
An Architecture for a Global Internet Host Distance Estimation
Service

Paul Francis
NTT Software Laboratories

3-9-11 Midori-cho
Musashino-shi, Tokyo, 180

francis@slab.ntt.co.jp

Sugih Jamin
�

Department of EECS
University of Michigan

Ann Arbor, MI 48109-2122
jamin@eecs.umich.edu

Vern Paxson
Network Research Group

LBNL
Berkeley, CA 94720

vern@ee.lbl.gov

Lixia Zhang
CS Department

UCLA,
Los Angeles, CA 90095

lixia@cs.ucla.edu

Daniel F. Gryniewicz
Department of EECS

University of Michigan
Ann Arbor, MI 48109-2122

dang@eecs.umich.edu

Yixin Jin
CS Department

UCLA,
Los Angeles, CA 90095

yjin@cs.ucla.edu

Abstract

There is an increasing need for Internet hosts to be
able to quickly and efficiently learn the distance,
in terms of metrics such as latency or bandwidth,
between Internet hosts. For example, to select the
nearest of multiple equal-content web servers. This
paper explores technical issues related to the cre-
ation of a public infrastructure service to provide
such information. In so doing, we suggests an archi-
tecture, called IDMaps, whereby Internet distance
information is distributed over the Internet, using IP
multicast groups, in the form of a virtual distance
map. Systems listening to the groups can estimate
the distance between any pair of IP addresses by
running a spanning tree algorithm over the received
distance map. We also present the results of experi-
ments that give preliminary evidence supporting the
architecture. This work thus lays the initial founda-
tion for future work in this new area.

�

At UM, this research is supported in part by equipment
grants from Sun Microsystems Inc., Digital Equipment Corp.,
and Intel Corp.

1 Introduction

It is increasingly the case that a given Internet in-
teraction could be satisfied by one of a number of
Internet hosts. Examples range from short-lived
interactions such as a single web page access to
any one of multiple equal-content web servers to
a long-term peering relationship between two news
(NNTP) servers [1].

In any such interaction, all other things be-
ing equal, it is advantageous to access the “nearest”
choice. By near we mean in terms of Internet per-
formance metrics, such as low latency or high band-
width. Even when all other things are not equal,
such as the case where different web servers have
different response times, it is still useful to include
distance to each candidate host as one of several cri-
teria for making a selection [2].

One approach to obtaining this distance infor-
mation is for the initiating host to measure it itself,
using either unicast (ping, traceroute [3]) or
multicast (expanding ring search [4]) tools. While
these tools have a wide range of uses, their utility
is generally limited by their overhead. For instance,
the cost of running a single traceroute can ex-
ceed the cost of the web page access itself. More
important still, a large number of hosts making in-

dependent and frequent measurements could have
a severe impact on performance overall. Ideally,
measurements made by one system (host or router)
should be made available, at low cost, to other hosts.

A useful general service for the Internet would
be one whereby a host could quickly and efficiently
learn the distance between any two hosts. To be
widely useful, such a service should provide an an-
swer with a delay and overhead less than those of
the gains achieved by using the service. A simple
protocol for such a service (SONAR) was discussed
in the IETF as early as February 1996 [5], and in
April 1997 as a more general service called HOPS
(Host Proximity Service) [6]. Both of these efforts
proposed lightweight client/server query/reply pro-
tocols along the lines of a DNS query/reply. Both
also required that the server be able to produce an
answer in a very short time—preferably, though not
necessarily, by using information already stored lo-
cally.

This paper is concerned with the problem of
how servers in such a SONAR/HOPS service can
obtain the distance information needed to answer
queries. Specifically, we explore the following
questions:

1. Which systems originally produce the distance
information, and how is it produced?

2. How does the distance information get from
these producing systems to the servers?

3. What form does the distance information take,
and how is it used to produce answers for spe-
cific pairs of Internet hosts?

Several efforts to obtain various sorts of dis-
tance information and other Internet characteristics
are currently being undertaken, e.g. the SPAND,
FELIX, Octopus, IPMA, NIMI, and MINC projects
[7, 8, 9, 10, 11, 12]. These projects serve vari-
ous purposes, such as general Internet characteri-
zation, maintenance, and end-system distance es-
timation. Much of this work applies to some as-
pects of the first question above. None of this work,
however, is being done in the context of a general
SONAR/HOPS service. As such, it does not really
get at the latter questions or the aspects of the first
question that pertain to a general SONAR/HOPS
service.

This paper, then, takes a first stab at explor-
ing a global, as opposed to end-host based, archi-
tecture for Internet host distance estimation and dis-
tribution. We discuss basic aspects of the questions
outlined above, and based on this propose a general
architecture for an underlying service that provides
the basic information used by a SONAR/HOPS ser-
vice. This underlying service is called IDMaps, for
Internet Distance Map Service.

Guided in part by what applications need, but
more by basic limitations in technology, section 2
outlines the goals of this work. Section 3 starts with
a broad discussion of the fundamental characteris-
tics of the problem and the nature of the solution.
It presents and develops two variants of the solu-
tion, “Hop-by-Hop” and “End-to-End”—the latter
of which is more elegant but less well understood—
and ends with a discussion of their pros and cons.
Section 4 describes the results of a preliminary anal-
ysis that tests some of the basic assumptions of the
End-to-End solution. These results suggest that it
has promise, and encourage us to move forward
with a more detailed design and implementation.
Finally, Section 5 discusses some of the many open
issues remaining.

2 IDMaps Goals

It is difficult to state precise goals for even a
SONAR/HOPS service, much less the IDMaps ser-
vice. This is because SONAR/HOPS could be
called upon to support a wide range of applications,
from web clients that want a web server from which
to retrieve a small amount of data once, to Network
Time Protocol (NTP) servers that want to establish
a long term association with a peer system.

