
Efficient Concurrency Control for Broadcast Environments

Jayavel Shanmugasundaram* Arvind Nithrakashyap Rajendran Sivasankaran
Krithi Ramamrithamt

University of Massachusetts, Amherst
jai@cs.wisc.edu, {nithraka, sivasank, krithi}@cs.umass.edu

Abstract
A crucial consideration in environments where data is broad-
cast to clients is the low bandwidth available for clients to
communicate with servers. Advanced applications in such
environments do need to read data that is mutually consis-
tent as well as current. However, given the asymmetric com-
munication capabilities and the needs of clients in mobile en-
vironments, traditional serializability-based approaches are
too restrictive, unnecessary, and impractical. We thus pro-
pose the use of a weaker correctness criterion called update
consistency and outline mechanisms based on this criterion
that ensure (1) the mutual consistency of data maintained
by the server and read by clients, and (2) the currency of
data read by clients. Using these mechanisms, clients can
obtain data that is current and mutually consistent “off the
air”, i.e., without contacting the server to, say, obtain locks.
Experimental results show a substantial reduction in re-
sponse times as compared to existing (serializability-based)
approaches. A further attractive feature of the approach
is that if caching is possible at a client, weaker forms of
currency can be obtained while still satisfying the mutual
consistency of data.

1 Introduction
Many emerging database applications, especially those
with numerous concurrent clients, demand the broad-
cast mode for data dissemination. For example, in elec-
tronic commerce applications, such as auctions, it, is ex-
pected that a typical auction might bring together mil-
lions of interested parties even though only a small frac-
tion may actually offer bids, Updates based on the bids
made must be disseminated promptly and consistently.
Fortunately, the relatively small size of the database,

‘Currently at the University of Wisconsin-Madison
tAlso affiliated with Indian Institute of Technology, Bombay

Permission to make digital or hard copies 01‘ all or part 01‘ this work thl
personal or classroom use is grant&without fee provided that topics
are not made or distributed for profit or commercial advantage and that
copies hear this notice and the full citation WI the first page. To copy
otherwise, to republish, to post on servers or to redistrihtite to lists.
requires prior specific permission andior a fee.

SIGMOD ‘99 Philadelphia PA
Copyright ACM 1999 l-581 13-084-8/99/05...$5.00

i.e., the current, state of the auction, makes broadcasting
feasible. But, the communication bandwidth available
for a client, to communicate with servers is likely to be
quite restricted. Thus, an attractive approach is to use
the broadcast medium to transmit the current, state of
the auction while allowing the clients to communicate
their updates (to the current, state of the auction) us-
ing low bandwidth uplinks to the servers. The problem
addressed in this paper and the techniques outlined are
motivated by such applications. In particular, we are
concerned with the problem of providing readers with
current and mutually consistent data while ensuring the
consistency of updates.

Broadcast-based data dissemination is also likely to
be a major mode of information transfer in mobile com-
puting and wireless environments [Imi94, Ach95]. Many
such systems have been proposed [She94, Oki93] and
commercial systems such as Vitria pit] already support
broadcasting. As these systems evolve, they will be used
to run sophisticated applications, many of which will
involve data whose consistency must be maintained in
spite of updates, some of which may originate from mo-
bile clients. Other applications of broadcasting, include
stock trading, next generation road traffic management
systems and automated industrial plants. Given the
limited amount of bandwidth available for clients to
communicate with the broadcast server, achieving data
consistency efficiently is a challenging research issue.

[Her871 and [Ach96] are among the few papers
motivated by similar considerations. Herman et. al.
[Her871 discuss transactional support in the Datacycle
architecture, which is also an asymmetric bandwidth
environment. However, they use serializability as the
correctness criterion, which we show is very expensive,
restrictive, and unnecessary in such environments. In
[Ach96], the authors discuss the tradeoffs between
currency of data and performance issues when some
of the broadcast data items are updated by processes
running on the server. However, the updates do
not, have transactional semantics associated with them
either at the server or at the clients. The updates are
made only by processes running on the server, while the

85

processes on clients are assumed to be read-only. There
has been some very recent concurrent related work
[Pit99]. One of their approaches (based on serialization
graph testing) is similar in functionality to ours, but
it requires clients to be listening continuously to the
broadcast. This approach, unlike ours, is thus intolerant
to communication failures.

In this paper, we propose and evaluate protocols
appropriate for broadcast environments. The protocols
satisfy two properties: (1) mutual consistency and
(2) currency. Mutual consistency ensures that (a)
the server maintains mutually consistent data and (b)
clients can read mut~ually consistent data. Currency
ensures that clients see data that is current (as of the
beginning of a broadcast cycle). We ensure mutual
consistency by adapting a correctness criterion called
update consistency in [Bob921 and external consistency
in [Wei87]r for transaction processing in broadcast
environments. Our protocols, presented in the context
of broadcast disks [Ach95], are intended for applications
similar to the auction application, where the size of
the database is relatively small but the number of
clients is very large. ‘These protocols permit read-only
transactions running on mobile clients to always read
current and consistent values without contacting the
server (to acquire locks or to validate their reads), i.e.,
they are able to read current values “off-the-air”. We
also evaluate their performance and compare them with
the algorithm used in Datacycle.

The rest of the paper is organized as follows. In sec-
tion 2, we outline the characteristics of broadcast envi-
ronments and demonstrate the inapplicability of exist-
ing concurrency control techniques. We then motivate
the need for a consiste:ncy criterion weaker than serializ-
ability and show that update consistency is more appro-
priate. In section 3, we describe an efl-icent algorithm
APPROX to check for update consistency and outline
mechanisms to implement it in broadcast disk environ-
ments while also satisfying currency requirements. In
section 4, we evaluate the performance of these mech-
anisms and in Section 5, we summarize the paper and
outline future work.

2 Correctness in Broadcast
Environments

In this section, we first outline the characteristics
of broadcast environments and then describe why
most existing concurrency control techniques are not
applicable in broadcast environments. Finally, we
identify the need to satisfy update consistency [Bob92,
Wei87], a weakening of serializability, and currency of
data seen by clients.

‘For the rest of the paper, we refer to this correctness criterion
as update consistency.

2.1 Characteristics of Broadcast
Environments

In this section, we first describe broadcast disks, a
particular type of broadcast environment and then
use them to illustrate key characteristics of broadcast
environments.

