
Guaranteeing Correctness and Availability in
P2P Range Indices

Prakash Linga, Adina Crainiceanu, Johannes Gehrke, Jayavel Shanmugasudaram
Cornell University
Ithaca, New York

{linga, adina, johannes, jai}@cs.cornell.edu

ABSTRACT
New and emerging P2P applications require sophisticated range
query capability and also have strict requirements on query correct-
ness, system availability and item availability. While there has been
recent work on developing new P2P range indices, none of these
indices guarantee correctness and availability. In this paper, we de-
velop new techniques that can provably guarantee the correctness
and availability of P2P range indices. We develop our techniques
in the context of a general P2P indexing framework that can be in-
stantiated with most P2P index structures from the literature. As a
specific instantiation, we implement P-Ring, an existing P2P range
index, and show how it can be extended to guarantee correctness
and availability. We also quantitatively evaluate our techniques us-
ing a real distributed implementation.

1. INTRODUCTION
Peer-to-peer (P2P) systems have emerged as a promising para-

digm for structuring large-scale distributed systems. The main ad-
vantages of P2P systems are scalability, fault-tolerance, and ability
to reorganize in the face of dynamic changes to the system. A key
component of a P2P system is a P2P index. A P2P index allows
applications to store (value, item) pairs, and to search for relevant
items by specifying a predicate on the value. Different applications
have different requirements for a P2P index. We can characterize
the index requirements of most P2P applications along the follow-
ing three axes:

• Expressiveness of predicates: whether simple equality pred-
icates suffice in a P2P index, or whether more complex pred-
icates such as range predicates are required.

• Query correctness: whether it is crucial that the P2P index
return all and only the data items that satisfy the predicate.

• System and Item Availability: whether it is crucial that the
availability of the P2P index and the items stored in the index,
are not reduced due to the reorganization of peers.

For example, simple file sharing applications only require sup-
port for equality predicates (to lookup a file by name), and do
not have strict correctness and availability requirements (it is not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD2005 June 14-16, 2005, Baltimore, Maryland, USA
Copyright 2005 ACM 1-59593-060-4/05/06 ...$5.00.

catastrophic if a search occasionally misses a file, or if files are oc-
casionally lost). Internet storage applications require only simple
equality predicates, but have strict requirements on correctness and
availability (so that data is not missed or lost). Digital library appli-
cations require complex search predicates such as range predicates
(to search for articles within a date range), but do not have strict
correctness and availability requirements. The most demanding
applications are transaction processing and military applications,
which require both complex range predicates (to search for objects
within a region) and strong correctness/availability guarantees.

As an example, consider the Joint Battlespace Infosphere
(JBI)[17], a military application that has high scalability and fault-
tolerance requirements. One of the potential uses of the JBI is to
track information objects, which could include objects in the field
such as enemy vehicles. A natural way to achieve the desired scal-
ability and fault-tolerance is to store such objects as (value,item)
pairs in a P2P index, where the value could represent the geo-
graphic location of the object (in terms of its latitude and longi-
tude), and the item could be a description of that object. Clearly,
the JBI requires support for range queries in order to find objects
in a certain region. The JBI also requires strong correctness guar-
antees (so that objects are not missed by a query) and availability
guarantees (so that stored objects are not lost).

Current P2P indices, however, do not satisfy the above applica-
tion needs: while there has been some work on devising P2P in-
dices that can handle expressive range predicates [1, 2, 5, 6, 10, 12,
14, 15, 31], there has been little or no work on guaranteeing cor-
rectness and availability in such indices. Specifically, we are not
aware of any P2P range index thatguaranteesthat a query will not
miss items relevant to a query. In fact, we shall later show scenar-
ios whereby range indices [5, 6, 12] that are based on the Chord
ring [32] (originally devised for equality queries) can miss query
results for range queries, even when the index is operational. Simi-
larly, we are not aware of any range index that can provide provable
guarantees on system and item availability.

In this paper, we devise techniques that can provably guaran-
tee query correctness, system availability and item availability in
P2P range indices. At a high level, there are two approaches for
guaranteeing correctness and availability. The first approach is to
simply let the application handle the correctness and availability
issues – this, for instance, is the approach taken by CFS [9] and
PAST [30], which are applications built on top of the P2P equal-
ity indices Chord [32] and Pastry [29], respectively. However, this
approach does not work in general for range indices because the ap-
plication does not (and should not!) have control over various con-
current operations in a P2P range index, including index reorgani-
zation and peer failures. Moreover, this approach exposes low-level
concurrency details to applications and is also very error-prone due

to subtle concurrent interactions between system components.
We thus take the alternative approach of developing new correct-

ness and availability primitives that can be directly implemented in
a P2P index. Specifically, we build upon the P2P indexing frame-
work proposed by Crainiceanu et al. [7], and embed novel tech-
niques for ensuring correctness and availability directly into this
framework. The benefits of this approach are that it abstracts away
the dynamics of the underlying P2P system and provides appli-
cations with a consistent interface with provable correctness and
availability guarantees. To the best of our knowledge, this is the
first attempt to address these issues for both equality and range
queries in a P2P index.

One of the benefits of implementing our primitives in the con-
text of a P2P indexing framework is that our techniques are not just
applicable to one specific P2P index, but are applicable to all P2P
indices that can be instantiated in the framework, including [5, 6,
12]. As a specific instantiation, we implement P-Ring [6], a P2P in-
dex that supports both equality and range queries, and show how it
can be extended to provide correctness and availability guarantees.
We also quantitatively demonstrate the feasibility of our proposed
techniques using a real distributed implementation of P-Ring.

The rest of the paper is organized as follows. In Section 2, we
present some background material, and in Section 3, we outline
our correctness and availability goals. In section 4 we present tech-
niques for guaranteeing query correctness, and in Section 5, we
outline techniques for guaranteeing system and item availability.
In Section 6, we present our experimental results. In Section 7, we
discuss related work, and we conclude in Section 8.

2. BACKGROUND
In this section, we first introduce our system model and the no-

tion of a history of operations, which are used later in the pa-
per. We then briefly review the indexing framework proposed by
Crainiceanu et al.[7], and give an example instantiation of this frame-
work for completeness. We use this instantiation in the rest of the
paper to discuss problems with existing approaches and to illus-
trate our newly proposed techniques. We use the framework since
it presents a clean way to abstract out different components of a
P2P index, and it allows us to confine concurrency and consistency
problems to individual components of the framework.

2.1 System Model
A peeris a processor with shared storage space and private stor-

age space. The shared space is used to store the distributed data
structure for speeding up the evaluation of user queries. We as-
sume that each peer can be identified by a physical id (for example,
its IP address). We also assume a fail-stop model for peer failures.
A P2P systemis a collection of peers. We assume there is some
underlying network protocol that can be used to send messages re-
liably from one peer to another with known bounded delay. A peer
can join a P2P system by contacting some peer that is already part
of the system. A peer can leave the system at any time without
contacting any other peer.

We assume that each (data) item stored in a peer exposes asearch
key valuefrom a totally ordered domainK that is indexed by the
system. The search key value for an itemi is denoted byi.skv.
Without loss of generality, we assume that search key values are
unique (duplicate values can be made unique by appending the
physical id of the peer where the value originates and a version
number; this transformation is transparent to users). Peers insert-
ing items into the system can retain ownership of their items. In
this case, the items are stored in the private storage partition of the
peer, and only pointers to the items are inserted into the system.

P2P Index findItems(predicate)
insertItem(item)
deleteItem(item)

Content Router

sendReceive(msg, predicate)

Replication Manager

Data Store insertItems(itemsList)
deleteItems(itemsList)
getLocalItems()

Fault Tolerant Ring getSucc()
insertSucc(peer)
leave()

Figure 1. Indexing Framework

In the rest of the paper we make no distinction between items and
pointers to items.

The queries we consider are range queries of the form[lb, ub],
(lb, ub], [lb, ub) or (lb, ub) wherelb, ub ∈ K. Queries can be is-
sued at any peer in the system.

To specify and reason about the correctness and availability guar-
antees, we use the notion of ahistoryof operations [4, 25].
Definition 1 (History H): HistoryH is a pair(O,≤) whereO is
a set of operations and≤ is a partial order defined on these opera-
tions.

Conceptually, the partial order≤ defines ahappened beforere-
lationship among operations. Ifop1, op2 ∈ O are two different
operations in historyH, andop1 ≤ op2, then intuitively,op1 fin-
ished beforeop2 started, i.e.,op1 happened beforeop2. If op1 and
op2 are not related by the partial order, thenop1 andop2 could have
been executed in parallel.

