Automatic Selection of Mask and Arterial Phase Images for Temporally-Resolved MR Digital Subtraction Angiography

21 May 2002, ISMRM 2002

Junhwan Kim, Martin R. Prince, Ramin Zabih, Jeff Bezanson, Richard Watts, Hale Erel, Yi Wang

Department of Radiology
Weil Medical College of Cornell University
2D Projection MRA: 5 ml Gd

Coronal T1

Raw image

Complex subtraction

Left

Right
2D Projection MRA: + complex subtraction

Ankles

Knee
Time-resolved background-subtracted CEMRA

- Time-resolved image gives too many images
- Surgeon prefers one image that shows everything
- Our goal: Create a single best subtraction image by combining best mask and best arterial phase images
Coronal spoiled gradient echo sequence parameters

- TR/TE/flip angle = 10/2/60 degrees
- Slab thickness = 7-10 cm
- Field-of-view = 30cm
- Matrix = 256x192
- Bandwidth = 16 kHz
- The imaging time
 - 1.95 seconds per acquisition
 - repeat the acquisition 35 times
 - total of 67 seconds
Major challenges

- Identify the contrast bolus arrival
- Avoid motion corrupted images
- Tedious manual procedure
Major challenges

- Identify the contrast bolus arrival
- Avoid motion corrupted images
- Tedious manual procedure
- Issues
 - Quantify “image quality”
 - Select the mask and arterial phase images based on image quality
Subtracted Image Quality Evaluation

- Two basic criteria
 - Bright foreground (i.e. artery)
 - Dark background

- Quality = avg(Artery) – avg(Background)

- Problem: How to determine whether each pixel is in artery or background

- We need assumptions!
 - Artery is thin and vertically oriented
 - Artery width is typically 1-5 mm
Artery-Background Classification
Artery-Background Classification

- A pixel is in the artery
 - If the pixel ranks in brightness between 1st and 2nd of 128 pixels in the scan line.

- A pixel is in the background
 - If the pixel ranks in brightness between 11th and 128th of 128 pixels in the scan line.

- Unclassified
 - Otherwise
Select mask and arterial phase

Contrast arrival detection

Best mask / arterial phase pair selection

Best mask set / arterial phase set selection
Contrast Arrival Detection

Time=9, Quality=18.78
<table>
<thead>
<tr>
<th>masks 5</th>
<th>arterial 1</th>
<th>arterial 2</th>
<th>arterial 3</th>
<th>arterial 4</th>
<th>arterial 5</th>
<th>arterial 6</th>
<th>arterial 7</th>
<th>arterial 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30.99</td>
<td>29.61</td>
<td>35.59</td>
<td>39.55</td>
<td>42.90</td>
<td>41.24</td>
<td>37.44</td>
<td>33.23</td>
</tr>
<tr>
<td>masks 4</td>
<td>33.13</td>
<td>29.57</td>
<td>35.25</td>
<td>38.17</td>
<td>43.03</td>
<td>40.37</td>
<td>35.99</td>
<td>35.04</td>
</tr>
<tr>
<td>masks 3</td>
<td>32.00</td>
<td>29.91</td>
<td>34.39</td>
<td>36.94</td>
<td>43.71</td>
<td>38.59</td>
<td>35.95</td>
<td>35.32</td>
</tr>
<tr>
<td>masks 2</td>
<td>29.43</td>
<td>28.89</td>
<td>32.91</td>
<td>38.82</td>
<td>41.53</td>
<td>41.41</td>
<td>38.77</td>
<td>30.89</td>
</tr>
<tr>
<td>masks 1</td>
<td>26.94</td>
<td>27.92</td>
<td>32.55</td>
<td>39.83</td>
<td>39.58</td>
<td>42.36</td>
<td>37.82</td>
<td>28.83</td>
</tr>
</tbody>
</table>
Best mask set / arterial phase set selection

