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Abstract
Random peer selection is used by numerous P2P applica-
tions; examples include application-level multicast, un-
structured file sharing, and network location mapping. In
most of these applications, support for a heterogeneous
capacity distribution among nodes is desirable: in other
words, nodes with higher capacity should be selected pro-
portionally more often.

Random peer selection can be performed over both
structured and unstructured graphs. This paper compares
these two basic approaches using a candidate example
from each approach. For unstructured heterogeneous ran-
dom peer selection, we use Swaplinks, from our previous
work. For the structured approach, we use the Bamboo
DHT adapted to heterogeneous selection using our ex-
tensions to the item-balancing technique by Karger and
Ruhl. Testing the two approaches over graphs of 1000
nodes and a range of network churn levels and hetero-
geneity distributions, we show that Swaplinks is the su-
perior random selection approach: (i) Swaplinks enables
more accurate random selection than does the structured
approach in the presence of churn, and (ii) The structured
approach is sensitive to a number of hard-to-set tuning
knobs that affect performance, whereas Swaplinks is es-
sentially free of such knobs.

1 Introduction
A number of P2P or overlay applications need to select
random peers from the P2P network as part of their oper-
ation. A simple but poorly scaling way to do random peer
selection is to disseminate a list of all nodes to all nodes.
To randomly select another node, each node simply se-
lects randomly from its list. Early gossip protocols that
needed uniform random peer selection typically assumed
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this approach. A scalable alternative approach is to build
a sparse graph among the peers, and then use some kind
of walk through the graph to do random node selection.

An early example of this approach was an overlay mul-
ticast protocol called Yoid [1]. Yoid constructed a ran-
dom graph over which random walks would be used to
discover nodes that might be included in a multicast tree.
More recent overlay multicast protocols that utilize ran-
dom node selection include Bullet [2] and Chainsaw [3].

Gnutella-style unstructured file sharing networks uti-
lize a random selection component when searching for
nodes having desired files. To improve the scalability of
this file search, GIA [4] proposes using random walks
rather than flooding.

Random node selection also plays an important role
in proximity addressing schemes like Vivaldi [5] and
PALM [6]: these schemes need to select random peers
in the network to measure their latencies from the peers
and compute their coordinates.

In many of these examples, it is important that random
selection follow a given non-uniform probability distri-
bution. In other words, some nodes are to be selected
with higher probability than others. The primary reason
for this is to accommodate nodes with differing capac-
ities. We refer to this problem of selecting each node
with probability proportional to its specified capacity as
heterogeneous random selection. The need to accommo-
date heterogeneity is especially acute for file searching in
Gnutella-like file sharing networks, as the use of super-
nodes attests. The primary focus of GIA is this hetero-
geneity in unstructured networks. Accommodating node
heterogeneity is also important in overlay multicast algo-
rithms [7, 8, 9, 10].

Given the number and variety of P2P and overlay ap-
plications that use random node selection, in previous
work [11], the authors designed Swaplinks, a general-
purpose unstructured P2P algorithm to provide a hetero-
geneous random node selection primitive that could be
used by a wide range of P2P and overlay applications.
Swaplinks builds a random graph in which each node’s
degree is proportional to its desired degree of heterogene-



ity, and then uses random walks over that graph to do
node selection. The previous work showed, using simula-
tions, that Swaplinks was the most attractive unstructured
random selection technique: It gives fine-grained control
over both the probability that a node is selected and the
overhead seen at each node. It is efficient, scalable, ro-
bust (to churn, and to wide variations in node capacities),
and simple. In this paper, we implement Swaplinks, and
provide a comprehensive evaluation of the Swaplinks im-
plementation, thus validating the previous simulation re-
sults.

Heterogeneous random selection in the example appli-
cations cited earlier can also be potentially realized by
structured approaches. Our previous work, however, ex-
amined only unstructured approaches to random selec-
tion, because of our intuition that they would be sim-
pler than structured approaches, and that this simplic-
ity would ultimately lead to a more scalable and robust
system. A primary goal of this paper is to test our in-
tuition about the relative simplicity of structured and un-
structured approaches to heterogeneous random selection
through a performance comparison between the two ap-
proaches. We choose the “item-balancing” algorithm by
Karger and Ruhl for load balancing in structured P2P net-
works [12] as the basis for the structured random selec-
tion approach, and we use Swaplinks as the unstructured
approach. The basic idea in using the item-balancing al-
gorithm in our setting is to assign identifiers in the DHT
number space such that a larger portion of the number
space maps proportionally into high-capacity nodes, and
a smaller portion maps into low-capacity nodes. High ca-
pacity nodes, by virtue of “owning” a larger portion of the
number space, will be selected proportionally more often
by queries issued to uniformly random identifiers. We
implement the Karger/Ruhl approach over the Bamboo
DHT [13], and call this approach KRB. We chose Bam-
boo because it is a stable well-maintained open software
for DHTs, and because it is a second generation DHT,
designed using the best principles from the earlier, first
generation DHTs (like Chord [14] and Pastry [15]). This
minimizes the chances that the results are an artifact of a
poor DHT implementation.

The performance comparison between KRB and
Swaplinks shows that KRB performs less well in the face
of churn, and has a number of hard-to-set tuning knobs
that affect performance. While we need more compar-
isons (with other structured approaches) to be certain of
this, the performance comparison goes a long way toward
validating our intuitive concern about the relative com-
plexity of using DHTs for heterogeneous peer selection.

Overall, this paper makes two contributions:
• We implement an open source library [16] that

provides heterogeneous unstructured random graph
construction and random node selection primitives

based on Swaplinks. We also measure the perfor-
mance of the Swaplinks implementation for both
random graph construction and random selection,
and in so doing validate earlier simulation results.

• We modify the Karger/Ruhl load balancing algo-
rithm for heterogeneous random peer selection, and
compare its performance as a random selection
mechanism with that of Swaplinks.

We next describe related work in Section 2. We de-
scribe the Swaplinks algorithm and its implementation in
Sections 3 and 4, and the KRB method in Section 5. In
Section 6 we give a performance evaluation and compar-
ison of both algorithms. Finally, we discuss issues and
future work in Section 7.

2 Related Work
2.1 Structured P2P Networks
All structured P2P systems modeled as DHTs (e.g. [17,
14, 15], etc.) assign identifiers to nodes, typically at ran-
dom. Random selection in DHTs can be done by ran-
domly choosing a value from the DHT number space,
and routing to that value. The problem of random node
selection in DHTs, then, boils down to the problem of
assigning identifiers appropriately.

Even where uniform random selection is desired,
assigning a single random identifier to each node is
inadequate, because any non-uniformities in the ran-
dom assignments persist over time. Consistent hash-
ing schemes deal with this by assigning multiple ran-
dom identifiers[18], and DHTs have proposed something
similar, namely creating multiple virtual replicas of each
node in the DHT. To achieve heterogeneity, each node is
replicated a number of times proportional to its capacity
([19, 20]). This approach however entails a blowup in
network and computational overheads, and so is not an
attractive approach.