To present our results we also need the notion of atruncated his-
tory which is a history that only contains operations that happened
before a certain operation.
Definition 2 (Truncated History Ho): Given a historyH =
(OH,≤H) and an operationo ∈ OH, Ho = (OHo ,≤Ho) is a
truncated historyif OHo = {o′ ∈ OH|o′ ≤H o} and∀o1, o2 ∈
OHo (o1 ≤H o2 ⇒ o1 ≤Ho o2).

2.2 The P2P Indexing Framework From [7]
A P2P index needs to reliably support the following operations:

search, item insertion, item deletion, peers joining, and peers leav-
ing the system. We now briefly survey the modularized indexing
framework from [7], which is designed to capture most structured
P2P indices. Figure 1 shows the components of the framework,
and their APIs. The framework does not specifyimplementations
for these components but only specifiesfunctional requirements.

Fault Tolerant Torus. The Fault Tolerant Torus connects the peers
in the system on a torus, and provides reliable connectivity among
these peers even in the face of peer failures. For the purposes of
this paper, we focus on a Fault Tolerant Ring (a one-dimensional
torus). On a ring, for a peerp, we can define thesuccessorsucc(p)
(respectively,predecessorpred(p)) to be the peer adjacent top in a
clockwise (resp., counter-clockwise) traversal of the ring. Figure 2
shows an example of a Fault Tolerant Ring. If peerp1 fails, then the
ring will reorganize such thatsucc(p5) = p2, so the peers remain
connected. In addition to maintaining successors, each peerp in
the ring is associated with a value,p.val, from a totally ordered
domainPV . This value determines the position of a peer in the
ring, and it increases clockwise around the ring (wrapping around

p1

p2
p4

p5 (5) (10)

(20)
(15)

p1

p2
p4

p5 (5)

(15)

(10)

(20)

6, 8

25

11

16, 19

Figure 2. Ring Figure 3. Data Store

at the highest value). The values of the peers in Figure 2 are shown
in paranthesis. The value of a peer is introduced only for ease of
exposition and is not required in the formal definition of a ring.

Figure 1 shows the Fault Tolerant Ring API. When invoked on a
peerp, p.getSucc returns the address ofsucc(p).
p.insertSucc (p′) makesp′ the successor ofp. p.leave allows
p to gracefully leave the ring (of course,p can leave the ring with-
out making this call due to a failure). The ring also exposes events
that can be caught at higher layers, such as successor changes (not
shown in the figure). An API method need not return right away
because of locks and other concurrency issues. Each of the API
methods is therefore associated with a start and an end operation.
For example,initLeave(p) is the operation associated with the in-
vocation of the API methodp.leave() andleave(p) is the oper-
ation used to signal the end of this API method. All the operations
associated with the initiation and completion of the API methods,
as well as the operations associated with the events raised by the
ring form a history called anAPI Ring history. The details can be
found in [22].

Data Store.The Data Store is responsible for distributing and stor-
ing items at peers. The Data Store has a mapM that maps the
search key valuei.skv of each itemi to a value in the domainPV
(the domain of peer values). An itemi is stored in a peerp such
thatM(i.skv) ∈ (pred(p).val, p.val]. In other words, each peer
p is responsible for storing data items mapped to a value between
pred(p).val andp.val. We refer to the range(pred(p).val, p.val]
asp.range. We denote the items stored at peerp asp.items.

Figure 3 shows an example Data Store that maps some search
key values to peers on the ring. For example, peerp4 is respon-
sible for search key values16 and19. One of the main responsi-
bilities of the Data Store is to ensure that the data distribution is
uniform so that each peer stores about the same number of items.
Different P2P indices have different implementations for the Data
Store (e.g., based on hashing [32], splitting, merging and/or redis-
tributing [6, 12]) for achieving this storage balance. As shown in
Figure 1, the Data Store provides API methods to insert items into
and delete items from the system. It also provides the API method
p.getLocalItems() to get the items stored locally in peerp’s
Data Store.

As with the API Ring History, we can define theAPI Data Store
history using the operations associated with the Data Store API
methods. Given an API Data Store HistoryH and a peerp, we
userangeH(p) to denotep.range inH anditemsH(p) to denote
p.items inH.

Replication Manager. The Replication Manager is responsible for
reliably storing items in the system even in the presence of fail-
ures, until items are explicitly deleted. As an example, in Fig-
ure 5, peerp1 stores itemsi1 and i2 such thatM(i1.skv) = 8
andM(i2.skv) = 9. If p1 fails, these items would be lost even
though the ring would reconnect after the failure. The goal of the
replication manager is to handle such failures for example by repli-
cating items so that they can be ”revived” even if peers fail.

Content Router. The Content Router is responsible for efficiently

p1

p2
p4

p5

p2 p4

p4
p5

p5
p1

p1
p2

(5)

(15)

(10)

(20)

p1

p2

p3

p4

p5

p2 p3

p3
p4

p4
p5

p5
p6

p6
p1

(5)

(15)

(10)

(18)

(20)

8, 9

25

16, 18

11

19

Figure 4. Chord Ring Figure 5. P-Ring Data Store

routing messages to relevant peers in the P2P system. As shown in
the API (see Figure 1), the relevant peers are specified by a content-
based predicate on search key values, and not by the physical peer
ids. This abstracts away the details of storage and index reorgani-
zation from higher level applications.

P2P Index. The P2P Index is the index exposed to the end user.
It supports search functionality by using the functionality of the
Content Router, and supports item insertion and deletion by using
the functionality of the Data Store. As with the API Ring History
and API Data Store History, we can define theAPI Index History
using the operations associated with the Index API methods.

2.3 An Example Instantiation
We now discuss the instantiation of the above framework using

P-Ring [6], an index structure designed for range queries in P2P
systems. P-Ring uses the Fault Tolerant Ring of Chord and the
Replication Manager of CFS, and only devises a new Data Store
and a Content Router for handling data skew. While the full details
of P-Ring are presented in [6], we concentrate only on features of
P-Ring that are common to many P2P range query index structures
from the literature [5, 6, 12]: splitting, merging, and redistributing
in order to balance the number of items at each peer. We would
like to emphasize that while we use P-Ring as a running example
to illustrate query correctness, concurrency, and availability issues
in subsequent sections, our discussion also applies to other P2P
range indices proposed in the literature.

Fault Tolerant Ring. P-Ring uses the Chord Ring to maintain
connectivity among peers [32]. The Chord Ring achieves fault-
tolerance by storing alist of successors at each peer, instead of
storing just a single successor. Thus, even if the successor of a
peerp fails, p can use its successor list to identify other peers to re-
connect the ring and to maintain connectivity. Figure 4 shows an
example Chord Ring in which successor lists are of length 2 (i.e.,
each peerp storessucc(p) and succ(succ(p)) in its successor
list). The successor lists are shown in the boxes next to the associ-
ated peers. Chord also provides a way to maintain these successor
lists in the presence of failures by periodicallystabilizinga peerp
with its first live successor in the successor list. P-Ring also uses
Chord to maintain connectivity.

Data Store. Ideally, we would like data items to be uniformly dis-
tributed among peers so that the storage load of each peer is about
the same. Most existing P2P indices achieve this goal byhashing
the search key value of an item, and assigning the item to a peer
based on this hashed value. Such an assignment is, with high prob-
ability, very close to a uniform distribution of entries [28, 29, 32].
However, hashing destroys the value ordering among the search
key values, and thus cannot be used to process range queries ef-
ficiently (for the same reason that hash indices cannot be used to
handle range queries efficiently).

To solve this problem, range indices assign data items to peers

p1

p2

p3

p4

p2 p3

p3
p4

p4
p5

p1
p2

(5) (15)

(10)

(18)

6, 8

25

16, 18

11

p1

p2

p3

p4

p5

p2 p3

p3
p4

p4
p5

p5
p1

p1
p2

(5)

(15)

(10)

(18)

(20)

6, 8

25

16, 18

19

16, 18

6, 8

11

19

25

11

Figure 6. Data Store Merge Figure 7. CFS Replication

directly based on their search key value (i.e., the mapM is order-
preserving, in the simplest case it is the identity function). In this
case, the ordering of peer values is the same as the ordering of
search key values, and range queries can be answered by scanning
along the ring. The problem is that now, even in a stable P2P sys-
tem with no peers joining or leaving, some peers might become
overloaded or underloaded due to skewed item insertions and/or
deletions. There is a need for a way to dynamically reassign and
maintain the ranges associated to the peers. Range indices achieve
this goal bysplitting , merging andredistributing for
handling item overflows and underflows in peers. Let us give an
example in the context of P-Ring.