In the broadcast disks [Ach95] framework, a server pe-
riodically broadcasts all the data items in the {database
clients. The clients view this broadcast as a disk and
can read the values of data items being broadcast and
cache them locally. In order to write onto objects, the
clients contact the server with the appropriate inform.a-
tion. The size of the database being transmitted cannot
be too large or intolerable delays may be experienced
at the client waiting for a data item. Fortunately, for
many applications like online auctions and trafhc con-
trol, the number of data items being transmitted is not
too large (of the order of hundreds, sometimes thou-
sands, of objects).

In such environments, though the server to clie:nt
bandwidth is relatively plentiful, the bandwidth from
clients to the server is likely to be very limited because:

l The number of clients listening to a server Icould be
of the order of millions, so a server cannel; handle
high bandwidth communication from all the clients.

l Battery power is a scarce resource for mobile
clients. Since transmissions require substantial
battery power (which is more than is needed for
reception), transmissions from a client should be
avoided, if possible .

Thus, techniques for concurrency control in broadcast
environments must take this asymmetry in bandwidth
into account. In the next section, we show that existing
concurrency control techniques do not efficiently satisfy
these requirements because they are not designed for
such asymmetric communication environments.

2.2 Inapplicability of Serializability fcr
Broadcast Environments

Serializability [Ber87] is the commonly accepted cor-
rectness criterion for transactions in database systems.
It is, however, intrinsically a global property - the ef-
fect of concurrent transaction execution should be as
though all the transactions executed in some serial or-
der. It (a) requires excessive communication between
the distributed entities, to obtain locks, for example, or
(b) requires the underlying protocol to be overly conser-
vative thus disallowing certain correct executions. Thle
first alternative is expensive in broadcast environments
because of the limited bandwidth that clients ha1.e avail-
able to communicate with the server. The second alter-
native leads to unnecessary transaction aborts, which
again is undesirable. We now show that three funda-
mental techniques, at least one of which is used by vir,-
tually any proposed concurrency control mechanism to

86

satisfy serializability in distributed/client-server envi-
ronments, are inapplicable for broadcast environments.

l Locking: Many proposed concurrency control proto-
cols [CarSl, Wan91, Wi190, Fra93, Mo182] use lock-
ing even for read-only transactions. In broadcast
environments, this would translate to acquiring read
locks for every data item read by client transactions
which would swamp the server with lock requests.

l Cache Consistency Mechanisms: These protocols
[CarSl, Wan91, Wil90, Fra93] predominantly as-
sume that the server is aware of the data items
cached at the clients so that changes to data items
can be invalidated/propagated to clients. Clearly,
these techniques would not be applicable in broad-
cast environments because (a) the server has to keep
track of the caches of a large number of clients and
(b) the clients would have to inform the server every
time a data item is read, leading to high overhead
even for read-only transactions. [Guk96] considers
using old versions of data at the clients, which, in
addition, compromises the currency of data items
read.

l Timestamp Mechanism: Some mechanisms pro-
posed for distributed systems [Wei87] use timestamp
based concurrency control protocols that require an
object to keep track of both read and write times-
tamps. This is infeasible in broadcast environments
because this would require client to server commu-
nication for every read.

To the best of our knowledge, the Datacycle ap-
proach [Her871 is the only concurrency control technique
proposed in the literature aimed at broadcast environ-
ments. The Datacycle approach ensures that all trans-
actions executing at clients and the server are globally
serializable. But, as we just argued, it would still lead to
poor performance because serializability is very expen-
sive to achieve in broadcast environments. Experimen-
tal results presented in Section 4 support this argument.

If we would like to avoid the (substantial) communi-
cation costs incurred by the interactions with the server
- needed to ensure serializability - then, as we show
now, clients have to be conservative, leading to unnec-
essary aborts.

Example 1. Assume that in a broadcast environment,
clients only know the local transaction execution history
and the history of updates at the server. Consider stock
trading transactions tl and t3 at two different clients A
and B respectively that read the stock prices of IBM
and Sun. Also let t2 and t4 be transactions at the server
that update the prices of IBM and Sun respectively.
Now consider the following execution history:

If transactions running on clients do not inform the
server about the operations performed by them -
a reasonable assumption given the limited uplink
bandwidth from clients to the server - then the server
would only be aware of the history of its own operations:

If a server broadcasts this history along with the data,
client A would be aware of the history:

rr(IBM) w2(IBM) cz w4(Sun) c4 ri(Sun)
and Client B would be aware of the history:

wz(IBM) cs rs(IBM) rs(Sun) wr(Sun) c4
If both tl and t3 commit, then the server and both the

clients see serializable histories (the serialization orders
are t2; t4, t4; tl; t2 and t2; t3; t4 respectively). However,
the global history is not serializable. Thus, either tl or
t3 must be aborted. However, since the read operations
performed by a client transaction are not communicated
to other clients or the server, and assuming that there
exists no way to inform clients tl and t3 except by
expensive message passing, both tl and t3 would have
to be aborted - since each client must assume the
worst-case history at the other. This is wasteful since
the abortion of either tl or t3 would have ensured a
serializable history. Unnecessary aborts would occur
even if the system history is

rl(IBM)v~(IBM)c2w~(Sun)c~r~(Sun) (2)

because Client A would be aware of this history and
would not be able to distinguish it from (1). In this
case too, tl must be aborted. A similar argument can
be made for t3. Essentially, in the absence of commu-
nication from read-only transactions, to preserve seri-
alizability, the read-only transactions will have to be
aborted even in cases like history (2) because clients
would have to assume worst case scenarios as in history
(1).

Example 2. Consider the following history that is a
modification of the history used in Example 1 (it has the
additional operation zur(DEC), so that tl is not read-
only any more, and a commit operation for transaction
t3). Again assume that transactions tl and t3 are
executed at two different clients and that transactions
t2 and t4 are executed at the server.

