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Abstract 
A crucial consideration in environments where data is broad- 
cast to clients is the low bandwidth available for clients to 
communicate with servers. Advanced applications in such 
environments do need to read data that is mutually consis- 
tent as well as current. However, given the asymmetric com- 
munication capabilities and the needs of clients in mobile en- 
vironments, traditional serializability-based approaches are 
too restrictive, unnecessary, and impractical. We thus pro- 
pose the use of a weaker correctness criterion called update 
consistency and outline mechanisms based on this criterion 
that ensure (1) the mutual consistency of data maintained 
by the server and read by clients, and (2) the currency of 
data read by clients. Using these mechanisms, clients can 
obtain data that is current and mutually consistent “off the 
air”, i.e., without contacting the server to, say, obtain locks. 
Experimental results show a substantial reduction in re- 
sponse times as compared to existing (serializability-based) 
approaches. A further attractive feature of the approach 
is that if caching is possible at a client, weaker forms of 
currency can be obtained while still satisfying the mutual 
consistency of data. 

1 Introduction 
Many emerging database applications, especially those 
with numerous concurrent clients, demand the broad- 
cast mode for data dissemination. For example, in elec- 
tronic commerce applications, such as auctions, it, is ex- 
pected that a typical auction might bring together mil- 
lions of interested parties even though only a small frac- 
tion may actually offer bids, Updates based on the bids 
made must be disseminated promptly and consistently. 
Fortunately, the relatively small size of the database, 
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i.e., the current, state of the auction, makes broadcasting 
feasible. But, the communication bandwidth available 
for a client, to communicate with servers is likely to be 
quite restricted. Thus, an attractive approach is to use 
the broadcast medium to transmit the current, state of 
the auction while allowing the clients to communicate 
their updates (to the current, state of the auction) us- 
ing low bandwidth uplinks to the servers. The problem 
addressed in this paper and the techniques outlined are 
motivated by such applications. In particular, we are 
concerned with the problem of providing readers with 
current and mutually consistent data while ensuring the 
consistency of updates. 

Broadcast-based data dissemination is also likely to 
be a major mode of information transfer in mobile com- 
puting and wireless environments [Imi94, Ach95]. Many 
such systems have been proposed [She94, Oki93] and 
commercial systems such as Vitria pit] already support 
broadcasting. As these systems evolve, they will be used 
to run sophisticated applications, many of which will 
involve data whose consistency must be maintained in 
spite of updates, some of which may originate from mo- 
bile clients. Other applications of broadcasting, include 
stock trading, next generation road traffic management 
systems and automated industrial plants. Given the 
limited amount of bandwidth available for clients to 
communicate with the broadcast server, achieving data 
consistency efficiently is a challenging research issue. 

[Her871 and [Ach96] are among the few papers 
motivated by similar considerations. Herman et. al. 
[Her871 discuss transactional support in the Datacycle 
architecture, which is also an asymmetric bandwidth 
environment. However, they use serializability as the 
correctness criterion, which we show is very expensive, 
restrictive, and unnecessary in such environments. In 
[Ach96], the authors discuss the tradeoffs between 
currency of data and performance issues when some 
of the broadcast data items are updated by processes 
running on the server. However, the updates do 
not, have transactional semantics associated with them 
either at the server or at the clients. The updates are 
made only by processes running on the server, while the 
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processes on clients are assumed to be read-only. There 
has been some very recent concurrent related work 
[Pit99]. One of their approaches (based on serialization 
graph testing) is similar in functionality to ours, but 
it requires clients to be listening continuously to the 
broadcast. This approach, unlike ours, is thus intolerant 
to communication failures. 

In this paper, we propose and evaluate protocols 
appropriate for broadcast environments. The protocols 
satisfy two properties: (1) mutual consistency and 
(2) currency. Mutual consistency ensures that (a) 
the server maintains mutually consistent data and (b) 
clients can read mut~ually consistent data. Currency 
ensures that clients see data that is current (as of the 
beginning of a broadcast cycle). We ensure mutual 
consistency by adapting a correctness criterion called 
update consistency in [Bob921 and external consistency 
in [Wei87]r for transaction processing in broadcast 
environments. Our protocols, presented in the context 
of broadcast disks [Ach95], are intended for applications 
similar to the auction application, where the size of 
the database is relatively small but the number of 
clients is very large. ‘These protocols permit read-only 
transactions running on mobile clients to always read 
current and consistent values without contacting the 
server (to acquire locks or to validate their reads), i.e., 
they are able to read current values “off-the-air”. We 
also evaluate their performance and compare them with 
the algorithm used in Datacycle. 

The rest of the paper is organized as follows. In sec- 
tion 2, we outline the characteristics of broadcast envi- 
ronments and demonstrate the inapplicability of exist- 
ing concurrency control techniques. We then motivate 
the need for a consiste:ncy criterion weaker than serializ- 
ability and show that update consistency is more appro- 
priate. In section 3, we describe an efl-icent algorithm 
APPROX to check for update consistency and outline 
mechanisms to implement it in broadcast disk environ- 
ments while also satisfying currency requirements. In 
section 4, we evaluate the performance of these mech- 
anisms and in Section 5, we summarize the paper and 
outline future work. 

2 Correctness in Broadcast 
Environments 

In this section, we first outline the characteristics 
of broadcast environments and then describe why 
most existing concurrency control techniques are not 
applicable in broadcast environments. Finally, we 
identify the need to satisfy update consistency [Bob92, 
Wei87], a weakening of serializability, and currency of 
data seen by clients. 

‘For the rest of the paper, we refer to this correctness criterion 
as update consistency. 

2.1 Characteristics of Broadcast 
Environments 

In this section, we first describe broadcast disks, a 
particular type of broadcast environment and then 
use them to illustrate key characteristics of broadcast 
environments. 