The P-Ring Data Store has two types of peers:live peers andfree
peers. Live peers can be part of the ring and store data items, while
free peers are maintained separately in the system and do not store
any data items.1 The Data Store ensures that the number of items
stored in each live peer is betweensf and2 · sf, wheresf is some
storage factor, in order to balance storage between peers.

Whenever the number of items in a peerp’s Data Store becomes
larger than2 · sf (due to many insertions intop.range), it is said
that anoverflowoccurred. In this case,p tries tosplit its assigned
range (and implicitly its items) with a free peer, and to give a frac-
tion of its items to the new peer. Whenever the number of entries
in p’s Data Store becomes smaller thansf (due to deletions from
p.range), it is said that anunderflowoccurred. In this case,p tries
to mergewith its successor in the ring to obtain more entries. In this
case, the successor eitherredistributesits items withp, or gives up
its entire range top and becomes a free peer.

As an illustration of a split, consider the Data Store shown in
Figure 3. Assume thatsf is 1, so each peer can have 1 or 2 entries.
Now, when an itemi such thati.skv = 18 is inserted into the sys-
tem, it will be stored inp4, leading to an overflow. Thus,p4.range
will be split with a free peer, andp4’s items will be redistributed
accordingly. Figure 5 shows the Data Store after the split, where
p4 split with the free peerp3, andp3 takes over part of the itemsp4

was originally responsible for (the successor pointers in the Chord
Ring are also shown in the figure for completeness). As an illustra-
tion of merge, consider again Figure 5 and assume that itemi with
t.skv = 19 is deleted from the system. In this case, there is an un-
derflow atp4, andp4 merges with its successor,p5 and takes over
all of p5’s items;p5 in turn becomes a free peer. Figure 6 shows
the resulting system.

Replication Manager. P-Ring uses CFS Replication which works
as follows. Consider an itemi stored in the Data Store at peerp.
The Replication Manager replicatesi to k successors ofp. In this

1In the actual P-Ring Data Store, free peers also store data items
temporarily for some live peers. The ratio of the number of items
between any two peers can be bounded, but these details are not
relevant in the current context.

way, even ifp fails, i can be recovered from one of the successors of
p. Larger values ofk offer better fault-tolerance but have additional
overhead. Figure 7 shows a system in which items are replicated
with a value ofk = 1 (the replicated values are shown in the top
most box next to the peer).

Content Router. The P-Ring Content Router is based on idea of
constructing a hierarchy of rings that can index skewed data distri-
butions. The details of the content router are not relevant here.

3. GOALS
We now turn to the main focus of this paper: guaranteeing cor-

rectness and availability in P2P range indices. At a high level, our
techniques enforce the following design goals.

• Query Correctness:A query issued to the index should re-
turn all and only those items in the index that satisfy the
query predicate.

• System Availability: The availability of the index should
not be reduced due to index maintenance operations (such as
splits, merges, and redistributions).

• Item Availability: The availability of items in the index
should not be reduced due to index maintenance operations
(such as splits, merges, and redistributions).

While the above requirements are simple and natural, it is sur-
prisingly hard to satisfy them in a P2P system. Thus, one approach
is to simply leave these issues to higher level applications – this
is the approach taken by CFS [9] and PAST [30], which are ap-
plications built on top of Chord [32] and Pastry [29], respectively,
two index structures designed for equality queries. The downside
of this approach is that it becomes quite complicated for appli-
cation developers because they have to understand the details of
how lower layers are implemented, such as how ring stabilization
is done. Further, this approach is also error-prone because complex
concurrent interactions between the different layers (which we il-
lustrate in Section 4) make it difficult to devise a system that pro-
duces consistent query results. Finally, even if application develop-
ers are willing to take responsibility for the above properties, there
are no known techniques for ensuring the above requirements for
P2P range indices.

In contrast, the approach we take is to cleanly encapsulate the
concurrency and consistency aspects in the different layers of the
system. Specifically, we embed consistency primitives in the Fault
Tolerant Ring and the Data Store, and provide handles to these
primitives for the higher layers. With this encapsulation, higher
layers and applications can simply use these APIs without having to
explicitly deal with low-level concurrency issues or knowing how
lower layers are implemented, while still being guaranteed query
consistency and availability for range queries.

Our proposed techniques differ from distributed database tech-
niques [20] in terms of scale (hundreds to thousands of peers, as
opposed to a few distributed database sites), failures (peers can fail
at any time, which implies that blocking concurrency protocols can-
not be used), and perhaps most importantly, dynamics (due to un-
predictable peer insertions and deletions, the location of the items
is not known a priori and can changeduringquery processing).

In the subsequent two sections, we describe our solutions to
query correctness and system and item availability.

4. QUERY CORRECTNESS
We focus on query consistency for range queries (note that equal-

ity queries are a special case of range queries). We first formally
define what we mean by query correctness in the context of the

indexing framework. We then illustrate scenarios where query cor-
rectness can be violated if we directly use existing techniques. Fi-
nally, we present our solutions to these problems. Detailed defini-
tions and proofs for all theorems stated in this section can be found
in [22].

4.1 Defining Correct Query Results
Intuitively, a system returns a correct result for a queryQ if and

only if the result contains all and only those items in the system that
satisfy the query predicate. Translating this intuition into a formal
statement in a P2P system requires us to define which items are
“in the system”; this is more complex than in a centralized system
because peers can fail, can join, and items can move between peers
during the duration of a query. We start by defining an indexP
as a set of peersP = {p1, . . . , pn}, where each peer is structured
according to the framework described in Section 2.2. To capture
what it means for an item to be in the system, we now introduce the
notion of alive item.

Definition 3 (Live Item): An item i is live in API Data Store His-
toryH, denoted byliveH(i), iff ∃p ∈ P (i ∈ itemsH(p)).

In other words, an itemi is live in API Data Store HistoryH
iff the peer with the appropriate range containsi in its Data Store.
Given the notion of a live item, we can define a correct query result
as follows. We usesatisfiesQ(i) to denote whether itemi satisfies
queryQ’s query predicate.

Definition 4 (Correct Query Result): Given an API Data Store
HistoryH = (OH,≤H), a setR of items is acorrect query result
for a queryQ initiated with operationos and successfully com-
pleted with operationoe iff the following two conditions hold:

1. ∀i ∈ R (satisfiesQ(i) ∧ ∃o ∈ OH (os ≤H o ≤H oe ∧
liveHo(i)))

2. ∀i (satisfiesQ(i) ∧ ∀o ∈ OH(os ≤H o ≤H oe ∧
liveHo(i) ⇒ i ∈ R)).

The first condition states that only items that satisfy the query
predicate and which were live at some time during the query eval-
uation should be in the query result. The second condition states
that all items that satisfy the query predicate and which were live
throughout the query execution must be in the query result.

4.2 Incorrect Query Results: Scenarios
Existing index structures for range queries evaluate a range query

in two steps: (a) finding the peer responsible for left end of the
query range, and (b) scanning along the ring to retrieve the items in
the range. The first step is achieved using an appropriate Content
Router, such as SkipGraphs [2] or the P-Ring [6] Content Router,
and the related concurrency issues have been described and solved
elsewhere in the literature [2, 6]. We thus focus on the second step
(scanning along the ring) and show how existing techniques can
produce incorrect results.

Scanning along the ring can produce incorrect query results due
to two reasons. First, the ring itself can be temporarily inconsistent,
thereby skipping over some live items. Second, even if the ring
is consistent, concurrency issues in the Data Store can sometimes
result in incorrect results. We now illustrate both of these cases
using examples.

4.2.1 Inconsistent Ring
Consider the Ring and Data Store shown in Figure 5. Assume

that itemi with M(i.skv) = 6 is inserted into the system. Since
p1.range = (5, 10], i will be stored inp1’s Data Store. Now
assume thatp1’s Data Store overflows due to this insertion, and

hencep1 splits with a new peerp and transfers some of its items to
p. The new state of the Ring and Data Store is shown in Figure 8.
At this point, p.range = (5, 6] andp1.range = (6, 10]. Also,
while p5’s successor list is updated to reflect the presence ofp,
the successor list ofp4 is not yet updated because the Chord ring
stabilization proceeds in rounds, andp4 will only find out aboutp
when it next stabilizes with its successor (p5) in the ring.