Let us assume that transaction tl now desires to
commit. At the commit time, the server would be aware
of the following history.

r~(IBM)u~(IBM)c~w4(Sun)c~r~(Sun)ui(~EC) (4)

This is because the server needs to be aware of the
reads and writes of all update transactions, whether
they originate at the client or the server, in order to
ensure consistency. In the absence of high client to
server bandwidth, however, the server would not know

87

about any read-only transactions. The sub history (4)
is serializable when tr commits even though the entire
history (3) is not. The implication of this example is
that, even if the actual history of execution is like (4),
update transactions such as tr would not be allowed
to commit under serializability because a worst case
scenario, such as (3), has to be assumed. Clearly this is
wasteful since it causes unnecessary transaction aborts.

The above two ex,smples illustrate that, in broad-
cast environments, serializability is very expensive to
achieve, both for read-only and update transactions.
This is because of the unnecessary aborts serializability
might induce or because of the excessive communication
it entails if such aborts are to be avoided.

In summary, we can see that serializability fails to
be an appropriate correctness criterion because of two
main reasons: (1) A;s exemplified by Example 1, all
read-only transactions executing at possibly different
clients are required to see the same serial order of
update transactions (2) As exemplified by Example 2,
read-only transactioxrs are required to be serializable
with respect to all the update transactions, even those
whose updates do nolt affect the values read by read-
only transactions. What seems to be required (and, as
we shall show next, to be sufficient) is a correctness
criterion that relaxes these notions.

2.3 In Search of Appropriate Correctness
Criteria

There have been many weakened notions of serializ-
ability proposed in the literature for various applica-
tions [Bam96]. A correctness criterion proposed in the
context of multiversion concurrency control, called up-
date consistency in [Bob921 and external consistency in
[Wei87], appears ideal for use in broadcast environments
2. In this correctness criterion, a history is said to be
consistent iff both of the following conditions hold (for
a more formal definition, see [Bob931 or [Sha99]):

l All update transactions are serializable.

l Each read-only transaction is serializable with re-
spect to the subset of update transactions it (di-
rectly or indirectly) reads from.

Though weaker than serializability, these conditions
maintain consistency of the database and of the values
read by transactions. In the rest of this section, we give
the intuition behind these conditions using the examples
introduced in the previous section and comment on the
applicability of consistency based on these conditions to
broadcast environments.

Consider the history from Example 1 in Section 2.2.
As mentioned earlier, if transactions tr and ts were

2However, the concurrency control techniques outlined in
[Bob921 and [wei87], are not applicable to broadcast environ-
ments for reasons outlined iin Section 2.1.

to commit, then the history would not be serializable.
However, the history would still be acceptable because
the sub history involving only the update transactions
tz and t4 is serializable (the serialization order could
be either ts; t4 or t4; ts). Further, each read-on.ly
transaction is serializable with respect to all the
update transactions. For read-only transaction 1:r,
the serialization order is t4; tr; ts while for rlsad-only
transaction ts, the serialization order is tz; ts; t4.

Even though the history is not serializable, each
transaction still reads consistent data because of update
consistency. For instance, read-only transactio:n tr sees
a consistent state of the database - the commitl,ed state
corresponding to a transactional update to Sun’s stock.
Similarly, read-only transaction ts sees the update to
IBM’s stock. Update transactions, being serializable,
also see and produce consistent database states. Thus,
consistency is not compromised even though the two
read-only transactions see different serial orders.

Consider now the history from Example 2 in Sectian
2.2. If transaction tr were allowed to commit, .:his his-
tory would not be serializable. However, the history
would still be acceptable because all update ‘;ransac-
tions are serializable (the serialization order is tq; tr; t:!)

and the read-only transaction t3 is serializable ,with re-
spect to the update transaction t2 (the serialization OF

der is t2; t3).

The fact that the histories in Examples 1 and 2
are acceptable implies that read-only transactians need
not ever contact the server. This is because the
server does not require this information to perform
the validation of transactions while still maintaining
(update) consistency. We thus see that achieving the
update consistency of data at the server, on l;he one
hand, and of data read by a client, on the other hand!,
addresses the problems with serializability as discussed
in Section 2.2.

The only issue about update consistency thal; might
seem to be of potential concern is the fact that transac-
tions executing at the same client can see different serial
orders of execution of update transactions. There are
two cases to be considered here. In the first ca&e, con-
currently executing read-only transactions at a client
see different serial orders of update transactions (con-
sider Example 1 where tl and ts execute at the same
client). This, however, does not lead to any inconsis-
tencies because the transactions are allowed to see dif-
ferent orders of updates precisely because the updates
are unrelated. Furthermore, because the mechanisms
proposed to implement mutual consistency also satisfy
the currency requirement, they ensure that if a read-
only transaction (say ti) starts executing after the com-
pletion of another read-only transaction (say t;) at a,
client, then ti and tj SW the serial ordering of transac-
tions they both depend on (directly or indirectly) in a.

88

consistent fashion. Thus, two transactions, one of which
is executed based on the results of another, will not see
inconsistent histories.

The second case is when read-only transactions
and update transactions see different serial orders
of execution (all update transactions themselves are
globally serializable). As explained in the previous
case, it is acceptable for independent concurrently
executing transactions to see different serial orders
(consider Example 2 where tr and ts execute at
the same client). In the case that the concurrently
executing transactions are not independent, i.e., a read-
only transaction reads from an update transaction,
however, update consistency ensures that the read-only
transaction and the update transaction see the same
serial ordering. Thus, the problem arises only when
(a) a read-only transaction starts executing after the
completion of an update transaction or (b) an update
transaction starts executing after the completion of
an read-only transaction. The mechanisms that we
use to enforce update consistency, however, satisfy
the currency requirement and hence ensure that the
two transactions see consistent serial orderings of the
transactions they both depend on. Thus, update
consistency along with the implementation proposed in
this paper do not result in the two related transactions
executing at the same client seeing different serial orders
of execution of update transactions.

3 Mechanisms to Guarantee
Correctness

We now outline mechanisms that ensure that (a)
transactions are update consistent and (b) the data
values read by transactions are current.

It can be shown (see [Sha99]) that even if all the up-
date transactions are serially (not to be confused with
serializably) executed, it is still NP-Complete to de-
termine whether a history is update consistent. Thus,
there probably does not exist an efficient way to deter-
mine whether a history is update consistent, when us-
ing virtually any serializability based concurrency con-
trol algorithm for update transactions. We hence use a
polynomial time approximation algorithm, APPROX,
to efficiently determine legal histories. A mechanism
to implement this algorithm in broadcast disk environ-
ments, F-Matrix, is also described. We then propose,
R-Matrix, a simpler (in terms of space and time) ver-
sion of F-Matrix. Finally, we outline how F-Matrix and
R-Matrix can be extended to exploit weak currency re-
quirements by using client caching techniques.