In the broadcast disks [Ach95] framework, a server pe- 
riodically broadcasts all the data items in the {database 
clients. The clients view this broadcast as a disk and 
can read the values of data items being broadcast and 
cache them locally. In order to write onto objects, the 
clients contact the server with the appropriate inform.a- 
tion. The size of the database being transmitted cannot 
be too large or intolerable delays may be experienced 
at the client waiting for a data item. Fortunately, for 
many applications like online auctions and trafhc con- 
trol, the number of data items being transmitted is not 
too large (of the order of hundreds, sometimes thou- 
sands, of objects). 

In such environments, though the server to clie:nt 
bandwidth is relatively plentiful, the bandwidth from 
clients to the server is likely to be very limited because: 

l The number of clients listening to a server Icould be 
of the order of millions, so a server cannel; handle 
high bandwidth communication from all the clients. 

l Battery power is a scarce resource for mobile 
clients. Since transmissions require substantial 
battery power (which is more than is needed for 
reception), transmissions from a client should be 
avoided, if possible . 

Thus, techniques for concurrency control in broadcast 
environments must take this asymmetry in bandwidth 
into account. In the next section, we show that existing 
concurrency control techniques do not efficiently satisfy 
these requirements because they are not designed for 
such asymmetric communication environments. 

2.2 Inapplicability of Serializability fcr 
Broadcast Environments 

Serializability [Ber87] is the commonly accepted cor- 
rectness criterion for transactions in database systems. 
It is, however, intrinsically a global property - the ef- 
fect of concurrent transaction execution should be as 
though all the transactions executed in some serial or- 
der. It (a) requires excessive communication between 
the distributed entities, to obtain locks, for example, or 
(b) requires the underlying protocol to be overly conser- 
vative thus disallowing certain correct executions. Thle 
first alternative is expensive in broadcast environments 
because of the limited bandwidth that clients ha1.e avail- 
able to communicate with the server. The second alter- 
native leads to unnecessary transaction aborts, which 
again is undesirable. We now show that three funda- 
mental techniques, at least one of which is used by vir,- 
tually any proposed concurrency control mechanism to 
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satisfy serializability in distributed/client-server envi- 
ronments, are inapplicable for broadcast environments. 

l Locking: Many proposed concurrency control proto- 
cols [CarSl, Wan91, Wi190, Fra93, Mo182] use lock- 
ing even for read-only transactions. In broadcast 
environments, this would translate to acquiring read 
locks for every data item read by client transactions 
which would swamp the server with lock requests. 

l Cache Consistency Mechanisms: These protocols 
[CarSl, Wan91, Wil90, Fra93] predominantly as- 
sume that the server is aware of the data items 
cached at the clients so that changes to data items 
can be invalidated/propagated to clients. Clearly, 
these techniques would not be applicable in broad- 
cast environments because (a) the server has to keep 
track of the caches of a large number of clients and 
(b) the clients would have to inform the server every 
time a data item is read, leading to high overhead 
even for read-only transactions. [Guk96] considers 
using old versions of data at the clients, which, in 
addition, compromises the currency of data items 
read. 

l Timestamp Mechanism: Some mechanisms pro- 
posed for distributed systems [Wei87] use timestamp 
based concurrency control protocols that require an 
object to keep track of both read and write times- 
tamps. This is infeasible in broadcast environments 
because this would require client to server commu- 
nication for every read. 

To the best of our knowledge, the Datacycle ap- 
proach [Her871 is the only concurrency control technique 
proposed in the literature aimed at broadcast environ- 
ments. The Datacycle approach ensures that all trans- 
actions executing at clients and the server are globally 
serializable. But, as we just argued, it would still lead to 
poor performance because serializability is very expen- 
sive to achieve in broadcast environments. Experimen- 
tal results presented in Section 4 support this argument. 

If we would like to avoid the (substantial) communi- 
cation costs incurred by the interactions with the server 
- needed to ensure serializability - then, as we show 
now, clients have to be conservative, leading to unnec- 
essary aborts. 

Example 1. Assume that in a broadcast environment, 
clients only know the local transaction execution history 
and the history of updates at the server. Consider stock 
trading transactions tl and t3 at two different clients A 
and B respectively that read the stock prices of IBM 
and Sun. Also let t2 and t4 be transactions at the server 
that update the prices of IBM and Sun respectively. 
Now consider the following execution history: 

If transactions running on clients do not inform the 
server about the operations performed by them - 
a reasonable assumption given the limited uplink 
bandwidth from clients to the server - then the server 
would only be aware of the history of its own operations: 

If a server broadcasts this history along with the data, 
client A would be aware of the history: 

rr(IBM) w2(IBM) cz w4(Sun) c4 ri(Sun) 
and Client B would be aware of the history: 

wz(IBM) cs rs(IBM) rs(Sun) wr(Sun) c4 
If both tl and t3 commit, then the server and both the 

clients see serializable histories (the serialization orders 
are t2; t4, t4; tl; t2 and t2; t3; t4 respectively). However, 
the global history is not serializable. Thus, either tl or 
t3 must be aborted. However, since the read operations 
performed by a client transaction are not communicated 
to other clients or the server, and assuming that there 
exists no way to inform clients tl and t3 except by 
expensive message passing, both tl and t3 would have 
to be aborted - since each client must assume the 
worst-case history at the other. This is wasteful since 
the abortion of either tl or t3 would have ensured a 
serializable history. Unnecessary aborts would occur 
even if the system history is 

rl(IBM)v~(IBM)c2w~(Sun)c~r~(Sun) (2) 

because Client A would be aware of this history and 
would not be able to distinguish it from (1). In this 
case too, tl must be aborted. A similar argument can 
be made for t3. Essentially, in the absence of commu- 
nication from read-only transactions, to preserve seri- 
alizability, the read-only transactions will have to be 
aborted even in cases like history (2) because clients 
would have to assume worst case scenarios as in history 
(1). 

Example 2. Consider the following history that is a 
modification of the history used in Example 1 (it has the 
additional operation zur(DEC), so that tl is not read- 
only any more, and a commit operation for transaction 
t3). Again assume that transactions tl and t3 are 
executed at two different clients and that transactions 
t2 and t4 are executed at the server. 