Now assume thatp5 fails. Due to the Replication Manager,p
takes over the range(20, 6] and adds the data itemi such that
M(i.skv) = 25 into its Data Store. The state of the system at this
time is now shown in Figure 9. Now assume that a searchQ origi-
nates atp4 for the range(20, 9]. Sincep4.val is the lower bound of
the query range,p4 tries to forward the message to the first peer in
its successor list (p5), and on detecting that it has failed, forwards
it to the next peer in its successor list (p1). p1 returns the items
in the range(6, 10], but the items in the range(20, 6] are missed!
(Even though all items in this range are live – they are inp’s Data
Store.) This problem arises because the successor pointers forp4

are temporarily inconsistent during the insertion ofp (they point to
p1 instead ofp). Eventually, of course, the ring will stabilize and
p4 will point to p as its successor, butbeforethis ring stabilization,
query results can be missed.

At this point, the reader might be wondering whether a simple
“fix” might address the above problem. Specifically, what ifp1

simply rejects the search request fromp4 (sincep4 is notp1’s pre-
decessor) until the ring stabilizes? The problem with this approach
is thatp1 does not know whetherp has also failed, in which case
p4 is indeedp1’s predecessor, and it should accept the message.
Again, the basic problem is that a peer does not have precise in-
formation about other peers in the system (due to the dynamics of
the P2P system), and hence potential inconsistencies can occur. We
note that the scenario outlined in Figure 9 is just one example of in-
consistencies that can occur in the ring – rings with longer succes-
sor lists can have other, more subtle, inconsistencies (for instance,
whenp is not the direct predecessor ofp1).

4.2.2 Concurrency in the Data Store
We now show how concurrency issues in the Data Store can pro-

duce incorrect query results,even if the ring is fully consistent. We
illustrate the problem in the context of a Data Store redistribute
operation; similar problems arise for Data Store splits and merges.

Consider again the system in Figure 5 and assume that a query
Q with query range(10, 18] is issued atp2. Since the lower bound
of p2.range is the same as the lower bound of the query range,
the sequential scan for the query range starts atp2. The sequen-
tial scan operation first gets the data items inp2’s Data Store, and
then gets the successor ofp2 in the ring, which isp3. Now assume
that the itemi with M(i.skv) = 11 is deleted from the index.
This causesp2 to become underfull (since it has no items left in its
Data Store), and it hence redistributes with its successorp3. Af-
ter the redistribution,p2 becomes responsible for the itemi1 with
M(i1.skv) = 16, andp3 is no longer responsible for this item.
The current state of the index is shown in Figure 10.

Now assume that the sequential scan of the query resumes, and
the scan operation propagates the scan top3 (the successor ofp2).
However, the scan operation will miss itemi1 with M(i1.skv) =
16, even thoughi1 satisfies the query range and was live throughout
the execution of the query! This problem arises because of the
concurrency issues in the Data Store – the range thatp2’s Data
Store was responsible for changed whilep2 was processing a query.
Consequently, some query results were missed.

p1

p2

p3

p4

p5

p2 p3

p3
p4

p4
p5

p5
p1

(5)

(15)

(10)

(18)

(20)

8, 9

16, 18

11

19

p
p1 p2

6

(6)p p1

25

p1

p2

p3

p4

p2 p3

p3
p4

p4
p5

(5)

(15)

(10)

(18)

(20)

8, 9

16, 18

11

19

p
p1 p2

6, 25

(6)

p5

Search misses
items with
peer p

p5
p1

p1

p2

p3

p4

p5

p2 p3

p3
p4

p4
p5

p5
p6

p6
p1

(5)

(16)

(10)

(18)

(20)

8, 9

25

18

16

19

Figure 8. Peer p just inserted into the
system

Figure 9. Incorrect query results:
Search Q originating at peer p4

misses items in p

Figure 10. System after peer p2

redistributes with peer p3

4.3 Ensuring Correct Query Results
We now present solutions that avoid the above scenarios and

provably guarantee that the sequential scan along the ring for range
queries will produce correct query results. The attractive feature of
our solution is that these enhancements are confined to the Ring and
Data Store components of the architecture, and higher layers (both
applications on top of the P2P system and other components of the
P2P system itself) can be guaranteed correctness by accessing the
components through the appropriate API. We first present a solu-
tion that addresses ring inconsistency, and then present a solution
that addresses Data Store concurrency issues.

4.3.1 Handling Ring Inconsistency
As illustrated in Section 4.2.1, query results can be incorrect if a

peer’s successor list pointers are temporarily inconsistent (we shall
formally define the notion of consistency soon). Perhaps the sim-
plest way to solve this problem is to explicitly avoid this inconsis-
tency by atomically updating the successor pointers of every rele-
vant peer during each peer insertion. For instance, in the example
in Section 4.2.1, we could have avoided the inconsistency ifp5’s
and p4’s successor pointers had been atomically updated during
p’s insertion. Unfortunately, this is not a viable solution in a P2P
system because there is no easy way to determine the peers whose
successor lists will be affected by an insertion since other peers can
concurrently enter, leave or fail, and any cached information can
become outdated.

To address this problem, we introduce a new method for im-
plementinginsertSucc (Figure 1) that ensures that successor
pointers are always consistent even in the face of concurrent peer
insertions and failures (peer deletions are considered in the next
section). Our technique works asynchronously and does not require
any up-to-date cached information or global co-ordination among
peers. The main idea is as follows. Each peer in the ring can be in
one of two states:JOINING or JOINED. When a peer is initially
inserted into the system, it is in theJOINING state. Pointers to
peers in theJOINING state need not be consistent. However, each
JOINING peer transitions to theJOINED state in some bounded
time. We ensure that the successor pointers to/fromJOINED peers
are always consistent. The intuition behind our solution is that a
peerp remains in theJOINING state until all relevant peers know
aboutp – it then transitions to theJOINED state. Higher layers,
such as the Data Store, only store items in peers in theJOINED
state, and hence avoid inconsistencies.

We now formally define the notion of consistent successor point-
ers. We then present our distributed, asynchronous algorithm for

insertSucc that satisfies this property forJOINED peers.

4.3.1.1 Defining Consistent Successor Pointers

We first introduce some notation. LetH be a given API Ring
History. This history induces a ring, denoted byRH. Let PH be
the set of live peers inJOINED state in the ring.p.succListH is
the successor list of peerp inH. p.succListH.length is the length
(number of pointers) ofp.succListH, andp.succListH[i] (0 ≤
i < p.succListH.length) refers to thei’th pointer in succList.
We definep.trimListH as thetrimmedcopy ofp.succListH with
only pointers corresponding to live peers inJOINED state inRH.

Definition 5 (Consistent Successor Pointers):Given an API Ring
History H, the ringRH induced byH hasconsistent successor
pointersiff the following condition holds:

• ∀p ∈ PH (∀i (0 ≤ i < p.trimListH.length ⇒
succH(p.trimListH[i]) = p.trimListH[i + 1]) ∧
succH(p) = p.trimListH[0]).

The above definition says that there are no peers in the ring be-
tween consecutive entries ofp.trimList i.e. p cannot have “miss-
ing” pointers to peers in the setPH. In our example in Figure 8,
the successor pointers are not consistent with respect to the set of
all peers in the system becausep4 has a pointer top5 but not top.

4.3.1.2 Proposed Algorithm

We first present the intuition behind our insert algorithm. As-
sume that a peerp′ is to be inserted as the successor of a peerp.
Initially, p′ will be in theJOINING state. Eventually, we wantp′

to transition to theJOINED state, without violating the consistency
of successor pointers. According to the definition of consistent
successor pointers, the only way in which convertingp′ from the
JOINING state to theJOINED state can violate consistency is if
there existJOINED peerspx andpy such that:px.succList[i] = p
andpx.succList[i + k] = py (for somek > 1) and for allj, 0 <
j < k, px.succList[i + j] 6= p′. In other words,px has pointers
to p andpy but not top′ whose value occurs betweenp.val and
py.val.

Our algorithm avoids this case by ensuring that at the timep′

changes from theJOINING state to theJOINED state, ifpx has
pointers top andpy (wherepy ’s pointer occurs afterp’s pointer),
then it also has a pointer top′. It ensures this property by propa-
gating the pointer top′ to all of p’s predecessors until it reaches the
predecessor whose last pointer in the successor list isp (which thus
does not have apy that can violate the condition). At this point,
it transitionsp′ from theJOINING to theJOINED state. Propa-
gation ofp′ pointer is piggybacked on the Chord ring stabilization
protocol, and hence does not introduce new messages.