3.1 A Simple Approximation Algorithm

Given the NP-completeness of determining update
consistency, we now adapt a polynomial time algorithm
[Bob921 that accepts a set of histories that is a proper

subset of update consistent histories. The fact that
only a proper subset of update consistent histories is
accepted implies that the algorithm accepts only update
consistent histories though some update consistent
histories may not be accepted.

The following concepts are useful in defining the
approximation algorithm. Let t be a transaction
which executes in a history X. Then, the set of
live transactions with respect to t in the history ?l,
LIVEN (t) , is the minimal set closed under the following
two rules: (a) t is in LIVEN(t) and (b) If t’ is in
LIVEN(~), then all transactions t” such that t’ reads
the value of an object written by t” in 3c are also in
LIVEN(~). Intuitively, the set of live transactions with
respect to a transaction t is the set of transactions that t
directly or indirectly reads from. The update sub history
of a history V-l, ‘flu&&, is a projection of the history
‘R which includes all and only the operations performed
by transactions that perform a write operation in ‘?i.

The approximation algorithm APPROX determines
that a history is legal iff both of the following conditions
hold: (1) ,+&date is conflict serializable. (2) For every
read only transaction tn in the history 31, &(tR)
is acyclic. Here Sx(tR) is the serialization graph
consisting of only the transactions in LIVEx(tR)3.

The intuition behind this algorithm is to replace
all occurrences of view serializability [Ber87, Pap881
in the formal characterization of update consistency
(see [Sha99])4 with occurrences of conflict serializability.
Since conflict serializability is an efficient alternative to
view serializability, we expect the algorithm APPROX
to be efficient. Indeed, it can be shown that APPROX
is a polynomial time algorithm [Sha99].

3.2 Implementing APPROX for Broadcast
Disk Environments

In this section, we describe an implementation of
APPROX, namely F-Matrix (short for fill Matrix),
that is appropriate for broadcast disk environments.
We then propose a simpler algorithm that approximates
APPROX but which is much more space efficient.
Finally, we qualitatively compare the algorithms with
the Datacycle concurrency control algorithm [Her87].

3.2.1 The F-Matrix Implementation

We now outline the server functionality, the client func-
tionality, the nature of the control information trans-
mitted from the server to the clients, the client read-
only transaction validation protocol and the details on
how the control information is computed at the server.
Server Functionality

The server nerforms the following functions:
3For a more precise definition of Sx(t~), see [Sha99].
4The formal characterization of update consistency in [Bob931

is not in terms of view serializability and is thus less general than
our characterization.

89

1.

2.

3.

During each cycle, broadcasts the latest committed
values of all data items at the beginning of the
cycle. Note that this implies that the server has
to maintain two versions of objects: the latest
committed version and the last written version5.
Ensures the conflict serializability of all transactions
submitted to the server (some of these may originate
at the clients and be submitted for validation as
described later). The exact information a client
must provide along with its update transaction is
discussed under client functionality. We do assume
that if a transaction commits, then all transactions
from which that transaction reads have previously
commit ted.
Transmits a contd matriz during each cycle that
helps clients determine whether read-only transac-
tions read consistent values. The control matrix will
be described shortly.

Client Functionality
Clients handle two types of transactions: read-

only transactions and update transactions. Read,
write, commit and abort operations performed by a
transaction are handled as follows:

Read Operation: Before a read operation is per-
formed on a data item broadcast during a cycle, the
control informatio:n transmitted during that cycle is
consulted to determine whether the read operation
can proceed (the exact details about the nature of
this check will be described shortly). If the read op-
eration cannot proceed the transaction is aborted.
Write Operation: ‘When a data item is written, the
write is performed on a local copy of the data item
in the client. No dhecks are made.
Commit: If the transaction has not performed
any write operation, then the commit operation
does not have to do anything and the commit
succeeds. In case the transaction has performed
a write operation, a list of all the objects written
and the values written are sent to the server. In
addition, the list of all read operations performed
and the cycle numlbers in which they are performed
are sent to the server. The server checks to see
whether the update transaction can be committed
and communicates the result to the client. If so, the
transaction is committed, else it is aborted. This
method of handling update transactions is similar
to the method proposed in [Kum97].
Abort: If the transaction has not performed any
write operation, then the abort does nothing. In
case the transaction has written to a data item,
then all the copies of the data items written to are

5The maintenance of two versions of objects has some
commonality with multiversion concurrency control [Ber87]. Our
concern here is about clients which maintain only a single version.

discarded and further execution of the transaction
is stopped.

Nature of Control Information
We now describe the nature of the control information

transmitted by the server and show how it is updated at
the end of each cycle. The control information matrix
at any point in time is an n x n matrix, C, where n
is the number of objects. If objects are assumed to be
have ids obl through obn, each entry C(i, j) is set to a
cycle number determined as follows.

Let 3t be the history of execution of the co:mmitted
update transactions at the server. Also, let ti be the
last committed update transaction that wrote obj. Vie
assume that a transaction to writes all data items at
cycle 0 (before the beginning of the broadcast). Then:

l ‘ciy 8 = mmtfE~~VE7((tj) A t’ writes & (“t’> where

QI = cycle number in which t’ committed.
As defined earlier, LIVEx(tj) refers to the set Df trans-
actions (including tj) that tj directly or indirecl;ly reads
from. Thus, LIVER is the set of transactions that
“affect” the latest committed value of obj (because tj
writes the latest committed value of obj). C(i, j) is thus
the latest cycle number in which some transaction that
affects the latest committed value of obj and also writles
to obi, commits. The following example illustrates how
the entries in the C matrix axe determined.
Example 4: Consider the following history:

~l(~bl)~l(0b2)~1~2(0~1)~2(~~1)~2~3(~~2)~3(~~~2)~3
and assume that the commit operation ci occurs during
the ith broadcast cycle .