A modified multiple virtual node approach is used in
Y0 [21]. Here, virtual node identifiers for each node are
selected from a small range of identifiers; the authors uti-
lize the proximity of the node’s identifiers to avoid having
to maintain separate routing entries for each virtual node.
While this scheme is interesting, and a potential candi-
date for comparison, it has not been analyzed or tested
for robustness to high churn. Y0 also needs all nodes to
know (at least roughly) the number of nodes in the sys-
tem, which might be an issue under high churn.

Ledlie and Seltzer [22] present the k-choices algorithm
for load balancing in settings with skewed query distribu-
tions and heterogeneous capacities. k-choices is similar
to KRB, in that both place nodes at IDs that minimize



load imbalance. The difference is that k-choices assumes
that each node knows its absolute desired load, whereas
in KRB, nodes only have a notion of relative desired load.

Accordion [23] and HeteroPastry [24] give schemes
that tailor nodes’ degrees and their message loads ac-
cording to capacity and network activity. These schemes
however do not provide capacity dependent namespace
partitioning, and so cannot support heterogeneous ran-
dom selection by routing to uniformly randomly selected
IDs. An alternative approach might have been to use un-
biased random walks over these networks for random se-
lection, but the control over degrees in these schemes is
not fine-grained enough (i.e., average node degrees are
not proportional to capacities) for this to result in the de-
sired selection distribution1.

Karger and Ruhl propose two schemes in their papers
for load balancing in DHTs [12, 25]. The first results in
a constant factor bound on ID spaces between successive
nodes, but cannot handle the case where the ID spaces are
to be split according to capacities. The second scheme
looks at item load balancing, where the number of items
that are stored at any node should be within bounds and
dependent on node capacity. With minor variations, we
could modify this scheme to split ID space according to
node capacities and run over Bamboo – we call this KRB.
We use KRB as the candidate structured approach for our
performance comparisons.

2.2 Unstructured P2P Networks
In previous work [11], we found Swaplinks to be the best
algorithm for constructing unstructured P2P graphs suit-
able for heterogeneous random selection. Here is a brief
overview of other unstructured approaches.

GIA extends Gnutella by making both graph-
construction and query-resolution sensitive to node ca-
pacities [4]. High-capacity nodes here have higher de-
grees, and are more likely to be traversed by random
walks. While Swaplinks shares these two features with
GIA, Swaplinks exhibits more accurate control over de-
gree and probability of selection. Other examples of
unstructured graph construction schemes include Ara-
neola [26], an approach by Law and Siu [27], and
SCAMP [28]. None of these take node heterogeneity into
account.

The Ransub [29] mechanism can be used as a ran-
dom node selection primitive, but as was the case with
the previously mentioned schemes, does not take into ac-
count node heterogeneity. The Metropolis-Hastings al-
gorithm [30] and the Iterative-Scaling algorithm [31] can
be used to achieve desired probabilities of selection over
any underlying graph. But when the underlying graph
has node degrees close to the desired probabilities, like
Swaplinks does, random selection primitives achieve the

desired distribution much more efficiently (e.g., random
walks need to take far fewer hops).

3 The Swaplinks Algorithm
Our random selection API consists of the following core
procedures:
• join(numLinks)

• node = select()

• listOfNodes = listNeighbors(callBack)

The join() procedure causes the joining node to estab-
lish random links with other, already joined nodes. The
parameter numLinks indicates how many neighbors the
joining node should try to obtain. On average a node
will end up with twice as many neighbors as the value
numLinks. This is because other nodes will in turn se-
lect a given node as their neighbor.

The value of numLinks is set to be proportional to the
probability with which the node should be selected. For
instance, if a node A should be selected with twice the
probability of node B, then node A will set numLinks

to be twice that of node B. It is up to the application to
know what values to choose for numLinks. Typically
an application would choose a value of numLinks = 3
for its lowest capacity nodes, and select values propor-
tionally higher for higher capacity nodes. The value 3
is chosen as the minimum to insure that even the lowest
capacity node has a low probability of partition from the
rest of the network. Higher values reduce the probability
even more.

When a node wishes to randomly select another node,
it calls select(). This causes a random walk to be
taken through the random graph. The number of hops
in the walk is a fixed value, 10 by default. The node
at which the walk ends is the selected node. The value
numLinks plays two important roles here. First and
foremost, the Swaplinks design ensures that the walk
will end at nodes with higher numLinks values with
proportionally higher probability. Second, nodes with a
higher numLinks value will serve as intermediate hops
in walks with higher probability. This second effect re-
sults in the load required to participate in the algorithm
by any given node to also be proportional to its capacity.
There are a number of possible variations on the select()
call: for instance the length of the walk may be specified,
or the identity of all nodes traversed during the walk may
be returned.

Some P2P applications may simply wish to use the
underlying graph directly. For instance, a BitTorrent
might use the neighbors selected by the join() proce-
dure as the nodes with which it exchanges file blocks.
The listNeighbors(callBack) procedure allows this. In



addition to providing the current set of neighbors, a call-
back routine allows Swaplinks to inform the application
whenever the neighbor set has changed.

In building and maintaining a random graph, each node
labels each of its links to a neighbor node as either an out-
link or an inlink. These labels have nothing to do with the
direction messages may pass over them: messages may
pass in both directions. Rather, the label is chosen based
on which node initiated creation of the link. The node
that initiated the link labels it an outlink, and other node
labels it an inlink. Correspondingly, neighbor nodes are
labeled as out-neighbors or in-neighbors. The outdegree
is the number of outlinks, and the indegree is the number
of inlinks. Every link is an outlink in one direction and
an inlink in the other.

Likewise, there are two types of fixed-length random
walks:

OnlyInLinks: The walk is forwarded to a randomly
chosen in-neighbor.

OnlyOutLinks: The walk is forwarded to a randomly
chosen out-neighbor.

Every node always maintains an outdegree of
numLinks, by finding numLinks out-neighbors when
it first joins, and by replacing any out-neighbor it loses
with another one. This is done in such a way that
nodes tend to have the same number of inlinks as out-
links, though they may have slightly greater or fewer than
numLinks inlinks.

There are three cases the algorithm must cover:
1. A joining node is adding selected out-neighbors
2. A node is replacing a lost out-neighbor
3. A node is replacing a lost in-neighbor

To find a new out-neighbor for the first case, a joining
node (say A) initiates a fixed length OnlyInLinks walk
from one of its entry nodes. The node (say B) where the
walk ends is chosen as an out-neighbor for the new node.
Node B then randomly selects one of its in-neighbors C,
and “gives” that in-neighbor to A. In other words, C loses
B as an out-neighbor, and gains A as an out-neighbor.

The result of this transaction is that A gains both an
out-neighbor (B) and an in-neighbor (C). After A is done
finding all of its numLinks out-neighbors, it will also
have an equivalent number of in-neighbors. Node B will
have gained one in-neighbor (A) and lost another (C),
so it comes out even. Node C will have lost one out-
neighbor (B) and gained another (A), so it also comes
out even.