We could go through the exercise of making
a list of potential applications and extracting out
the most demanding requirements (and to some ex-
tent, at least informally, we have done this), but in
fact this exercise quickly reveals that we can’t even
come close to satisfying all conceivable require-
ments. For instance, we cannot hope for a general
IDMaps service to provide near-instantaneous in-
formation about current delays and bandwidth seen
between two Internet hosts, even though such in-
formation could be very useful to a host wishing to

2

select a server supplying a live video feed, for ex-
ample.

Rather, we’ve taken somewhat the opposite
tack—we determined roughly the best service we
may be able to provide given technology constraints
and the need for global scalability of the service,
and then considered whether there are applications
for which this level of service would be useful. Fol-
lowing is a discussion of the resulting goals.

Distance Metrics Our goal is to provide distance
information in terms of latency (e.g., round-trip de-
lay) and, where possible, bandwidth. Latency is the
easiest sort of information to provide, and luckily
the most generally useful. There are two reasons
that it is easy to provide. First, it is easy to mea-
sure. A small number of packets can produce a good
rough estimate. Second, it is relatively independent
of the exact path between the two hosts, though by
no means fully independent.

This relative path independence is important
because the only way to know the exact path be-
tween two Internet hosts is to measure it from those
two hosts, for instance using traceroute. Even
routers don’t know the exact path between any two
Internet hosts, much less other hosts. By definition,
a general-purpose IDMaps service does not have ac-
cess to such exact path information.

Bandwidth is clearly important for many ap-
plications, but compared to latency it is hard to pro-
vide. This is primarily because it is more sensi-
tive to the exact path—a single low-bandwidth link
(or for that matter, heavily loaded link) dictates the
bandwidth for the whole path. In addition, it can
be somewhat more difficult to measure. Neverthe-
less, there is some hope of being able to provide
reasonable bandwidth estimates. For instance, we
can expect there to be some uniformity of band-
widths across the Internet backbone networks—one
doesn’t expect to find a very thin pipe in the middle
of an otherwise thick-pipe topology.

It may also be that there is a rough correspon-
dence between latency and bandwidth—that is, the
lower the latency between two hosts, the higher the
bandwidth is likely to be, thus allowing applications
that need high-bandwidth to minimize latency as a
first approximation.

Accuracy of the Distance Information We
do not expect the information provided by a
SONAR/HOPS service to be highly accurate. For
reasons discussed throughout this paper, we be-
lieve highly accurate distance estimates (say, within
5% or 10% of the average distance that could be
measured by the end-host itself) are impossible to
achieve scalably.

Our goal, rather, is to obtain accuracy to within
a factor of 2 with very high probability, and often
do better than that. While this may seem bad at first
glance, this level of accuracy would, for instance,
allow an application to usefully select between web
servers that were reported to be 20ms, 100ms, and
500ms away. The (reported) 20ms server, which
might actually be as far as 40ms, would still be bet-
ter than the (reported) 100ms server, which might
be as close as 50ms. Even being able to discrim-
inate like this among systems that are very close,
very far, or somewhere in between (something we
refer to as distance triage) is useful for a wide range
of applications.

Applications that require more accurate
knowledge may at least use this rough information
as a guide to making further measurements of
their own. (Indeed, for most applications, Internet
distance will be only one of several factors that may
effect the choice of destination host. For instance,
the 100ms host in the above example could still
turn out to be the best choice, for instance because
the 20ms host was heavily loaded.)

Timeliness of the Distance Information
Here we must consider two kinds of distance
information—load sensitive and “raw” (the dis-
tance seen assuming no load on the network, which
generally can be measured by saving the best of a
number of measurements).

The raw distance information will be on the or-
der of hours if not days old. In other words, the dis-
tance information will not reflect network failures,
and will only slowly reflect “permanent” topology
changes. The former would require either 1) very
frequent monitoring of the Internet, which is out
of the question, or 2) participation from the routers
themselves, which we don’t assume. Even if net-
work failure information were available, given the

3

heavy load that BGP updates exert on routers, even
after significant damping of network change infor-
mation [13], it is clear that the IDMaps infrastruc-
ture could not carry such information.

As for load sensitive distance information, it is
questionable as to whether it should be provided at
all. Certainly instantaneous or near-instantaneous
(within 15 or 20 seconds) load information is im-
possible, given the highly variable nature of Internet
performance.

There is a concern that any kind of load sen-
sitive distance information will generate a feedback
loop oscillation, where applications choose servers
based on IDMaps distance information, which in
turn effects the distance information. Given the
wide range of applications that might make use of
IDMaps load sensitive information, and the diffi-
culty of understanding their behavior, it may be ar-
bitrarily difficult to dampen or eliminate such oscil-
lations.

It may be useful to provide raw distance in-
formation on a time-of-day (and time-of-week etc.)
basis, to more accurately reflect predictable time-
of-day variations, but doing so is not incompatible
with a timeliness goal of hours or days.

Total Magnitude of Distance Information As
stated in the introduction section, the proposed
SONAR/HOPS services assume response times on
the order of DNS response time. This in turn sug-
gests that the SONAR/HOPS server must be hold-
ing all of the information required to calculate and
generate a reply to a SONAR/HOPS client.

A SONAR/HOPS service should be easily de-
ployable, and should thus not require overly expen-
sive computer or communications equipment. This
leads to the goal that a typical server system (NT
server, Sun workstation) should be able to obtain
and store in memory all the information provided
by IDMaps, without undue strain on its resources.

Total Cost of Distance Calculation Continuing
the thread, the cost of calculating the distance for
any pair of Internet hosts from the IDMaps informa-
tion should also not place undue strain on a typical
server system.

