Guaranteeing Correctness and Availability in
P2P Range Indices

Prakash Linga, Adina Crainiceanu, Johannes Gehrke, Jayavel Shanmugasudaram
Cornell University
Ithaca, New York

{linga, adina, johannes, jaiy@cs.cornell.edu

ABSTRACT catastrophic if a search occasionally misses a file, or if files are oc-

New and emerging P2P applications require sophisticated ralngecasionally lost). Internet storage applications require only simple

query capability and also have strict requirements on query correct- eq“_a”tY .predicates, but have strjct requirement§ on cqrrectness .and
ness, system availability and item availability. While there has been 2vailability (so that data is not missed or lost). Digital library appli-

recent work on developing new P2P range indices, none of thesecations require complex search predicates such as range predicates

indices guarantee correctness and availability. In this paper, we de-(to search for aorlticles_l V‘l’)'tlh'n a da_te range), t%‘# do not Qave sg_ict
velop new techniques that can provably guarantee the correctnes§0rr‘_3cm_ess and availa |_|ty requwements. e most emanding
and availability of P2P range indices. We develop our techniques apphcaﬂon; are transaction processing and military appllcatlpns,
in the context of a general P2P indexing framework that can be in- W_h'c_h require both complex range predlcatgs (t_q search for objects
stantiated with most P2P index structures from the literature. As a Within aregion) and strong correct.ness/avallab llity guarantees.
specific instantiation, we implement P-Ring, an existing P2P range As an exam_ple’ con5|_der_the Joint Battl_espace In_fc_)sphere

index, and show how it can be extended to guarantee correctness(‘]Bl)[l7]' a military application that has high scalability and fault-

and availability. We also quantitatively evaluate our techniques us- tolelr(a_nc;e reql_nremg_nts. Onﬁ ?]f thelgo_ter;tlgl usbe_s of t_her;] B;. 'SI‘ dto
ing a real distributed implementation, track information objects, which could include objects in the fie

such as enemy vehicles. A natural way to achieve the desired scal-
ability and fault-tolerance is to store such objects as (value,item)
1. INTRODUCTION pairs in a P2P index, where the value could represent the geo-
Peer-to-peer (P2P) systems have emerged as a promising paragraphic location of the object (in terms of its latitude and longi-
digm for structuring large-scale distributed systems. The main ad- tude), and the item could be a description of that object. Clearly,
vantages of P2P systems are scalability, fault-tolerance, and abilitythe JBI requires support for range queries in order to find objects
to reorganize in the face of dynamic changes to the system. A key in a certain region. The JBI also requires strong correctness guar-
component of a P2P system is a P2P index. A P2P index allows antees (so that objects are not missed by a query) and availability
applications to store (value, item) pairs, and to search for relevant guarantees (so that stored objects are not lost).
items by specifying a predicate on the value. Different applications Current P2P indices, however, do not satisfy the above applica-
have different requirements for a P2P index. We can characterizetion needs: while there has been some work on devising P2P in-
the index requirements of most P2P applications along the follow- dices that can handle expressive range predicates [1, 2, 5, 6, 10, 12,
ing three axes: 14, 15, 31], there has been little or no work on guaranteeing cor-
rectness and availability in such indices. Specifically, we are not
o Expressiveness of predicatesvhether simple equality pred- aware of any P2P range index tlwataranteeshat a query will not
icates suffice in a P2P index, or whether more complex pred- miss items relevant to a query. In fact, we shall later show scenar-
icates such as range predicates are required. ios whereby range indices [5, 6, 12] that are based on the Chord

e Query correctness whether it is crucial that the P2P index ng [32] (originally devised for equality queries) can miss query

return all and only the data items that satisfy the predicate. esults for range queries, even when the index is operational. Simi-
larly, we are not aware of any range index that can provide provable

guarantees on system and item availability.

In this paper, we devise techniques that can provably guaran-
tee query correctness, system availability and item availability in
P2P range indices. At a high level, there are two approaches for
guaranteeing correctness and availability. The first approach is to
simply let the application handle the correctness and availability
issues — this, for instance, is the approach taken by CFS [9] and
PAST [30], which are applications built on top of the P2P equal-
Permission to make digital or hard copies of all or part of this work for ity indices Chord [32] and Pastry [29], respectively. However, this
personal or classroom use is granted without fee provided that copies areapproach does not work in general for range indices because the ap-
not made or distributed for profit or commercial advantage and that copies plication does not (and should not!) have control over various con-
bear this notice and the full citation on the first page. To copy otherwise, 1o, rent operations in a P2P range index, including index reorgani-

republish, to post on servers or to redistribute to lists, requires prior specific . . .)
permission and/or a fee. zation and peer failures. Moreover, this approach exposes low-level

SIGMOD2005 June 14-16, 2005, Baltimore, Maryland, USA concurrency details to applications and is also very error-prone due
Copyright 2005 ACM 1-59593-060-4/05/0635.00.

e System and Item Availability: whether it is crucial that the
availability of the P2P index and the items stored in the index,
are not reduced due to the reorganization of peers.

For example, simple file sharing applications only require sup-
port for equality predicates (to lookup a file by name), and do
not have strict correctness and availability requirements (it is not

to subtle concurrent interactions between system components.

We thus take the alternative approach of developing new correct-
ness and availability primitives that can be directly implemented in
a P2P index. Specifically, we build upon the P2P indexing frame-
work proposed by Crainiceanu et al. [7], and embed novel tech-
niques for ensuring correctness and availability directly into this
framework. The benefits of this approach are that it abstracts away
the dynamics of the underlying P2P system and provides appli-
cations with a consistent interface with provable correctness and

P2P Index findItems(predicate)
insertltem(item)

deleteltem(item)

Content Router Replication Manager

sendReceive(msg, predicate)

availability guarantees. To the best of our knowledge, this is the Data Store insertItems(itemsList)
first attempt to address these issues for both equality and range deleteltems(itemsList)
. . X getLocalltems()
queries in a P2P index.
One of the benefits of implementing our primitives in the con- Fault Tolerant Ring getSuce()
text of a P2P indexing framework is that our techniques are not just insertSucc(peer)
applicable to one specific P2P index, but are applicable to all P2P leave()

indices that can be instantiated in the framework, including [5, 6,
12]. As a specific instantiation, we implement P-Ring [6], a P2P in-
dex that supports both equality and range queries, and show how it
can be extended to provide correctness and availability guaranteesin the rest of the paper we make no distinction between items and
We also quantitatively demonstrate the feasibility of our proposed pointers to items.

techniques using a real distributed implementation of P-Ring. The queries we consider are range queries of the fébnub],

The rest of the paper is organized as follows. In Section 2, we (Ib, ub], [Ib, ub) or (b, ub) wherelb, ub € K. Queries can be is-
present some background material, and in Section 3, we outline sued at any peer in the system.
our correctness and availability goals. In section 4 we present tech- To specify and reason about the correctness and availability guar-
niques for guaranteeing query correctness, and in Section 5, weantees, we use the notion ohistory of operations [4, 25].
outline techniques for guaranteeing system and item availability. Definition 1 (History H): History H is a pair(O, <) whereO is
In Section 6, we present our experimental results. In Section 7, we a set of operations and is a partial order defined on these opera-
discuss related work, and we conclude in Section 8. tions.