Algorithm 1 : p1.insertSucc(Peer p)

1: // Insertp into lists as aJOINING peer
2: writeLocksuccList, stateList
3: succList.push front(p)
4: stateList.push front(JOINING)
5: releaseLockstateList, succList
6: // Wait for successful insert ack
7: wait for JOIN ack; on ack do:
8: // Notify p of successful insertion and update lists
9: writeLocksuccList, stateList

10: Send a message top indicating it is nowJOINED
11: stateList.update front(JOINED)
12: succList.pop back(), stateList.pop back()
13: releaseLockstateList, succList

Algorithm 2 : Ring Stabilization

1: // Update lists based on successor’s lists
2: readLocksuccList, stateList
3: getsuccList/stateList from first non-failedps in succList
4: upgradeWriteLocksuccList, stateList
5: succList = ps.succList; stateList = ps.stateList
6: succList.push front(ps)
7: stateList.push front(JOINED)
8: succList.pop back(), stateList.pop back()
9: // HandleJOINING peers

10: listLen =succList.length
11: if stateList[listLen− 1] == JOINING then
12: succList.pop back(); stateList.pop back()
13: else ifstateList[listLen− 2] == JOINING then
14: Send an ack tosuccList[listLen− 3]
15: end if
16: releaseLockstateList, succList

Algorithms 1 and 2 show the pseudocode for theinsertSucc
method and the modified ring stabilization protocol, respectively.
In the algorithms, we assume that in addition tosuccList, each
peer has a list calledstateList which stores the state (JOINING or
JOINED) of the corresponding peer insuccList. We walk through
the algorithms using an example.

Consider again the example in Figure 5, wherep is to be added
as a successor ofp5. The insertSucc method is invoked onp5

with a pointer top as the parameter. The method first acquires a
write lock onsuccList andstateList, insertsp as the first pointer
in p5.succList (thereby increasing its length by one), and inserts a
corresponding new entry intop5.stateList with valueJOINING
(lines2 − 4 in Algorithm 1). The method then releases the locks
on succList and stateList (line 5) and blocks waiting for an
acknowledgment from some predecessor peer indicating that it is
safe to transitionp from theJOINING state to theJOINED state
(line 7). The current state of the system is shown in Figure 11
(JOINING list entries are marked with a “*”).

Now assume that a ring stabilization occurs atp4. p4 will first
acquire a read lock on itssuccList andstateList, contact the first
non-failed entry in its successor list,p5, to getp5’s succList and
stateList (lines2 − 3 in Algorithm 2). p4 then acquires a write
lock on itssuccList andstateList, and copies over thesuccList
andstateList it obtained fromp5 (lines4− 5). p4 then insertsp5

as the first entry insuccList (increasing its length by1) and also
inserts the corresponding state instateList (the state will always
beJOINED becauseJOINING nodes do not respond to ring stabi-
lization requests).p4 then removes the last entries insuccList and
stateList (lines6−8) to ensure that its lists are of the same length
asp5’s lists. The current state of the system is shown in Figure 12.

p1

p2

p3

p4

p5

p2 p3

p3
p4

p4
p5

p5

(5)

(15)

(10)

(18)
(20)

p

p*

p1

p1
p2

p1

p2

p3

p4

p5

p2 p3

p3
p4

p4
p5

p5

(5)

(15)

(10)

(18)
(20)

p1

p1
p2

Ack

p*

p*

p

Figure 11. After
p5.insertSucc call

Figure 12. Propagation and
final ack

p1

p2

p3

p4

p5

p2 p3

p3
p4

p4
p5

p5

p1

(5)

(15)

(10)

(18)
(20)

p

p1
p2

p

p

(7) p1

p2

p3

p4

p5

p3
p4

p4
p5

p5

p

(5)

(15)

(10)

(18)
(20)

p

Peer p5 is
disconnected

Peer p leaves the ring

p

p1

Figure 13. Completed
insertSucc

Figure 14. Naive merge
leads to reduced reliability

p4 then checks whether the state of the last entry isJOINING ;
in this case it simply deletes the entry (lines11 − 12) because it
is far enough from theJOINING node that it does not need to
know about it (although this case does not arise in our current sce-
nario for p4). p4 then checks if the state of the penultimate peer
(p) is JOINING – since this is the case in our scenario,p4 sends
a acknowledgment to the peer preceding the penultimate peer in
the successor list (p5) indicating thatp can be transitioned from
JOINING to JOINED since all relevant predecessors know about
p (lines13− 14). p4 then releases the locks on its lists (line16).

The insertSucc method ofp5, on receiving a message from
p4, first send a message top indicating that it is now in theJOINED
state (line 10).p5 then changes the state of its first list entry (p)
to JOINED and removes the last entries from its lists in order to
shorten them to the regular length (lines11 − 12). The final state
afterp is inserted into the ring and multiple ring stabilizations have
occurred is shown in Figure 13.

One optimization we implement for the above method is toproac-
tively contact the predecessor in the ring wheneverinsertSucc
is in progress, to trigger ring stabilization. This expedites the op-
eration since it is no longer limited by the frequency of the ring
stabilization process.

We can define aPEPPER Ring Historyto capture our implemen-
tation of the ring API, including the operations in Algorithms 1 and 2.
We can prove the following theorem.

Theorem 1 (Consistent Successor Pointers):Given a PEPPER
Ring HistoryPH, the ring RPH induced byPH has consistent
successor pointers.

4.3.2 Handling Data Store Concurrency
Recall from the discussion in Section 4.2.2 that even if the ring

is fully consistent, query results can be missed due to concurrency
issues at the Data Store. Essentially, the problem is that the range
of a peer can change while a query is in progress, causing the query
to miss some results. How do we shield the higher layers from the
concurrency details of the Data Store while still ensuring correct
query results?

Our solution to this problem is as follows. We introduce a new
API method for the Data Store calledscanRange . This method

has the following signature:scanRange(lb, ub, handlerId,
param) , where (1)lb is the lower bound of the range to be scanned,
(2) ub is the upper bound of the range to be scanned, (3)hand-
lerId is the id of the handler to be invoked on every peerp such
that p.range intersects[lb, ub] (i.e., p’s range intersects the scan
range), and (4)paramis the parameter to be passed to the handlers.
ThescanRange method should be invoked on the Data Store of
the peerp1 such thatlb ∈ p1.range (i.e., the first peer whose
range intersects the scan range). The start and end operations as-
sociated withscanRange are initScanRangei(p1, lb, ub) and
doneScanRangei(pn, lb, ub) for somei ∈ N . The indexi is
used to distinguish multiple invocations of the API method with
the same signature. ThescanRange method causes the appro-
priate handler to be invoked on every peerp such thatp.range in-
tersects[lb, ub]. scanRangei(p, p1, r) is the operation in the API
Data Store History that is associated with the invocation of the ap-
propriate handler at peerp. Here,r is the subset ofp.range that
intersects with[lb, ub].

scanRange handles all the concurrency issues associated with
the Data Store. Consequently, higher layers do not have to worry
about changes to the Data Store while a scan is in progress. Fur-
ther, sincescanRange allows applications to register their own
handlers, higher layers can customize the scan to their needs (we
shall soon show how we can collect range query results by register-
ing appropriate handlers).

We now introduce some notation before we define the notion of
scanRange correctness. We usescanOps(i) to denote the set of
scanRangei(p, p1, r) operations associated with theith invoca-
tion of scanRange . We userangeSet(i) = {r|∃p1, p2

scanRangei(p1, p2, r) ∈ scanOps(i)} to denote the set of ranges
reached byscanRange . We user1 1 r2 to denote that ranger1

overlaps with ranger2 and we user1 ∪ r2 to denote the union of
ranger1 with ranger2.

We can definescanRange correctnessas follows:
Definition 6 (scanRange Correctness): An API Data Store His-
tory H = (OH,≤H) is said to satisfyscanRange correctnessiff
∀i ∈ N ∀lb, ub ∀p1 ∈ P oe = doneScanRangei(p1, lb, ub) ∈
OH ⇒

1. os = initScanRangei(p1, lb, ub) ≤H oe

2. ∀o ∈ scanOps(i) ∀p ∀r o = scanRangei(p, p1, r)
⇒ os ≤H o ≤H oe ∧ r ⊆ rangeHo(p)

3. ∀ol, om ∈ scanOps(i) ol 6= om ∧ ∀pl, pm ∀rl, rm ol =
scanRangei(pl, p1, rl) ∧ om = scanRangei(pm, p1, rm)
⇒ ¬(ol 1 om)

4. [lb, ub] = ∪r∈rangeSet(i)(r)

Condition 1 states that the initiate operation forscanRange
should occur before the completion operation. Condition 2 states
that ranger used to invoke the handler at peerp is a subset of
p’s range. Condition 3 states that rangesrl and rm used to in-
voke the handlers at distinct peerspl andpm, respectively, are non-
overlapping. Finally, condition 4 states that the union of all ranges
used to invoke the handlers is[lb, ub].