In the above scenario C(l, 1) = 2 because t2 was
the last transaction to write onto obl (thus “dfecting’
the value of obl) and it committed during cycle 2
of the broadcast. For similar reasons, C(2,2) = ;3.
The value of C(1,2) = 1. This is because t3 was
the last committed transaction to write onto ob2 and
LlVE~(t3) = {tl, t3) and tl is the only transaction in
LIVER (t3) to write onto obl and it does so during cycle
1 of the broadcast. For similar reasons, C(2,l) = 1.

So far, we have assumed that each entry OF the C
matrix has to store the cycle number relative to the
first cycle ever broadcast. This could be avoided if we
know the maximum number of cycles that a transaction
could span (mae-cycles). In that case, we need to store
only cycle numbers from 0 to max-cycles and perform
modulo max-cycles + 1 arithmetic and comparisons.
This would reduce the size of each entry in the C
matrix. The issue of how the control informatim is to
be transmitted during a broadcast cycle also needs to be
addressed. One effective way to partition the C matrix
is to broadcast the jth column right after broadcasting
the object obj. This would minimize the amount of time
the client would have to wait for control information, as
will become apparent in the next section.
Validating Client Reads

90

For a read-only transaction t at the client, the fol-
lowing protocol is followed before each read operation.
Let Rt be the set of (obi, cycle) pairs such that transac-
tion t previously read object obi from broadcast cycle
cycle, i.e., t read the latest committed value of obi at
the beginning of cycle cycle. Then a read operation on
an object obj is allowed to proceed in a cycle iff the
following condition, read-condition(ob~), holds (thereby
preserving conflict serializability):

V(obi,cgcZe) E Rt (C(i,j) < cycle)
where C is the matrix at the beginning of the current
cycle. If the read-condition fails, the transaction is
aborted. Intuitively, a read operation performed by a
transaction t on object obj is allowed iff no transaction
in LIVE(t) wrote onto obi after t read from the ob;.

Theorem 1 A read-only transaction tR is allowed to
commit by the protocol described above iff S(tR) is
acyclic. (See [Shag91 for proof of this theorem.)

Computing Control Information
As a transaction commits, the entries affected by it

are updated by the server. For simplicity, we consider
only the simple case where the entries are updated
as per a serialization order (see Section 5 for other
option).

We now show how the matrix C can be incrementally
constructed. At the beginning of the broadcast, each
entry in C is set to the cycle number 0. Let Cold be the
matrix that considers all the committed transactions in
a serial order up to a certain point in time in a broadcast
cycle cl. Now, let t be a newly committed transaction
that occurs immediately after all previously committed
transactions in the update transaction serialization
order. Also, let cs 2 cl be the cycle in which t commits.
Let RSt be the set of objects read by t and let WS, be
the set of objects written by t. Then the new matrix
C new is computed as follows:

C,,,,(i, j) = ~2 if obi,obj E WS,

Since transaction t writes to objects obi,obj and
it is the last transaction to write onto obj in the
serial order of execution, t is the last transaction
that affects the latest value of obj and also writes to
obi. Thus, the entry is set to the cycle in which t

commits.

Since transaction t reads from objects in R&, the
transactions t depends on is the set of all transaction
that directly or indirectly affected the latest values
of items written to the objects in R&. Thus,
each entry is updated to reflect this fact. If the
transaction t does not read any object, then this C
entry is set to 0.

3. C,,,,(i, j) = C&i, j) otherwise

If an object obj is not updated, entries in column j
are untouched.

Theorem 2 The above incremental algorithm pre-
serves the semantics of the C matrix. (See [Shag91 for
proof of this theorem.)

There are a few potential drawbacks of F-Matrix.
One is that computing the matrix may be expensive in
terms of server time. We, however, do not expect this
problem to be severe because broadcast environments
cater to read-mostly workloads and read-only transac-
tions are not involved in matrix construction. The other
potential drawback of the F-Matrix mechanism is that
the bandwidth required to transmit the C matrix dur-
ing each broadcast cycle. The space requirements for
the C matrix in F-Matrix is n2 x log(max-cycles) bits
per broadcast cycle, where n is the number of objects
in the database and max-cycles is the maximum num-
ber of broadcast cycles spanned by a transaction. This
cost can be significant for large values of n. Quantita-
tively, if the size of each object is s bits, then the frac-
tion n2xlog(mazryclee) = nxlog(mor-cycles

n~xlog(moz~ycles +nxe)) of the nx1og maz_cyclea +s
broadcast cycle time is spent on control information. If
s is small, this overhead can be significant. The over-
head may not be significant for large values of s. This
problem is actually slightly worse than it seems. It can
be shown that regardless of the compression technique
used, in the worst case, the number of bits to be trans-
mitted in order to represent the C matrix during each
broadcast cycle is quadratic in the number of objects
broadcast [Sha99].

This result, however, assumes for simplicity that
the entire C matrix is transmitted in each broadcast
cycle. The number of bits to be transmitted may
be drastically reduced if we transmit only changes
(deltas) over the previous C matrix transmission. This
approach, however, has the disadvantage that the
client has to store the previous transmitted C matrix.
More importantly, the client should listen to the last
broadcast of the C matrix and the subsequent deltas
regardless of whether it wanted to read any data in
those broadcast cycles, thus increasing the usage of
scarce client resources (like battery power). We do not
investigate the details of this approach in detail in this
paper but plan to study it as part of future work.

3.2.2 R-Matrix and Datacycle
Implementations

In the previous section, we described the F-Matrix
mechanism to implement the APPROX algorithm in
broadcast disk environments and also outlined some of
the potential overheads of computing and transmitting
the C matrix. In order to get around the drawbacks of
F-Matrix mentioned above, F-Matrix could be modified
as follows. Instead of viewing each object as a separate

91

entity, we can partition them into groups of objects.
The C matrix will now not be a n x n matrix, where
n is the number of database objects, but would be
a n x g matrix, where g is the number of groups in
the database, thus reducing the size of the control
information. Further, the fact that there are fewer
entries to update would make it more efficient to update
the matrix. Each entry of the modified C matrix,
MC(i, s), where s is a set of objects, is defined by:

l MC(i, s) = mam,j~d(C(i,j))

For the purposes of the matrix, we consider all
database items in the set s to be indistinguishable. At
the client, the check is performed as in the F-Matrix
case, with the following modification to account for the
grouping of objects. Let Rt be the set of (obi,&e)s
such that transaction t previously read object obi in
cycle cycle. Then rea.d-condition(obj) becomes:

V(obi,cycle) E Rt, MC(i,Sj) < cycle)
where MC is the matrix at the beginning of the current
cycle and sj is the database partition to which obj
belongs. Since the number of partitions is tunable, we
have a spectrum of mechanisms implemented by varying
the size of the database partitions (in the extreme
case, where all database partitions are singleton sets,
we have the implementation F-Matrix). There is a
tradeoff in choosing the size of the partition: increasing
the partition size would mean that certain unnecessary
conflicts would result, while reducing the partition size
would imply increased control information overhead. In
this paper, we concentrate on the two extreme cases to
illustrate this basic tradeoff: (a) all database partitions
are singleton sets (F-.Matrix) and (b) all database items
fall under one partitilon.