Conceptually, the partial ordet defines ehappened beforee-
lationship among operations. #p:,0p2 € O are two different
operations in history{, andop: < op2, then intuitively,op; fin-
ished beforep, started, i.e.op: happened beforep-. If op; and

Figure 1. Indexing Framework

2. BACKGROUND

In this section, we first introduce our system model and the no-

tion of a hlstory_of operations, _/vhlch_ are used later in the pa- ops are not related by the partial order, then andops could have
per. We then briefly review the indexing framework proposed by been executed in parallel

Crainiceanu et al.[7], and give an example instantiation of this frame- To present our results we also need the notiontafiacated his-

Wg”;:(zg C;gﬂg;enfosaénvy: vl:nsti tg;(?sltri]r?tagtlatrlcc));]cll:etst]eeu:‘ceiszooglItl:]; tory which is a history that only contains operations that happened
pap p g app before a certain operation.

trate our newly proposed techniques. We use the framework sinceDefinition 2 (Truncated History ,): Given a historyH —
it presents a clean way to abstract out different components of a(O <) and an operation ¢ OO ' Hy = (On,,<w,)is a
P2P index, and it allows us to confine concurrency and consistency o =7 < . . o e Tos =Tto

L truncated histonyif O, = {0’ € Ox|o" <x o} andVoy, 0, €
problems to individual components of the framework. O, (01 <3 02 = 01 °<H 02)

2.1 System Model 2.2 The P2P Indexing Framework From [7]

A peeris a processor with shared storage space and private stor-))))
age space. The shared space is used to store the distributed data A P2P index needs to reliably support the following operations:
structure for speeding up the evaluation of user queries. We as-S€arch, item insertion, item deletion, peers joining, and peers leav-
sume that each peer can be identified by a physical id (for example,ing the system. We now briefly survey the modularized indexing
its IP address). We also assume a fail-stop model for peer failures.framework from [7], which is designed to capture most structured
A P2P systenis a collection of peers. We assume there is some P2P indices. Figure 1 shows the components of the framework,
underlying network protocol that can be used to send messages re@nd their APIs. The framework does not spedifyplementations
liably from one peer to another with known bounded delay. A peer for these components but only specifieactional requirements
can join a P2P system by contacting some peer that is already partFault Tolerant Torus. The Fault Tolerant Torus connects the peers
of the system. A peer can leave the system at any time without in the system on a torus, and provides reliable connectivity among

contacting any other peer.

We assume that each (data) item stored in a peer expssesch
key valuefrom a totally ordered domaift that is indexed by the
system. The search key value for an iténs denoted byi.skv.

these peers even in the face of peer failures. For the purposes of
this paper, we focus on a Fault Tolerant Ring (a one-dimensional
torus). On aring, for a peer, we can define theuccessogucc(p)
(respectivelypredecessopred(p)) to be the peer adjacenttan a

Without loss of generality, we assume that search key values areclockwise (resp., counter-clockwise) traversal of the ring. Figure 2
unique (duplicate values can be made unique by appending theshows an example of a Fault Tolerant Ring. If peefails, then the
physical id of the peer where the value originates and a version ring will reorganize such thatucc(ps) = p2, so the peers remain
number; this transformation is transparent to users). Peers insert-connected. In addition to maintaining successors, eachpaer

ing items into the system can retain ownership of their items. In

the ring is associated with a valug,val, from a totally ordered

this case, the items are stored in the private storage partition of thedomain”V. This value determines the position of a peer in the
peer, and only pointers to the items are inserted into the system.ring, and it increases clockwise around the ring (wrapping around

b,

Ps P
Ps
Py Py Ps
P} [fa1] P
Figure 2. Ring Figure 3. Data Store

at the highest value). The values of the peers in Figure 2 are shown [Ps[Py] Py

in paranthesis. The value of a peer is introduced only for ease of

exposition and is not required in the formal definition of a ring.
Figure 1 shows the Fault Tolerant Ring APIl. When invoked on a routing messages to relevant peers in the P2P system. As shown in

Figure 4. Chord Ring Figure 5. P-Ring Data Store

peerp, p.getSucc returns the address eficc(p). the API (see Figure 1), the relevant peers are specified by a content-
p.insertSucc (p’) makes’ the successor gf. p.leave allows based predicate on search key values, and not by the physical peer
p to gracefully leave the ring (of coursgcan leave the ring with- ids. This abstracts away the details of storage and index reorgani-

out making this call due to a failure). The ring also exposes events zation from higher level applications.

that can be caught at higher layers, such as successor changes (N¢i2p Index. The P2P Index is the index exposed to the end user.
shown in the figure). An APl method need not return right away it supports search functionality by using the functionality of the
because of locks and other concurrency issues. Each of the APlcontent Router, and supports item insertion and deletion by using
methods is therefore associated with a start and an end operationthe functionality of the Data Store. As with the API Ring History
For exampleinit Leave(p) is the operation associated with the in- and AP| Data Store History, we can define el Index History

vocation of the APl methog.leave() ~andleave(p) is the oper- ysing the operations associated with the Index API methods.
ation used to signal the end of this API method. All the operations

associated with the initiation and completion of the API methods, 2.3 An Example Instantiation

as well as the operations associated with the events raised by the \we now discuss the instantiation of the above framework using

ring form a history called aAPI Ring history The details canbe p_Ring [6], an index structure designed for range queries in P2P
foundin [22]. systems. P-Ring uses the Fault Tolerant Ring of Chord and the
Data Store. The Data Store is responsible for distributing and stor- Replication Manager of CFS, and only devises a new Data Store
ing items at peers. The Data Store has a mdpthat maps the and a Content Router for handling data skew. While the full details

search key valué skv of each itemi to a value in the domai®V of P-Ring are presented in [6], we concentrate only on features of
(the domain of peer values). An itefris stored in a peep such P-Ring that are common to many P2P range query index structures
that M (i.skv) € (pred(p).val, p.val]. In other words, each peer from the literature [5, 6, 12]: splitting, merging, and redistributing

p is responsible for storing data items mapped to a value betweenin order to balance the number of items at each peer. We would

pred(p).val andp.val. We refer to the rangéred(p).val, p.val] like to emphasize that while we use P-Ring as a running example
asp.range. We denote the items stored at ppersp.items. to illustrate query correctness, concurrency, and availability issues

Figure 3 shows an example Data Store that maps some searchn subsequent sections, our discussion also applies to other P2P
key values to peers on the ring. For example, peeis respon- range indices proposed in the literature.

sible for search key valuet$i and19. One of the main responsi- Fayit Tolerant Ring. P-Ring uses the Chord Ring to maintain
bilities of the Data Store is to ensure that the data distribution is connectivity among peers [32]. The Chord Ring achieves fault-
uniform so that each peer stores about the same number of ittmsyqjerance by storing st of successors at each peer, instead of
Different P2P indices have different implementations for the Data sioring just a single successor. Thus, even if the successor of a
Store (e.g., based on hashing [32], splitting, merging and/or redis- peer), fails, p can use its successor list to identify other peers to re-
tributing [6, 12]) for achieving this storage balance. As shown in ¢onnect the ring and to maintain connectivity. Figure 4 shows an
Figure 1, the Data Store provides APl methods to insert items into example Chord Ring in which successor lists are of length 2 (i.e.,
and delete items from the system. It also provides the API method each peep storessucc(p) and succ(suce(p)) in its successor

p.getLocalltems() to get the items stored locally in peg's list). The successor lists are shown in the boxes next to the associ-
Data Store. . . . ated peers. Chord also provides a way to maintain these successor
_As with the API Ring History, we can define tié>l Data Store |ists in the presence of failures by periodicasigbilizinga peerp
history using the operations associated with the Data Store API ith its first live successor in the successor list. P-Ring also uses
methods. Given an AP| Data Store Histaky and a peep, we Chord to maintain connectivity.

;3?;“;1;’;9;7175].9) to denotep.range in ‘H anditemsy (p) to denote Data Store. Ideally, we would like data items to be uniformly dis-

o o) . tributed among peers so that the storage load of each peer is about
Replication Manager. The Replication Manager is responsible for - the same. Most existing P2P indices achieve this goaidshing
reliably storing items in the system even in the presence of fail- the search key value of an item, and assigning the item to a peer
ures, until items are explicitly deleted. As an example, in Fig- pased on this hashed value. Such an assignment is, with high prob-
ure 5, peemp, stores itemg; andis such thatM(ir.skv) = 8 ability, very close to a uniform distribution of entries [28, 29, 32].
and M(iz.skv) = 9. If p, fails, these items would be lost even powever, hashing destroys the value ordering among the search
though the ring would reconnect after the failure. The goal of the key values, and thus cannot be used to process range queries ef-
replication manager is to handle such failures for example by repli- ficiently (for the same reason that hash indices cannot be used to
cating items so that they can be "revived” even if peers fail. handle range queries efficiently).

Content Router. The Content Router is responsible for efficiently To solve this problem, range indices assign data items to peers

way, even ifp fails, ¢ can be recovered from one of the successors of
p. Larger values of offer better fault-tolerance but have additional
overhead. Figure 7 shows a system in which items are replicated
with a value ofk = 1 (the replicated values are shown in the top
most box next to the peer).