If a node (say A) loses an existing out-neighbor (the
second case above), it likewise takes an OnlyInLinks
walk, and creates an outlink with the discovered node
(say B). However, in this case, B does not give one of
its in-neighbors to A. Rather, B ends up with an extra in-

neighbor. Had B given A an in-neighbor, then A would
have ended up with an extra in-neighbor instead.

Finally, if a node (A) loses an existing in-neighbor
(the third case above), it sees if its number of in-links is
less than its numLinks. If so, it takes an OnlyOutLinks
walk. The node (B) discovered by the walk then donates
one of its in-neighbors to A if B’s number of inlinks is
greater than half its numLinks.

The above modes of link-formation could lead to the
creation of multiple links between the same pair of neigh-
bors; Swaplinks makes no effort to eliminate these mul-
tiple links. This makes dealing with very small networks
straightforward.

The rationale behind using the OnlyInLinks and Only-
OutLinks walks in Swaplinks is as follows: The OnlyIn-
Links walk selects each node with a probability roughly
proportional to its outdegree. The OnlyOutLinks walk,
on the other hand, selects each node with probability
roughly proportional to its indegree. Thus Swaplinks, by
using the OnlyInLinks walk, ensures that the load placed
on each node is proportional to its outdegree. And by
employing OnlyOutLinks to deliberately look for inlinks
in the presence of churn, it tends to find nodes with dis-
proportionately large indegrees, thus stealing the surplus
inlinks from such nodes and ensuring that nodes’ inde-
grees stay close to their outdegrees.

In this paper, application-requested node selection
(select()) uses OnlyInLinks walks, as opposed to the
other random walks tested in [11]. While both OnlyIn-
Links and the random selection walks in [11] result in
selection proportional to nodes’ outdegrees, OnlyInLinks
is simpler and thus the more attractive method to use.

Simulations in [11] show that Swaplinks builds graphs
where the degree distribution closely resembles the de-
sired distribution. The graphs scale well to large sizes,
and lend themselves well to random peer selection. The
resultant message load on nodes and the frequency of se-
lection vary linearly with the degree. Swaplinks imple-
mentation results presented later in this paper corroborate
these findings.

A feature of Swaplinks that makes it attractive from a
practical viewpoint is that it is free of “tuning knobs”: It
has no parameters to set, apart from the neighbor heart-
beat frequency parameter (present in most distributed
systems). We avoid having to tune the hop-length for
different random walks by making all walks 10 hops in
length, which is a conservatively large value.

4 Swaplinks Implementation
Our system is implemented in C++ on Linux. We use
TCP sockets for neighbor connections. Each node sends
heart-beat messages to each of its neighbors every 2 sec-



onds, and assumes that a neighbor is dead if it does not
receive a heart-beat from it for 10 seconds. 2

A newly entering node initiates the required number of
neighbor discovery walks, restricting the number of out-
standing neighbor walks to 10 at any time. A neighbor
discovery walk is re-attempted if it fails to return an ap-
propriate neighbor within a period of 2 seconds.

We currently have an implementation of a rendezvous
server that helps new nodes join the system. The ren-
dezvous server remembers a small number (currently 10)
of the most recently joined nodes, and newly joining
nodes use these nodes to start their neighbor discovery
walks. This rendezvous mechanism is light-weight, and
makes sure no single node is overloaded with the respon-
sibility of helping new nodes join the network. The ren-
dezvous mechanism could be made more robust by also
having the rendezvous server remember a small number
of random other nodes in the network, by periodically
taking random walks, or by having newly joined nodes
report one or two of their neighbors.

The application using Swaplinks communicates with
the Swaplinks module via a TCP socket. Swaplinks ex-
ports the API described in section 3 to the application
over the socket by using appropriate serialization.

One application has currently been implemented over
Swaplinks, namely a heterogeneous overlay multicast
protocol called ChunkySpread [7] that uses Swaplinks to
both construct a heterogeneous random graph and do ran-
dom peer selection. Each Chunkyspread node is involved
in multicast data transmission (and reception) with mul-
tiple other nodes; this set of peers is a subset of the set
of the neighbors in the Swaplinks graph. A small set of
ChunkySpread nodes (the nodes that originate the multi-
cast stream) need to discover an additional set of peers.
This is done using Swaplinks peer selection. In addition
to ChunkySpread, the Swaplinks algorithm is being used
in other applications under current development, like the
NUTSS toolkit for NAT traversal in P2P systems [32],
and a P2P file backup system.

We are also currently experimenting with an alternate
heart-beat mechanism, called smart-pinging, that reduces
heart-beat load at nodes with very high degrees. We de-
scribe smart-pinging and give a preliminary evaluation of
the technique in Section 6.4.

5 Adapting Bamboo to Heterogene-
ity

Performing random selection on a DHT, with no regards
to heterogeneity, and assuming the ID space is appor-
tioned uniformly among all nodes, is simple: pick a uni-
formly random ID in the ID space, issue a random selec-

tion query to that ID, and select the node where the query
ends. For this simple querying mechanism to still be ap-
plicable when there are differences in node capacities, we
need to split nodes’ ID spaces in proportion to their ca-
pacities (where a “node’s ID-space” denotes the extent of
ID-space that the node owns). For a simpler design of the
heterogeneous random selection scheme, we choose to
compute a node’s ID space as the space between its suc-
cessor in the ring and itself. We discuss how we simulate
this feature in Bamboo later in this section.

To achieve capacity-dependent ID space allocation, we
develop a scheme based on the item-balancing algorithm
(henceforth referred to as K-R) presented in [12, 25].
Nodes in K-R periodically send messages to one another,
and share loads when a load imbalance is perceived. The
item-balancing algorithm in [12] performs load sharing
through movement of nodes to new IDs, but does not ad-
dress the issue of heterogeneity, whereas the one in [25]
takes heterogeneity into account, but does load sharing
by transferring items from heavily loaded nodes to lightly
loaded ones. Our scenario is slightly different from either
of the above two, since we need nodes to move to new
IDs so as to do ID space partitioning, and we need this
partitioning to be capacity sensitive.

We now outline KRB, our adaptation of the K-R al-
gorithm. The basic aim of KRB is to even out the rel-
ative loads of all nodes, where a node’s relative load is
its ID space load divided by its capacity. As in K-R, each
node periodically sends out a message to a randomly cho-
sen ID, embedding its load information – we call such
messages “KRB load messages”. Noting that a node’s
moving to a new ID can affect the ID spaces of (up to)
3 nodes (the moving node, the moving node’s old prede-
cessor, and the moving node’s new predecessor), in KRB,
we examine the change in load at all nodes whose loads
are affected by the move. This is an extension of K-R,
where the loads at only the moving node and the moving
node’s new predecessor are examined. If we examined
the loads at only these two nodes, it would be possible
for a huge load to be inadvertently dumped on the uncon-
sidered third node (the moving node’s old predecessor) as
a result of the move; by considering all the three nodes,
we avoid this possibility.