In case (b), the matrix entry associated with each
object is just the latest cycle number in which a
committed value was written to it (i.e., the matrix
is in fact just a vector). Thus, read-condition(obj) is
simplified to:

V(obi,cycle) E Rt (MC(i,db) < cycle)
where db is the set of all the objects in the database. In
other words, a transaction can proceed to read an object
only if no previously read value has been updated. This
corresponds to the Datacycle approach for concurrency
control [Her871 and ensures serializability. For the rest
of this paper, we call this approach Datacycle. The
Datacycle approach, Ihowever, does not fully realize the
potential of the matrix reduction. We can in fact
weaken read-condition(obj) for a read on an object obj
performed by a transaction that read the first data item
at cycle cl to:
V(obi,cycle) E Rt
(MC(i, db) < cycle) V (MC(j, db) < cl)

where db is the set of all the objects in the database.
We call this modified algorithm R-Matrix (for reduced
matrix). The idea behind this algorithm is that a

transaction reads consistent values if either (a) no vahes
it has previously read have been overwritten by othLer
transactions or (b) (even though previously read vahes
may have been overwritten by other transacti.ons) the
current value being read has not been overwrit ten sin.ce
the beginning of the transaction. (a) ensures that the
transaction sees the database state at the time of the
last read while (b) ensures that the transac;ion sees
the database state at the time of the first read. It
can be shown (see [Sha99]) that R-Matrix accepts only
schedules accepted by APPROX.

Optimizations similar to those done in Datacycle
could also be done for R-Matrix. Thus, a bit could ‘be
set by hardware if any of the previously read values
of a transaction are changed. For a future read of
an object, if the bit is set and if the object bei:ng
read has been changed during or after the cycle in
which the first read operation was performed by the
transaction, the transaction is aborted. Ol;herwise,
the read operation is allowed to proceed. Besidles
reducing the number of unnecessary aborts of read-
only transactions, this mechanism has a nice ‘5 tability”
property unlike Datacycle where a transaction may be
aborted even if it does not perform any further reads.

3.3 Weak Currency Requirements

In the discussion above, we have assumed that the read
operations of client transactions would like to see dalta
that is current to at least the beginning of the broadcast
cycle in which the read operation was performed. Thus,
each read operation had to read data items off the
broadcast. This is not necessary, however, if the client
currency requirement is such that data items read have
to be current to only within T time units, where T
could be much larger than the broadcast cycle time.
In this case, data items read off the broadcast di.sk
could be cached at clients so that future accesses to the
same data items can just be read from the local cach.e6
without having to wait for the data item to appear again
in the broadcast. A data item is removed from the cache
as soon as the currency of the data item cached exceeds
T time units. Note that this decision to invalidate items
in the cache can be done locally by the client without
need for any communication.

Different clients may have different currency require-
ments and even for a given client, there mar be dif-
ferent currency requirements for different data items.
Since the invalidation of the cache at clients is purely
local, the invalidation interval can be tailored on a per
client, per object basis and the invalidation pl?rformed
accordingly. Thus, clients with vastly different currency
requirements can coexist in a broadcast medium with-

61n case the client cache is not large enough to hold all the d&e
items needed by transactions, cache replacement policies similar
to those suggested in [Ach96] could be employed.

92

out any need for extra communication. This caching
technique is a specific instance of a more general tech-
nique called quasi-caching, introduced in [Alo90].

The main problem that is be solved in this context
is to ensure that transactions see mutually consistent
data even when they read cached data items. Previous
approaches for maintaining the consistency of cached
data items [AlogO, Ach96] do not ensure the mutual
consistency of objects read by transactions. We achieve
this by storing the columns of the matrix corresponding
to the data items cached, along with the cycle at which
the data items were cached. A transaction that accesses
cached data items has all the information necessary for
validation when using F-Matrix or R-Matrix.

In summary, weak currency requirements can be
effectively exploited in broadcast environments using
client caching. Our mechanisms can be extended
to maintain inter-object consistency by storing the
relevant columns of the concurrency control matrix.

4 Simulation Results
Our simulation based experiments are aimed at compar-
ing the performance of four different algorithms (Data-
cycle, F-Matrix, R-Matrixand F-Matrix-No) for concur-
rency control of client read-only transactions in broad-
cast disk environments. The first three algorithms are
described in the previous section. The last algorithm
is used as a baseline and implements the functional-
ity of F-Matrix, but ignores the cost of broadcasting
the control information associated with each object in
the database. Hence, the broadcast cycle lengths are
shorter for runs of this algorithm as compared to those
for F-Matrix. We do not consider the effects of caching
in this performance study.

The performance of these algorithms can be com-
pared relative to the following metrics:

l Transaction Response Time - the time the
transaction is submitted by a client to the time
the transaction commits. This includes the time
involved in restarting the transaction (perhaps more
than once, if necessary), if it aborts.

l Transaction Restart Ratio -the number of times
a transaction is restarted because the data it read
was inconsistent.

4.1 Experimental Setup

Our simulator consists of a server, a client, a broadcast
disk structure and an event queue. Only read-only
transactions execute on the client. The server executes
update transactions. Only one client was simulated
because the performance of the concurrency control
mechanisms for read-only transactions is independent of
the number of clients. The objects that the transactions
access are determined using a uniform distribution on
the objects in the database. All these objects are

updatable and hence correspond to the “hot spots” of
the broadcast database. Table 1 lists the simulation
parameters. Client transaction length indicates the
number of read operations performed at the client
and server transaction length indicates the number of
read/write operations at the server. The delays are
modeled as exponential distributions. For a broadcast
medium with bandwidth of 64 Kbits/s, the inter-
operation delay translates to 1 second and the client
inter-transaction delay translates to 2 seconds.