Content Router. The P-Ring Content Router is based on idea of
constructing a hierarchy of rings that can index skewed data distri-
butions. The details of the content router are not relevant here.

3. GOALS

We now turn to the main focus of this paper: guaranteeing cor-
rectness and availability in P2P range indices. At a high level, our
techniques enforce the following design goals.

e Query Correctness: A query issued to the index should re-
turn all and only those items in the index that satisfy the
query predicate.

e System Availability: The availability of the index should
not be reduced due to index maintenance operations (such as

Figure 6. Data Store Merge

Figure 7. CFS Replication

directly based on their search key value (i.e., the mvdps order-
preserving, in the simplest case it is the identity function). In this
case, the ordering of peer values is the same as the ordering of
search key values, and range queries can be answered by scanning
along the ring. The problem is that now, even in a stable P2P sys-
tem with no peers joining or leaving, some peers might become

overloaded or underloaded due to skewed item insertions and/or
deletions. There is a need for a way to dynamically reassign and
maintain the ranges associated to the peers. Range indices achieve

this goal bysplitting , merging andredistributing for
handling item overflows and underflows in peers. Let us give an
example in the context of P-Ring.

The P-Ring Data Store has two types of peéve peers andree

splits, merges, and redistributions).

e Item Availability: The availability of items in the index
should not be reduced due to index maintenance operations
(such as splits, merges, and redistributions).

While the above requirements are simple and natural, it is sur-
prisingly hard to satisfy them in a P2P system. Thus, one approach
is to simply leave these issues to higher level applications — this

peers. Live peers _can_be part of the rirjg and store data items, whilejs the approach taken by CFS [9] and PAST [30], which are ap-
free peers are maintained separately in the system and do not storgjications built on top of Chord [32] and Pastry [29], respectively,
any data item$. The Data Store ensures that the number of items two index structures designed for equality queries. The downside

stored in each live peer is betweghand?2 - sf, wheresf is some
storage factorin order to balance storage between peers.

Whenever the number of items in a pgéy Data Store becomes
larger thar2 - s£ (due to many insertions intp.range), it is said
that anoverflowoccurred. In this case tries tosplit its assigned
range (and implicitly its items) with a free peer, and to give a frac-
tion of its items to the new peer. Whenever the number of entries
in p's Data Store becomes smaller thah (due to deletions from
p.range), it is said that anunderflowoccurred. In this case, tries
to mergewith its successor in the ring to obtain more entries. In this
case, the successor eitledistributesits items withp, or gives up
its entire range t@ and becomes a free peer.

As an illustration of a split, consider the Data Store shown in
Figure 3. Assume thatf is 1, so each peer can have 1 or 2 entries.
Now, when an item such that.skv = 18 is inserted into the sys-
tem, it will be stored ip4, leading to an overflow. Thug,.range
will be split with a free peer, ang,’s items will be redistributed
accordingly. Figure 5 shows the Data Store after the split, where
p4 split with the free peeps, andps takes over part of the items
was originally responsible for (the successor pointers in the Chord
Ring are also shown in the figure for completeness). As an illustra-
tion of merge, consider again Figure 5 and assume thatiteith
t.skv = 19 is deleted from the system. In this case, there is an un-
derflow atp4, andps merges with its successar; and takes over
all of ps’s items; ps in turn becomes a free peer. Figure 6 shows
the resulting system.

Replication Manager. P-Ring uses CFS Replication which works
as follows. Consider an itemstored in the Data Store at peer
The Replication Manager replicatéso k& successors gf. In this

!In the actual P-Ring Data Store, free peers also store data items

temporarily for some live peers. The ratio of the number of items

of this approach is that it becomes quite complicated for appli-
cation developers because they have to understand the details of
how lower layers are implemented, such as how ring stabilization
is done. Further, this approach is also error-prone because complex
concurrent interactions between the different layers (which we il-
lustrate in Section 4) make it difficult to devise a system that pro-
duces consistent query results. Finally, even if application develop-
ers are willing to take responsibility for the above properties, there
are no known techniques for ensuring the above requirements for
P2P range indices.

In contrast, the approach we take is to cleanly encapsulate the
concurrency and consistency aspects in the different layers of the
system. Specifically, we embed consistency primitives in the Fault
Tolerant Ring and the Data Store, and provide handles to these
primitives for the higher layers. With this encapsulation, higher
layers and applications can simply use these APIs without having to
explicitly deal with low-level concurrency issues or knowing how
lower layers are implemented, while still being guaranteed query
consistency and availability for range queries.

Our proposed techniques differ from distributed database tech-
niques [20] in terms of scale (hundreds to thousands of peers, as
opposed to a few distributed database sites), failures (peers can fail
at any time, which implies that blocking concurrency protocols can-
not be used), and perhaps most importantly, dynamics (due to un-
predictable peer insertions and deletions, the location of the items
is not known a priori and can chandaring query processing).

In the subsequent two sections, we describe our solutions to
query correctness and system and item availability.

QUERY CORRECTNESS

We focus on query consistency for range queries (note that equal-

between any two peers can be bounded, but these details are noity queries are a special case of range queries). We first formally

relevant in the current context.

define what we mean by query correctness in the context of the

indexing framework. We then illustrate scenarios where query cor- hencep; splits with a new peep and transfers some of its items to
rectness can be violated if we directly use existing techniques. Fi- p. The new state of the Ring and Data Store is shown in Figure 8.
nally, we present our solutions to these problems. Detailed defini- At this point, p.range = (5, 6] andp:.range = (6, 10]. Also,
tions and proofs for all theorems stated in this section can be found while ps's successor list is updated to reflect the presenceg, of

in [22]. the successor list gf4 is not yet updated because the Chord ring
.. stabilization proceeds in rounds, apdwill only find out aboutp
4.1 Defining Correct Query Results when it next stabilizes with its successpg)in the ring.
Intuitively, a system returns a correct result for a qué@rif and Now assume thaps fails. Due to the Replication Manager,

only if the result contains all and only those items in the system that takes over the rang&0, 6] and adds the data itemsuch that
satisfy the query predicate. Translating this intuition into a formal M(i.skv) = 25 into its Data Store. The state of the system at this
statement in a P2P system requires us to define which items aretime is now shown in Figure 9. Now assume that a segahigi-

“in the system”; this is more complex than in a centralized system nates ap, for the rangg20, 9]. Sincep,.val is the lower bound of
because peers can fail, can join, and items can move between peerthe query rangep. tries to forward the message to the first peer in
during the duration of a query. We start by defining an index its successor listp;), and on detecting that it has failed, forwards
as a set of peerB = {p1, ..., pn}, Where each peer is structured it to the next peer in its successor lighJ. p: returns the items
according to the framework described in Section 2.2. To capture in the range(6, 10], but the items in the rang@0, 6] are missed!
what it means for an item to be in the system, we now introduce the (Even though all items in this range are live — they arg’nData

notion of alive item Store.) This problem arises because the successor pointers for
Definition 3 (Live Item): An itemi is live in API Data Store His- are temporarily inconsistent during the insertiorpdthey point to
tory H, denoted byivey (i), iff Ip € P (i € itemsn(p)). p1 instead ofp). Eventually, of course, the ring will stabilize and

pa Will point to p as its successor, bheforethis ring stabilization,
query results can be missed.

At this point, the reader might be wondering whether a simple
“fix” might address the above problem. Specifically, whapif
simply rejects the search request frpm(sincep, is notp;’s pre-
decessor) until the ring stabilizes? The problem with this approach
is thatp, does not know whether has also failed, in which case
p4 is indeedp;’s predecessor, and it should accept the message.
Again, the basic problem is that a peer does not have precise in-
formation about other peers in the system (due to the dynamics of

In other words, an iteni is live in API Data Store History{
iff the peer with the appropriate range contains its Data Store.
Given the notion of a live item, we can define a correct query result
as follows. We useatis fiesq (i) to denote whether itersatisfies
query@'’s query predicate.