Looking at a single KRB load message, let us denote
by S the node that sent out the message, by R the node
that receives the message, and by P the predecessor of R.
Now R decides if it should move to share S’s ID-space,
based on the value of the objective function, computed as
follows:

r =
LR + LS + LP

CR + CS + CP

ObjFn(R, S, P ) = ΣN∈{R,S,P}

∣

∣

∣

∣

LN

CN

− r

∣

∣

∣

∣

(1)



where LN is node N ’s ID-space load, which is equal to
the space between N and its successor, and CN is node
N ’s capacity.

If R were to move, it would move to ID R′ such that

LR′ =
LS · CR

CR + CS

(2)

That is, the new ID is the one that splits the space be-
tween S and its successor in direct proportion to their ca-
pacities. If R were to move to R′, the objective function
would take on a new value, computed similarly to above.
Finally, R does make the move if the objective function
value reduces by more than a threshold ratio (called the
KRB-threshold, set to 0.2).

The computation of the objective function above can
be seen as a greedy step taken towards minimizing the
system-wide objective function, given below.

rall =
ΣN in system(LN)

ΣN in system(CN )

ObjFn(overall) = ΣN in system

∣

∣

∣

∣

LN

CN

− rall

∣

∣

∣

∣

(3)

Since individual nodes do not know the value of rall, they
use local knowledge to compute r as shown above as an
estimate.

The above description assumes that the node that sent
the initial message S is not already the predecessor of the
node that receives the message R. If R does happen to
be the successor of S, there is no other third node whose
load will be affected if R were to move to any point in
between S and its successor. So now R moves if the fol-
lowing condition holds:

LS

CS

< ε
LR

CR

OR
LR

CR

< ε
LS

CS

where we set ε to 0.8. This criterion is identical to the
one used in K-R.
Simulating a node’s ID-space in Bamboo:
To make this scheme work in Bamboo, we need to make
sure that the probability that a node is selected is propor-
tional to the ID space for which it is the closest predeces-
sor. However, in Bamboo, a query is routed to the node
numerically closest to the destination, rather than to the
closest predecessor. So when a node receives a random
selection query, it examines the intended destination ID
and forwards it to the immediate predecessor of that ID.

Our primary goal in adapting the Karger/Ruhl scheme
to Bamboo was capacity-sensitive random peer selection.
Admittedly, this scheme does not balance message load
according to capacities (during the construction of the
KRB network or during random selection), as we only

tailor nodes’ ID spaces, and not their routing tables. Ac-
cordingly, in this paper, we evaluate KRB as a hetero-
geneous selection mechanism alone, and do not place
emphasis on the message load distribution that occurs
while constructing the KRB P2P network. Schemes that
reactively tailor the neighborhood size based on capac-
ity, such as those proposed in Accordion [23] and Het-
eroPastry [24] could be used with KRB to achieve both
capacity-sensitive probability of selection and capacity-
sensitive message load distribution during graph con-
struction.

6 Performance Evaluation
We test Swaplinks through an emulation of a 1000 node
network on either a local (Cornell) cluster of 5 machines
with 4 CPU’s each, or a 20 CPU cluster on Emulab. We
achieve this size by launching a number of processes that
in turn launch the required number of individual instances
of our system. We preserve the semantics of communi-
cation here: all communication still takes place through
sockets. The CPU loads here were mostly small enough
to be negligible as a factor in the results. We also test the
same implementation on PlanetLab.

For the emulation, we use a Transit-stub [33] topol-
ogy consisting of 100 routers to mimic latencies between
peers. Each peer picks a stub router uniformly at random.
All messages to be sent are buffered at the sender for the
appropriate amount of time (computed as a function of
the stub routers of the source and destination). We also
add jitter as a random value that ranges between 0 and
25% of the end-to-end latency.

Launching KRB networks of a similar size (500-1000
nodes) by multiplexing several instances on single hosts
on local clusters proved infeasible because of high CPU
load factors due to the Bamboo implementation. We in-
stead evaluate KRB using the simulator available with
Bamboo’s standard code distribution. We use the same
Transit-Stub topology as earlier to calculate message de-
lays in the KRB network. We had to restrict our compar-
isons to 1000 node networks as the Bamboo simulator,
with our modifications, consumes too much memory for
larger sizes.

All KRB nodes use a single entry node (called a
gateway node by Bamboo) when they first enter the sys-
tem. A node that leaves its present spot and rejoins the
system as part of the KRB ID space readjustment scheme
uses the set of neighbors it had before it left the system
as its gateway nodes.

We now give a road map of the experimental results
that we will be presenting in the subsequent portions
of the paper. We first test 1000 node networks of both
Swaplinks and KRB under two different representative
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Figure 1: Swaplinks under high churn and moderate capacity distribution
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Figure 2: Swaplinks #Nodes vs Selection Frequency for each degree: high churn and moderate capacity distribution

values of churn, and, similarly under two different distri-
butions of node capacities (Section 6.1). Next, we subject
both to more demanding churn scenarios: one where net-
work size doubles in the space of 10 seconds, and one
where network size halves instantaneously (Section 6.2).
We give results of a 250-node experiment over planetlab
in Section 6.3. Finally, in Section 6.4 we describe how
we can use “smart-pinging” to reduce the heart-beat load
incurred by high degree nodes.

In all of these experiments, we evaluate Swaplinks
as both a heterogeneous graph construction mechanism
(e.g., how well node degrees match desired degrees) and
as a heterogeneous peer selection mechanism (e.g. how
close the selection probabilities are to the desired values).
We evaluate KRB on the other hand as solely a heteroge-
neous peer selection mechanism.

6.1 Evaluation under representative churn
scenarios

We use two separate churn scenarios: a “high-churn” sce-
nario in which the median session time is 2 minutes , and
a “low-churn” scenario in which the median session time
is 30 minutes. These session time values have been taken
from previous studies [34, 35, 36]. We similarly use two
capacity distributions: (i) The first capacity distribution is

a ‘moderate’ 5:10:20 distribution, with 80% of Swaplinks
nodes having outdegree 5, 10% having outdegree 10, and
10% with outdegree 20. We realize the same (relative)
capacity split in KRB by having 80% of the nodes have
a capacity of 1, 10% have a capacity of 2, and 10% of
the nodes have a capacity of 4. (ii) The second capac-
ity distribution is an ‘extreme’ 3:60:150 distribution, with
98% of the nodes with outdegree 3, 1% of the nodes with
outdegree 60, and 1% of the nodes with outdegree 150.
Again, we similarly realize the same relative capacity dis-
tribution in KRB as well. We restrict the number of high-
capacity nodes in the extreme capacity distribution to the
relatively small proportion of 1% for the following rea-
son: We run most of our experiments on networks of size
1000. With an increase in the number of high-capacity
nodes, it gets more likely that there is a completely con-
nected ‘core’ made of the high-capacity nodes, and all
other nodes directly connected to the core nodes. The
fact that this behavior is not retained when the network
grows to a larger size (where the network maintains the
same capacity distribution) makes such networks not rep-
resentative of general P2P settings.