4.3.2.1 Implementing scanRange

We present now our implementation for thescanRange API
method. Algorithm 3 shows the pseudocode for thescanRange
method executed at a peerp. The method first acquires a read lock
on the Data Storerange (to prevent it from changing) and then
checks to make sure thatlb ∈ p.range, i.e.,p is the first peer in the
range to be scanned (lines 1-2). If the check fails,scanRange is
aborted (lines 3-4). If the check succeeds, then the helper method
processHandler is invoked.

Algorithm 3 : p.scanRange(lb, ub, handlerId, param)

1: readLockrange
2: if lb 6∈ p.range then
3: // Abort scanRange
4: releaseLockrange
5: else
6: // p is the first peer in scan range
7: p.processHandler(r, handlerId, param)
8: end if

Algorithm 4 : p.processHandler(lb, ub, handlerId, param)

1: // Invoke appropriate handler with relevant ranger
2: Gethandler with id handlerId
3: r = [lb, ub] ∩ p.range
4: newParam =handler.handle(r, param)
5: // Forward to successor if required
6: if ub 6∈ p.range then
7: psucc = p.ring.getSucc()
8: psucc.processScan(lb, ub, handlerId, newParam)
9: end if

10: releaseLockrange

processHandler (Algorithm 4) first invokes the appropriate
handler for the scan (lines 1-3), and then checks to see whether
the scan has to be propagated top’s successor (line 4). If so, it
invokes theprocessScan method onp’s successor.

Algorithm 5 shows the code that executes when
psucc.processScan is invoked byp.processHandler .
processScan asynchronouslyinvokes theprocessHandler
method onpsucc, and returns. Consequently,p holds on to a lock on
its range only untilpsucc locks its range; oncepsucc locks its range,
p can release its lock, thereby allowing for more concurrency. Note
thatp can later split, merge, or redistribute, but this will not produce
incorrect query results since the scan has already finished scanning
the items inp.

We now illustrate the working of these algorithms using an ex-
ample. Assume thatscanRange (10, 18, h1, param1) is invoked
in p2 in Figure 5. p2 locks its range inscanRange (to prevent
p2’s range from changing), invokes the handler corresponding to
h1 in processHandler , and then invokesprocessScan on
p3. p3 locks its range inprocessScan , asynchronously invokes
processHandler and returns. Sincep3.processScan re-
turns,p2 can now release its lock and participate in splits, merges,
or redistributions. However,p3 holds onto a lock on its range until
p3 handler is finished executing. Thus, the algorithms ensure that
a peer’s range does not change during a scan, but releases locks as
soon as the scan is propagated to the peer’s successor, for maximum
concurrency.

We can define aPEPPER Data Store Historyto capture our im-
plementation of the Data Store API augmented with the new oper-
ationscanRange . We can prove the following correctness theo-
rem.

Theorem 2 (scanRange Correctness):Any PEPPER Data Store
History satisfies the scanRange correctness property.

Using thescanRange method, we can easily ensure correct
results for range queries by registering the appropriate handler. Al-
gorithm 6 shows the algorithm for evaluating range queries.lb and
ub represent the lower and upper bounds of the range to be scanned,
andpid represents the id of the peer to which the final result is to
be sent. As shown, the algorithm simply invokes thescanRange
method with parameterslb, ub, the id of the range query handler,
and a parameter for that handler. The id of the peerpid that the
result should be sent to is passed as a parameter to the range query

Algorithm 5 : p.processScan(lb, ub, handlerId, param)

1: readLockrange
2: Invokep.processHandler(lb, ub, handlerId, param) asyn-

chronously
3: return

Algorithm 6 : p.rangeQuery(lb, ub, pid)

1: // Initiate a scanRange
2: p.scanRange(lb, ub, rangeQueryHandlerId, pid)

handler. The range query handler (Algorithm 7) invoked with range
r at a peerp works as follows. It first gets the items inp’s Data
Store that are in ranger and hence satisfy the query result (lines
1-2). Then, it sends the items and the ranger to the peerpid (line
3).

Using the above implementation of a range query, the inconsis-
tency described in Section 4.2.2 cannot occur becausep2’s range
cannot change (and hence redistribution cannot happen) when the
search is still active inp2. We can prove the following correctness
theorem:

Theorem 3 (Search Correctness):Given a PEPPER Data Store
HistoryPH, all query results produced inPH are correct(as per
the definition of correct query results in Section 4.1).

5. SYSTEM AND ITEM AVAILABILITY
We now address system availability and item availability issues.

Intuitively, ensuring system availability means that the availability
of the index should not be reduced due to routine index mainte-
nance operations, such as splits, merges, and redistributions. Simi-
larly, ensuring item availability means that the availability of items
should not be reduced due to maintenance operations. Our discus-
sion of these two issues is necessarily brief due to space constraints,
and we only illustrate the main aspects and sketch our solutions.

5.1 System Availability
An index is said to beavailableif its Fault Tolerant Ring is con-

nected. The rationale for this definition is that an index can be
operational (by scanning along the ring) so long as its peers are
connected. The Chord Fault Tolerant Ring provides strong avail-
ability guarantees when the only operations on the ring are peer
insertions (splits) and failures [32]. These availability guarantees
also carry over to our variant of the Fault Tolerant Ring with the
new implementation ofinsertSucc described earlier because it
is a stronger version of the Chord’s corresponding primitive (it sat-
isfies all the properties required for the Chord proofs). Thus, the
only index maintenance operation that can reduce the availability
of the system is the merge operation in the Data Store, which trans-
lates to theleave operation in the Fault Tolerant Ring. Note that
the redistribute operation in the Data Store does not affect the ring
connectivity.

We show that a naive implementation ofleave , which is simply
removing the merged peer from the ring, reduces system availabil-
ity. We then sketch an alternative implementation for theleave
that provably does not reduce system reliability. Using this new im-
plementation, the Data Store can perform a merge operation with-
out knowing the details of the ring stabilization, while being guar-
anteed that system availability is not compromised.

Naive leave Reduces System Availability:Consider the system
in Figure 13 in which the length of the successor list of each peer is
2. Without aleave primitive, this system can tolerate one failure
per peer stabilization round without disconnecting the ring (since
at most one of a peer’s two successor pointers can become invalid
before the stabilization round). We now show that in the presence

Algorithm 7 : p.rangeQueryHandler(r, pid)

1: // Get results from p’s Data Store
2: Find items in p’s Data Store in ranger
3: Send< items, r > to peerpid

p1

p2

p3

p4

p5

p2 p3

p3
p4

p4
p5

p5

(5)

(15)

(10)

(18)
(20)

p

p p1
p2

p

(7)

p1 p2

p1

p2

p3

p4

p5

p2 p3

p3
p4

p4
p5

p5

(5)

(15)

(10)

(18)
(20)

p

p

p1

p1
p2

Ack

p

(7)

Figure 15. Controlled leave
of peer p

Figure 16. Final ack
received at peer p. Peer p is

good to go.

of the naiveleave , a single failure can disconnect the ring. Thus,
leave reduces the availability of the system. Assume thatleave
is invoked onp, andp immediately leaves the ring. Now assume
that p1 fails (this is the single failure). The current state of the
system is shown in Figure 14, and as we can see, the ring is discon-
nected since none ofp5’s successor pointers point to peers in the
ring.

Solution Sketch: The reason the naive implementation ofleave
reduced availability is that pointers to the peerp leaving the ring
become invalid. Hence, the successor lists of the peers pointing to
p effectively decreases by one, thereby reducing availability. To
avoid this problem, our solution is to increase the successor list
lengths of all peers pointing top by one. In this way, whenp
leaves, the availability of the system is not compromised. As in
the insertSucc case, we piggyback the lengthening of the suc-
cessor lists on the ring stabilization protocol. This is illustrated in
the following example.

Consider Figure 13 in whichleave is invoked onp. During the
next ring stabilization, the predecessor ofp, which isp5, increases
its successor list length by 1. The state of the system is shown in
Figure 15. During the next ring stabilization, the predecessor of
p5, which isp4, increases its successor list length by 1. Sincep4

is the last predecessor that knows aboutp, p4 sends a message top
indicating that it is safe to leave the ring. The state of the system
at this point is shown in Figure 16. It is easy to see that ifp leaves
the ring at this point, a single failure cannot disconnect the ring, as
in was the case in the previous example. We can formally prove
that the new algorithm forleave does not reduce the availability
of the system.

5.2 Item Availability
We first formalize the notion of item availability in a P2P index.
We represent the successful insertion of an itemi at peerp with

operationinsertItem(i, p) and deletion of an itemi′ at peerp′

with operationdeleteItem(i′, p′).