Definition 4 (Correct Query Result): Given an API Data Store
History H = (Ox, <x), a setR of items is acorrect query result
for a query@ initiated with operatioros and successfully com-
pleted with operation. iff the following two conditions hold:

1. Vi € R (satisfiesq(i) AJo € On (05 <r 0 <24 0c A the P2P system), and hence potential inconsistencies can occur. We
liver, (i))) note that the scenario outlined in Figure 9 is just one example of in-
consistencies that can occur in the ring — rings with longer succes-
2. Vi (satisfiesq(i) A Yo € On(os <n 0 <p 0e A sor lists can have other, more subtle, inconsistencies (for instance,
livey, (i) =i € R)). whenp is not the direct predecessor;of).

The first condition states that only items that satisfy the query
predicate and which were live at some time during the query eval- .
uation should be in the query result. The second condition states 4.2.2 Concurrency in the I_:)ata S_tore
that all items that satisfy the query predicate and which were live ~ We now show how concurrency issues in the Data Store can pro-

throughout the query execution must be in the query result. duce incorrect query resultsyen if the ring is fully consistentve
) illustrate the problem in the context of a Data Store redistribute
4.2 Incorrect Query Results: Scenarios operation; similar problems arise for Data Store splits and merges.

Existing index structures for range queries evaluate a range query Consider again the system in Figure 5 and assume that a query
in two steps: (a) finding the peer responsible for left end of the @ With query rangg(10, 18] is issued ap,. Since the lower bound
query range, and (b) scanning along the ring to retrieve the items in Of p2.7ange is the same as the lower bound of the query range,
the range. The first step is achieved using an appropriate Contentthe sequential scan for the query range starts;atThe sequen-
Router, such as SkipGraphs [2] or the P-Ring [6] Content Router, tial scan operation first gets the data item®ifs Data Store, and
and the related concurrency issues have been described and solvelien gets the successorafin the ring, which isps. Now assume
elsewhere in the literature [2, 6]. We thus focus on the second stepthat the itemi with M(i.skv) = 11 is deleted from the index.
(scanning along the ring) and show how existing techniques can This causep- to become underfull (since it has no items left in its
produce incorrect results. Data Store), and it hence redistributes with its succegsorAf-

Scanning along the ring can produce incorrect query results dueter the redistributionp, becomes responsible for the itemwith
to two reasons. First, the ring itself can be temporarily inconsistent, M (i1.skv) = 16, andps is no longer responsible for this item.
thereby skipping over some live items. Second, even if the ring The current state of the index is shown in Figure 10.
is consistent, concurrency issues in the Data Store can sometimes NOW assume that the sequential scan of the query resumes, and
result in incorrect results. We now illustrate both of these cases the scan operation propagates the scapyt(the successor gfz).

using examples. However, the scan o_pe_ration will miss itemwith M(_il.skv) =
16, even thougli; satisfies the query range and was live throughout
4.2.1 Inconsistent Ring the execution of the query! This problem arises because of the

Consider the Ring and Data Store shown in Figure 5. Assume concurrency issues in the Data Store — the rangeiffatData
that items with M (i.skv) = 6 is inserted into the system. Since Store wasresponsible for changed whilevas processing a query.
pr.range = (5,10], i will be stored inp,’s Data Store. Now Consequently, some query results were missed.
assume thap,’s Data Store overflows due to this insertion, and

Search misses,
items with
peer p

Figure 9. Incorrect query results:
Search @ originating at peer p4
misses itemsin p

Figure 8. Peer p just inserted into the
system

Figure 10. System after peer po
redistributes with peer ps3

4.3 Ensuring Correct Query Results insertSucc that satisfies this property fdOINED peers.

We now present solutions that avoid the above scenarios and 4
provably guarantee that the sequential scan along the ring for range
queries will produce correct query results. The attractive feature of ~ We first introduce some notation. L&t be a given API Ring
our solution is that these enhancements are confined to the Ring andistory. This history induces a ring, denoted Ry,. Let P, be
Data Store components of the architecture, and higher layers (boththe set of live peers iIdOINED state in the ringp.succListy is
applications on top of the P2P system and other components of thethe successor list of pepiin H. p.succListy.length is the length
P2P system itself) can be guaranteed correctness by accessing théumber of pointers) op.succListy, andp.succListy[i] (0 <
components through the appropriate API. We first present a solu-¢ < p.succListy.length) refers to thei'th pointer in succList.
tion that addresses ring inconsistency, and then present a solutionVe definep.trim Listy; as thetrimmedcopy ofp.succListy with
that addresses Data Store concurrency issues. only pointers corresponding to live peersJ@INED state inR.

Definition 5 (Consistent Successor Pointers)siven an API Ring
History H, the ring R induced byH hasconsistent successor

3.1.1 Defining Consistent Successor Pointers

4.3.1 Handling Ring Inconsistency pointersiff the following condition holds:

As illustrated in Section 4.2.1, query results can be incorrectifa ~ ® Vp € Pr (Vi (0 <i < p.trimListy.length =
peer’s successor list pointers are temporarily inconsistent (we shall succy (p-tr imListy [%]) = p.trimListy[i + 1]) A
formally define the notion of consistency soon). Perhaps the sim- sucey(p) = p-trimListy[0]).

plest way to solve this problem is to explicitly avoid this inconsis- ~ The above definition says that there are no peers in the ring be-
tency by atomically updating the successor pointers of every rele- tween consecutive entries pftrimList i.e. p cannot have “miss-
vant peer during each peer insertion. For instance, in the exampleing” pointers to peers in the s@&. In our example in Figure 8,
in Section 4.2.1, we could have avoided the inconsistengy'# the successor pointers are not consistent with respect to the set of
and p4’s successor pointers had been atomically updated during all peers in the system becaysehas a pointer t@; but not top.
p’s insertion. Unfortunately, this is not a viable solution in a P2P .
system because there is no easy way to determine the peers whosé'?"l'2 Proposed Algorithm
successor lists will be affected by an insertion since other peers can We first present the intuition behind our insert algorithm. As-
concurrently enter, leave or fail, and any cached information can sume that a peey is to be inserted as the successor of a peer
become outdated. Initially, p” will be in the JOINING state. Eventually, we want
To address this problem, we introduce a new method for im- to transition to thedOINED state, without violating the consistency
plementinginsertSucc (Figure 1) that ensures that successor of successor pointers. According to the definition of consistent
pointers are always consistent even in the face of concurrent peersuccessor pointers, the only way in which convertindgrom the
insertions and failures (peer deletions are considered in the nextJOINING state to the)JOINED state can violate consistency is if
section). Our technique works asynchronously and does not requirethere exisdOINED peersp,. andp,, such thatp,..succList[i] = p
any up-to-date cached information or global co-ordination among andp,.succList[i + k] = p, (for somek > 1) and for allj, 0 <
peers. The main idea is as follows. Each peer in the ring can be inj < k, p,.succList[i + j] # p’. In other wordsp, has pointers
one of two statesJOINING or JOINED. When a peer is initially to p andp, but not top’ whose value occurs betwegrwal and
inserted into the system, it is in tREOINING state. Pointers to py-val.
peers in theJOINING state need not be consistent. However, each Our algorithm avoids this case by ensuring that at the tife
JOINING peer transitions to thdOINED state in some bounded changes from thdOINING state to thelOINED state, ifp, has
time. We ensure that the successor pointers to/ff@WNED peers pointers top andp, (wherep,’s pointer occurs aftep’s pointer),
are always consistent. The intuition behind our solution is that a then it also has a pointer {g. It ensures this property by propa-
peerp remains in theJOINING state until all relevant peers know gating the pointer tg’ to all of p's predecessors until it reaches the
aboutp — it then transitions to th@OINED state. Higher layers, predecessor whose last pointer in the successor jiyigich thus
such as the Data Store, only store items in peers iINOKBED does not have @, that can violate the condition). At this point,
state, and hence avoid inconsistencies. it transitionsp’ from the JOINING to the JOINED state. Propa-
We now formally define the notion of consistent successor point- gation ofp’ pointer is piggybacked on the Chord ring stabilization
ers. We then present our distributed, asynchronous algorithm for protocol, and hence does not introduce new messages.