Let us assume that transaction tl now desires to 
commit. At the commit time, the server would be aware 
of the following history. 

r~(IBM)u~(IBM)c~w4(Sun)c~r~(Sun)ui(~EC) (4) 

This is because the server needs to be aware of the 
reads and writes of all update transactions, whether 
they originate at the client or the server, in order to 
ensure consistency. In the absence of high client to 
server bandwidth, however, the server would not know 
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about any read-only transactions. The sub history (4) 
is serializable when tr commits even though the entire 
history (3) is not. The implication of this example is 
that, even if the actual history of execution is like (4), 
update transactions such as tr would not be allowed 
to commit under serializability because a worst case 
scenario, such as (3), has to be assumed. Clearly this is 
wasteful since it causes unnecessary transaction aborts. 

The above two ex,smples illustrate that, in broad- 
cast environments, serializability is very expensive to 
achieve, both for read-only and update transactions. 
This is because of the unnecessary aborts serializability 
might induce or because of the excessive communication 
it entails if such aborts are to be avoided. 

In summary, we can see that serializability fails to 
be an appropriate correctness criterion because of two 
main reasons: (1) A;s exemplified by Example 1, all 
read-only transactions executing at possibly different 
clients are required to see the same serial order of 
update transactions (2) As exemplified by Example 2, 
read-only transactioxrs are required to be serializable 
with respect to all the update transactions, even those 
whose updates do nolt affect the values read by read- 
only transactions. What seems to be required (and, as 
we shall show next, to be sufficient) is a correctness 
criterion that relaxes these notions. 

2.3 In Search of Appropriate Correctness 
Criteria 

There have been many weakened notions of serializ- 
ability proposed in the literature for various applica- 
tions [Bam96]. A correctness criterion proposed in the 
context of multiversion concurrency control, called up- 
date consistency in [Bob921 and external consistency in 
[Wei87], appears ideal for use in broadcast environments 
2. In this correctness criterion, a history is said to be 
consistent iff both of the following conditions hold (for 
a more formal definition, see [Bob931 or [Sha99]): 

l All update transactions are serializable. 

l Each read-only transaction is serializable with re- 
spect to the subset of update transactions it (di- 
rectly or indirectly) reads from. 

Though weaker than serializability, these conditions 
maintain consistency of the database and of the values 
read by transactions. In the rest of this section, we give 
the intuition behind these conditions using the examples 
introduced in the previous section and comment on the 
applicability of consistency based on these conditions to 
broadcast environments. 

Consider the history from Example 1 in Section 2.2. 
As mentioned earlier, if transactions tr and ts were 

2However, the concurrency control techniques outlined in 
[Bob921 and [wei87], are not applicable to broadcast environ- 
ments for reasons outlined iin Section 2.1. 

to commit, then the history would not be serializable. 
However, the history would still be acceptable because 
the sub history involving only the update transactions 
tz and t4 is serializable (the serialization order could 
be either ts; t4 or t4; ts). Further, each read-on.ly 
transaction is serializable with respect to all the 
update transactions. For read-only transaction 1:r, 
the serialization order is t4; tr; ts while for rlsad-only 
transaction ts, the serialization order is tz; ts; t4. 

Even though the history is not serializable, each 
transaction still reads consistent data because of update 
consistency. For instance, read-only transactio:n tr sees 
a consistent state of the database - the commitl,ed state 
corresponding to a transactional update to Sun’s stock. 
Similarly, read-only transaction ts sees the update to 
IBM’s stock. Update transactions, being serializable, 
also see and produce consistent database states. Thus, 
consistency is not compromised even though the two 
read-only transactions see different serial orders. 

Consider now the history from Example 2 in Sectian 
2.2. If transaction tr were allowed to commit, .:his his- 
tory would not be serializable. However, the history 
would still be acceptable because all update ‘;ransac- 
tions are serializable (the serialization order is tq; tr; t:!) 

and the read-only transaction t3 is serializable ,with re- 
spect to the update transaction t2 (the serialization OF 

der is t2; t3). 

The fact that the histories in Examples 1 and 2 
are acceptable implies that read-only transactians need 
not ever contact the server. This is because the 
server does not require this information to perform 
the validation of transactions while still maintaining 
(update) consistency. We thus see that achieving the 
update consistency of data at the server, on l;he one 
hand, and of data read by a client, on the other hand!, 
addresses the problems with serializability as discussed 
in Section 2.2. 

The only issue about update consistency thal; might 
seem to be of potential concern is the fact that transac- 
tions executing at the same client can see different serial 
orders of execution of update transactions. There are 
two cases to be considered here. In the first ca&e, con- 
currently executing read-only transactions at a client 
see different serial orders of update transactions (con- 
sider Example 1 where tl and ts execute at the same 
client). This, however, does not lead to any inconsis- 
tencies because the transactions are allowed to see dif- 
ferent orders of updates precisely because the updates 
are unrelated. Furthermore, because the mechanisms 
proposed to implement mutual consistency also satisfy 
the currency requirement, they ensure that if a read- 
only transaction (say ti) starts executing after the com- 
pletion of another read-only transaction (say t; ) at a, 
client, then ti and tj SW the serial ordering of transac- 
tions they both depend on (directly or indirectly) in a. 
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consistent fashion. Thus, two transactions, one of which 
is executed based on the results of another, will not see 
inconsistent histories. 