The server fills the broadcast disk with data at the
beginning of a cycle. To simulate the database objects
being broadcast at different times, a time entry exists
for each object. This is set to the time at which the
object is actually broadcast. The client waits until
this time to read the corresponding object. Each cycle
consists of a broadcast of all the objects along with
the associated control information. For F-Matrix, the
control information consists of an (n x n) matrix, where
n is the number of objects. Each column of the matrix is
broadcast along with the corresponding object. For R-
Matrix and Datacycle, the control information consists
of an array of length n. Each element in the array is
broadcast along with the corresponding object.

The time to broadcast one bit (one bit-unit) is
used as the unit of time. All response times are
measured in terms of this unit. We evaluate the
algorithms with respect to different settings of the first
5 parameters, varying a parameter at a time. Each
experiment consists of 1000 client transactions and the
simulations run until all of them commit. The data was
derived from the last 500 transactions to ensure that
it was “steady-state” data. In these experiments, 95%
confidence intervals were obtained, whose widths were
less than 10% of the point estimates.

For F-Matrix the fraction of the cycle used for the
control information (in bits) is given by nZx,$~~~OBJ
= nX$$SJ, where TS is the size of a timestamp
and OBJ is the size of an object. For a timestamp
size of 8 bits and an object size of one kilo Byte and
300 objects in the database, the overheads work out to
about 23%. For R-Matrix and Datacycle, the fraction of
cycle time used for control information is nxT~~~~OBJ

TS = -. For the same parameters, the overheads in
thiyckOeB&e only about 0.1%.

4.2 Effect of Client Transaction Length

Until client transaction length 4, all the algorithms
have similar performance (see Figures l(a) and l(b)).
After that, especially beyond a value of 6, the Datacycle
algorithm performs very poorly so much so that for a
length of 10, its response time was outside the limits
of the Y-axis. Even though R-Matrix is far better than
Datacycle, F-Matrix shows even better behavior. For a
client transaction of 8, R-Matrix has a response time

93

Parameter
Client Transaction L,ength
Server Transaction Length
Transaction Rate at Server
Number of Objects in Database
Size of Objects in Database
Server Read Operation Probability
Client Inter-Operation Delay
Client Inter-‘Ikansaction Delay
Client Restart Delay
Timestamp Size

Default Value
4
8
1 in 2.5~10~ bit-units
300
1KB
0.5
65536 bit-units
131072 bit-units
0 bit-units
8 bits

Table 1: Parameters for the Simulation

of 122.68 x lo6 while F-M&h has a response time
of 14.6 x lo6 units (about 12% of R-Matrix’s response
time). This is because F-Mattix reduces the number
of client transaction aborts to almost zero (see Figure
l(b)) by using a we&er read condition. Also, note that
the performance curve for F-Matrix is flat, indicating
that it scales very well with client transaction length.

The small differences between the performance of
F-Ma&h and F-Matrk-No are magnified in Figure
3(a)- These differences arise because the control
information transmission time is ignored in F-Mate-
No. So, read transactions wait for a shorter time for the
broadcast data to be available. The number of update
transactions per cycle is also reduced and hence, there
are lesser read conflicts in each cycle.

As can be seen from Figures l(a) and 1 (b), there is
a high correlation between the response time and the
number of aborts. Thus, for the rest of this paper, we
concentrate on response times.

4.3 Effect of Server Transaction Length

Longer server transactions lead to more updates at the
server for each cycle. Hence, the response time increases
with server transaction length in Figure 2(a). However,
F-Mat% shows very little increase in response time
compared to Datacycle and even R-Matrix. Once again
this demonstrates the scalability of F-Matti.

4.4 Effect of Transaction Rate at Server

In Figure 2(b), the server transaction rate (X-axis)
decreases as we go from left to right. This graph
shows that, as expected, response time improves with
a decrease in server transaction rate. The performance
of F-Matrix nearly matches that of F-Matti-No and is
better than R-Mattix and much better than Datacycle.
Also, F-Mattix displays almost no degradation in
performance as server transaction rate increases.

4.5 Effect of Number of Objects

As the number of objects in the database increases,
the probability of transactions accessing an object

decreases. The length of the cycle, however, increases
with the number of objects. The increase in the control
information to be sent also increases the length of the
broadcast cycle. This increases the number of server
transactions per cycle and hence, increases the number
of possible conflicts. Hence, the response times increase
with the size of the database. As can be seen from
Figure 3(a), the relative ordering of the four protocols
remains the same with F-Mat+ displaying the best
response times (about 9.6 x lo6 units for a (database
size of 400, as compared to nearly 11.3 x 106 for .R-
Matrix) among the three practical protocols. The rate
of increase in response time, though almost constant for
both R-Ma&k and F-Mat*, is smaller for F-Matrix.

4.6 Effect of Object Size

The relative behavior of the algorithms with increasing
size of objects is shown in Figure 3(b). The length of
the broadcast cycle increases with object size and hence
the response time also increases. Note that at small
object sizes, F-Matrix and R-Mate perform about tlhe
same because the space overhead of F-Matrk increases
(relative to the size of the broadcast cycle) and offsets
the associated gain in concurrency. At very small
object sizes, F-Mat&z would thus perform worse than
R-Matrix. As object size increases, however, the effect
of the control information tends to decrease. Hence, the
performance of F-Mattixis better than that of R-Matrix
and Datacycle and approaches that of F-Matrk-No.
Here again, response time increases at a smaller rate
for F-Mattix than for the other two practical protoco1.s.

4.7 Summary of Results

R-Mat& outperforms Datacycle and F-Matrix outper-
forms R-Matrix in all the experiments. Thus, the ex-
perimental results confirm the hypothesis that a weaker
abort condition would lead to better responss times.
Furthermore, F-Mat* is highly scalable with respect
to client transaction length, server transaction length,
and server transaction rate. All the protocols display in-
creased response times with increase in broadcast cycle
lengths, but the rate of increase in the case of &Matrix
is lower than that of R-Ma&h as well as DdacycEe.
These performance features of F-Mate are cbserved
in spite of F-Mat& requiring more bits to transmit th!e
control information in each cycle. Also, in many cases
its performance profile is very close to F-Match-No.

