ T is a closed predicate.

7.7 Extensible objects: Formal definitions

Now we are going to give a formal definition ofEP M .

Definition 7.21 LetP : U→ P be a property of types. DefineUP
∆= {X : U | P (X)}.

Definition 7.22 LetV be a subtype ofU, andA andB be types. Define

V [A;B] ∆= {X : V |A ⊆ X ⊆ B}.
Definition 7.23 LetM be a continuous monotone type operator. LetP be a closed proposition andT be
a type. Define a relation

T ∝P M
∆= ∀X : UP . ∃Y : UP [X ∩ T ; X]. Y C M(Y).

We will refer to suchY asM∗(X).

Definition 7.24 LetM andP be as in definition 7.23. Define

EP M
∆=

⋃
{T : U′ | T ∝P M}

We cannot prove that for any typeT if T ∝P M thenT C M(T). But we can prove the following

Lemma 7.25 Let M andP be as in definition 7.23. For any typeT , if T ∝P M then there is a typeT ′

in UP , such thatT ⊆ T ′ andT ′ C M(T ′).

Proof TakeT ′ = M∗(Top).

Corollary 7.26 EP M ⊆ OM

Lemma 7.27 T ∝P M is anti-monotone inT and monotone inM , i.e.,

• T1 ⊆ T2 ∝P M impliesT1 ∝P M and

• If M1(X) ⊆ M2(X) for all X thenT ∝P M1 impliesT ∝P M2

Corollary 7.28 EP M is monotone inM .

Lemma 7.29 T ∝P Top for any typeT .

Lemma 7.30 Let{Mi}i:I be a family of continuous functions. IfT ∝P Mi for all i ∈ I thenT ∝P

⋂
i:I

Mi

(i.e. T ∝P M is continuous inM).

49

Proof SinceT ∝P X.Mi(X) we have a family of functionsM∗
i , s.t.M∗

i (X) ∈ UP [X ∩T ; X] and
M∗

i (X) C Mi(M∗
i (X)) for anyX ∈ UP .

Now, we want to proveT ∝P X.
⋂
i:I

Mi(X). We are givenX ∈ UP . We want to findY ∈ UP [X ∩
T ; X] such thatY C

⋂
i:I

Mi(Y).

Let Ni(X) = X → Mi(X). We now thatNi’s are semicontinuous. Note thatY C
⋂
i:I

Mi(Y) iff

Y ⊆ ⋂
i:I

Ni(Y).

Define a family of sequences of typesY i
n by induction:

• Y i
0 = M∗

i (X)

• Y i
n+1 = M∗

i (
⋂
j:I

Y j
n)

Then we prove the following:
0. Yn ∈ UP

Proof: straightforward induction using facts thatM∗
i : UP → UP andUP is closed under intersection.

1. Y i
n+1 ⊆ Y j

n for any indexesi, j.
Proof:Y i

n+1 = M∗
i (

⋂
j:I

Y j
n) ⊆ ⋂

j:I

Y j
n ⊆ Y j

n

As a corollary we have:
2.

⋂
n:N

Y i
n =

⋂
n:N

Y j
n for any indexesi, j.

Now, defineY as this intersectionY =
⋂
n:N

Y i
n.

3. Y i
n ⊆ Ni(Y i

n)
Proof: SinceN∗

i (X) ⊆ Ni(N∗
i (X)) for anyX ∈ UP .

4. Y ⊆ Ni(Y)
Proof:Ni(Y) = Ni(

⋂
n:N

Y i
n) ⊇ ⋂

n:N
Ni(Y i

n) ⊇ ⋂
n:N

Y i
n = Y .

5. Y i
n ⊆ X

Proof: By induction.
6. Y i

n ⊇ X ∩ T
Proof: By induction.
So we have thatY ∈ UP [X ∩ T ;X] andY ⊆ Ni(Y).

Corollary 7.31 EP is continuous inM .

In particular,
EP (M1 ∩M2) = (EP M1) ∩ (EP M2).

This establishes the following rule

o ∈ EP M1 o ∈ EP M1

o ∈ EP (M1 ∩M2)

Lemma 7.32 Let P be a closed proposition,M1 be a continuous function fromUP to UP andM2 be a
continuous monotone function. Let

T =
⋂

X:UP
X⊆M1(X)

M2(X)

Let N2(X) = X → M2(X). If N2 ∈ {X : UP | X C M1(X)} → UP , then for anyT ′ such that
T ′ ∝P M1 we have thatT ′ ∩ T ∝P M2.