We use node session times that are independent of ca-
pacities, and follow the Pareto distribution. Networks
start from scratch (zero nodes), and total experiment
times are typically set to more than 5 times the median



High Churn Low Churn
Target Outdeg 5 10 20 3 60 150 5 10 20 3 60 150
Avg Load(B/s) 150.26 297.87 581.49 98.16 1621.23 3449.41 124.33 247.34 491.49 79.62 1275.89 2903.17
Relative Load 1 1.98 3.86 1 16.43 35.05 1 1.98 3.95 1 15.92 36.20
Avg Totaldeg 9.68 19.41 38.23 5.80 111.77 255.25 9.98 19.93 39.95 5.98 119.98 298.18
Relative Selns 1 2.01 3.95 1 19.78 44.43 1 2.00 3.99 1 20.10 50.16
Seln p-values 0.815 0.862 0.977 0.757 0.579 0.819 0.292 0.784 0.583 0.224 0.957 NaN

Table 1: Swaplinks results for moderate and extreme capacity distributions under high and low churn.
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Figure 3: KRB under high churn and moderate capacity distribution

node session times. We ran tests where node session
times were dependent on capacities (i.e., where high ca-
pacity nodes are likely to stay in the system longer) and
where session times were Poisson distributed, and we
found the results to be similar to those we present here.

Unless otherwise mentioned, we run ongoing back-
ground peer selections, where the 80 longest living nodes
perform a random selection every 250 ms for the duration
of their lifetime. We call such selections ‘periodic’ selec-
tions. We use the periodic selections to evaluate whether,
for instance, the degree 20 nodes receive, in aggregate,
twice as many selections as do degree 10 nodes, over the
course of the experiment. We also have two other nodes
perform a ‘burst’ of 10,000 selections with a gap of 10
ms between successive selections. We use the short-term
burst to obtain a set of selection measurements with rel-
atively little churn. This allows us to more accurately
compare the measured distribution of selections among
a group of same-capacity nodes with the ideal distribu-
tion. This is because each node present in the network
during the burst receives a statistically large number of
(measured or ideal) selections. The burst selections are
performed just before the end of each experiment.

We measure message loads in both Swaplinks and
KRB by counting only the bytes in the message payloads;
we do not consider TCP/IP or UDP header overheads.

6.1.1 Swaplinks Results

Figures 1 and 2 show the results of the high-churn, mod-
erate capacity distribution experiment for Swaplinks. The
node degrees closely track the desired values (Figure
1(a)), while the selections and message loads are split

among the different nodes in proportion to their capac-
ities: for example, nodes with outdegree 10 receive twice
as many selections, on an average, as the nodes with out-
degree 5. Both periodic and burst selections are counted
to compute the curves in Figure 1(c).

Figure 2 shows the selection frequencies that result
from the burst selections. The figure has one plot for each
of the three different capacity classes, where a capacity
class is just a set of nodes with the same capacity. The
“actual” curve represents the Swaplinks selections. The
“ideal” curve represents the ideal distribution of the par-
ticular class’ ‘fair share’ of the total number of successful
selections; the intersection of each node’s lifetime with
the time-span of the burst selections is taken into account
in computing this distribution. These values don’t include
failed selections, which occur with churn because nodes
take about 10 seconds to detect that a neighbor is down.
Thus, the higher the churn-rate is, the greater the prob-
ability is that a selection walk fails by being forwarded
to a now-dead neighbor at some hop. High churn has
about 40%-45% failed selection walks, while low churn
has about 2% failed walks.

As can be seen from the plots in figure 2, Swaplinks’
actual selection frequency distribution closely tracks the
ideal curve for each of the different capacities. This, cou-
pled with the fact that Swaplinks also realizes capacity-
wise selection distribution (Figure 1(c)), demonstrates
that the selection mechanism realizes the desired distri-
bution.

Table 1 gives a summary of results from all of the
Swaplinks experiments in this section by averaging each
value over the second half of the experiment time. The
duration of high-churn experiments here is around 930
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Figure 4: KRB #Nodes vs Selection Frequency for burst selections: high churn and moderate capacity distribution

High Churn Low Churn
Target Split 1 2 4 1 20 50 1 2 4 1 20 50

Idspace Split: 1 1.68 2.99 1 6.14 5.89 1 1.95 3.98 1 23.59 37.41
Msg Load(B/s) 711.30 765.04 853.78 736.63 922.48 923.40 261.73 290.59 318.45 297.01 474.06 413.49
Relative Selns 1 1.78 3.13 1 5.74 5.29 1 1.98 4.02 1 23.23 34.44
Seln p-values 0.000 0.231 0.054 0.000 0.000 0.002 0.000 0.645 0.774 0.000 NaN 0.001

Table 2: KRB results for moderate and extreme capacity distributions under high and low churn.

seconds, whereas the duration of the low-churn exper-
iments is around 14,000 seconds. Each row in the ta-
ble corresponding to a ‘relative’ value shows the corre-
sponding value for the capacity class as a ratio over the
equivalent value in the lowest capacity class in the ex-
periment. Both periodic selections and burst selections
are taken into account in computing the ‘Relative-Selns’
row. The last row plots the χ2- test p-values of the selec-
tion frequency distribution (for burst selections): this is
an indicator of how well the actual selection frequencies
of nodes within each capacity class match the ideal selec-
tion frequencies. Larger values indicate a closer match;
p-values greater than 0.05 are generally believed to indi-
cate a good match of the observed distribution with the
expected distribution.

As can be seen from the table, with the one exception
of the high-churn extreme-capacity case, node degrees
and selection frequencies closely track the desired val-
ues. The valid p-values are all comfortably greater than
0.05, indicating good selection distribution.3

In the high-churn extreme capacity case, high degree
nodes have an average total degree that is less than the
respective ideal values: High degree nodes need some
time to reach their full degrees upon entering the sys-
tem, because they have at most 10 neighbor discovery
walks outstanding at any time. This effect is more promi-
nent during high-churn, where new nodes enter more fre-
quently. The values for the relative selection frequencies
suffer because of the imperfect degree distribution, but
they nevertheless are still reasonably close to the target
ratios.

The message load ratios in the extreme capacity distri-
bution deviates from the ideal 3:60:150; this is because
some of the high-degree neighbors have duplicate links

between them, resulting in a reduction of the heart-beat
load incurred. This is an artifact of the fact that the
total degree of the highest capacity nodes here is non-
negligible in comparison to the total number of links
in the system, and we expect the number of duplicate
links to decrease and the load-ratios to get closer to the
3:60:150 proportion in larger networks.

Looking at the message loads from an alternate per-
spective, the absolute values of the message loads for the
outdegree 60 and outdegree 150 nodes seem relatively
high. The bulk of this load is caused by neighbor heart-
beats. In Section 6.4 we describe how we can reduce this
load by doing heart-beats in a more sophisticated fashion.

We ran similar experiments for 5000 nodes Swaplinks
graphs over a 20 CPU cluster on the Emulab testbed,
and found the results to be broadly similar, demonstrating
that Swaplinks retains its properties in larger networks as
well.