Scope of Distance Information We assume that
the distance information applies only to the “pub-
lic” portion of the Internet—that is, the backbone
networks, information derived from BGP, and pos-
sibly the public side of firewalls or border routers
of private networks. This restriction derives from
the fact that private network distance information is
not obtainable. Even if the information were obtain-
able, however, it may still be desirable not to include
it for scalability reasons.

This is not to suggest that distance information
inside private networks is not important. Here we
assume that the architecture presented in this paper
can be replicated within a private internet, but oth-
erwise do not address the issue.

Distance Information End-points A goal of
IDMaps is that the distance information it provides
allows an estimate of the distance between any two
valid IP addresses in the Internet. It is important to
discuss this particular goal because it significantly
increases the complexity of the IDMaps service.

The alternative to this goal would be a ser-
vice whereby distance information provided by a
given server can only provide distance information
about pairs of hosts where one of them is in the
proximity of that server. Such a service is much
simpler because each system only has to contend
with O(

�
) information, where

�
is the number of

possible destinations, rather than IDMap’s O(
���

)
information—all possible pairs of Internet destina-
tions.

The O(
�

) service is useful to those systems
near the server, which is often the case. Indeed,
this is the service proposed by SONAR, based on
its simplicity and perceived usefulness.

In defense of the more ambitious IDMaps goal,
we point out its advantages in the common applica-
tion of selecting one of multiple equal-content web
servers. Typical web clients today do not have the
ability to make such a selection. It must be done
by a proxy on behalf of, and transparently to, the
client. This proxy either captures the DNS request
of the client and returns the IP address of the se-
lected server, or it captures the HTTP GET of the
client and forwards the client to the identical page
on the selected server. The commercial Distributed
Director product of Cisco operates this way.

4

Either way, the proxy is generally at a different
location from both the client and the servers, and so
could not use the O(

�
) service.

In addition, good web server selection requires
knowledge of server load in addition to Internet dis-
tance. This information can more efficiently be
maintained in the proxy system, for instance by its
periodically querying the servers.

While we assume that other applications exist
or will exist that may take advantage of the ability
to learn the distance between a pair of remote hosts,
we believe that the one mentioned here taken alone
is sufficient justification for this goal.

Measurement of Distance Information The dis-
tance information in IDMaps is produced by sys-
tems we call Tracers. By necessity, Tracers must be
deployed at many different Internet locations. This
is because distance information relating to a partic-
ular location in the Internet can only be measured
from that point.

In order to encourage the largest possible in-
stallation of Tracers, it is necessary that the opera-
tion of a Tracer in the context of IDMaps be not sub-
stantially more costly, in terms of both human and
equipment resources, than the operation of a stand-
alone Internet measurement tool. The idea here is
that sites that might normally establish an Internet
measurement tool for their own use would be will-
ing to allow that tool to also participate in the overall
IDMaps infrastructure.

To achieve this basic goal, Tracers must be
fully self-configuring, and must not require large
amounts of information to operate. In particular,
they themselves must not require the distance infor-
mation generated by other Tracers for their correct
operation.

3 Basic Architecture

This section outlines the architecture for the
IDMaps service. We address the basic questions
set forth in the Introduction section. Ultimately, we
produced two distinct variations of the architecture:
Hop-by-hop (HbH) and End-to-End (E2E). While
these two approaches differ in the type of distance
information used to make estimates, they both share
a significant number of basic concepts.

C

C

C

C C

iC

iC

iC

iC

iC

iC

C
C

C

C

T

T

T
T

T

IDMaps Service

Tracers measure network distances,
advertise virtual topology over
multicast groups. Clients calculate
end-to-end distances.

IDMaps Clients calcuate distances
on behalf of Internet hosts. Convey
distances via simple query/reply
protocol.

IDMaps Client:
SONAR/ HOPS Servers

Internet hosts:
SONAR/ HOPS Clients

Figure 1: Basic Model: Two Tiers of Functionality

We start by describing these shared concepts.
We then describe the two different approaches, and
then discuss additional aspects of the architecture,
highlighting the differences between the two ap-
proaches. The purpose here is to lay down basic
concepts and issues rather than provide a detailed
design, which remains for future work.

3.1 Separation of Tracers and Clients

Figure 1 illustrates a basic model whereby Tracers
collect or measure and advertise Internet distance
information. Collectively, this distance informa-
tion is called the distance map, and consists of the
collected or measured raw distances (often simply
called distances). Systems called Clients obtain the
distance map and use it to estimate distances be-
tween Internet hosts. SONAR and HOPS servers
are examples of potential IDMaps Clients.

The full separation of the Tracer and Client
functions is a useful modularity, as it allows for dif-
ferent applications to obtain and use the distance
maps. More to the point, however, the full sepa-
ration is necessary because the differences in func-
tionality places incompatible constraints on the two
types of systems. Client systems should be de-
ployed in such a way that they are easily accessi-
ble by their clients, and that they are easily man-
aged by their operators. These systems generally re-
quire large memories, and depending on how many
clients they serve may require high-bandwidth con-
nectivity.

5

Tracers, on the other hand, must be placed
where they are able to obtain raw distance infor-
mation. As described later on, this placement is
largely dictated by the Internet topology and by the
desired accuracy of the IDMaps service. Further-
more, Tracers may be relatively small machines,
with many of them contributing only a small num-
ber of raw distances to the distance map. There-
fore, both the types of machines used as Tracers and
Clients, and their locations in the Internet, are dif-
ferent.

3.2 Simple Forms of Distance Information

The simplest (and most accurate) form the distance
information provided by IDMaps could take is a list
of the distances from every globally reachable IP
address1 to every other. The distance from one IP
address to another is then determined by simply in-
dexing the list to the appropriate entry (say, using
a hashing algorithm), and reading the number. The
sheer scale of this information (

� �
, where

�
is mil-

lions of hosts) makes this simple approach infea-
sible, as does the intractable problem of even just
finding all such hosts in an ever-changing Internet
in the first place.

