An Indexing Framework for Peer-to-Peer Systems

Adina Crainiceanu, Prakash Linga, Ashwin Machanavajjhala

Johannes Gehrke, Jayavel Shanmugasundaram
Cornell University
Computer Science Department

adina,linga,mvnak,johannes,jai@cs.cornell.edu

1. INTRODUCTION

Current peer-to-peer (P2P) indices are monolithic pieces
of software that address only a subset of the desired func-
tionality for P2P databases. For instance, Chord [6] provides
reliability and scalability, but only supports equality queries.
Skip Graphs [1] support equality and range queries, but only
for one data item per peer. PePeR [4] supports equality and
range queries over multiple data items per peer, but does
not provide any search or reliability guarantees in face of
multiple failures. Galanis et al. [5] describe an index struc-
ture for locating XML documents, but this index does not
provide any provable guarantees on size and performance.

In a P2P database system, all of the above functionality
is required, but none of the existing systems supports it.
We devise a modularized indexing framework that cleanly
separates different functional components. This allows us to
reuse existing algorithms rather than implement everything
anew and to experiment with different implementations for
the same component so that we can clearly evaluate and
quantify the benefits of a particular implementation. Our
indexing framework has the following components:

1. Fault-tolerant Torus: Provides fault-tolerant connec-

tivity among peers.

2. Data Store: Stores actual data and provides methods

for reliably exchanging data items between peers.

3. Replication Manager: Ensures data items are stored

reliably even in the face of peer failures.

4. Content Router: Allows efficient location of data items.

Based on this modular framework, we will demonstrate P-
Ring, a novel index structure that supports equality and
range queries, is fault-tolerant, gives guaranteed logarith-
mic search performance in a consistent system, and supports
possibly large sets of items per peer. We are not aware of any
other existing index structure that supports all of the above
functionality in a dynamic P2P environment. We will also
demonstrate two existing P2P index structures proposed in
the literature, Skip Graphs and Chord [1, 6], implemented
in the context of our framework. Our demo will illustrate
the tradeoffs between the different index structures.

Permission to make digital or hard copies of all or part of this work for

2. SYSTEM ARCHITECTURE

We now provide a short overview of our indexing frame-
work components shown in Figure 1.

2.1 Fault Tolerant Torus

The primary goal of the Fault Tolerant Torus (FTT) is to
provide reliable connectivity among peers. This is important
in a P2P setting where peer and network failures can occur
at any time. Conceptually, the FTT implements a mapping
of convex regions in a torus of search key values to peers
in the P2P system. We say that a peer is responsible for
the region(s) assigned to it. Regions are selected such that
they are contiguous and non-overlapping, so any point on
the torus is mapped to a single peer. The exact method
of implementing such a mapping depends on the particular
implementation of the FTT.

Example Figure 2 shows an example of a ring (a torus
of dimensionality 1) and a mapping of ranges to peers. Peer
p1 is responsible for the range (5,10], p2 is responsible for
(10,15], ps is responsible for (15,18], ps is responsible for
(18,20], and ps is responsible for (20,5]. As can be seen,
each region of the ring space is mapped to one (and only
one) peer. Now, assume that peer p; fails or leaves the
system. In this case, the FTT needs to reassign the range
(5,10] to another peer. If a peer can be responsible for only
one region of the space (one range), then p2 or ps need to
increase their range by taking over p;’s range.

2.2 Data Store

The Data Store is responsible for distributing the data
items to peers. Ideally, each peer should store about the
same number of items, achieving storage balance. The Data
Store maps each data item to a point in the torus space,
and it stores the item at the peer responsible for the region
containing that point. If a peer stores many more data items
than other peers, the Data Store will re-balance by splitting
the region (and the data items) of the heavily loaded peer
and assigning part of this region (and the corresponding
items) to another peer. Exactly how this splitting is done
depends on the specific instantiation of this component.

Example Looking again at Figure 2, assume that a data
item t; mapped to value 6 is inserted into the system. The
pair (6,t1) will be stored at peer p1 as shown in Figure 3.

personal or classroom use is granted without fee provided that copies are . .
not made or distributed for profit or commercial advantage and that copies 2.3 RGp“C&tIOI’] Manager

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

The FTT component is responsible for ensuring that each
point on the torus is assigned to some peer and the Data
Store component is responsible for actually storing the data

Figure 1: P2P Indexing Frame-

work Peers

items at peers. However, if a peer fails, the data items it
stored will be lost even if another peer takes over the ” failed”
region. The role of the Replication Manager is to ensure that
all the data items inserted into the P2P system are reliably
(under reasonable failure assumptions) stored at some peer
in the system until the items are explicitly deleted.