Algorithm 1 : p;.insertSucc(Peer p) p

1: // Insertp into lists as aJOINING peer »

2: writeLock succList, stateList (o PP Py
3: succList.push_front(p) e !

4: stateList.push_front(JOINING)

5: releaseloclstateList, succList p
6: // Wait for successful insert ack P2

7: wait for JOIN ack; on ack do:

8: /I Notify p of successful insertion and update lists

9: writeLock succList, stateList Figure 11. After Figure 12. Propagation and
10: Send a message tandicating it is nowJOINED ps.insertSucc call final ack

11: stateList.update_front(JOINED)
12: succList.pop-back(), stateList.pop_back()
13: releaselLoclstateList, succList

Peer p leaves the ring

Peer p5is
disconnected

Algorithm 2 : Ring Stabilization

1: // Update lists based on successor’s lists
2: readLocksuccList, stateList
3: getsuccList/stateList from first non-failedps in succList (15) p
4: upgradeWriteLoclksuccList, stateList
5: succList = ps.succList; stateList = ps.stateList p3
g i?;;jgf;ﬁjf;;f;fgg&%lNED) Figur'e 13. Completed | Fijgure 14:1. Na(ijve Te;a;_e
8: succList.pop_back(), stateList.pop_back() insertSucc eads to reduced refiability
9: // HandleJOINING peers pa then checks whether the state of the last entdO$NING ;
10: listLen = succList.length in this case it simply deletes the entry (lines — 12) because it
11: if stateList[listLen — 1] == JOINING then is far enough from thedOINING node that it does not need to
12 succList.pop_back(); stateList.pop_back() know about it (although this case does not arise in our current sce-
13: else ifstateList[list Len — 2] == JOINING then nario for p4). ps4 then checks if the state of the penultimate peer
14: Send an ack teuccList[listLen — 3] (p) is JOINING - since this is the case in our scenaypig,sends
15: end if a acknowledgment to the peer preceding the penultimate peer in
16: releaselLoclkstateList, succList the successor listpg) indicating thatp can be transitioned from
JOINING to JOINED since all relevant predecessors know about
Algorithms 1 and 2 show the pseudocode foritieertSucc p (lines13 — 14). p, then releases the locks on its lists (litf®).
method and the modified ring stabilization protocol, respectively. ~ TheinsertSucc method ofps, on receiving a message from
In the algorithms, we assume that in additionsteccList, each ~ Pa. first send amessagestandicating thatitis now in theOINED
peer has a list callegtate List which stores the staté INING or state (line 10).ps then changes the state of its first list entpy (
JOINED) of the corresponding peer inuceList. We walk through to JOINED and removes the last entries from its Ilst§ in order to
the algorithms using an example. shorten them to the regular length (lines— 12). The final state
Consider again the example in Figure 5, wheiis to be added afterp is inserted into the ring and multiple ring stabilizations have
as a successor . TheinsertSucc method is invoked ops occurred is shown in Figure 13.

with a pointer top as the parameter. The method first acquires a _ One optimization we implement for the above method jsro@c-
write lock onsuccList andstateList, insertsp as the first pointer tively contact the predecessor in the ring whenensertSucc
in ps.succList (thereby increasing its length by one), and inserts a 1S in progress, to trigger ring stabilization. This expedites the op-

corresponding new entry int@;.stateList with value JOINING eratign s?nce it is no longer limited by the frequency of the ring
(lines2 — 4 in Algorithm 1). The method then releases the locks Stabilization process. o _
on succList and stateList (line 5) and blocks waiting for an We can define EPPER Ring Historjo capture our implemen-

acknowledgment from some predecessor peer indicating that it is ftion of the ring AP, including the operations in Algorithms 1 and 2.
safe to transitiorp from the JOINING state to theJOINED state We can prove the following theorem.
(line 7). The current state of the system is shown in Figure 11 Theorem 1 (Consistent Successor Pointers)Given a PEPPER

(JOINING list entries are marked with a “*"). Ring HistoryPH, the ring Rp+ induced byPH has consistent
Now assume that a ring stabilization occurpat p, will first successor pointers

acquire aread lock on itguccList andstateList, contact the first .

non-failed entry in its successor ligt;, to getps’s succList and 4.3.2 Handling Data Store Concurrency

stateList (lines2 — 3 in Algorithm 2). p,4 then acquires a write Recall from the discussion in Section 4.2.2 that even if the ring

lock on itssuccList andstateList, and copies over theuccList is fully consistent, query results can be missed due to concurrency

andstateList it obtained fromps (lines4 — 5). p4 then insertgs issues at the Data Store. Essentially, the problem is that the range

as the first entry isuccList (increasing its length by) and also of a peer can change while a query is in progress, causing the query

inserts the corresponding statesitute List (the state will always to miss some results. How do we shield the higher layers from the
be JOINED becausdOINING nodes do not respond to ring stabi- concurrency details of the Data Store while still ensuring correct
lization requests)p, then removes the last entriesdnccList and query results?

stateList (lines6 — 8) to ensure that its lists are of the same length Our solution to this problem is as follows. We introduce a nhew

asps’s lists. The current state of the system is shown in Figure 12. API method for the Data Store calledanRange . This method

has the following signaturescanRange(lb, ub, handlerld, Algorithm 3 : p.scanRange(b, ub, handler1d, param)
param) , where (1)b is the lower bound of the range to be scanned, 1: readLockrange

(2) ub is the upper bound of the range to be scannedhés)d- 2: if Ib € p.range then

lerld is the id of the handler to be invoked on every pgesuch 3: /I Abort scanRange

thatp.range intersectglb, ud] (i.e., p’s range intersects the scan 4: releaseLockange
5
6

range), and (4paramis the parameter to be passed to the handlers. 5: else
ThescanRange method should be invoked on the Data Store of I pis the first peer in scan range
the peerp; such thatib € pi.range (i.e., the first peer whose 7: p.processHandler(r, handlerId, param)
range intersects the scan range). The start and end operations as8: end if
sociated withscanRange areinitScanRange;(p1, b, ub) and
doneScanRange;(pn, Ib, ub) for somei € N. The indexi is Algorithm 4 : p.processHandler(lb, ub, handlerId, param)
used to distinguish multiple invocations of the API method with 1: // Invoke appropriate handler with relevant range
the same signature. TleeanRange method causes the appro- 2: Gethandler with id handlerId
priate handler to be invoked on every pgesuch thaip.range in- 3: r = [lb, ub] N p.range
tersectqlb, ub]. scanRange;(p, p1,) is the operation in the API 4: newParam zhandler.handlet, param,)
5
6
7

Data Store History that is associated with the invocation of the ap- 5: // Forward to successor if required
propriate handler at peex Here,r is the subset op.range that : if ub & p.range then
intersects witHib, ub]. ! Psuce = p.ring.getSucc()
scanRange handles all the concurrency issues associated with 8: pyycc.processScan(lb, ub, handlerId, new Param)
the Data Store. Consequently, higher layers do not have to worry 9: end if
about changes to the Data Store while a scan is in progress. Fur-10: releaseLockange
ther, sincescanRange allows applications to register their own

handlers, higher layers can customize the scan to their needs (WeyrocessHandler (Algorithm 4) first invokes the appropriate
shall soon show how we can collect range query results by register-handier for the scan (lines 1-3), and then checks to see whether

ing appropriate handlers). the scan has to be propagatedpts successor (line 4). If so, it
We now introduce some notation before we define the notion of jyokes theprocessScan method orp’s successor.
scanRange correctnes§Ve usescanOps(i) to denote the set of Algorithm 5 shows the code that executes when
scanRange;(p,p1,r) operations associated with th&' invoca- Psuce.processScan is invoked byp.processHandler
tion of scanRange . We userangeSet (i) = {r|3p1, p2 processScan asynchronousljnvokes theprocessHandler
scanRangei(p1, p2,7) € scanOps(i)} to denote the setofranges method omp,..., and returns. Consequentpyholds on to a lock on
reached byscanRange . We user; X r; to denote that range, its range only untip.c. 10cks its range; oncg.... locks its range,
overlaps with range and we use U r; to denote the union of , can release its lock, thereby allowing for more concurrency. Note
ranger; with ranger.. thatp can later split, merge, or redistribute, but this will not produce
We can definscanRange correctness follows: incorrect query results since the scan has already finished scanning
Definition 6 (scanRange Correctness)An API Data Store His- the items inp.
tory H = (O, <) is said to satisfyscanRange correctnesi$ We now illustrate the working of these algorithms using an ex-
Vi € N Vib,ubVp1 € P o. = doneScanRange;(p1,1b,ub) € ample. Assume thatcanRange (10, 18, h1, param,) is invoked
On = in p2 in Figure 5. p2 locks its range irscanRange (to prevent
1. 0 = initScanRange:(p1, b, ub) <3 0c p2’s range from changing), invokes the handler corresponding to