6.1.2 KRB Results

We make a few changes to the parameters used by the de-
fault Bamboo source distribution to get KRB to approach
the desired relative capacity-wise ID space distributions.
For the high-churn results shown in this section, we set
ping and leaf-set-alarm periods in Bamboo to 1 second.
We set the near and far routing table alarm periods to 2.5
and 5 times the leaf-set-alarm respectively (these ratios
are based on the values in Bamboo’s code distribution).
We use a period of 5 seconds between successive KRB
load messages sent to random locations in the network
(we denote this period the KRB period). For the low-
churn results, we set the ping period to 2 seconds, the
leaf-set alarm period to 3 seconds and the KRB period to



Flash Crowd
Target
Out-
deg

Avg
Load(B/s)

Relative
Load

Avg
Total
deg

Relative
Selns

Seln
p val-
ues

5 146.88 1 9.82 1 0.936
10 291.94 1.98 19.73 2.06 0.935
20 578.49 3.93 39.18 4.02 0.722
3 91.29 1 5.9 1 0.751

60 1553.79 17.01 114.61 19.66 0.873
150 3320.49 36.34 269.54 46.94 0.567

Mass Departures
5 179.52 1 9.54 1 0.457

10 351.01 1.95 19.11 2.04 0.912
20 681.62 3.79 37.59 3.96 0.988
3 121.57 1 5.73 1 0.338

60 1886.01 15.5 102.19 17.87 0.418
150 4343.61 35.66 251.1 45.84 NaN

Table 3: Swaplinks performance with flash-crowds and
mass departures under high churn.

10 seconds. Bamboo has a time-out value between when
a node suspects a neighbor to be down (as a result of fail-
ure of message delivery) to when it actually decides it’s
down (as a result of lack of response to pings sent to the
neighbor). We reduce this timeout value to 1 second from
the earlier value of 60 seconds. We use a leaf-set size of
4 and a KRB-threshold value (see Section 5) of 0.2 in all
KRB simulations. We restricted KRB low-churn simula-
tions to a shorter duration of 1800 seconds; longer sim-
ulations took unreasonably longer (wall-clock) times to
complete.

Figures 3 and 4, and Table 2 show the results for KRB.
The results show that KRB is not successful in main-
taining the relative ID-spaces at the desired levels un-
der high churns – it is only able to achieve around a
1:1.65:3 relative division in the ID spaces in the moderate
capacity distribution, while its response to the extreme
capacity distribution under high churn is worse. KRB
is able to achieve the desired relative ID-space distribu-
tion in the low-churn moderate-capacity case, but again
fails to fully achieve the desired ID-space distribution in
the extreme-capacity low-churn scenario. KRB also fails
to consistently achieve the desired selection distribution
within each capacity class, as seen by the burst selection
p-values computed for the selection frequencies. The p-
values for the lowest capacity class in the moderate ca-
pacity distribution is 0 in both the high and low churn
scenarios. This is mainly because the actual selection
distributions here have quite a few outliers – nodes with
an actual selection frequency close to or greater than the
maximum selection frequency (for any node) predicted
by the ideal curve. KRB’s selection frequency curves
within capacity classes 2 and 4 do match the ideal curve
closely enough that they succeed the p-value test, but dur-
ing high-churn, nodes in the higher capacity classes are
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Figure 5: Change in the universal objective function as
a result of KRB node moves and node churn in a high-
churn, moderate-capacity simulation.

still less likely to get selected than they should ideally be.
Figure 5 shows why KRB underperforms under high

churn: The system-wide objective function (Equation 3,
Section 5) settles to a more or less stable positive value in
the presence of the steady churn. KRB’s attempts to im-
prove the objective function value below this stable value
using node movements are exactly counterbalanced by
the effects of node churn, indicating that this is the best
KRB can do under this high churn. Increasing the fre-
quency of KRB node movements here does not lead to an
improvement in performance, as becomes clear next.

We evaluated the relative ID-space distribution real-
ized by KRB under high churn and moderate capacities
for various values of the KRB parameters (ping, alarm,
KRB periods, KRB-threshold), and we found that the
combination of the parameters we present here results in
the best ID-space distribution. In general, we found that
more frequent pings and alarm messages of Bamboo re-
sulted in better results (as can be expected), while there
generally was an ‘optimal’ KRB message frequency and
an optimal value for the KRB threshold given the fre-
quencies used for the other messages. Setting the KRB
message frequency to higher values resulted in an in-
crease of the number of incorrect KRB moves, where
nodes switched positions based on an incorrectly per-
ceived local state, thereby worsening the ID-space dis-
tribution. Among the combinations of parameters we
tested, the worst performing set yielded about 50% less
accurate selection than the setting we use. This experi-
ence indicates that it is harder with KRB to decide on the
exact set of various parameters to use in a general set-
ting.4

KRB achieves a higher average message load (across
all nodes) than does Swaplinks: this is mainly a result of
the increased message rates we used to improve KRB’s
capacity-based ID space distribution. We however do not
think that the message load values are high enough to be
a concern here.
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Figure 6: Swaplinks: Flash-crowd with high churn and extreme capacity distribution
Flash-crowd Mass Departures

Target Split 1 2 4 1 2 4
Idspace Loads 1 1.52 2.41 1 1.19 1.68
Relative Selns 1 1.55 2.47 1 1.14 1.75
Seln p-values 0.00 0.00 0.01 0.00 0.48 0.00

Table 4: KRB Results for flash-crowds and mass depar-
tures for moderate capacity distributions and high churn

6.2 Extreme churn
We now look at the reaction of Swaplinks and KRB to
more extreme churn events, the first where a flash-crowd
leads to the network size doubling from 1000 nodes to
2000 nodes in the span of 10 seconds, and the second
where a half of the network dies instantaneously.

Figure 6 shows the results of the Swaplinks flash-
crowd scenario under a 3:60:150 degree distribution un-
der high-churn (a median node session time of 2 min-
utes). The flash-crowd appears in the period 650-660
seconds after the system is started, and two sets of burst-
selections are performed starting at 723 seconds and
spanning 100 seconds. Table 3 summarizes the flash-
crowd results over the last 175 seconds of the experiment
for both the moderate and extreme capacity distributions.

Figure 6 shows that while there is a temporary deteri-
oration in all the metrics of interest for a short duration
of time immediately after the entry of the flash-crowd,
the system quickly recovers to re-establish desired be-
havior. The Swaplinks graph in fact generally benefits
from nodes entering the system, since this pushes the
average degree distribution across the graph towards the
ideal value; a comparison of Table 3 with Table 1 shows
that the average values for the degree and relative selec-
tion frequencies in fact improve as a result of the arrival
of the flash-crowd!

Figure 7 and Table 3 show results of the Swaplinks
mass departure experiments. The mass departures oc-
cur at 649 seconds after system start, and burst selections
are performed at 719 seconds after system start. From
figure 7 (for high churn and moderate capacity distribu-
tions), we observe that the network suffers for a short du-

ration of time immediately after the huge perturbation,
but things start to improve thereafter. The message loads
and the selection frequencies recover to re-approach the
desired 1:2:4 split of message loads and selection fre-
quencies. The extreme capacity results from Table 3
also look encouraging: the degrees and the relative se-
lection frequencies are similar to the high (stable) churn,
extreme-capacity results shown earlier in Table 1. Over-
all, these experiments demonstrate that Swaplinks is ro-
bust to various kinds of network churn under widely dif-
ferent capacity distributions, and that it manages to re-
tain its fine-grained sensitivity to the desired heterogene-
ity under these conditions.