<table>
<thead>
<tr>
<th></th>
<th>arterials 1</th>
<th>arterials 2</th>
<th>arterials 3</th>
<th>arterials 4</th>
<th>arterials 5</th>
<th>arterials 6</th>
<th>arterials 7</th>
<th>arterials 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>masks 5</td>
<td>36.82</td>
<td>38.29</td>
<td>43.76</td>
<td>43.31</td>
<td>43.17</td>
<td>41.06</td>
<td>37.81</td>
<td>36.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>masks 4</td>
<td>35.54</td>
<td>36.94</td>
<td>42.50</td>
<td>42.02</td>
<td>42.04</td>
<td>40.25</td>
<td>36.92</td>
<td>35.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>masks 3</td>
<td>36.40</td>
<td>38.10</td>
<td>44.54</td>
<td>43.33</td>
<td>43.17</td>
<td>41.30</td>
<td>38.03</td>
<td>36.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>masks 2</td>
<td>35.54</td>
<td>36.94</td>
<td>42.50</td>
<td>42.02</td>
<td>42.04</td>
<td>40.25</td>
<td>36.92</td>
<td>35.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>masks 1</td>
<td>35.89</td>
<td>38.18</td>
<td>44.42</td>
<td>42.68</td>
<td>42.16</td>
<td>39.19</td>
<td>37.10</td>
<td>35.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Patients

- Period: Sep 11, 2000 to Nov 25, 2000
- Demography
 - 26 males aged 24 – 87 (mean 70) years
 - 19 females aged 33 – 85 (mean 68) years.
- The primary indications
 - claudication (n=23)
 - limb threatening ischemia (n=11)
 - aneurysm (n=7)
 - post-bypass graft (n=3)
 - dissection (n=1).
- Approved by our Institutional Review Board.
Image evaluation

- Blind test by two radiologists (MRP, HE)
 - Auto >> Manual
 - Auto > Manual
 - Auto ≅ Manual
 - Auto < Manual
 - Auto << Manual

- Statistical analysis
 - Paired signed-rank Wilcoxon test
Image Quality Comparison

<table>
<thead>
<tr>
<th></th>
<th>Radiologist 1</th>
<th>Radiologist 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto >> Manual</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Auto > Manual</td>
<td>25</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>Auto ≈ Manual</td>
<td>2</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Auto < Manual</td>
<td>11</td>
<td>17</td>
<td>28</td>
</tr>
<tr>
<td>Auto << Manual</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>p value</td>
<td>0.1533</td>
<td>0.2043</td>
<td>0.9081</td>
</tr>
</tbody>
</table>

Automatic wins

Automatic

Better geniculate arteries

Manual

Auto > Manual (both readers)
Automatic wins

Automatic

Manual

More details of distal arteries but more background veins in the left leg

Auto > Manual (reader 1) and Auto >> Manual (reader 2)
<table>
<thead>
<tr>
<th></th>
<th>Automatic</th>
<th>Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade-off</td>
<td>Reduction in background motion artifacts</td>
<td>More details in distal left leg</td>
</tr>
<tr>
<td></td>
<td>Auto < Manual (both readers)</td>
<td></td>
</tr>
</tbody>
</table>
Trade-off

Automatic

Manual

More details of distal arteries but more background veins in the left leg

Slightly better proximal arteries

Auto < Manual (reader 1) and Auto ≅ Manual (reader 2)
Automatic Selection of Mask and Arterial Phase Images for Temporally-Resolved MR Digital Subtraction Angiography

Trade-off

Automatic

Better distal tibial arteries and the right popliteal artery

Manual

Better detail of the left popliteal artery

Auto > Manual (reader 1) and Auto \(\cong\) Manual (reader 2)
Manual wins

Enhanced bony structure

Auto << Manual (both readers)
Contribution

- Automatic image post-processing technique
 - Simple yet effective
 - Daily use
 - PC version coming soon!

Special thanks to

- Younga Kim: Slide preparation
- All of you
Automatic Selection of Mask and Arterial Phase Images for Temporally-Resolved MR Digital Subtraction Angiography

21 May 2002, ISMRM 2002

Junhwan Kim, Martin R. Prince, Ramin Zabih, Jeff Bezanson, Richard Watts, Hale Erel, Yi Wang

Department of Radiology
Weil Medical College of Cornell University