The second case is when read-only transactions 
and update transactions see different serial orders 
of execution (all update transactions themselves are 
globally serializable). As explained in the previous 
case, it is acceptable for independent concurrently 
executing transactions to see different serial orders 
(consider Example 2 where tr and ts execute at 
the same client). In the case that the concurrently 
executing transactions are not independent, i.e., a read- 
only transaction reads from an update transaction, 
however, update consistency ensures that the read-only 
transaction and the update transaction see the same 
serial ordering. Thus, the problem arises only when 
(a) a read-only transaction starts executing after the 
completion of an update transaction or (b) an update 
transaction starts executing after the completion of 
an read-only transaction. The mechanisms that we 
use to enforce update consistency, however, satisfy 
the currency requirement and hence ensure that the 
two transactions see consistent serial orderings of the 
transactions they both depend on. Thus, update 
consistency along with the implementation proposed in 
this paper do not result in the two related transactions 
executing at the same client seeing different serial orders 
of execution of update transactions. 

3 Mechanisms to Guarantee 
Correctness 

We now outline mechanisms that ensure that (a) 
transactions are update consistent and (b) the data 
values read by transactions are current. 

It can be shown (see [Sha99]) that even if all the up- 
date transactions are serially (not to be confused with 
serializably) executed, it is still NP-Complete to de- 
termine whether a history is update consistent. Thus, 
there probably does not exist an efficient way to deter- 
mine whether a history is update consistent, when us- 
ing virtually any serializability based concurrency con- 
trol algorithm for update transactions. We hence use a 
polynomial time approximation algorithm, APPROX, 
to efficiently determine legal histories. A mechanism 
to implement this algorithm in broadcast disk environ- 
ments, F-Matrix, is also described. We then propose, 
R-Matrix, a simpler (in terms of space and time) ver- 
sion of F-Matrix. Finally, we outline how F-Matrix and 
R-Matrix can be extended to exploit weak currency re- 
quirements by using client caching techniques. 

3.1 A Simple Approximation Algorithm 

Given the NP-completeness of determining update 
consistency, we now adapt a polynomial time algorithm 
[Bob921 that accepts a set of histories that is a proper 

subset of update consistent histories. The fact that 
only a proper subset of update consistent histories is 
accepted implies that the algorithm accepts only update 
consistent histories though some update consistent 
histories may not be accepted. 

The following concepts are useful in defining the 
approximation algorithm. Let t be a transaction 
which executes in a history X. Then, the set of 
live transactions with respect to t in the history ?l, 
LIVEN (t) , is the minimal set closed under the following 
two rules: (a) t is in LIVEN(t) and (b) If t’ is in 
LIVEN(~), then all transactions t” such that t’ reads 
the value of an object written by t” in 3c are also in 
LIVEN(~). Intuitively, the set of live transactions with 
respect to a transaction t is the set of transactions that t 
directly or indirectly reads from. The update sub history 
of a history V-l, ‘flu&&, is a projection of the history 
‘R which includes all and only the operations performed 
by transactions that perform a write operation in ‘?i. 

The approximation algorithm APPROX determines 
that a history is legal iff both of the following conditions 
hold: (1) ,+&date is conflict serializable. (2) For every 
read only transaction tn in the history 31, &(tR) 
is acyclic. Here Sx(tR) is the serialization graph 
consisting of only the transactions in LIVEx(tR)3. 

The intuition behind this algorithm is to replace 
all occurrences of view serializability [Ber87, Pap881 
in the formal characterization of update consistency 
(see [Sha99])4 with occurrences of conflict serializability. 
Since conflict serializability is an efficient alternative to 
view serializability, we expect the algorithm APPROX 
to be efficient. Indeed, it can be shown that APPROX 
is a polynomial time algorithm [Sha99]. 

3.2 Implementing APPROX for Broadcast 
Disk Environments 

In this section, we describe an implementation of 
APPROX, namely F-Matrix (short for fill Matrix), 
that is appropriate for broadcast disk environments. 
We then propose a simpler algorithm that approximates 
APPROX but which is much more space efficient. 
Finally, we qualitatively compare the algorithms with 
the Datacycle concurrency control algorithm [Her87]. 

3.2.1 The F-Matrix Implementation 

We now outline the server functionality, the client func- 
tionality, the nature of the control information trans- 
mitted from the server to the clients, the client read- 
only transaction validation protocol and the details on 
how the control information is computed at the server. 
Server Functionality 

The server nerforms the following functions: 
3For a more precise definition of Sx(t~), see [Sha99]. 
4The formal characterization of update consistency in [Bob931 

is not in terms of view serializability and is thus less general than 
our characterization. 
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1. 

2. 

3. 

During each cycle, broadcasts the latest committed 
values of all data items at the beginning of the 
cycle. Note that this implies that the server has 
to maintain two versions of objects: the latest 
committed version and the last written version5. 
Ensures the conflict serializability of all transactions 
submitted to the server (some of these may originate 
at the clients and be submitted for validation as 
described later). The exact information a client 
must provide along with its update transaction is 
discussed under client functionality. We do assume 
that if a transaction commits, then all transactions 
from which that transaction reads have previously 
commit ted. 
Transmits a contd matriz during each cycle that 
helps clients determine whether read-only transac- 
tions read consistent values. The control matrix will 
be described shortly. 

Client Functionality 
Clients handle two types of transactions: read- 

only transactions and update transactions. Read, 
write, commit and abort operations performed by a 
transaction are handled as follows: 

Read Operation: Before a read operation is per- 
formed on a data item broadcast during a cycle, the 
control informatio:n transmitted during that cycle is 
consulted to determine whether the read operation 
can proceed (the exact details about the nature of 
this check will be described shortly). If the read op- 
eration cannot proceed the transaction is aborted. 
Write Operation: ‘When a data item is written, the 
write is performed on a local copy of the data item 
in the client. No dhecks are made. 
Commit: If the transaction has not performed 
any write operation, then the commit operation 
does not have to do anything and the commit 
succeeds. In case the transaction has performed 
a write operation, a list of all the objects written 
and the values written are sent to the server. In 
addition, the list of all read operations performed 
and the cycle numlbers in which they are performed 
are sent to the server. The server checks to see 
whether the update transaction can be committed 
and communicates the result to the client. If so, the 
transaction is committed, else it is aborted. This 
method of handling update transactions is similar 
to the method proposed in [Kum97]. 
Abort: If the transaction has not performed any 
write operation, then the abort does nothing. In 
case the transaction has written to a data item, 
then all the copies of the data items written to are 

5The maintenance of two versions of objects has some 
commonality with multiversion concurrency control [Ber87]. Our 
concern here is about clients which maintain only a single version. 

discarded and further execution of the transaction 
is stopped. 