Definition 7 (Item Availability): Given an API Index HistoryH,
an indexP is said to preserveitem availabilityiff
∀i (∃p ∈ P (insertItem(i, p) ∈ OH) ∧
6 ∃p′ ∈ P (deleteItem(i, p′) ∈ OH) ⇒ liveH(i)).

In other words, if itemi has been inserted but not deleted wrt to
API Index historyH theni is a live item.

The CFS Replication Manager, implemented on top of the Chord
Ring provides strong guarantees [9] on item availability when the
only operations on the ring are peer insertions and failures, and
these carry over to our system too. Thus, the only operation that

p2

p3

p4

p3
p4

p4
p5

p5
p2

(5)

(15)

(18)

(20)

16, 18

19

16, 18

6, 8

6, 8, 11

11

p5

When p5 fails,
data item 25 is lost

p1
p2

25

19

p1

p2

p3

p4

p5

p2 p3

p3
p4

p4
p5

p5
p1

p1
p2

(5)

(15)

(10)

(18)

(20)

6, 8

25

16, 18

19

16, 18

6, 8, 25

11

19

25

11

p1 leaves the system
Replicate replicas (25 in this case)
to one additional hop

Figure 17. Peer p5 fails
causing loss of item 25

Figure 18. Replicate item 25

one additional hop.

could compromise item availability is theleave operation in-
voked on a merge. We now show that using the original CFS Repli-
cation Manager in the presence of merges does compromise item
availability. We then describe a modification to the CFS Replica-
tion Manager and its interaction with the Data Store that ensures
the original guarantees on item availability.

Scenario that Reduces Item Availability: Consider the system
in Figure 7. The top box associated with each peer represents the
items replicated at that peer (CFS replicates items along the ring).
In this example, each item is replicated to one successor along the
ring; hence, the system can tolerate one failure between replica
refreshes. We now show how, in the presence of Data Store merges,
a single failure can compromise item availability. Assume that peer
p1 wishes to merge withp2 in Figure 7.p1 thus performs anleave
operation, and once it is successful, it transfers its Data Store items
to p2 and leaves the system. The state of the system at this time
is shown in Figure 17. Ifp5 fails at this time (this is the single
failure), the itemi such thatM(i.skv) = 25 is lost.

Solution Sketch:The reason item availability was compromised in
the above example is because whenp1 left the system, the replicas
it stored were lost, thereby reducing the number of replicas for cer-
tain items in the system. Our solution is to replicate the items stored
in the merging peerp’s Replication Manager for one additional hop
beforep leaves the system. This is illustrated in Figure 18, where
beforep1 merges withp2, it creates one more replica for items
in its Data Store and Replication Manager, at one additional peer.
Whenp1 finally merges withp2 and leaves the system, the number
of replicas is not reduced, thereby preserving item availability. We
can prove that the above scheme preserves item availability even in
the presence of concurrent splits, merges, and redistributions.

6. EXPERIMENTAL EVALUATION
We had two main goals in our experimental evaluation: (1) to

demonstrate the feasibility of our proposed query correctness and
availability algorithms in a dynamic P2P system, and (2) to mea-
sure the overhead of our proposed techniques. Towards this goal,
we implemented the P-Ring index, along with our proposed cor-
rectness and availability algorithms, in a real distributed environ-
ment with concurrently running peers. We used this implementa-
tion to measure the overhead of each of our proposed techniques as
compared to the naive approach, which does not guarantee correct-
ness or availability.

6.1 Experimental Setup
We implemented the P-Ring index as an instantiation of the in-

dexing framework (Section 2.3). The code was written in C++ and
all experiments were run on a cluster of workstations, each of which
had 1GHz processor, 1GB of main memory and at least 15GB of
disk space. All experiments were performed with 30 peers running
concurrently on 10 machines (with 3 peers per machine). The ma-
chines were connected by a local area network.

We used the following default parameter values for our experi-
ments. The length of the Chord Fault-Tolerant Ring successor list
was 4 (which means that the ring can tolerate up to 3 failures with-
out being disconnected if the ring is fully consistent). The ring
stabilization period was 4 seconds. We set the storage factor of the
P-Ring Data Store to be 5, which means that it can hold between 5
and 10 data items. The replication factor in the Replication Man-
ager is 6, which means that each item is replicated 6 times. We vary
these parameters too in some of the experiments.

We ran experiments in two modes of the system. The first mode
was thefail-freemode, where there were no peers failures (although
peers are still dynamically added and splits, merges, and redistrib-
utes occur in this state). The second was thefailure mode, where
we introduced peer failures by killing peers. For both modes, we
added peers at a rate of one peer every 3 seconds, and data items
were added at the rate of 2 items per second. We also vary the rate
of peer failures in the failure mode.

6.2 Implemented Approaches
We implemented and evaluated all four of the techniques pro-

posed in this paper. Specifically, we evaluate (1) theinsertSucc
operation that guarantees ring consistency, (2) thescanRangeoper-
ation that guarantees correct query results, (3) theleaveoperation
that guarantees system availability, and (4) thereplication to ad-
ditional hopoperation that guarantees item availability. Forscan-
Range, we implemented a synchronous version where theprocessHan-
dler is invoked synchronously at each peer (see Algorithm 5).

One of our goals was to show that the proposed techniques ac-
tually work in a real distributed dynamic P2P system. The other
goal was to compare each solution with a naive approach (that does
not provide correctness or availability guarantees). Specifically, for
the insertSuccoperation, we compare it with the naiveinsertSucc,
where the joining peer simply contacts its successor and becomes
part of the ring. For thescanRangeoperation, we compare it with
the naive range query method whereby the application explicitly
scans the ring without using thescanRangeprimitive. For theleave
operation, we compare with the naive approach where the peer sim-
ply leaves the system without notifying other peers. Finally, for the
replication to additional hopoperation, we compare with the naive
approach without additional replication.

6.3 Experimental Results
We now present our experimental results. We first present results

in the fail-free mode, and then present results in the failure mode.

6.3.1 EvaluatinginsertSucc

In this section we quantify the overhead of ourinsertSuccwhen
compared to the naiveinsertSucc. The performance metric used is
the time to complete the operation; this time is averaged over all
such operations in the system during the run of the experiment.

We vary two parameters that affect the performance of the oper-
ations. The first parameter is the length of the ring successor list.
The longer the list, the fartherinsertSucchas to propagate infor-
mation before it can complete. The second is the ring stabilization
period. The longer the stabilization period, the slower information
about joining peers propagates due to stabilization.

Figure 19 shows the effect of varying the ring successor list

0

0.05

0.1

0.15

0.2

0.25

0.3

2 3 4 5 6 7 8

T
im

e
 (

in
 s

e
c
)

Successor List Length

naive insertSuccessor
insertSuccessor

0

0.05

0.1

0.15

0.2

0.25

0.3

2 3 4 5 6 7 8
T

im
e
 (

in
 s

e
c
)

Ring Stabilization Period (in sec)

naive insertSuccessor
insertSuccessor

0.2
0.205
0.21

0.215
0.22

0.225
0.23

0.235
0.24

0.245
0.25

0 2 4 6 8 10 12

T
im

e
 (

in
 s

e
c
)

Num Hops Along Ring

search using scanRange
naive application search

Figure 19. Overhead of insertSucc Figure 20. Overhead of insertSucc Figure 21. Overhead of scanRange

length. There are several aspects to note about this figure. First,
the time for ourinsertSuccincreases linearly with the successor list
length, while the time for the naiveinsertSuccremains constant.
This is to be expected because the naiveinsertSucconly contacts
the successor, while ourinsertSuccpropagates information to as
many predecessors as the length of the successor list. Second, per-
haps surprisingly, the rate of increase of the time for ourinsertSucc
operation is very small; this can be attributed to the optimization
discussed in Section 4.3.1, where we proactively contact predeces-
sors instead of only relying on the stabilization. Finally, an encour-
aging result is that the cost of ourinsertSuccis of the same ball
park as that of the naiveinsertSucc; this means that users do not
pay too high a price for consistency.

Figure 20 shows the result of varying the ring stabilization fre-
quency. The results are similar to varying the successor list length.
Varying the ring stabilization period also has less of an effect on
our insertSuccbecause of our optimization of proactively contact-
ing predecessors.

6.3.2 EvaluatingscanRange

In this section, we investigate the overhead of usingscanRange
when compared to the naive approach of the application scanning
the range by itself. Since the number of messages needed to com-
plete the operation is the same for both approaches, we used the
elapsed time to complete the range search as the relevant perfor-
mance metric. We varied the size of the range to investigate its
effect on performance, and averaged the elapsed time over all the
searches requiring the same number of hops along the ring. Each
peer generates searches for ranges of different sizes, and we mea-
sured the time needed to process the range search, once the first
peer with items in the search range was found. This allows us to
isolate the effects of scanning along the ring.