50

Proof SinceT ′ ∝P X.M1(X), there is a functionM∗
1 , s.t.M∗

1 (X) ∈ UP [X∩T ′; X] andM∗
1 (X)C

M1(M∗
1 (X)) for anyX ∈ UP .

Let N2(X) = X → M2(X).
Now, we want to proveT ∩ T ′ ∝P X.N2(X). That is for any typeX ∈ UP we should find a typeY

s.t.Y ∈ UP [X ∩ T ∩ T ′;X] andY ⊆ N2(Y).
Define the following sequence:

• Y0 = M∗
1 (Top)

• Yn+1 = M∗
1 (N2(Yn) ∩X)

DefineY =
⋂
n:N

Yn. Then we can prove the following:

1. Yn ∈ UP andYn C M1(Yn).
Proof: straightforward simultaneous induction.
2. T ⊆ N2(Yn)
Proof: By definition ofT .
3. T ∩ T ′ ∩X ⊆ Xn

Proof: Two cases:
Y0 = M∗

1 (Top) ⊇ T ′ ⊇ T ∩ T ′ ∩X

Yn+1 = M∗
1 (N2(Yn) ∩X) ⊇ N2(Yn) ∩X ∩ T ′ ⊇ T ∩ T ′ ∩X

4. N2(Yn) ⊇ Yn+1

Proof:Yn+1 = M∗
1 (N2(Yn) ∩X) ⊆ N2(Yn).

5. Y ⊆ N2(Y)
Proof:N2(Y) ⊇ ⋂

n:N
N2(Yn) ⊇ ⋂

n:N
Yn+1 ⊇ Y .

6. Y ⊆ X
Proof:Y ⊆ Y1 = M∗

1 (N2(Y0) ∩X) ⊆ N2(Y0) ∩X ⊆ X.
7. Y ∈ UP [X ∩ T ∩ T ′; X]
Proof: By (1), (3) and (6).
So we are done.

Corollary 7.33 If P , M1, M2 andT are as in Lemma 7.32 then

T ∩ EP M1 ⊆ EP (M1 ∩M2)

This corollary provides a main introduction rule for objects:

Γ ` o ∈ EP M1

Γ;X : U; P (X); X C M1(X) ` o ∈ M2(X)
Γ;X : U; P (X); X C M1(X) ` P (M2(X))

Γ ` o ∈ EP M1 ∩M2

7.8 Object Calculus

The rules that we proved above are represented in Table7.2.
We can make these rules more concrete substituting record types in place ofM . We will use the

notation
{|x1 : M1[Self]; . . . ; xn : Mn[Self]|}P

for EP .(λSelf .{x1 : M1[Self]; . . . ; xn : Mn[Self]}).

51

Table 7.2: Basic typing rules of object calculus

Γ ` o ∈ EP M1

Γ;X : U; P (X); X C M1(X) ` o ∈ M2(X)
Γ;X : U; P (X); X C M1(X) ` P (M2(X))

Γ ` o ∈ EP M1 ∩M2

Γ;X : U;P (X) ` M1(X) ⊆ M2(X)
Γ ` EP M1 ⊆ EP M2

Γ; i : I ` o ∈ EP Mi

Γ ` o ∈ EP

⋂
i:I

Mi

Γ ` o ∈ EP M
Γ ` o ∈ OX.M(X)

In these rulesP are closed predicates andM ’s are monotone continuous functions.

Table 7.3: Some derived rules of object calculus

Γ ` o(o){|xn = mn[self]|} ∈ {|x1 : M1[Self]; . . . ; xn−1 : Mn−1[Self]|}P

Γ; X : U; P (X); X C {x1:M1[X]; . . . ; xn−1:Mn−1[X]}; self : X ` mn[self] ∈ Mn[X]
Γ; X : U; P (X); X C {x1:M1[X]; . . . ; xn−1:Mn−1[X]} ` P (X → Mn[X])

Γ ` o(o){|xn = mn[self]|} ∈ {|x1 : M1[Self]; . . . ; xn : Mn[Self]|}P

Γ ` X C {x1 : M1[X]; . . . ; xn : Mn[X]} Γ ` o ∈ X
Γ ` o◦xi ∈ Mi[X]

Γ ` o ∈ obj ∈ {|x1 : M1[Self]; . . . ; xn : Mn[Self]|}P

Γ ` o ∈ obj ∈ {|x1 : M1[Self]; . . . ; xn : Mn[Self]|}

Γ ` o ∈ obj ∈ {|x1 : M1[Self]; . . . ; xn : Mn[Self]|}
Γ ` o◦xi ∈ Mi[X]

Γ ` {|x : A|} ≺ X Γ ` o ∈ X Γ ` a ∈ A
Γ ` o◦x := a ∈ X

Γ ` x 6= y
Γ ` {|x : A|} ≺ (X → {y : B})

Γ ` A ⊆ B
Γ ` {|x : A|} ≺ (X → {x : B})

In these rulesP is a closed predicates andM ’s are monotone continuous functions.