Nature of Control Information 
We now describe the nature of the control information 

transmitted by the server and show how it is updated at 
the end of each cycle. The control information matrix 
at any point in time is an n x n matrix, C, where n 
is the number of objects. If objects are assumed to be 
have ids obl through obn, each entry C(i, j) is set to a 
cycle number determined as follows. 

Let 3t be the history of execution of the co:mmitted 
update transactions at the server. Also, let ti be the 
last committed update transaction that wrote obj. Vie 
assume that a transaction to writes all data items at 
cycle 0 (before the beginning of the broadcast). Then: 

l ‘ciy 8 = mmtfE~~VE7((tj) A t’ writes & (“t’> where 

QI = cycle number in which t’ committed. 
As defined earlier, LIVEx(tj) refers to the set Df trans- 
actions (including tj) that tj directly or indirecl;ly reads 
from. Thus, LIVER is the set of transactions that 
“affect” the latest committed value of obj (because tj 
writes the latest committed value of obj). C(i, j) is thus 
the latest cycle number in which some transaction that 
affects the latest committed value of obj and also writles 
to obi, commits. The following example illustrates how 
the entries in the C matrix axe determined. 
Example 4: Consider the following history: 

~l(~bl)~l(0b2)~1~2(0~1)~2(~~1)~2~3(~~2)~3(~~~2)~3 
and assume that the commit operation ci occurs during 
the ith broadcast cycle . 

In the above scenario C(l, 1) = 2 because t2 was 
the last transaction to write onto obl (thus “dfecting’ 
the value of obl) and it committed during cycle 2 
of the broadcast. For similar reasons, C(2,2) = ;3. 
The value of C(1,2) = 1. This is because t3 was 
the last committed transaction to write onto ob2 and 
LlVE~(t3) = {tl, t3) and tl is the only transaction in 
LIVER (t3) to write onto obl and it does so during cycle 
1 of the broadcast. For similar reasons, C(2,l) = 1. 

So far, we have assumed that each entry OF the C 
matrix has to store the cycle number relative to the 
first cycle ever broadcast. This could be avoided if we 
know the maximum number of cycles that a transaction 
could span (mae-cycles). In that case, we need to store 
only cycle numbers from 0 to max-cycles and perform 
modulo max-cycles + 1 arithmetic and comparisons. 
This would reduce the size of each entry in the C 
matrix. The issue of how the control informatim is to 
be transmitted during a broadcast cycle also needs to be 
addressed. One effective way to partition the C matrix 
is to broadcast the jth column right after broadcasting 
the object obj. This would minimize the amount of time 
the client would have to wait for control information, as 
will become apparent in the next section. 
Validating Client Reads 
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For a read-only transaction t at the client, the fol- 
lowing protocol is followed before each read operation. 
Let Rt be the set of (obi, cycle) pairs such that transac- 
tion t previously read object obi from broadcast cycle 
cycle, i.e., t read the latest committed value of obi at 
the beginning of cycle cycle. Then a read operation on 
an object obj is allowed to proceed in a cycle iff the 
following condition, read-condition(ob~), holds (thereby 
preserving conflict serializability): 

V(obi,cgcZe) E Rt (C(i,j) < cycle) 
where C is the matrix at the beginning of the current 
cycle. If the read-condition fails, the transaction is 
aborted. Intuitively, a read operation performed by a 
transaction t on object obj is allowed iff no transaction 
in LIVE(t) wrote onto obi after t read from the ob;. 

Theorem 1 A read-only transaction tR is allowed to 
commit by the protocol described above iff S(tR) is 
acyclic. (See [Shag91 for proof of this theorem.) 

Computing Control Information 
As a transaction commits, the entries affected by it 

are updated by the server. For simplicity, we consider 
only the simple case where the entries are updated 
as per a serialization order (see Section 5 for other 
option). 

We now show how the matrix C can be incrementally 
constructed. At the beginning of the broadcast, each 
entry in C is set to the cycle number 0. Let Cold be the 
matrix that considers all the committed transactions in 
a serial order up to a certain point in time in a broadcast 
cycle cl. Now, let t be a newly committed transaction 
that occurs immediately after all previously committed 
transactions in the update transaction serialization 
order. Also, let cs 2 cl be the cycle in which t commits. 
Let RSt be the set of objects read by t and let WS, be 
the set of objects written by t. Then the new matrix 
C new is computed as follows: 

C,,,,(i, j) = ~2 if obi,obj E WS, 

Since transaction t writes to objects obi,obj and 
it is the last transaction to write onto obj in the 
serial order of execution, t is the last transaction 
that affects the latest value of obj and also writes to 
obi. Thus, the entry is set to the cycle in which t 

commits. 

Since transaction t reads from objects in R&, the 
transactions t depends on is the set of all transaction 
that directly or indirectly affected the latest values 
of items written to the objects in R&. Thus, 
each entry is updated to reflect this fact. If the 
transaction t does not read any object, then this C 
entry is set to 0. 

3. C,,,,(i, j) = C&i, j) otherwise 

If an object obj is not updated, entries in column j 
are untouched. 

Theorem 2 The above incremental algorithm pre- 
serves the semantics of the C matrix. (See [Shag91 for 
proof of this theorem.) 