Figure 21 shows the performance results. As shown, there is
practically no overhead to usingscanRangeas compared with the
application level search; again, this indicates that the price of con-
sistency is low. To our surprise, the time needed to complete the
range search, for either approach, does not increase significantly
with the increased number of hops. On further investigation, we
determined that this was due to our experiments running on a clus-
ter in the local area network. In a wide area network, we expect the
time to complete a range search to increase significantly with the
number of hops.

6.3.3 EvaluatingleaveandReplicate to additional hop

In this section, we investigate the overhead of the proposedleave
andreplicate to additional hopoperations as compared to the naive
approach of simply leaving the ring without contacting any peer.
For this experiment, we start with a system of 30 peers and delete

0.1

1

10

100

1000

2 3 4 5 6 7 8

T
im

e
 (

in
 m

s
e
c
)

Successor List Length

leaveRing+merge
leaveRing

naive leave

0

0.5

1

1.5

2

0 2 4 6 8 10 12

T
im

e
 (

in
 s

e
c
)

Failure rate (failures per 100 sec)

insertSuccessor

Figure 22. Overhead of leave Figure 23. insertSucc in failure
mode

items from the system that cause peers to merge and leave the ring.
We measure the time elapsed for three operations: (1) theleave

operation in the ring, and (2) the merge operation in the Data Store
(which includes the time forreplicate to additional hop), and (3)
the naiveleave. Figure 22 shows the variation of the three times
with successor list length. Note the log scale on y-axis. We observe
that theleaveand merge operations take approximately 100 msec,
and do not constitute a big overhead. The naive version takes only
1 msec since it simply leaves the system.

6.3.4 Evaluation in Failure Mode
We have so far studied the overhead of our proposed techniques

in a system without failures. We now look at how our system be-
haves in a system with failures. In particular, we measure the vari-
ation of the average time taken for an insertSucc operation with the
failure rate of peers. The system setting is as follows: We insert
one peer every three seconds into the system, and we insert two
items every second. We use the default successor list length (4)
and default ring stabilization period (4 sec).

Figure 23 shows the variation of average time taken for a insert-
Succ operation with the peer failure rate. We observe that even in
the case when the failure rate is as high as 1 in every 10 seconds,
the time taken for insertSucc is not prohibitive (about 1.2 seconds
compared to 0.2 seconds in a stable system).

7. RELATED WORK
There has been a flurry of recent activity on developing indices

for structured P2P systems. Some of these indices can efficiently
support equality queries (e.g., [28, 32, 29]), while others can sup-
port both equality and range queries (e.g., [1, 2, 5, 6, 10, 12, 14,
15, 31]. This paper addresses query correctness and availability
issues for such indices, which have not been previously addressed
for range queries. Besides structured P2P indices, there are unstruc-
tured P2P indices such as [8, 13]. Unstructured indices are robust
to failures, but do not provide guarantees on query correctness and

item availability. Since one of our main goals was to study correct-
ness and availability issues, we focus on structured P2P indices.

There is a rich body of work on developing distributed index
structures for databases (e.g., [18, 19, 21, 23, 24]. However, most
of these techniques maintain consistency among the distributed repli-
cas by using aprimary copy, which creates both scalability and
availability problems when dealing with thousands of peers. Some
index structures, however, do maintain replicas lazily (e.g., [19, 21,
24]). However, these schemes are not designed to work in the pres-
ence of peer failures, dynamic item replication and reorganization,
which makes them inadequate in a P2P setting. In contrast, our
techniques are designed to handle peer failures while still provid-
ing correctness and availability guarantees.

Besides indexing, there is also some recent work on other data
management issues in P2P systems such as complex queries [11,
16, 26, 27, 33, 34]. A correctness condition for processing aggre-
gate queries in a dynamic network was proposed in [3]. An in-
teresting direction for future work is to extend our techniques for
query correctness and system availability to work for other complex
queries such as keyword searches and joins.

8. CONCLUSION
We have introduced the first set of techniques that provably guar-

antee query correctness and system and item availability for range
index structures in P2P systems. Our techniques provide provable
guarantees, and they allow applications to abstract away all possi-
ble concurrency and availability issues. We have implemented our
techniques in a real distributed P2P system, and quantified their
performance.

As a next step, we would like to extend our approach to handle
more complex queries such as joins and keyword searches.

9. ACKNOWLEDGEMENTS
This work was supported by NSF Grants CRCD-0203449, ITR-

0205452, IIS- 0330201, and by AFOSR MURI Grant F49620-02-
1-0233. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not nec-
essarily reflect the views of the sponsors.

10. REFERENCES
[1] K. Aberer. P-grid: A self-organizing access structure for p2p

information systems. InCoopIS, 2001.
[2] J. Aspnes and G. Shah. Skip graphs. InSODA, 2003.
[3] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The

price of validity in dynamic networks. InSIGMOD, 2004.
[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman.

Concurrency Control and Recovery in Database Systems.
Addison-Wesley Publishing Company, 1987.

[5] A. R. Bharambe, S. Rao, and S. Seshan. Mercury:
Supporting scalable multi-attribute range queries. InProc.
SIGCOMM, 2004.

[6] A. Crainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke,
and J. Shanmugasundaram. P-ring: An index structure for
peer-to-peer systems. InCornell Technical Report, 2004.

[7] A. Crainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke,
and J. Shanmugasundaram. A storage and indexing
framework for p2p systems. InWWW Poster, 2004.

[8] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer networks. InICDCS, 2002.

[9] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. InSOSP, 2001.

[10] A. Daskos, S. Ghandeharizadeh, and X. An. Peper: A
distributed range addressing space for p2p systems. In
DBISP2P, 2003.

[11] L. Galanis, Y. Wang, S. Jeffery, and D. DeWitt. Locating
data sources in large distributed systems. InVLDB, 2003.

[12] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online
balancing of range partitioned data with applications to
peer-to-peer systems. InVLDB, 2004.

[13] Gnutella - http://gnutella.wego.com.
[14] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and

I. Stoica. Load balancing in dynamic structured p2p systems.
In INFOCOM, 2004.

[15] A. Gupta, D. Agrawal, and A. El Abbadi. Approximate range
selection queries in peer-to-peer systems. InCIDR, 2003.

[16] R. Huebsch, J. Hellerstein, N. Lanham, B. Loo, S. Shenker,
and I. Stoica. Querying the internet with pier. InVLDB, 2003.

[17] Jbi home page - http://www.rl.af.mil/programs/jbi/.
[18] T. Johnson and A. Colbrook. A distributed data-balanced

dictionary based on the b-link tree. InIPPS, 1992.
[19] T. Johnson and P. Krishna. Lazy updates for distributed

search structure. InSIGMOD, 1993.
[20] D. Kossmann. The state of the art in distributed query

processing. InACM Computing Surveys, Sep 2000.
[21] B. Kroll and P. Widmayer. Distributing a search tree among a

growing number of processors. InSIGMOD, 1994.
[22] P. Linga, A. Crainiceanu, J. Gehrke, and

J. Shanmugasundaram. Guaranteeing correctness and
availability in p2p range indices. InCornell Technical
Report, 2005.

[23] W. Litwin, M.-A. Neimat, and D. Schneider. Rp*: A family
of order preserving scalable distributed data structures. In
VLDB, 1994.

[24] D. Lomet. Replicated indexes for distributed data. InPDIS,
1996.

[25] N. A. Lynch.Distributed Algorithms. Morgan Kaufmann
Publishers, Inc., 1997.

[26] W. Ng, B. Ooi, K. Tan, and A. Zhou. Peerdb: A p2p-based
system for distributed data sharing. InICDE, 2003.

[27] V. Papadimos, D. Maier, and K. Tufte. Distributed query
processing and catalogs for peer-to-peer systems. InCIDR,
2003.

[28] S. Ratnasamy, M. H. P. Francis, R. Karp, and S. Shenker. A
scalable content-addressable network. InSIGCOMM, 2001.

[29] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer
systems. InMiddleware, 2001.

[30] A. Rowstron and P. Druschel. Storage management and
caching in past, a large-scale, persistent peer-to-peer storage
utility. In SOSP, 2001.

[31] O. D. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi. A
peer-to-peer framework for caching range queries. InICDE,
2004.

[32] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. InSIGCOMM, 2001.

[33] I. Tatarinov and A. Halevy. Efficient query reformulation in
peer-data management systems. InSIGMOD, 2004.

[34] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and
N. Ntarmos. Towards high performance peer-to-peer content
and resource sharing systems. InCIDR, 2003.