The next simplest would be a list of the dis-
tances from every globally reachable Address Pre-
fix (AP) in the Internet to every other (Figure 2).
Here an AP is defined as a block of IP addresses
that is aggregatable at a single ISP (Internet Service
Provider) backbone router. Note that such a block
may be a sub-block of a CIDR (Classless Inter Do-
main Routing) block assigned to a given ISP. Deter-
mining the distance from one IP address to another
is only slightly more complicated—each IP address
is first mapped into its AP, and the AP is then in-
dexed in the list.

This approach is less accurate than the first ap-
proach, because it does not take into consideration
the location of the specific IP address within the AP.
This can be a problem for APs that are geographi-
cally disperse (say, an AP belonging to a global cor-
poration) and have multiple Internet access points.
Nevertheless, we expect the approximation to pro-

1Understanding here that different IP addresses may be
reachable at different times, given technologies like NAT and
dial-up Internet access.

vide adequate accuracy for most addresses and most
applications.

Unlike determining the global set of IP ad-
dresses, determining the set of APs, while non-
trivial, seems feasible (see Section 3.8). The scale
of the information, however, is still prohibitive.
There are some 50,000 and growing assigned CIDR
blocks [14], and probably several times that many
distinct APs. Probing, disseminating, and storing
the full list of � � pairs of AP-AP distances (easily
a terabyte, given 200,000 APs and 25 bytes per list
entry) is equally out of the question.

Clearly some way of further compressing this
information is needed. One way is to keep a list
of distances from every Autonomous System (AS)
to every other. The AS is the unit of path informa-
tion carried by the BGP inter-domain routing pro-
tocol. BGP also maps blocks of IP addresses into
their ASs [15]. This shrinks the size of the informa-
tion to � ��� ��� , where � (���	�) is the number
of ASs and � � the number of BGP-advertised IP ad-
dress blocks (not an AP by the above definition, but
of the same order of magnitude in size).

While still a large list, maintaining it is cer-
tainly feasible. The resulting accuracy of the esti-
mated distances, however, is highly suspect. Many
ASs are global in scope, and multiple ASs cover the
same geographic area. It is often the case that some
IP hosts are very close to each other (both in geo-
graphical and latency terms) but belong to different
ASs, while other IP hosts are very far apart but be-
long to the same AS.

Another approach is to still use some cluster-
ing of APs, but to use some unit of clustering other
than the AS. A natural design choice is to select
certain systems, let’s call them boxes, distributed
around the Internet, so that every AP is relatively
close to one or more boxes. The distances between
these boxes are listed. Also listed are the distances
between the APs and their nearest box(es). The dis-
tance between any two APs can then be calculated
as the sum of the distances from the APs to their
nearest boxes, and the distance between the boxes.
The resulting accuracy is dependent on how close
each AP is to a box. Assuming that we can manip-
ulate the number and location of boxes, we have a
tuning knob for increasing accuracy at the expense
of more listed raw distances.

6

Host in AP
(Address Prefix)

H cost2

H = number of Hosts

P cost2

P = number of APs

(P << H)

Host

Host in AP near Box

B + P cost2

B = number of Boxes

(B = ???)

A + P’ cost2

A = number of ASs

Raw distance

P’ = number of BGP prefixes

(A << P)

Host in BGP prefix in AS
(Autonomous System)

Figure 2: Various Forms of Distance Information

This approach scales as
� � � � , where

�
is the

number of boxes. Assuming that � , the number of
APs, is a manageable number (no more than several
hundred thousand), the question then becomes, how
big is

�
? If

�
is on the order of 10,000, then the

size of the list is again too large. If on the other hand
�

is on the order of 500, then the
� �

component is
roughly the same as the � component and, at least
in terms of simple storage and lookup, manageable.

It is impossible to predict with precision the
number of boxes needed, but we can make a rough
guess as follows. The 1992 Times Atlas of the
World sees fit to list the populations of roughly
300 metropolitan areas (most with population over
1,000,000). It is easy to imagine that each of these
areas could benefit from having one or more boxes,

ISPA

ISPB

ISPB

ISPA

raw distance

Seattle

ISPA

ISPB

ISPB

ISPA

Boston

Figure 3: Redundant Distances: “Long-leg/Short-
leg” Effect

and further that there could be one or more boxes
per major ISP in the area. This would allow, for in-
stance, distributed game applications to find game
partners in the same metropolitan area and ISP,
keeping latency at a minimum. Assuming 5 ISPs
per area, 500 areas globally, and 2 boxes per ISP,
this translates into 5,000 boxes globally, or over
25 million box-box distances.

While it may very well be that fewer boxes
than this is required, for a given level of accuracy, it
may equally well be that more are required. It there-
fore seems somewhat risky to base a design on

� �

box-box distances.

3.3 The Distance Map

However, it is not necessary to list all
� �

box-box
distances to achieve good accuracy. For instance,
assuming multiple boxes in both Seattle and Wash-
ington DC (for instance, one per ISP), it would al-
most certainly not be very useful to know all of the
the distances between them.2 Knowing only one of
them would allow a sufficient distance approxima-
tion between hosts in Seattle and hosts in Washing-
ton DC (Figure 3).

Likewise, it is also unnecessary to know both
the distance from a box in Seattle to a box in Wash-

2We understand here that geographical distance does not
necessarily directly relate to network distance (though often it
does), for instance because of odd routings. We use geograph-
ical locations here to simplify the discussion.

7

ington DC and the distance from the box in Seattle
to a box in nearby Baltimore. If only the distance
from, say, Seattle to Washington DC is known, the
Seattle to Baltimore distance can be estimated as
roughly the same.