h1 in processHandler , and then invokeprocessScan on

ps. ps locks its range irprocessScan , asynchronously invokes
processHandler and returns. Sinces.processScan re-
turns,ps can now release its lock and participate in splits, merges,
or redistributions. Howeveps holds onto a lock on its range until

ps handler is finished executing. Thus, the algorithms ensure that

2. Yo € scanOps(i) Vp Vr o = scanRange;(p,p1,7)
= 0s <1 0 <y 0e AT C rangen, (p)

3. Yoi, 0m € scanOps(i) oy # 0m AVDL, Pm V71, Tm 0 =
scanRange;(pi, p1,71) N om = scanRange;(Pm, p1,Tm)
= (01 X om)

4. [Ib,ub] = Urerangeset(i) (T) a peer’s range does not change during a scan, but releases locks as
Condition 1 states that the initiate operation fmanRange soon as the scan is propagated to the peer’s successor, for maximum
should occur before the completion operation. Condition 2 states concurrency.
that ranger used to invoke the handler at peeiis a subset of We can define EPPER Data Store Histortp capture our im-
p’'s range. Condition 3 states that rangesand r,,, used to in- plementation of the Data Store APl augmented with the new oper-

voke the handlers at distinct pegrsandp..,, respectively, are non- ationscanRange . We can prove the following correctness theo-
overlapping. Finally, condition 4 states that the union of all ranges rem.
used to invoke the handlers[i$, ub]. Theorem 2 (scanRange Correctness)Any PEPPER Data Store
History satisfies the scanRange correctness property
Using thescanRange method, we can easily ensure correct
We present now our implementation for tekeanRange API results for range queries by registering the appropriate handler. Al-
method. Algorithm 3 shows the pseudocode for shanRange gorithm 6 shows the algorithm for evaluating range queiieand
method executed at a pgerThe method first acquires a read lock ub represent the lower and upper bounds of the range to be scanned,
on the Data Storeange (to prevent it from changing) and then andpid represents the id of the peer to which the final result is to
checks to make sure thidt € p.range, i.e.,p is the first peer in the be sent. As shown, the algorithm simply invokes skanRange
range to be scanned (lines 1-2). If the check fat@nRange is method with parameteii$, ub, the id of the range query handler,
aborted (lines 3-4). If the check succeeds, then the helper methodand a parameter for that handler. The id of the pedrthat the
processHandler s invoked. result should be sent to is passed as a parameter to the range query

4.3.2.1 Implementing scanRange

Algorithm 5 : p.processScan(lb, ub, handlerId, param) Algorithm 7 : p.rangeQueryHandler(r, pid)

1: readLockrange 1: // Get results from p’s Data Store
2: Invokep.processHandler(lb, ub, handlerId, param) asyn- 2: Finditems in p's Data Store in range
chronously 3: Send< items, r > to peerpid
3: return
Algorithm 6 : p.rangeQuery(b, ub, pid)

1: // Initiate a scanRange

2: p.scanRangéy, ub, rangeQueryHandler1d, pid) p
handler. The range query handler (Algorithm 7) invoked with range
r at a peelp works as follows. It first gets the items jis Data L
Store that are in range and hence satisfy the query result (lines P
1-2). Then, it sends the items and the rande the peepid (line hs

3).

Using the above implementation of a range query, the inconsis- Figure 15. Controlled leave Figure 16. Finalack
tency described in Section 4.2.2 cannot occur becaw'serange of peer p received at peer p. Peer pis
cannot change (and hence redistribution cannot happen) when the good to go.

;sr:aarch is still active ip>. We can prove the following correctness ot e najveleave | a single failure can disconnect the ring. Thus,
eorem:

leave reduces the availability of the system. Assume teate
Theorem 3 (Search Correctness)Given a PEPPER Data Store s invoked onp, andp immediately leaves the ring. Now assume

History PH, all query results produced i®H are correct(as per that p; fails (this is the single failure). The current state of the
the definition of correct query results in Section 4.1) system is shown in Figure 14, and as we can see, the ring is discon-

nected since none gf;’s successor pointers point to peers in the
5. SYSTEM AND ITEM AVAILABILITY ring.

We now address system availability and item availability issues. Solution Sketch: The reason the naive implementationedve
Intuitively, ensuring system availability means that the availability reduced availability is that pointers to the peeieaving the ring
of the index should not be reduced due to routine index mainte- become invalid. Hence, the successor lists of the peers pointing to
nance operations, such as splits, merges, and redistributions. Simip effectively decreases by one, thereby reducing availability. To
larly, ensuring item availability means that the availability of items avoid this problem, our solution is to increase the successor list
should not be reduced due to maintenance operations. Our discuslengths of all peers pointing tp by one. In this way, wherp
sion of these two issues is necessarily brief due to space constraintsleaves, the availability of the system is not compromised. As in
and we only illustrate the main aspects and sketch our solutions. theinsertSucc case, we piggyback the lengthening of the suc-

. .. cessor lists on the ring stabilization protocol. This is illustrated in
5.1 System Availability the following example.

An index is said to bavailableif its Fault Tolerant Ring is con- Consider Figure 13 in whicleave is invoked orp. During the
nected. The rationale for this definition is that an index can be next ring stabilization, the predecessompgfvhich isps, increases
operational (by scanning along the ring) so long as its peers areits successor list length by 1. The state of the system is shown in
connected. The Chord Fault Tolerant Ring provides strong avail- Figure 15. During the next ring stabilization, the predecessor of
ability guarantees when the only operations on the ring are peerps, which isp4, increases its successor list length by 1. Singe
insertions (splits) and failures [32]. These availability guarantees is the last predecessor that knows abauyi, sends a messagejto
also carry over to our variant of the Fault Tolerant Ring with the indicating that it is safe to leave the ring. The state of the system
new implementation ohsertSucc described earlier because it ~ at this point is shown in Figure 16. It is easy to see thatlé#aves
is a stronger version of the Chord’s corresponding primitive (it sat- the ring at this point, a single failure cannot disconnect the ring, as
isfies all the properties required for the Chord proofs). Thus, the in was the case in the previous example. We can formally prove
only index maintenance operation that can reduce the availability that the new algorithm foeave does not reduce the availability
of the system is the merge operation in the Data Store, which trans-of the system.
lates to thdeave operation in the Fault Tolerant Ring. Note that . -
the redistribute operation in the Data Store does not affect the ring 5.2 Item Avallab”'ty

connectivity. We first formalize the notion of item availability in a P2P index.

We show that a naive implementationleave , which is simply We represent the successful insertion of an iteahpeerp with
removing the merged peer from the ring, reduces system availabil- operationinsertItem(i, p) and deletion of an iteni’ at peerp’
ity. We then sketch an alternative implementation for léeeve with operationdeleteltem(i’, p’).

that provably does not reduce system reliability. Using this new im- pefinition 7 (Item Availability): Given an API Index HistoryH,
plementation, the Data Store can perform a merge operation with- 54 indexP is said to preserviiem availabilityiff

out knowing the details of the ring stabilization, while being guar- v; (3, ¢ P (insertItem(i,p) € Ox) A

anteed that system availability is not compromised. Bp € P (deleteltem(i,p') € Oxn) = liver (i)).

Naiveleave Reduces System Availability:Consider the system In other words, if itemi has been inserted but not deleted wrt to
in Figure 13 in which the length of the successor list of each peer is APl Index historyH theni is a live item.