52

7.9 Example

Now we show how rules of Table 7.3 works. Let us prove thatmovableF lea has type

MovableF leas =
{| getX : Z;
getNextX : Z;
move : Self
|}

Remember
movableF lea =

{|x = 0;
getX = x;
getNextX = getX + 1;
move = (x := getNextX);
|}

Let P (T) = {|x : Z|} ≺ T . It is enough to prove thatmovableF lea ∈ {|x : Z; getX : Z; getNextX :
Z; move : Self |}P . Applying introduction four times we get four main subgoals:

X : U; P (X); self : X ` 0 ∈ Z
X : U; P (X);X C {x : Z}; self : X ` self ◦x ∈ Z
X : U; P (X);X C {x : Z; getX : Z}; self : X ` self ◦getX + 1 ∈ Z
X : U; P (X);X C {x : Z; getX : Z; getNextX : Z}; self : X ` self ◦x := self ◦getNextX ∈ X
and four goals with the conclusions:P (X → {x : Z}), P (X → {getX : Z}), and so on. These

subgoals are momentary proved by introduction rules for≺.
The first main subgoal is trivial. The second and the third one are proved by elimination rules forC.

And finally, the last one is proved by the elimination rule for≺.

BIBLIOGRAPHY

[1] Martín Abadi and Luca Cardelli. A semantics of object types. InProceedings of 9th IEEE Sympo-
sium on Logic in Computer Science, pages 332–341, Paris, France, July 1994. IEEE, IEEE Computer
Society Press.

[2] Stuart F. Allen. A Non-type-theoretic Definition of Martin-Löf’s Types. In D. Gries, editor,Proceed-
ings of the 2nd IEEE Symposium on Logic in Computer Science, pages 215–224. IEEE Computer
Society Press, June 1987.

[3] Stuart F. Allen.A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD thesis, Cornell
University, 1987.

[4] Lennart Augustsson. Cayenne — a language with dependent types. InInternational Conference on
Functional Programming, pages 239–250, 1998.

[5] Gustavo Betarte and Alvaro Tasistro. Extension of Martin-Löf’s type theory with record types and
subtyping. In Giovanni Sambin and Jan M. Smith, editors,Twenty-Five Years of Constructive Type
Theory, volume 36 ofOxford Logic Guides, pages 21–39, Oxford, 1998. Clarendon Press.

[6] Mark Bickford and Jason J. Hickey. Predicate transformers for infinite-state automata in NuPRL
type theory. InProceedings of3rd Irish Workshop in Formal Methods, 1999.

[7] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings. InProceedings
of FOOL 3, 1996.

[8] Robert L. Constable. Types in logic, mathematics and programming. In Sam Buss, editor,Handbook
of Proof Theory, chapter 10. Elsevier Science, 1998.

[9] Robert L. Constable et al. Implementing Mathematics with the NuPRL Development System.
Prentice-Hall, NJ, 1986.

[10] Robert L. Constable and Jason Hickey. NuPRL’s class theory and its applications. In Friedrich L.
Bauer and Ralf Steinbrueggen, editors,Foundations of Secure Computation, NATO ASI Series,
Series F: Computer & System Sciences, pages 91–116. IOS Press, 2000.

[11] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality theory
for theλ-calculus.Notre-Dame Journal of Formal Logic, 21(4):685–693, October 1980.

[12] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.Introduction to Algorithms. MIT
Press/McGraw-Hill Book Company, Cambridge, Massachusetts, 1994.

[13] Judicäel Courant. An applicative module calculus. InTAPSOFT, Lecture Notes in Computer Sci-
ence, pages 622–636, Lille, France, April 1997. Springer-Verlag.

[14] J-Y. Girard. Une extension de l’interpretation de Gödel a l’analyse, et son application a l’elimination
des coupures dans l’analyse et la theorie des types. In2nd Scandinavian Logic Symposium, pages
63–69. Springer-Verlag, NY, 1971.

[15] J-Y. Girard. Interprétation fonctionnelle et́elimination des coupures de l’arithḿetique d’ordre
suṕerieur. PhD thesis, Université Paris VII, 1972.

[16] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. InIEEE Sym-
posium on Foundations of Computer Science, pages 8–21, October 1978.