Both of these examples say in essence that a
given unknown distance can be estimated by con-
catenating a set of known distances together, pro-
vided that all but one of the known distances are
short (relative to the single long distance). We call
this the “long-leg/short-leg” effect. Let

���������
de-

note the distance from
�

to
�

. If distances
�
	�����

and
���������

are known, then from the triangle in-
equality we have that

�
	������
is bounded above by�
	����� � ���������

, and below by � �
	����������������� � . If
either of the two distances is small relative to the
other, then the bound is tight and the estimate accu-
rate. Deriving a distance estimate from this bound
has been referred to as “triangulation” [16, 17].

A key point to keep in mind is that any time
we estimate a distance from

	
to

�
based on dis-

tances to an intermediary
�
, then we are in fact mak-

ing an assumption of what we will term efficient
routing: that Internet routing does indeed strive to
find low-latency paths, and that the routes used by
two nearby hosts will not be drastically different
from each other. This assumption can be violated
due to policy-based routing, and also by the use
of large layer-2 “clouds” by ISPs that are invisi-
ble at the network layer, and hence contain sig-
nificant complex topology completely hidden from
network-layer-only viewpoints such as available to
IDMaps. If violated, it can render the triangle in-
equality incorrect:

�
	������
might be much higher than�
	����� � ���������

or much lower than � �
	����������������� � .
The Internet certainly contains exceptions to

the assumption of efficient routing. Just how preva-
lent and how serious the resulting IDMaps inaccura-
cies remain as key questions, but difficult to assess
without first building a widely deployed measure-
ment infrastructure such as IDMaps itself.

Given efficient routing, there is an additional
way that raw distances between boxes can be re-
duced. It may be unnecessary to know the distances
from Seattle to Chicago, Chicago to Washington
DC, and Seattle to Washington DC. If Chicago is
pretty much on the path from Seattle to Washing-
ton DC, then it is not necessary to know the Seat-

raw distance

ChicagoSeattle

Boston

ChicagoSeattle

Boston

Figure 4: Redundant Distance: “On the Path” Effect

tle to Washington DC distance. It can be estimated
as the concatenation of the Seattle to Chicago and
Chicago to Washington DC distances. We call this
the “on the path” effect (Figure 4).

The question then becomes, how can we know
if a given intermediate box

�
is really “on the path”

between
	

and
�
? Or, how do we know that

�
is

Chicago and not Tokyo? As it turns out, we don’t
really have to know that. As long as some inter-
mediate box is on the path, then by simply run-
ning a shortest-path spanning tree over the known
topology of distances, the right path is teased out
(again, assuming efficient routing). In terms of
our example, say we know all the distances from
Seattle to Chicago, Denver, Dallas, Mexico City,
Panama City, and Buenos Aires, and the distances
from those cities to Washington DC. If we run a
spanning tree algorithm over that topology of dis-
tances, the path through Chicago will be the short-
est, and will serve as our estimate. This is illustrated
in Figure 5.

The key question then is, how do we know
whether any of the intermediate locations are “on
the path”. If out of the previous list of cities the dis-
tances to Chicago and Denver are not known, then
the shortest path is through Dallas, and the resulting
estimate is not very good.

The problem can be stated as follows. Assum-
ing a number of boxes placed at various locations
around the Internet, how can we determine which
box-box distances are useful and which are redun-
dant? In other words, how do we decide what raw
distances to include in the distance map? In Sec-

8

T

T

T

T

T

T

AP

actual
(physical)
distance

measured
distances
between
Tracers

shortest path

AP

T

Figure 5: Shortest Path Triangle.

tions 3.5 and 3.6, we describe two approaches to
this specific problem, the Hop-by-Hop (HbH) and
End-to-End (E2E) approaches.

3.4 Distance Computation

From the point-of-view of the Client, the distance
maps for either the HbH or E2E schemes have cer-
tain common properties. Both contain APs, boxes,
AP-box distances, and box-box distances. Each AP
has only one or a few AP-box distances associated
with it. In particular, the distances to its closest
AP(s). Boxes may have a good deal more distances
associated with them, but intuitively we envision a
maximum of 30 or 40 distances for a better-than-
average connected box. This is nowhere near the
hundreds or thousands of potential distances that
would exist with

� �
distance connectivity.

To estimate the distance from one IP address
to another, the Client takes the following steps:

1. Determine which AP(s) each address is in.
Since each AP is expressed as an address pre-
fix, this is a straight-forward lookup process.

2. Determine which box the APs are connected
to. This is also a simple table lookup.

3. Run a spanning-tree algorithm over the topol-
ogy of boxes to find the shortest distance from
the boxes of the source APs to the boxes of the
destination APs. This shortest distance is the
estimated distance.

The exact operation of the spanning-tree cal-
culation in step 3 varies between the HbH and E2E
models (and between possible variations of the E2E
model). These differences are described in the fol-
lowing sections.

An important point regarding this calculation
is that all or nearly all of the box-box topology
(that is, the “pruned” box-box topology, not the
� �

topology) must be stored to generate an accu-
rate distance estimate. The same is not true for the
AP-box connectivity. Strictly speaking, only the
connectivity of the source and destination APs are
needed—in order to determine the source and des-
tination boxes. This has important ramifications on
the methods for disseminating distance map infor-
mation (Section 3.7).

3.5 The HbH Model

In the HbH model, the Tracers probe all transit
backbone routers, and model every transit back-
bone router as a box, and every physical link be-
tween them as a box-box distance. In other words,
the box-box topology is nothing more than the ac-
tual Internet transit backbone router topology. Like-
wise, actual Internet access links from subscriber
networks to their ISP transit backbone routers (per-
haps through one or more non-transit subscriber ac-
cess routers) are modeled as AP-box distances.