F-Mattix and R-Matria: represent two ends of a
spectrum. F-Matrix has the overhead of transmitting
control information of size 0(n2), where n is the number
of objects. R-Mat* presents a cheaper alternative,
though it does not perform or scale as well as F-Mat&.
In general, the choice of the algorithm to be used woul’d
depend on the capacity of the broadcast mediurr. as well
as the profile (number of objects, frequency of updates,
etc.) of the database that is to be used.

94

(a) Comparison of Response Times (b) Comparison of Number of Aborts

Figure 1: Effect of Client ‘Bansaction Length

(a) Effect of Server Transaction Length (b) Effect of Server Transaction Rate

Figure 2: Effect on Response Time

(a) Effect of Number of Objects (b) Effect of Object Size

Figure 3: Effect on Response Time

95

Mutual consistency requirement satisfied by adapting uprlate consistency

i APPROX used as an efticient approximation of update consistency I

F-Matrix implements APPROX in broadcast environments

c
F-Matrix and R-Matrix extended to exploit weak currency requirements

I

Simulation studies comptin,g the perfomnce of different protoCols
show superiority of F-Matrir over compared protocols I

Figure 4: Development of Ideas

5 Conclusions and Future Work

There are several possible applications of broadcast
based database systems (such as stock trading and traf-
fic information) that impose consistency and currency
requirements [Xua97]. Catering to such requirements
through efficient concurrency control is the subject of
this paper. Figure 4 shows the development of ideas.

In the future, we plan to study efficient parallel com-
putation and incremental transmission of the control
matrix, performance in the presence of caching, and ex-
tensions to optimize for client update transactions.

References
[Ach95]

[Ach96]

[Al0901

[Ber87]

[Bob921

[Bob931

(CarSl]

S. Acharya, et. al. Broadcast Disks: Data Man-
agement for ,4symmetric Communications Environ-
ments. Proceedings of the ACM SIGMOD Confer-
ence, California, May 1995.

S. Acharya, M. Franklin and S. Zdonik. Disseminat-
ing Updates on Broadcast Disks Proceedings of the
VLDB Conference, Mumbai(Bombay), India, 1996.

R. Alonso, D. Barbara and H. GarcisMolina. Data
Caching Issues in an Information Retrieval System.
ACM l+ans~actions on Database Systems, 15(3),
September 1’990.

P. Bernstein., V. Hadzilacos and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Massachusetts, 1987.

P.M. Bober and M.J. Carey. Multiversion Query
Locking. Proceedings of the VLDB Conference,
Vancouver, C?anada, August 1992.

P.M. Bober and M.J. Carey. Multiversion Query
Locking. Computer Science Technical Report TR
1160, University of Wisconsin-Madison, 1993.

M.J. Carey, et. al. Data Caching Tradeoffs in
Client-Server DBMS Architectures. Proceedings of
the ACM SIGMOD Conference, Denver, June 1991.

[I+a93] M.J. Franklin. Caching and Memory Management
in Client-Server Database Systems. Ph.D. Thesis,
University of Wisconsin-Madison, 1993.

[Guk96] S. Gukai, E. Omiecinski and U. Ramachandran.
Transient Versioning for Consistency aud Concur-
rency in Client-Server Systems. Proceec;!ings of the
Conference on Parallel and Distributed Informdon
Systems (PDIS), Florida, December 19Cj6.

[Her871 G. Herman, et. ai. The Datacycle Architecture for
Very High Throughput Database Systems Proceed-
ings of the ACM SIGMOD Conference, 1987.

[Imi94] T. Imielinski and B.R. Badrinath. Mobile Wireless
Computing: Challenges in Data Managem.ent.
Communications of the ACM, 37(10), 1394.

[Kum97] S. Kumar, E. Kwang and D. Agrawai. Caprera:

[M0182]

[Oki93]

Pap881

[Pit991

An Activity Framework for Transaction Processing
on Wide-Area Networks Proceedings of the VLDB
Conference, Athens, Greece, August 1997.

H. Garcia-Molina and G. Wiederhold. Read-
Only Transactions in a Distributed Database. A.CM
!lkansactions on Database Systems, 7(2), 1982.

B. Oki, et. al. The Information Bus - An Archi-
tecture for Extensible Distributed Systems. Rro-
ceedings of the SOSP Conference, North Carol.ina,
December 1993.

C.H. Papadimitriou. The Theory of Database Con-
currency Control. Computer Science Press, 1988.

E. Pitoura and P. Chrysanthis, Scalable Pro-
cessing of Read-Only Transactions in Broadcast
Push, IEEE International Confercncs on Dis-
tributed Computing Systems, Austin, 1999

[Ram961 K. Ramamritham and P. Chrysanthis. A Taxon-
omy of Correctness Criteria in Database App:Iica-
tions. VLDB Journal, 5(l), January 19!)6.

[Shag91 J. Shanmugasundsram, et. ai. Efficient Concur-
rency Control for Broadcast Environments Univ.
of Massachusetts Technical Report 1999.

[She941 S. Shekar and D. Liu. Genesis and Advanced Trav-
eler Information Systems (ATIS): Killer Appllica-
tions for Mobile Computing. MOBIDATA Work-
shop, New Jersey, 1994.

[Vit] White Paper, http://www.vitria.com.

[wan911 W. Wang and L. Rowe. Cache Consistency and

[wei87]

[wi190]

[Xua97]

Concurrency Control in a Client/Server DElMS
Architecture. Proceedings of the ACM’ SIGMOD
Conference, June 1991.

W. Weihl. Distributed Version Management for
Read-Only Actions. IEEE l’kansactiorrs on Soft-
ware Engineering, 13(l), January 1987.

W. Wilkinson and M.A. Nemat. Maintaining
Consistency of Client Cached Data. I+oceedings
of the VLDB Conference, Australia, August 1990.

P. Xuan, et. al. Broadcast on Demand - Efficient
and Timely Dissemination of Data in Ma’bile
Environments. IEEE Real-Time Technology and
Applications Symposium, June 1997, pp. 38-48.

96