There are a few potential drawbacks of F-Matrix. 
One is that computing the matrix may be expensive in 
terms of server time. We, however, do not expect this 
problem to be severe because broadcast environments 
cater to read-mostly workloads and read-only transac- 
tions are not involved in matrix construction. The other 
potential drawback of the F-Matrix mechanism is that 
the bandwidth required to transmit the C matrix dur- 
ing each broadcast cycle. The space requirements for 
the C matrix in F-Matrix is n2 x log(max-cycles) bits 
per broadcast cycle, where n is the number of objects 
in the database and max-cycles is the maximum num- 
ber of broadcast cycles spanned by a transaction. This 
cost can be significant for large values of n. Quantita- 
tively, if the size of each object is s bits, then the frac- 
tion n2xlog(mazryclee) = nxlog(mor-cycles 

n~xlog(moz~ycles +nxe )) of the nx1og maz_cyclea +s 
broadcast cycle time is spent on control information. If 
s is small, this overhead can be significant. The over- 
head may not be significant for large values of s. This 
problem is actually slightly worse than it seems. It can 
be shown that regardless of the compression technique 
used, in the worst case, the number of bits to be trans- 
mitted in order to represent the C matrix during each 
broadcast cycle is quadratic in the number of objects 
broadcast [Sha99]. 

This result, however, assumes for simplicity that 
the entire C matrix is transmitted in each broadcast 
cycle. The number of bits to be transmitted may 
be drastically reduced if we transmit only changes 
(deltas) over the previous C matrix transmission. This 
approach, however, has the disadvantage that the 
client has to store the previous transmitted C matrix. 
More importantly, the client should listen to the last 
broadcast of the C matrix and the subsequent deltas 
regardless of whether it wanted to read any data in 
those broadcast cycles, thus increasing the usage of 
scarce client resources (like battery power). We do not 
investigate the details of this approach in detail in this 
paper but plan to study it as part of future work. 

3.2.2 R-Matrix and Datacycle 
Implementations 

In the previous section, we described the F-Matrix 
mechanism to implement the APPROX algorithm in 
broadcast disk environments and also outlined some of 
the potential overheads of computing and transmitting 
the C matrix. In order to get around the drawbacks of 
F-Matrix mentioned above, F-Matrix could be modified 
as follows. Instead of viewing each object as a separate 
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entity, we can partition them into groups of objects. 
The C matrix will now not be a n x n matrix, where 
n is the number of database objects, but would be 
a n x g matrix, where g is the number of groups in 
the database, thus reducing the size of the control 
information. Further, the fact that there are fewer 
entries to update would make it more efficient to update 
the matrix. Each entry of the modified C matrix, 
MC(i, s), where s is a set of objects, is defined by: 

l MC(i, s) = mam,j~d(C(i,j)) 

For the purposes of the matrix, we consider all 
database items in the set s to be indistinguishable. At 
the client, the check is performed as in the F-Matrix 
case, with the following modification to account for the 
grouping of objects. Let Rt be the set of (obi,&e)s 
such that transaction t previously read object obi in 
cycle cycle. Then rea.d-condition(obj) becomes: 

V(obi,cycle) E Rt, MC(i,Sj) < cycle) 
where MC is the matrix at the beginning of the current 
cycle and sj is the database partition to which obj 
belongs. Since the number of partitions is tunable, we 
have a spectrum of mechanisms implemented by varying 
the size of the database partitions (in the extreme 
case, where all database partitions are singleton sets, 
we have the implementation F-Matrix). There is a 
tradeoff in choosing the size of the partition: increasing 
the partition size would mean that certain unnecessary 
conflicts would result, while reducing the partition size 
would imply increased control information overhead. In 
this paper, we concentrate on the two extreme cases to 
illustrate this basic tradeoff: (a) all database partitions 
are singleton sets (F-.Matrix) and (b) all database items 
fall under one partitilon. 

In case (b), the matrix entry associated with each 
object is just the latest cycle number in which a 
committed value was written to it (i.e., the matrix 
is in fact just a vector). Thus, read-condition(obj) is 
simplified to: 

V(obi,cycle) E Rt (MC(i,db) < cycle) 
where db is the set of all the objects in the database. In 
other words, a transaction can proceed to read an object 
only if no previously read value has been updated. This 
corresponds to the Datacycle approach for concurrency 
control [Her871 and ensures serializability. For the rest 
of this paper, we call this approach Datacycle. The 
Datacycle approach, Ihowever, does not fully realize the 
potential of the matrix reduction. We can in fact 
weaken read-condition(obj) for a read on an object obj 
performed by a transaction that read the first data item 
at cycle cl to: 
V(obi,cycle) E Rt 
(MC(i, db) < cycle) V (MC(j, db) < cl) 

where db is the set of all the objects in the database. 
We call this modified algorithm R-Matrix (for reduced 
matrix). The idea behind this algorithm is that a 

transaction reads consistent values if either (a) no vahes 
it has previously read have been overwritten by othLer 
transactions or (b) ( even though previously read vahes 
may have been overwritten by other transacti.ons) the 
current value being read has not been overwrit ten sin.ce 
the beginning of the transaction. (a) ensures that the 
transaction sees the database state at the time of the 
last read while (b) ensures that the transac;ion sees 
the database state at the time of the first read. It 
can be shown (see [Sha99]) that R-Matrix accepts only 
schedules accepted by APPROX. 

Optimizations similar to those done in Datacycle 
could also be done for R-Matrix. Thus, a bit could ‘be 
set by hardware if any of the previously read values 
of a transaction are changed. For a future read of 
an object, if the bit is set and if the object bei:ng 
read has been changed during or after the cycle in 
which the first read operation was performed by the 
transaction, the transaction is aborted. Ol;herwise, 
the read operation is allowed to proceed. Besidles 
reducing the number of unnecessary aborts of read- 
only transactions, this mechanism has a nice ‘5 tability” 
property unlike Datacycle where a transaction may be 
aborted even if it does not perform any further reads. 