This model has a certain intuitive appeal in
that the spanning tree algorithm run over the box-
box topology is an approximation of actual Internet
routing algorithms, which themselves are spanning-
tree algorithms. Assuming efficient routing, the real
paths used in the Internet will be close to those cal-
culated by the spanning-tree operation.

Because the actual Internet routing algorithms
have two levels, inter-AS routing (BGP) and intra-
AS routing, the box-box topology, as well as its
spanning-tree algorithm, reflects this. In other
words, the boxes in the distance map have to be la-
beled as belonging to a given AS.

Figure 6 simplistically illustrates how the
spanning-tree algorithm (step 3 above) is executed:

1. Determine which Autonomous System (AS)
each AP connects to.

2. Running a spanning tree algorithm over the

9

AS

AP

IP

IP

AP

1

3

1

AS

2

4

AS

AS

3

AS

3

1. Autonomous Systems (ASs) of APs
2. AS Path
3. Router path in each AS
4. Concatenate router paths

Figure 6: Spanning Tree Algorithm for HbH Model

inter-AS topology, calculate the AS path from
one AS to the other.

3. For each AS in the AS path, starting with the
source AS, calculate the shortest router path
from the entry router (box) to the next AS
(intra-AS topology).

4. Concatenate the calculated router paths to ob-
tain the complete path.

The cost of the distance map in this model is
roughly � ��� ��� , where � is the number of
APs,

�
is the number of transit backbone routers,

and
�

the links between them. Storing the entire
backbone router topology may at first glance seem
like an excessive amount of information. The size
of the router topology information, however, is on
the order of, if not well less than, that of the AP
connectivity information (

� ����� �). This is
because there is substantial fan-out from a transit
backbone router to multiple non-transit subscriber
access routers to still more distinct APs. Since in-
formation about the connectivity of each distinct AP
(�) must be stored in any event (for either model),
keeping the router topology does not make matters
significantly worse as far as memory requirements
go.

Since the immediate up-down status of routers
and links does not have to be monitored (as is re-
quired in routing algorithms to prevent loops and
black holes), the bandwidth required to transmit
router topology information is proportional to the
size of the router topology (and, again, therefore
less than that required to transmit the AP connec-
tivity information).

Finally, by taking advantage of the hierarchi-
cal structure of the Internet (Autonomous System-
level/router-level), the spanning tree calculation is
efficient because it is broken up into small pieces
rather than run over the whole Internet backbone
topology.

3.6 The E2E Model

In the E2E model, the Tracers themselves are the
boxes, the box-box distances are actual distance
measurements made between Tracers,3 and the AP-
box distances are actual distance measurements
made from Tracers to APs.

The spanning tree algorithm is executed just
as described in Section 3.4 above. No additional
mechanisms, such as with the HbH model, are re-
quired.

Where the HbH model is appealing for its tight
reflection of the actual Internet topology, the E2E
model is appealing for its abstract simplicity. It does
not directly solve, however, the problem of knowing
which box-box distances are useful and which are
redundant.

While we have not worked out specifics, we
believe a good basic approach to this problem is
to simply try out new box-box distances, determine
how useful they are, and keep only those that prove
themselves to be useful. Tracers would do this inde-
pendently of the activity of other Tracers, therefore
keeping Tracer operation as simple as possible.

For example, each Tracer �	� could periodi-
cally select another Tracer ��
 and measure the dis-
tance to ��
 . Since Tracers already know distances
to nearby APs, Tracer �	� could query Tracer ��

3The actual distance used would not include the legs from
the Tracers to their backbone routers, since this part of the path
is not used by other hosts. For the sake of readability, however,
we refer to the Tracer’s router to Tracer’s router distance simply
as the distance between two Tracers.

10

for a list of ��
 ’s nearby APs and the corresponding
distances. Given only these raw distances, Tracer
� � can calculate the distance from one of its own
nearby APs to one of ��
 ’s nearby APs.

Tracer �	� can then formulate a query to a
Client for the estimated distance between an IP ad-
dress in its AP and one in �
 ’s AP. If the total dis-
tance reported by the Client is close to that known
by �	� , then clearly the distance

�
� �

�
�

�
is not a

useful one. The box-box topology already stored
by the Client contains a path of distances approxi-
mating distance

�
� �

�
��

�
. If on the other hand the

reported total distance is substantially greater than�
� �

�
��

�
, then distance

�
� �

�
�

�
is clearly a use-

ful addition to the box-box topology. In this latter
case, Tracer � � could start to advertise the new dis-
tance. In this way, new useful raw distances would
be discovered.

At the same time, Clients would monitor their
topologies to discover redundant distances. A sim-
ple and efficient way they could do this is to keep
tabs of the number of times each raw distance is
used as part of the shortest path used for a given
distance estimate. Little-used distances could then
be tested by running a spanning-tree between their
end-point boxes, but without including the distance
being tested. When a given raw distance proved to
be of not much use, the Tracer advertising it could
be directly informed by the Client.

Clearly this “best-effort” approach would not
achieve the optimal topology for a given number
of box-box distances. In particular, while this ap-
proach can tell the usefulness of a new distance as
an addition to a given topology, it cannot tell when
a new distance is beneficial as a replacement to one
or more already-established distances. Determin-
ing the latter, however, appears to be computation-
ally expensive. Our hope is that determining the
latter, or otherwise finding complex ways to gener-
ate near-optimal topologies, is unnecessary—rather
that the simple approach outlined above produces
“good enough” topologies.

3.7 Disseminating the Distance Map

The Tracers, whether or not they themselves are the
boxes in the distance map, are the ultimate source
of the distance map, and must convey the distance

map to the Clients. The characteristics of this dis-
tribution can be summarized as follows:

1. There are a large number of both producers
(Tracers) and consumers (Clients) of the infor-
mation.

2. Each Tracer produces a small portion of the
distance map (several to several hundreds of
raw distances).

3. Each raw distance changes infrequently (from
several hours to a day).

4. Generally speaking, a typical Client will store
the complete box-box part of the distance map.
For the E2E model, the size of this part of the
distance map is unknown, but can be roughly
estimated to be anywhere from 100 Kbytes
to upwards of 5 Mbytes (5000 boxes with
100,000 distances and 50 bytes per distance).