2. Without aleave primitive, this system can tolerate one failure The CFS Replication Manager, implemented on top of the Chord
per peer stabilization round without disconnecting the ring (since Ring provides strong guarantees [9] on item availability when the
at most one of a peer’s two successor pointers can become invalidonly operations on the ring are peer insertions and failures, and
before the stabilization round). We now show that in the presence these carry over to our system too. Thus, the only operation that

pi leaves the system dexing framework (Section 2.3). The code was written in C++ and
Replicate replicas (25 in this case) . . .
to one additional hop all experiments were runon a cluster of workstations, each of which
had 1GHz processor, 1GB of main memory and at least 15GB of
disk space. All experiments were performed with 30 peers running
concurrently on 10 machines (with 3 peers per machine). The ma-
chines were connected by a local area network.

We used the following default parameter values for our experi-
ments. The length of the Chord Fault-Tolerant Ring successor list
was 4 (which means that the ring can tolerate up to 3 failures with-
out being disconnected if the ring is fully consistent). The ring
stabilization period was 4 seconds. We set the storage factor of the
P-Ring Data Store to be 5, which means that it can hold between 5
and 10 data items. The replication factor in the Replication Man-
ager is 6, which means that each item is replicated 6 times. We vary
these parameters too in some of the experiments.

We ran experiments in two modes of the system. The first mode
could compromise item availability is thieave operation in- was thefail-freemode, where there were no peers failures (although
voked on a merge. We now show that using the original CFS Repli- peers are still dynamically added and splits, merges, and redistrib-
cation Manager in the presence of merges does compromise itemutes occur in this state). The second wasftikire mode, where
availability. We then describe a modification to the CFS Replica- we introduced peer failures by killing peers. For both modes, we
tion Manager and its interaction with the Data Store that ensures added peers at a rate of one peer every 3 seconds, and data items
the original guarantees on item availability. were added at the rate of 2 items per second. We also vary the rate

Scenario that Reduces Item Availability: Consider the system Of peer failures in the failure mode.
in Figure 7. The top box associated with each peer represents the,

items replicated at that peer (CFS replicates items along the ring). 6.2 Implemented Approaches

In this example, each item is replicated to one successor along the We implemented and evaluated all four of the techniques pro-
ring; hence, the system can tolerate one failure between replicaposed in this paper. Specifically, we evaluate (1) itigertSucc
refreshes. We now show how, in the presence of Data Store mergesoperation that guarantees ring consistency, (2pt@mRangeper-

a single failure can compromise item availability. Assume that peer ation that guarantees correct query results, (3)eageoperation

p1 wishes to merge with. in Figure 7.p; thus performs ateave that guarantees system availability, and (4) téglication to ad-
operation, and once it is successful, it transfers its Data Store itemsditional hopoperation that guarantees item availability. Boan-

to p» and leaves the system. The state of the system at this time Rangewe implemented a synchronous version wheretbeessHan-

is shown in Figure 17. Ips fails at this time (this is the single dleris invoked synchronously at each peer (see Algorithm 5).
failure), the itemi such thatM (i.skv) = 25 is lost. One of our goals was to show that the proposed techniques ac-

tually work in a real distributed dynamic P2P system. The other
goal was to compare each solution with a naive approach (that does
not provide correctness or availability guarantees). Specifically, for
theinsertSucmperation, we compare it with the naiiresertSuce
where the joining peer simply contacts its successor and becomes
o Part of the ring. For thecanRangeperation, we compare it with

the naive range query method whereby the application explicitly
scans the ring without using tlseanRangerimitive. For theleave
operation, we compare with the naive approach where the peer sim-
ply leaves the system without notifying other peers. Finally, for the
replication to additional hopperation, we compare with the naive
approach without additional replication.

When p5 fails,
data item 25 is lost

Figure 17. Peer ps fails Figure 18. Replicate item 25
causing loss of item 25 one additional hop.

Solution Sketch: The reason item availability was compromised in
the above example is because wheneft the system, the replicas

it stored were lost, thereby reducing the number of replicas for cer-
tain items in the system. Our solution is to replicate the items stored
in the merging peew's Replication Manager for one additional hop
beforep leaves the system. This is illustrated in Figure 18, wher
beforep; merges withp,, it creates one more replica for items
in its Data Store and Replication Manager, at one additional peer.
Whenp; finally merges withp, and leaves the system, the number
of replicas is not reduced, thereby preserving item availability. We
can prove that the above scheme preserves item availability even in
the presence of concurrent splits, merges, and redistributions.

6.3 Experimental Results
6. EXPERIMENTAL EVALUATION We now present our experimental results. We first present results

We had two main goals in our experimental evaluation: (1) to in the fail-free mode, and then present results in the failure mode.
demonstrate the feasibility of our proposed query correctness and .
availability algorithms in a dynamic P2P system, and (2) to mea- 6.3.1 EvaluatingnsertSucc
sure the overhead of our proposed techniques. Towards this goal, |n this section we quantify the overhead of dnsertSucavhen
we implemented the P-Ring index, along with our proposed cor- compared to the naivi@sertSucc The performance metric used is
rectness and availability algorithms, in a real distributed environ- the time to complete the operation; this time is averaged over all
ment with concurrently running peers. We used this implementa- such operations in the system during the run of the experiment.
tion to measure the overhead of each of our proposed techniques as We vary two parameters that affect the performance of the oper-
compared to the naive approach, which does not guarantee correctations. The first parameter is the length of the ring successor list.
ness or availability. The longer the list, the farthénsertSucchas to propagate infor-

mation before it can complete. The second is the ring stabilization
. period. The longer the stabilization period, the slower information

6.1 Experimental Setup about joining peers propagates due to stabilization.

We implemented the P-Ring index as an instantiation of the in- Figure 19 shows the effect of varying the ring successor list

0.3 T T T T 0.3 T T T T 0.25 T T T T T
naive insertSuccessor —— naive insertSuccessor —— 0285 | search using scanRange —— |
0251 insertSuccessor - | 025 | insertSuccessor - | - naive application search -------
' ' 0.24 ¢ 1
~ ~ A0l ~ 0235
O 02F [| O
A & & 0}
/\//_ /\/
E o5t] E 05t] £ 05}
k01 Fo0l Fooast
005 005 L E— —
0.205
0 1 1 1 1 1 0 1 1 1 1 1 0.2 1 1 1 1 1
2 3 4 5 6 7 8 2 3 4 5 6 7 8 0 2 4 6 8 10 1
Successor List Length Ring Stabilization Period (in sec) Num Hops Along Ring
Figure 19. Overhead of insertSucc Figure 20. Overhead of insertSucc Figure 21. Overhead of scanRange

2

length. There are several aspects to note about this figure. Firstjoo T ————
the time for outinsertSucdncreases linearly with the successor list leaveRing -
length, while the time for the naivimsertSucaremains constant. naiveleave -
This is to be expected because the nansertSuconly contacts
the successor, while ounsertSucgpropagates information to as
many predecessors as the length of the successor list. Second,
haps surprisingly, the rate of increase of the time forinsertSucc
operation is very small; this can be attributed to the optimization
discussed in Section 4.3.1, where we proactively contact predeces-01 e 0 e
. . - . . 2 3 4 5 6 7 8 0 2 4 6 8 10 12
sors instead of only relying on the stabilization. Finally, an encour- Successor Lis Lengh Fallre rte (s per 10 sc)
aging result is that thg .cost of omsgrtSucos of the same ball Figure 22. Overhead of leave Figure 23. insertSucc in failure
park as that of the naivimsertSucg this means that users do not mode
pay too high a price for consistency.

Figure 20 shows the result of varying the ring stabilization fre-
guency. The results are similar to varying the successor list length.
Varying the ring stabilization period also has less of an effect on
ourinsertSucdecause of our optimization of proactively contact-
ing predecessors.