Example In Figure 3, if peer p: fails, peer ps or ps will
take over the range (5, 10] (as ensured by the Fault Tolerant
Ring component). However, the data item (6,¢1) would be
lost (6 is the index value of data item ¢1). However, by
replicating the data item t1 at another peer in the system,
the data item can be recovered, even if peer p; failed.

2.4 Content Router

The Content Router is responsible for efficiently routing
messages to their destination in the P2P system. This is the
component that supports the index search primitives.

3. INSTANTIATING INDEX STRUCTURES

Chord [6] can be instantiated in our framework as follows.
The FTT is implemented using Chord’s fault-tolerant ring,
and each peer is assigned an ID on the ring using consistent
hashing. The Data Store is implemented using a hash based
scheme that hashes data items to values on the ring, and
assigns the item to the first peer whose ID appears immedi-
ately after the value in the ring. The Replication Manager is
instantiated using the techniques proposed in CFS [3]. The
Content Router is implemented using Chord’s finger tables.

P-Ring [2] is our novel P2P index structure. In devising
the P-Ring, we were able to reuse the fault-tolerant torus of
Chord and its replication mechanism because of our modu-
larization. In addition, P-Ring has a new Data Store that
is capable of partitioning and storing contiguous ranges of
items in the peers, such that each peer is responsible for
approximately the same number of the data items even if
the underlying data distribution is heavily skewed. Unlike
the Chord Data Store, the P-Ring Data Store does not hash
data values, and thereby preserves the data ordering that
is required for range queries. P-Ring also has a new Con-
tent Router that can provide logarithmic search performance
even under highly skewed data distributions.

Skip Graphs [1] are designed to handle range queries.
However, Skip Graphs as proposed can only handle one data
item per peer. Using our modularized framework, we extend
Skip Graphs to support multiple items per peer by reusing
the Data Store from P-Ring. Skip Graphs as proposed fit in
the Content Router component of our architecture.

P2P Indexing Framework P,
Content Router Replication Manager 5
Ps
Data Store
20
Fault Tolerant Torus
Psa 18

Figure 2: Mapping Ranges to

P1

10 10

Ps

P2 P2

20

P3 Pa 18 P3
Figure 3: Mapping Values to

Peers

4. DEMONSTRATION OVERVIEW

We have a running implementation of all three of the
above index structures in a distributed environment using
C++. Our demonstration will be run on up to 5 distributed
computers in the demo room, and each computer will host
up to 10 “virtual peers” (since we wish to show up to a total
of 50 peers). We will provide a visualization window that
will allow users to see the current state of the components
of the different virtual peers and to issue search queries.

We propose to show the following aspects in the demo.

e Search queries: Users can issue search queries to dis-
tributed peers, and visualize the results on the visual-
ization window. The searches can be equality and/or
range queries, depending on the index structure.

e Monitor system: Users can use the visualization win-
dow to see the current status of the various compo-
nents of the system.

e Introduce failures: Users can choose to kill arbitrary
peers in the system; a visualization on each peer shows
how the system recovers from the failure.

e Add peers to the system: Users can choose to add
peers to the system, and a visualization at each peer
shows how the index structure incorporates the new
peer.

e Quantify component costs: Users will be presented
with statistics in terms of message overhead for the
various system components. This will quantitatively
illustrate the costs of the different components.

e Compare index structures: Since all index structures
will be running concurrently in a similar environment,
users can monitor the overheads of the different in-
dex structures, broken down by each component. This
will help illustrate the benefits of the different index
structures under stable conditions and during failures.

o

REFERENCES

J. Aspnes and G. Shah. Skip graphs. In SODA, 2003.
A. Crainiceanu et al. An indexing framework for
peer-to-peer systems. Submitted for publication, 2004.
F. Dabek et al. Wide-area cooperative storage with
CFS. In SOSP, 2001.

A. Daskos et al. Peper: A distributed range addressing
space for p2p systems. In DBISP2P, 2003.

L. Galanis et al. Locating data sources in large
distributed systems. In VLDB, 2003.

I. Stoica et al. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM, 2001.