5. Some Clients must store the full AP-box part
of the distance map (other Clients may simple
query these Clients for the specific AP connec-
tivity of interest, as discussed later in this sec-
tion). This part of the distance map may be es-
timated at upwards of 10 Mbytes (for 200,000
APs).

6. Since each Client independently estimates dis-
tances, the distance map does not need to be
identical or perfectly up to date at all Clients.

The ideal mechanism for the dissemination of
the distance map is IP multicast. It allows each
Tracer to transmit its small portion of the dis-
tance map without coordination with other Tracers
(though in the HbH model coordination is needed
for other reasons). The Tracers never need to know
about the Clients, and the Clients do not need to
know about the Tracers in advance (though they
do learn of the Tracers through reception of the
Tracers’ transmissions). In this sense, IP multicast
serves as a valuable discovery mechanism as well
as a distribution mechanism.

Because the distance map does not have to be
error-free or synchronized among Clients, the non-
guaranteed delivery characteristic of IP multicast is
not a problem. IP multicast also allows the Trac-
ers to transmit their raw distances without having to

11

listen to those of other Tracers, which is important
because a Tracer may not be a powerful machine.

The basic idea is that each Tracer periodically
(with random skew in the period, to prevent any
kind of inadvertent synchronization among Tracers)
transmits its raw distances onto the appropriate mul-
ticast group(s). A Client receiving on the group(s)
will, over time, receive all of the raw distances.
Each transmitted raw distance has a time-to-live as-
sociated with it. The time-to-live is set to be several
times longer than the transmit period. Clients sim-
ply delete any raw distances whose age exceeds the
assigned time-to-live.

It is useful to have different multicast groups
for different information. At a minimum, there are
separate multicast groups for the box-box distances
and the AP-box distances. This allows for a model
whereby a given Client that does not need to store
the full AP-box connectivity information can listen
to only the box-box group(s).4

Because of the large volume of AP-box infor-
mation, it should be distributed over multiple multi-
cast groups according to some locality-of-reference
criteria, for instance, proximity to a locus or cluster
of boxes.

3.8 Discovering APs

Both models have in common the problem of dis-
covering APs. The difficulty here is that the address
blocks advertised by ISPs in BGP do not necessarily
represent a single group of addresses in one Internet
“location”. Inside an ISP, a BGP-advertised block
may be further partitioned into many sub-blocks
(i.e., APs) that are topologically far away from each
other. The only direct way the address ranges of
these sub-blocks can be learned is by querying the
ISPs’ routers using SNMP, or by listening to their
routing protocols. Where ISPs themselves have
setup Tracers, these methods can be used.

4If a given Client is not storing all AP-box distances, then
it requires some means of learning the ones it needs for a given
calculation. This must be solved in the context of a given sys-
tem of Clients, and is outside the scope of the IDMaps ser-
vice proper. However, a typical mechanism would be for some
Clients to obtain all AP-box distances, and for Clients that
do not have them to query the Clients that do. The querying
Clients could discover the queryable Clients through a sepa-
rate multicast group over which the queryable Clients advertise
themselves.

Ideally, a large number of Tracers will be in-
stalled for the express purpose of providing accurate
distance information for a given site. These “dedi-
cated” Tracers can easily be configured with site AP
information, and this information can be advertised
over the AP-box distance multicast group.

For APs not covered by either of the above,
“general purpose” Tracers will have to discover the
address boundaries of APs, as well as which APs are
nearby. (These general purpose Tracers are not nec-
essarily the light-weight systems described in the
Goals section.) The basic approach will be for a few
of these Tracers to obtain address blocks from BGP
and advertise them over the AP-box distance mul-
ticast group. These address blocks serve to “seed”
the Tracers.

Tracers will periodically select an address
block, and probe a few specific IP addresses scat-
tered throughout the block, including addresses at
the high and low boundaries of the block. If the
probe reveals that the addresses are in the same
location, then the block can be considered to be
a single AP. Here location is determined through
the IP address of the last system responding to the
traceroute that does not have an address from
the block being probed. If probes to two IP ad-
dresses produce the same such penultimate address,
they are assumed to be in the same AP.

If the addresses are from different locations,
then a kind of binary search over the block can be
executed in search of the boundaries of the sub-
blocks. In such a search, each new probe would
select an address midway between two previously
probed addresses that were found to be in different
APs.

3.9 Discovering AP-to-Box Distances

Once (the address boundaries of) an AP is discov-
ered, its AP-box distance must be determined. For
the HbH model, the box is the AP’s access back-
bone router. Almost any Tracer can discover this
backbone router, because the routes of probes from
different locations will converge on the same back-
bone router. Once discovered, the AP-box distance
is advertised by the discovering Tracer.

The same is not true for the E2E model. In the
E2E model, unless an AP is pre-configured into a

12

dedicated Tracer, only the Tracers nearest to the AP
itself can discover and subsequently advertise the
AP-box distance. As a result, when a Tracer first
discovers an AP, it assumes itself to be the closest
Tracer and advertises its distance to the AP as the
AP-box distance. Thereafter, however, other Trac-
ers should probe the AP to determine if they may
be closer. If one is, then it advertises its closer dis-
tance. Upon hearing this, the Tracer with the longer
distance can stop advertising.

3.10 Discovering Distances in General

While at first glance the discovery of AP-box dis-
tances for the HbH model described above appears
simpler than for the E2E model, in fact distance dis-
covery in the H2H model is overall more complex.