[17] C. A. Gunter and J. C. Mitchell, editors.Theoretical Aspects of Object-Oriented Programming,
Types, Semantics and Language Design. Types, Semantics, and Language Design. MIT Press, Cam-
bridge, MA, 1994.

53

54

[18] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with shar-
ing. In Conference record of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 123–137, Portland, OR, January 1994.

[19] Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli Barzilay, Yegor Bryukhov,
Richard Eaton, Adam Granicz, Alexei Kopylov, Christoph Kreitz, Vladimir N. Krupski, Lori Lorigo,
Stephan Schmitt, Carl Witty, and Xin Yu. MetaPRL — A modular logical environment. Accepted
to the TPHOLs 2003 Conference, 2003.

[20] Jason J. Hickey. Formal objects in type theory using very dependent types. InFoundations of Object
Oriented Languages 3, 1996. Available electronically through the FOOL 3 home page.

[21] Jason J. Hickey. A predicative type-theoretic interpretation of objects. Unpublished, 1997.

[22] Jason J. Hickey.The MetaPRL Logical Programming Environment. PhD thesis, Cornell University,
Ithaca, NY, January 2001.

[23] Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et al. MetaPRL home page.http://metaprl.
org/ .

[24] Douglas J. Howe. Equality in lazy computation systems. InProceedings of the 4th IEEE Sympo-
sium on Logic in Computer Science, pages 198–203, Asilomar Conference Center, Pacific Grove,
California, June 1989. IEEE, IEEE Computer Society Press.

[25] T. B. Knoblock and R. L. Constable. Formalized metareasoning in type theory. InProceedings of
the 1st Symposium on Logic in Computing Science, pages 237–248. IEEE, 1986.

[26] Alexei Kopylov. Dependent intersection: A new way of defining records in type theory. InProceed-
ings of 18th IEEE Symposium on Logic in Computer Science, 2003.

[27] Alexei Kopylov and Aleksey Nogin. Markov’s principle for propositional type theory. In L. Fri-
bourg, editor,Computer Science Logic, Proceedings of the 10th Annual Conference of the EACSL,
volume 2142 ofLecture Notes in Computer Science, pages 570–584. Springer-Verlag, 2001.

[28] Xavier Leroy. Manifest types, modules, and separate compilation. InProceedings of the 21st ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 109–122. ACM
Press, 1994.

[29] Per Martin-L̈of. Constructive mathematics and computer programming. InProceedings of the
Sixth International Congress for Logic, Methodology, and Philosophy of Science, pages 153–175,
Amsterdam, 1982. North Holland.

[30] Per Martin-L̈of. Intuitionistic Type Theory. Number 1 in Studies in Proof Theory, Lecture Notes.
Bibliopolis, Napoli, 1984.

[31] P.F. Mendler.Inductive Definition in Type Theory. PhD thesis, Cornell University, Ithaca, NY, 1988.

[32] Aleksey Nogin. Quotient types: A modular approach. In Victor A. Carreño, Ćezar A. Mũnoz, and
Sophìene Tahar, editors,Proceedings of the 15th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs 2002), volume 2410 ofLecture Notes in Computer Science, pages
263–280. Springer-Verlag, 2002.

[33] Chris Okasaki. Red-black trees un a functional setting.Journal of Functional Programming,
9(4):471–477, May 1999.

[34] Benjamin C. Pierce. Programming with intersection types, union types, and polymorphism. Tech-
nical Report CMU-CS-91-106, Carnegie Mellon University, February 1991.

55

[35] Benjamin C. Pierce. Programming with intersection types, union types, and polymorphism. Tech-
nical Report CMU-CS-91-106, Carnegie Mellon University, February 1991.

[36] Robert Pollack. Dependently typed records for representing mathematical structure. In J. Harrison
and M. Aagaard, editors,Theorem Proving in Higher Order Logics: 13th International Confer-
ence, TPHOLs 2000, volume 1869 ofLecture Notes in Computer Science, pages 461–478. Springer-
Verlag, 2000.

[37] Garrel Pottinger. A type assignment for the strongly normalizableλ-terms. In Jonathan P. Seldin
and J. Roger Hindley, editors,To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and
Formalism, pages 561–577. Academic Press, London, 1980.

[38] John C. Reynolds. Design of the programming language forsythe. Technical Report CMU-CS-96-
146, Carnegie Mellon University, June 1996.

[39] Jan Zwanenburg. A type system for record concatenation and subtyping. In Kim Bruce and Giuseppe
Longo, editors,Informal proceedings of Third Workshop on Foundations of Object-Oriented Lan-
guages (FOOL 3), 1996.