Table 4 summarizes KRB results from the last 175 sec-
onds of the flash-crowd and the mass departure simula-
tions for only the moderate capacity distribution under
high churn. The flash-crowds and mass departures oc-
cur at the same times as those reported in the Swaplinks
experiments. The results indicate that the KRB perfor-
mance suffers significantly as a result of the extreme
churn induced. The relative ID-spaces and selection fre-
quencies differ markedly from the target values, resulting
in a failure to realize the desired selection distribution.
We noticed that while KRB had started to recover from
the flash-crowd to approach its stable ID-space distribu-
tion towards the end of the simulation, in the mass de-
parture simulation its stable ID-space distribution deteri-
orated after the mass departures, leading to worse relative
selection values at the end of the simulation. 5 Since we
have already seen that KRB fails to adapt to the extreme-
capacity setting under high churn, we do not subject it
to the more demanding circumstances of both extreme
churn (mass departures and flash crowds) and extreme
heterogeneity.

6.3 Evaluation over PlanetLab
We evaluated Swaplinks over PlanetLab by deploying a
250-node network over 50 PlanetLab hosts distributed
across the world. We scaled down the number of selec-
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Figure 7: Swaplinks: Mass departures with high churn and moderate capacity distribution

High Churn Low Churn
Target Outdeg 5 10 20 5 10 20
Avg Load(B/s) 210.88 418.36 794.16 196.81 384.10 745.75

Load split 1 1.97 3.76 1 1.95 3.76
TotalDeg 9.54 19.15 37.46 10.04 19.79 39.48

Relative Selns 1 2.07 3.99 1 2.01 3.94
Seln p-values 0.000 0.000 0.001 0.000 0.023 0.002

Table 5: PlanetLab results with moderate capacity distribution

tions performed in the burst mode here to about 2500.
Figure 8 shows the variation of average node degrees,

message loads and the relative selection frequencies with
time in a high-churn moderate capacity experiment , and
Table 5 summarizes both the high-churn and low-churn
experiments. While the node-degree curve in the high
churn case is not completely stable, due to the high churn,
all the values nevertheless adhere reasonably closely to
the desired 5:10:20 ratio. But there is a gap between
the ideal distribution of #Nodes vs Selection Frequen-
cies and the actual distribution here, leading to poor p-
values for the selection distribution. We observed that a
few of the planetlab nodes hosting our experiments ap-
peared to freeze occasionally, causing the Swaplinks in-
stances hosted on these nodes to be eventually excluded
from the neighbor-sets of other Swaplinks instances. This
also means that such nodes would not be selected by any
subsequently launched random selection walk, thus caus-
ing the discrepancy between the actual and observed se-
lection distributions.

We do not show results for the extreme capacity dis-
tribution here: the fact that each high capacity class con-
stitutes just 1% of the total node population means that
there would be too few high capacity nodes in a 250-node
experiment to draw reliable conclusions.

6.4 Smart-Pinging
The bulk of the message load seen by Swaplinks nodes
is from the heart-beat messages used to determine when
a neighbor is down. We would like to minimize this

load, in part because in extreme heterogeneity situations
some nodes have many neighbors, but in part because a
given application might result in a computer belonging
to many P2P networks, and therefore have many neigh-
bors. Our basic approach to minimizing heart-beats is as
follows: Rather than have every neighbor determine for
itself whether a node A is down, one neighbor (at a time)
determines if a node A is down. If a neighbor determines
that node A is down, it informs the other neighbors of
node A, using a flood, that node A is down.

Specifically, the smart-pinging scheme we designed
works as follows: Node A tells each of its neighbors
about some random set of its other neighbors, such that
each neighbor is known by at least some small number
of other neighbors. Node A sends each neighbor in turn a
small series of (say five) heart-beat messages, each spread
two seconds apart. For example, node A sends neighbor
1 five heartbeats, neighbor 2 five heartbeats, and so on.
Each neighbor knows when to expect its series of heart-
beats, based on timing information conveyed during the
previous series of heartbeats. If a neighbor misses all of
its heartbeats, it informs all the neighbors of A it knows
of that node A is down. These neighbors in turn inform
the neighbors they know, and the ensuing flood of packets
quickly informs all neighbors that node A is down.6

Smart-pinging reduces the amount of bandwidth con-
sumed under no churn, at the cost of a burst of mes-
sages that occurs when there is churn, and the possibil-
ity of incorrect notifications of node departure. While we
need to explore these trade-offs in greater detail, we have
currently implemented a preliminary version of smart-
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Figure 8: PlanetLab 250 nodes with high churn and moderate capacity distribution
Target Outdeg 5 10 20

Avg Load (B/s) 38.23 57.97 89.21
Relative Load 1 1.50 2.30
Avg Totaldeg 9.99 19.90 40.01
Relative Selns 1 2.06 4.08
Seln p-values 0.831 0.904 0.877

Table 6: Smart Pinging: moderate capacity, low churn

pinging, and observe that it does indeed result in a saving
on message load under low-churn scenarios. In the cur-
rent implementation, if node A has d out-neighbors, A has
each of its neighbors know of 2 log2(d) of its (A’s) neigh-
bors. Table 6 summarizes the results over the second half
of the duration of the experiment. This experiment was
run with just 8 periodic selectors (instead of 80 as in the
previous cases), to isolate the heart-beat load.

7 Conclusions
Node heterogeneity, where different nodes have different
capacities, is an important issue in current peer-to-peer
systems. In this paper, we provide the implementation
and performance evaluation of the Swaplinks heteroge-
neous graph construction and peer selection mechanism.
We also compare its heterogeneous selection properties
with that of KRB, a structured P2P approach derived by
adapting the Karger-Ruhl load-balancing scheme to node
ID spaces in the Bamboo DHT.

We find that while Swaplinks generally gives good per-
formance along all metrics of interest, KRB finds it hard,
under relatively high churn rates, to maintain the desired
selection probabilities even for moderate distributions in
desired selection probabilities. Also, with KRB, it is non-
trivial to zero in on a good set of tuning parameters to
use in a general setting. Overall, we find that Swaplinks
outperforms KRB in performing heterogeneity-sensitive
random peer selection.

In terms of enhancements to Swaplinks, we need to
experiment further with smart-pinging, for instance to in-
sure that it doesn’t suffer from false negatives. In ad-

dition, we note that Swaplinks discovers truly random
neighbors. Some P2P applications, however, would like
to also discover neighbors that are nearby in terms of la-
tency. While a P2P application is free to do that on its
own (i.e. by using Swaplinks to discover random peers,
and then measuring latency to them), we believe that it
would beneficial to explore efficient ways to do this, and
add the capability to the Swaplinks toolkit.

A limitation of Swaplinks is that it has no defense
against misbehaving nodes. For instance, if a node
wished to obtain a huge number of neighbors (for in-
stance to DoS a file-sharing application), Swaplinks has
no mechanism to prevent this. While we are interested in
exploring such mechanisms, Swaplinks is currently only
appropriate for use with trusted P2P software.

