Yallcast Architecture Overview

Paul Francis
NTT PF Labs
francis@slab.ntt.co.jp
www.yallcast.com
“Distribution” Today: Two Parallel Tracks

• IP Multicast
 – Simple, automatic, standardized
 – Has problems, hasn’t reached “critical mass”

• Server-based
 – Broad functionality, almost everything server-based today
 – Application-specific, ad hoc, no standards, management-intensive
Yallcast Goal: Unify Both Tracks

• “Host”-based distribution tree
 – Tunneled over IP unicast (and multicast)
 – Buffering in hosts (or not)

• DNS name-based group addressing

• Dynamically self-configuring topologies
Status of Yallcast

- Basic algorithms worked out
 - Especially dynamic tree configuration
- Experimental implementation
 - Jan. 00 release target
- Many many open issues
- This talk is a call for participation
 - Certainly not a call for standardization
Yallcast Architecture Overview

• Rendezvous Nodes:
 – Bootstrap members into tree-mesh

• Member Nodes:
 – Dynamically configure into tree-mesh
 – Send, receive, and forward frames

• Group ID:
 – rendezvousName, treeName, [udpPort]
Yallcast Topologies

- **Member** (host with buffer)
- **Mesh Link**
- **Cluster** (IP mcast)
- **Tree Link** (Tunneled)
Yallcast Topologies

• Dynamically configured Tree and Mesh
• Both can carry content frames

• Tree Topology
 – Optimized for efficiency, but fragile

• Mesh Topology
 – Optimized for robustness, but inefficient
IP Multicast: Yallcast “Cluster”

- Group ID hashed into IP multicast addr
- IP Multicast tightly scoped
 - Currently to 1 hop
 - Admin scoping may be possible
- Cluster head member dynamically elected
 - Joins rest of tree-mesh
 - Other members send/receive via IP multicast
Reduced Role of IP Multicast

- IP Multicast always runs under yallcast
- IP Multicast no longer expected to have global scope
Yallcast Protocol Stack

- Application
 - Yallcast Tree Protocol (YTP) (framing, forwarding, sequencing)
 - yTCP
 - yRTP
 - yRMTP
 - Etc...
 - Yallcast ID Protocol (YIDP)
 - UDP
 - TCP
 - IP Multicast
 - IP Unicast
Member Identification

- Based **only** on:
 - Member domain name
 - Yallcast port (32-bit locally unique number)

- **Not** based on IP or UDP/TCP port

- Member “how to reach” information carried separately
 - IP addresses (including NAT box), ports, etc.
Yallcast Content Protocols

- Application frame-based
- Per-source 64-bit byte sequencing
 - Frame can be forwarded over tree or mesh
- Tag-based headers (hop by hop)
 - Frame source id --> 16-bit tag
 - HxH source id, HxH dest id, group id --> 64-bit tag
Comparison to IP Multicast

↑ Routing table scalability
↑ Group ID (address) assignment
↑ End-to-end Reliability
↑ Congestion Control

↓ Proximity discovery
↓ Delivery efficiency (for non-reliable)
Trickier Comparisons

• Evolutionary Path
 – Don’t need any infrastructure in advance
 – Just bundle with app
 – Add infrastructure as needed

• Buffering
 – Hosts have lots of buffer—async distribution
 – But introduces new coordination problems
Rendezvous Node’s Algorithm

- rendezvousName, treeName, [udpPort]
- Listen on udpPort
- Keep list of (some or all) group members
- Tell new members of existing members, group parameters (buffer size, security, etc.)
- Partition detection (detect multiple roots)
- Convenient place for other services.
Member Node’s Algorithm

• Check local IP multicast for other members
 – If exist, join local cluster
 – May optionally contact Rendezvous
• If none, contact Rendezvous
 – Learn of existing members
• Run Yallcast Tree Management Protocol (YTMP) with existing members
Yallcast Project Next Steps

• Build real applications over yallcast
• Develop yallcast under real applications
• Work towards open-source environment
• Early standardization neither necessary nor appropriate
 – Standardize when ready for OS and proxy-server deployment