3.3 Weak Currency Requirements 

In the discussion above, we have assumed that the read 
operations of client transactions would like to see dalta 
that is current to at least the beginning of the broadcast 
cycle in which the read operation was performed. Thus, 
each read operation had to read data items off the 
broadcast. This is not necessary, however, if the client 
currency requirement is such that data items read have 
to be current to only within T time units, where T 
could be much larger than the broadcast cycle time. 
In this case, data items read off the broadcast di.sk 
could be cached at clients so that future accesses to the 
same data items can just be read from the local cach.e6 
without having to wait for the data item to appear again 
in the broadcast. A data item is removed from the cache 
as soon as the currency of the data item cached exceeds 
T time units. Note that this decision to invalidate items 
in the cache can be done locally by the client without 
need for any communication. 

Different clients may have different currency require- 
ments and even for a given client, there mar be dif- 
ferent currency requirements for different data items. 
Since the invalidation of the cache at clients is purely 
local, the invalidation interval can be tailored on a per 
client, per object basis and the invalidation pl?rformed 
accordingly. Thus, clients with vastly different currency 
requirements can coexist in a broadcast medium with- 

61n case the client cache is not large enough to hold all the d&e 
items needed by transactions, cache replacement policies similar 
to those suggested in [Ach96] could be employed. 
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out any need for extra communication. This caching 
technique is a specific instance of a more general tech- 
nique called quasi-caching, introduced in [Alo90]. 

The main problem that is be solved in this context 
is to ensure that transactions see mutually consistent 
data even when they read cached data items. Previous 
approaches for maintaining the consistency of cached 
data items [AlogO, Ach96] do not ensure the mutual 
consistency of objects read by transactions. We achieve 
this by storing the columns of the matrix corresponding 
to the data items cached, along with the cycle at which 
the data items were cached. A transaction that accesses 
cached data items has all the information necessary for 
validation when using F-Matrix or R-Matrix. 

In summary, weak currency requirements can be 
effectively exploited in broadcast environments using 
client caching. Our mechanisms can be extended 
to maintain inter-object consistency by storing the 
relevant columns of the concurrency control matrix. 

4 Simulation Results 
Our simulation based experiments are aimed at compar- 
ing the performance of four different algorithms (Data- 
cycle, F-Matrix, R-Matrixand F-Matrix-No) for concur- 
rency control of client read-only transactions in broad- 
cast disk environments. The first three algorithms are 
described in the previous section. The last algorithm 
is used as a baseline and implements the functional- 
ity of F-Matrix, but ignores the cost of broadcasting 
the control information associated with each object in 
the database. Hence, the broadcast cycle lengths are 
shorter for runs of this algorithm as compared to those 
for F-Matrix. We do not consider the effects of caching 
in this performance study. 

The performance of these algorithms can be com- 
pared relative to the following metrics: 

l Transaction Response Time - the time the 
transaction is submitted by a client to the time 
the transaction commits. This includes the time 
involved in restarting the transaction (perhaps more 
than once, if necessary), if it aborts. 

l Transaction Restart Ratio -the number of times 
a transaction is restarted because the data it read 
was inconsistent. 

4.1 Experimental Setup 

Our simulator consists of a server, a client, a broadcast 
disk structure and an event queue. Only read-only 
transactions execute on the client. The server executes 
update transactions. Only one client was simulated 
because the performance of the concurrency control 
mechanisms for read-only transactions is independent of 
the number of clients. The objects that the transactions 
access are determined using a uniform distribution on 
the objects in the database. All these objects are 

updatable and hence correspond to the “hot spots” of 
the broadcast database. Table 1 lists the simulation 
parameters. Client transaction length indicates the 
number of read operations performed at the client 
and server transaction length indicates the number of 
read/write operations at the server. The delays are 
modeled as exponential distributions. For a broadcast 
medium with bandwidth of 64 Kbits/s, the inter- 
operation delay translates to 1 second and the client 
inter-transaction delay translates to 2 seconds. 

The server fills the broadcast disk with data at the 
beginning of a cycle. To simulate the database objects 
being broadcast at different times, a time entry exists 
for each object. This is set to the time at which the 
object is actually broadcast. The client waits until 
this time to read the corresponding object. Each cycle 
consists of a broadcast of all the objects along with 
the associated control information. For F-Matrix, the 
control information consists of an (n x n) matrix, where 
n is the number of objects. Each column of the matrix is 
broadcast along with the corresponding object. For R- 
Matrix and Datacycle, the control information consists 
of an array of length n. Each element in the array is 
broadcast along with the corresponding object. 

The time to broadcast one bit (one bit-unit) is 
used as the unit of time. All response times are 
measured in terms of this unit. We evaluate the 
algorithms with respect to different settings of the first 
5 parameters, varying a parameter at a time. Each 
experiment consists of 1000 client transactions and the 
simulations run until all of them commit. The data was 
derived from the last 500 transactions to ensure that 
it was “steady-state” data. In these experiments, 95% 
confidence intervals were obtained, whose widths were 
less than 10% of the point estimates. 

For F-Matrix the fraction of the cycle used for the 
control information (in bits) is given by nZx,$~~~OBJ 
= nX$$SJ, where TS is the size of a timestamp 
and OBJ is the size of an object. For a timestamp 
size of 8 bits and an object size of one kilo Byte and 
300 objects in the database, the overheads work out to 
about 23%. For R-Matrix and Datacycle, the fraction of 
cycle time used for control information is nxT~~~~OBJ 

TS = -. For the same parameters, the overheads in 
thiyckOeB&e only about 0.1%. 

4.2 Effect of Client Transaction Length 

Until client transaction length 4, all the algorithms 
have similar performance (see Figures l(a) and l(b)). 
After that, especially beyond a value of 6, the Datacycle 
algorithm performs very poorly so much so that for a 
length of 10, its response time was outside the limits 
of the Y-axis. Even though R-Matrix is far better than 
Datacycle, F-Matrix shows even better behavior. For a 
client transaction of 8, R-Matrix has a response time 
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Parameter 
Client Transaction L,ength 
Server Transaction Length 
Transaction Rate at Server 
Number of Objects in Database 
Size of Objects in Database 
Server Read Operation Probability 
Client Inter-Operation Delay 
Client Inter-‘Ikansaction Delay 
Client Restart Delay 
Timestamp Size 

Default Value 
4 
8 
1 in 2.5~10~ bit-units 
300 
1KB 
0.5 
65536 bit-units 
131072 bit-units 
0 bit-units 
8 bits 

Table 1: Parameters for the Simulation 

of 122.68 x lo6 while F-M&h has a response time 
of 14.6 x lo6 units (about 12% of R-Matrix’s response 
time). This is because F-Mattix reduces the number 
of client transaction aborts to almost zero (see Figure 
l(b)) by using a we&er read condition. Also, note that 
the performance curve for F-Matrix is flat, indicating 
that it scales very well with client transaction length. 