We are currently exercising Swaplinks by using it as a
basis for a number of P2P applications: The Swaplinks
toolkit is being used as the basis for the Chunkyspread
P2P multicast system [7]. In addition, the Swaplinks al-
gorithm is being used in building a toolkit for NAT traver-
sal in P2P applications, and a P2P file backup system. We
invite researchers to use our Swaplinks toolkit in their un-
structured P2P applications [16].
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Notes
1To be fair, neither of these schemes expressly aim to maintain node

degrees perfectly proportional to capacities.
2For the results shown in this paper, we do not utilize the TCP socket

close signal as an indicator of neighbor departure, so as to have a fair
comparison with KRB, since Bamboo uses UDP

3The single “NaN” entry indicates that there were too few (<5)
nodes of the particular capacity during the time when the burst selec-
tions were performed for a meaningful p-value to be computed



4In the search for the best combination of KRB parameters, we did
not try out sub-second values for the different parameters: We could
conceivably use sub-second values, and achieve better results, but we
did not consider this option due to the enormous amount of load it places
on the network.

5The single positive p-value result here seems to be a lucky one for
the nodes in the second capacity class – the smallest capacity nodes get
more of the selections than their fair share while the largest get fewer,
leaving the capacity 2 nodes with the number of selections closest to its
fair share (while still less than it)

6 Structella [37] uses a similar mechanism to reduce heart-beat loads
in maintaining leaf-sets, but their mechanism is not applicable in main-
taining any arbitrary set of neighbors.

References
[1] Paul Francis. Yoid: Extending the internet multicast architecture.

In Unrefereed report, 2000.
[2] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High

bandwidth data dissemination using an overlay mesh. In Proc.
ACM SOSP, 2003.

[3] Vinay Pai, Kapil Kumar, Karthik Tamilmani, Vinay Samba-
murthy, and Alexander E. Mohr. Chainsaw: Eliminating trees
from overlay multicast. In Proc. IPTPS, 2005.

[4] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham,
and Scott Shenker. Making gnutella-like p2p systems scalable. In
Proc. ACM SIGCOMM, 2003.

[5] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vi-
valdi: A decentralized network coordinate system. In Proc. ACM
SIGCOMM, 2004.

[6] Li wei Lehman and Steven Lerman. Palm: Predicting internet
network distances using peer-to-peer measurements. In Technical
Report, MIT, 2004.

[7] Vidhyashankar Venkataraman and Paul Francis. Chunkyspread:
Heterogeneous unstructured tree-based peer to peer multicast. In
Proc. ICNP, 2006.

[8] Yang hua Chu, Aditya Ganjam, T. S. Eugene Ng, Sanjay G. Rao,
Kunwadee Sripanidkulchai, Jibin Zhan, and Hui Zhang. Early de-
ployment experience with an overlay based internet broadcasting
system. In Proc. USENIX Annual Technical Conference, 2004.

[9] A. Bharambe, S. Rao, V. Padmanabhan, S. Seshan, and H. Zhang.
The impact of heterogeneous bandwidth constraints on dht-based
multicast protocols. In Proc. IPTPS, 2005.

[10] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, ,
and A. Singh. Splitstream: High-bandwidth content distribution
in cooperative environments. In Proc. ACM SOSP, 2003.

[11] Vivek Vishnumurthy and Paul Francis. On heterogeneous over-
lay construction and random node selection in unstructured p2p
networks. In Proc. IEEE Infocom, 2006.

[12] David R. Karger and Matthias Ruhl. Simple efficient load balanc-
ing algorithms for peer-to-peer systems. In Proc. IPTPS, 2004.

[13] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn
in a dht. In Proc. USENIX Annual Technical Conference, 2004.

[14] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proc. ACM SIGCOMM, 2001.

[15] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proc.
IFIP/ACM Middleware, 2001.

[16] http://www.cs.cornell.edu/%7evivi/research/swaplinks.html.
[17] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,

and Scott Shenker. A scalable content-addressable network. In
Proc. ACM SIGCOMM 2001, 2001.

[18] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine,
Daniel Lewin, and Rina Panigrahy. Consistent hashing and ran-
dom trees: Distributed caching protocols for relieving hot spots
on the world wide web. In Proc. ACM STOC, 1997.

[19] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris,
and Ion Stoica. Wide-area cooperative storage with CFS. In Proc.
SOSP, 2001.

[20] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana,
Richard M. Karp, and Ion Stoica. Load balancing in structured
p2p systems. In IPTPS, 2003.

[21] P. Brighten Godfrey and Ion Stoica. Distributed construction of
random expander networks. In Proc. IEEE Infocom, 2005.

[22] Jonathan Ledlie and Margo Seltzer. Distributed, secure load bal-
ancing with skew, heterogeneity, and churn. In Proc. IEEE Info-
com, 2005.

[23] Jinyang Li, Jeremy Stribling, Robert Morris, and M. Frans
Kaashoek. Bandwidth-efficient management of DHT routing ta-
bles. In Proc. NSDI, 2005.

[24] Miguel Castro, Manuel Costa, and Antony Rowstron. Debunking
some myths about structured and unstructured overlays. In Proc.
NSDI, 2005.

[25] David R. Karger and Matthias Ruhl. New algorithms for load
balancing in peer-to-peer systems. In IRIS Student Workshop (ISW
’03), 2003.

[26] Roie Melamed and Idit Keidar. Araneola: A scalable reliable
multicast system for dynamic environments. In Proc. NCA 2004,
2004.

[27] C. Law and K.-Y. Siu. Distributed construction of random ex-
pander networks. In Proc. IEEE Infocom, 2003.

[28] Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Mas-
soulie. Scamp: peer-to-peer lightweight membership service for
large-scale group communication. In Proc. 3rd Intnl. Wshop Net-
worked Group Communication (NGC ’01), pages 44–55, 2001.

[29] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vahdat.
Using random subsets to build scalable network services. In Proc.
USITS, 2003.

[30] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller. Equations of state calculations by fast computing ma-
chines. In Journal of Chemical Physics, 1953.

[31] I Csiszár. Information theoretic methods in probability and statis-
tics. In IEEE Information Theory Society Newsletter 48, 1998.

[32] Saikat Guha and Paul Francis. Towards a Secure Internet Ar-
chitecture Through Signaling. Technical Report cul.cis/TR2006-
2037, Cornell University, 2006.

[33] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhattacharjee.
How to model an internetwork. In Proc. IEEE Infocom, 1996.

[34] Subhabrata Sen and Jia Wang. Analyzing peer-to-peer traffic
across large networks. In Second Annual ACM Internet Measure-
ment Workshop, 2002.

[35] S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of
peer-to-peer file sharing systems. In Proc. MMCN, 2002.

[36] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Za-
horjan. Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload. In Proc. ACM SOSP, 2003.

[37] Miguel Castro, Manuel Costa, and Antony Rowstron. Should we
build gnutella on a structured overlay? In Proc. HotNets-II, 2003.