T T T
insertSuccessor ——

H
1=
S
-
o

10

er-
1

Ti@e (in msec)
Time (in sec)
-

o
o

items from the system that cause peers to merge and leave the ring.
We measure the time elapsed for three operations: (lpthe

operation in the ring, and (2) the merge operation in the Data Store

(which includes the time foreplicate to additional hop and (3)

the naiveleave Figure 22 shows the variation of the three times

with successor list length. Note the log scale on y-axis. We observe

that theleaveand merge operations take approximately 100 msec,

6'3'2_ Evgluatln.g;can_Range) and do not constitute a big overhead. The naive version takes only
In this section, we investigate the overhead of usiognRange 1 msec since it simply leaves the system.

when compared to the naive approach of the application scanning
the range by itself. Since the number of messages needed to com- 6.3.4 Evaluation in Failure Mode

plete the operation is the same for both approaches, we used the \yg have so far studied the overhead of our proposed techniques
elapsed time to complete the range search as the relevant perfor-, 5 gystem without failures. We now look at how our system be-
mance metric. We varied the size of the range to investigate its 565 'in 4 system with failures. In particular, we measure the vari-
effect on performance, and averaged the elapsed time over all the 514, of the average time taken for an insertSucc operation with the
searches requiring the same number of hops along the ring. Eacht,iiyre rate of peers. The system setting is as follows: We insert
peer generates searches for ranges of different sizes, and we meag o peer every three seconds into the system, and we insert two

sured the time needed to process the range search, once the firsfomg every second. We use the default successor list length (4)

peer with items in the search range was found. This allows us to and default ring stabilization period (4 sec).

isolate the effects of scanning along the ring. _ Figure 23 shows the variation of average time taken for a insert-
Figure 21 shows the performance results. As shown, there is g,cc operation with the peer failure rate. We observe that even in

practically no overhead to usirgganRang@s compared with the {6 case when the failure rate is as high as 1 in every 10 seconds,

application level search; again, this indicates that the price of con- e time taken for insertSucc is not prohibitive (about 1.2 seconds
sistency is low. To our surprise, the time needed to complete the compared to 0.2 seconds in a stable system).

range search, for either approach, does not increase significantly

with the increased number of hops. On further investigation, we

determined that this was due to our experiments running on a clus- 7. RELATED WORK

ter in the local area network. In a wide area network, we expectthe There has been a flurry of recent activity on developing indices
time to complete a range search to increase significantly with the for structured P2P systems. Some of these indices can efficiently

number of hops. support equality queries (e.g., [28, 32, 29]), while others can sup-
. port both equality and range queries (e.g., [1, 2, 5, 6, 10, 12, 14,
6.3.3 EvaluatingeaveandReplicate to additional hop 15, 31]. This paper addresses query correctness and availability
In this section, we investigate the overhead of the proptesad issues for such indices, which have not been previously addressed

andreplicate to additional hopperations as compared to the naive for range queries. Besides structured P2P indices, there are unstruc-
approach of simply leaving the ring without contacting any peer. tured P2P indices such as [8, 13]. Unstructured indices are robust
For this experiment, we start with a system of 30 peers and delete to failures, but do not provide guarantees on query correctness and

item availability. Since one of our main goals was to study correct- [10] A. Daskos, S. Ghandeharizadeh, and X. An. Peper: A

ness and availability issues, we focus on structured P2P indices.

There is a rich body of work on developing distributed index

distributed range addressing space for p2p systems. In
DBISP2R 2003.

structures for databases (e.g., [18, 19, 21, 23, 24]. However, most[11] L. Galanis, Y. Wang, S. Jeffery, and D. DeWitt. Locating

of these technigues maintain consistency among the distributed repli-

cas by using grimary copy which creates both scalability and

availability problems when dealing with thousands of peers. Some
index structures, however, do maintain replicas lazily (e.g., [19, 21,

data sources in large distributed systems/IlDB, 2003.
[12] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online
balancing of range partitioned data with applications to
peer-to-peer systems. WLDB, 2004.

24]). However, these schemes are not designed to work in the Pres{13] Gnutella - hitp://gnutella.wego.com.

ence of peer failures, dynamic item replication and reorganization, [14] B. Godfrey,
which makes them inadequate in a P2P setting. In contrast, our | !
techniques are designed to handle peer failures while still provid-

ing correctness and availability guarantees.

Besides indexing, there is also some recent work on other data
management issues in P2P systems such as complex queries [1
16, 26, 27, 33, 34]. A correctness condition for processing aggre-
gate queries in a dynamic network was proposed in [3]. An in-

teresting direction for future work is to extend our techniques fo

T16]

¢ [17] Jbi home page - http://www.rl.af.mil/programs/jbi/.

K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load balancing in dynamic structured p2p systems.
In INFOCOM, 2004.

[15] A. Gupta, D. Agrawal, and A. El Abbadi. Approximate range

selection queries in peer-to-peer system<IDR, 2003.

R. Huebsch, J. Hellerstein, N. Lanham, B. Loo, S. Shenker,

and |. Stoica. Querying the internet with pierVhDB, 2003.

query correctness and system availability to work for other complex [18] T. Johnson and A. Colbrook. A distributed data-balanced

queries such as keyword searches and joins.

8. CONCLUSION

We have introduced the first set of techniques that provably guar-
antee query correctness and system and item availability for range
index structures in P2P systems. Our techniques provide provable
guarantees, and they allow applications to abstract away all possi-
ble concurrency and availability issues. We have implemented our
techniques in a real distributed P2P system, and quantified their

performance.

As a next step, we would like to extend our approach to handle

more complex queries such as joins and keyword searches.

9. ACKNOWLEDGEMENTS

This work was supported by NSF Grants CRCD-0203449, ITR-
0205452, 1IS- 0330201, and by AFOSR MURI Grant F49620-02-
1-0233. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not nec

essarily reflect the views of the sponsors.

10. REFERENCES

[1] K. Aberer. P-grid: A self-organizing access structure for p2p
information systems. I€ooplS 2001.

[2] J. Aspnes and G. Shah. Skip graphsSIBDA 2003.

[3] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The
price of validity in dynamic networks. I8IGMOD, 2004.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Systems
Addison-Wesley Publishing Company, 1987.

[5] A.R.Bharambe, S. Rao, and S. Seshan. Mercury:
Supporting scalable multi-attribute range queries?ioc.
SIGCOMM 2004.

[6] A. Crainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke,
and J. Shanmugasundaram. P-ring: An index structure for
peer-to-peer systems. @ornell Technical Repor2004.

[7] A. Crainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke,
and J. Shanmugasundaram. A storage and indexing
framework for p2p systems. WWW Poster2004.

[8] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer networks. I€DCS 2002.

[9] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFSSIASP 2001.

dictionary based on the b-link tree. IRPS 1992.

[19] T. Johnson and P. Krishna. Lazy updates for distributed
search structure. IBIGMOD, 1993.

[20] D. Kossmann. The state of the art in distributed query
processing. IRCM Computing SurveySep 2000.

[21] B. Kroll and P. Widmayer. Distributing a search tree among a
growing number of processors. 8iIGMOD, 1994.

[22] P. Linga, A. Crainiceanu, J. Gehrke, and
J. Shanmugasundaram. Guaranteeing correctness and
availability in p2p range indices. IBornell Technical
Report 2005.

[23] W. Litwin, M.-A. Neimat, and D. Schneider. Rp*: A family
of order preserving scalable distributed data structures. In
VLDB, 1994.

[24] D. Lomet. Replicated indexes for distributed dataPDIS,
1996.

[25] N. A. Lynch. Distributed AlgorithmsMorgan Kaufmann
Publishers, Inc., 1997.

T26] W. Ng, B. Ooi, K. Tan, and A. Zhou. Peerdb: A p2p-based

system for distributed data sharing.l®DE, 2003.

[27] V. Papadimos, D. Maier, and K. Tufte. Distributed query
processing and catalogs for peer-to-peer systemSIir,
2003.

[28] S. Ratnasamy, M. H. P. Francis, R. Karp, and S. Shenker. A
scalable content-addressable networkSIGCOMM 2001.

[29] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer
systems. IrMiddleware 2001.

[30] A. Rowstron and P. Druschel. Storage management and
caching in past, a large-scale, persistent peer-to-peer storage
utility. In SOSP2001.

[31] O.D. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi. A
peer-to-peer framework for caching range querie$CIDE,
2004.

[32] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. BIGCOMM 2001.

[33] I. Tatarinov and A. Halevy. Efficient query reformulation in
peer-data management systemsSIGMOD, 2004.

[34] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and
N. Ntarmos. Towards high performance peer-to-peer content
and resource sharing systemsQIDR, 2003.