The small differences between the performance of 
F-Ma&h and F-Matrk-No are magnified in Figure 
3(a)- These differences arise because the control 
information transmission time is ignored in F-Mate- 
No. So, read transactions wait for a shorter time for the 
broadcast data to be available. The number of update 
transactions per cycle is also reduced and hence, there 
are lesser read conflicts in each cycle. 

As can be seen from Figures l(a) and 1 (b), there is 
a high correlation between the response time and the 
number of aborts. Thus, for the rest of this paper, we 
concentrate on response times. 

4.3 Effect of Server Transaction Length 

Longer server transactions lead to more updates at the 
server for each cycle. Hence, the response time increases 
with server transaction length in Figure 2(a). However, 
F-Mat% shows very little increase in response time 
compared to Datacycle and even R-Matrix. Once again 
this demonstrates the scalability of F-Matti. 

4.4 Effect of Transaction Rate at Server 

In Figure 2(b), the server transaction rate (X-axis) 
decreases as we go from left to right. This graph 
shows that, as expected, response time improves with 
a decrease in server transaction rate. The performance 
of F-Matrix nearly matches that of F-Matti-No and is 
better than R-Mattix and much better than Datacycle. 
Also, F-Mattix displays almost no degradation in 
performance as server transaction rate increases. 

4.5 Effect of Number of Objects 

As the number of objects in the database increases, 
the probability of transactions accessing an object 

decreases. The length of the cycle, however, increases 
with the number of objects. The increase in the control 
information to be sent also increases the length of the 
broadcast cycle. This increases the number of server 
transactions per cycle and hence, increases the number 
of possible conflicts. Hence, the response times increase 
with the size of the database. As can be seen from 
Figure 3(a), the relative ordering of the four protocols 
remains the same with F-Mat+ displaying the best 
response times (about 9.6 x lo6 units for a (database 
size of 400, as compared to nearly 11.3 x 106 for .R- 
Matrix) among the three practical protocols. The rate 
of increase in response time, though almost constant for 
both R-Ma&k and F-Mat*, is smaller for F-Matrix. 

4.6 Effect of Object Size 

The relative behavior of the algorithms with increasing 
size of objects is shown in Figure 3(b). The length of 
the broadcast cycle increases with object size and hence 
the response time also increases. Note that at small 
object sizes, F-Matrix and R-Mate perform about tlhe 
same because the space overhead of F-Matrk increases 
(relative to the size of the broadcast cycle) and offsets 
the associated gain in concurrency. At very small 
object sizes, F-Mat&z would thus perform worse than 
R-Matrix. As object size increases, however, the effect 
of the control information tends to decrease. Hence, the 
performance of F-Mattixis better than that of R-Matrix 
and Datacycle and approaches that of F-Matrk-No. 
Here again, response time increases at a smaller rate 
for F-Mattix than for the other two practical protoco1.s. 

4.7 Summary of Results 

R-Mat& outperforms Datacycle and F-Matrix outper- 
forms R-Matrix in all the experiments. Thus, the ex- 
perimental results confirm the hypothesis that a weaker 
abort condition would lead to better responss times. 
Furthermore, F-Mat* is highly scalable with respect 
to client transaction length, server transaction length, 
and server transaction rate. All the protocols display in- 
creased response times with increase in broadcast cycle 
lengths, but the rate of increase in the case of &Matrix 
is lower than that of R-Ma&h as well as DdacycEe. 
These performance features of F-Mate are cbserved 
in spite of F-Mat& requiring more bits to transmit th!e 
control information in each cycle. Also, in many cases 
its performance profile is very close to F-Match-No. 

F-Mattix and R-Matria: represent two ends of a 
spectrum. F-Matrix has the overhead of transmitting 
control information of size 0(n2), where n is the number 
of objects. R-Mat* presents a cheaper alternative, 
though it does not perform or scale as well as F-Mat&. 
In general, the choice of the algorithm to be used woul’d 
depend on the capacity of the broadcast mediurr. as well 
as the profile (number of objects, frequency of updates, 
etc.) of the database that is to be used. 
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(a) Comparison of Response Times (b) Comparison of Number of Aborts 

Figure 1: Effect of Client ‘Bansaction Length 

(a) Effect of Server Transaction Length (b) Effect of Server Transaction Rate 

Figure 2: Effect on Response Time 

(a) Effect of Number of Objects (b) Effect of Object Size 

Figure 3: Effect on Response Time 
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Mutual consistency requirement satisfied by adapting uprlate consistency 

i APPROX used as an efticient approximation of update consistency I 

F-Matrix implements APPROX in broadcast environments 

c 
F-Matrix and R-Matrix extended to exploit weak currency requirements 

I 

Simulation studies comptin,g the perfomnce of different protoCols 
show superiority of F-Matrir over compared protocols I 

Figure 4: Development of Ideas 

5 Conclusions and Future Work 

There are several possible applications of broadcast 
based database systems (such as stock trading and traf- 
fic information) that impose consistency and currency 
requirements [Xua97]. Catering to such requirements 
through efficient concurrency control is the subject of 
this paper. Figure 4 shows the development of ideas. 

In the future, we plan to study efficient parallel com- 
putation and incremental transmission of the control 
matrix, performance in the presence of caching, and ex- 
tensions to optimize for client update transactions. 
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