In the E2E model, each distance can only be
probed by the Tracer at the end of the distance.
While, over time, this can result in a large number of
probes for a Tracer, the activity is simple because it
does not need to be coordinated with other Tracers.
Each Tracer can independently decide what other
Tracers or APs to probe, and when to probe them.
Note that the E2E model requires a separate multi-
cast group over which Tracers advertise themselves.
This group is monitored by all Tracers (dedicated
and general purpose alike) so that they may learn
of each other. Self advertisements can be relatively
infrequent (once every several hours), so this multi-
cast group will be lightly loaded.

Probing in the HbH model is more complex,
for several reasons. To see why, we must first con-
sider the probing regime of Tracers in the HbH
model. Unlike the E2E model, where Tracers know
in advance every box, Tracers in the HbH model
do not know in advance what the Internet topol-
ogy looks like—that is, what routers and links ex-
ist. They must actively find them. This is done
by executing traceroutes to randomly selected
APs, which returns a list of routers in a path. This
traceroute activity is a continuous background
activity of Tracers, and must be done whether or not
a given AP has been discovered.

Once a link has been discovered, it must in-
dividually be probed periodically. Unlike the E2E
model, where each distance can only be probed by
Tracers on the end of the distance, a link in the HbH

model can potentially be probed by a large number
of Tracers. In order not to swamp any given link
with probes, the Tracers must coordinate their activ-
ity so that a given link is only being probed by one
or a few Tracers at a time. This in turn requires that
Tracers are aware of the activity of other Tracers,
which means that Tracers must listen to the box-box
distance multicast group.

This group, however, carries a substantial vol-
ume of information (the backbone topology of the
Internet), so requiring that Tracers listen to it goes
counter to the goal of Tracers being light-weight. To
cope with this, we must partition the box-box mul-
ticast group into multiple multicast groups, for in-
stance one per AS. After discovering a link through
a traceroute, a Tracer must first determine the
AS of the corresponding routers, and from that the
multicast group the link is being advertised over.5

The Tracer then listens to that group, and deter-
mines how many other Tracers are probing and ad-
vertising the link and how far from the link they
are. If there are several Tracers advertising the link,
and they are closer to the link, then the Tracer may
choose not to continue to probe and advertise the
link. Otherwise, the Tracer may choose to probe
and advertise the link, and must coordinate this
probing with that of the other active Tracers.

Finally, a complication arises from the fact that
a given router may respond to TTL Expired with
different addresses for different interfaces. This
results in different Tracers, probing from different
locations, seeing different addresses for the same
router. DNS reverse lookups cannot always be used
to resolve these to the same router, resulting in a sin-
gle router appearing as multiple boxes in the topol-
ogy.

3.11 Summary

The E2E model, at this early stage of design,
appears simpler and more elegant than the HbH
model. Its main drawback at this time is that we
do not know if the E2E model can scalably produce
sufficiently accurate estimates. In other words, we
do not know if the approach outlined in Section 3.6

5Without getting into details, this is done through the use of
yet another multicast group, which advertises AS-group map-
pings.

13

really will produce a virtual topology that ade-
quately reflects the physical topology without re-
quiring an excessive number of distances. (Strictly
speaking we do not know this for certain with the
HbH model. The fact that the HbH model reflects
the actual Internet topology, however, gives us a cer-
tain confidence that it will produce good estimates.)

Ultimately, with either model, we believe the
only way to test their scaling and accuracy is to
build prototypes and try them in the Internet. Be-
cause of its simplicity, we would prefer to try the
E2E model first. In order to get a better feel for how
it might perform, we have done some preliminary
simulations of a small E2E topology using previ-
ously gathered Internet measurement data. The re-
mainder of this paper describes that simulation.

We note that if the E2E model described above
proves not to scale adequately, we may be able
to engineer improvements while staying within the
E2E framework. For instance, we could increase the
total number of Tracers by having two tiers of E2E
topologies—one global and known by all Clients,
and another local and known only to Clients that
care about finer granularity in the locale. Such “im-
provements”, however, add substantial complexity
to the original model.

Finally we note that the two models are not
necessarily mutually exclusive. There is no rea-
son, for instance, that a box-box distance in the
E2E model cannot in fact represent the distance be-
tween two directly connected routers and vice versa.
Whether doing so is useful, however, can only be
determined through experimentation with a work-
ing system.

4 Experimental Evaluation

In this section we present some preliminary experi-
mental results on the feasibility of computing Inter-
net distances based on E2E model. The basic ques-
tion we want to investigate is: given a number of
Tracers distributed around the Internet, how close
would the distance between two points estimated by
IDMaps be to the actual distance?

To answer this question, we use
traceroute data collected with the net-
work probe daemon (NPD) tool described in [18].

Table 1: Number of triangles obtained from each
data set.

Data Set Total Shortest�������
8382 458�������

11563 621����� �
13729 701����� 	
13887 761������

20004 815����� �
26334 962������
85011 1978������
98642 2213���� �
57798 1559

A number of sites on the Internet were recruited
to run NPDs. At random intervals, these NPDs
were asked to measure the route to another NPD
site using traceroute. A full description of the
measurement process, such as inter-measurement
interval, number of measurements per period, etc.,
and data cleansing done on the collected data
are available in [18]. In this paper we analyze
the traceroute data collected by the NPDs
in two experiments: the Nov. 3 to Dec. 21, 1995
experiment (� �) and the Sep. 4, 1996 to Jan. 24,
1997 experiment (�
). We split experiment � �
into 6 data sets, and experiment �
 into 3 data
sets. The data sets are non-overlapping in time.
Thirty-three hosts distributed around the globe
participated in experiment � � , 48 in experiment
�
 .

Each source � that participated in an NPD ex-
periment did a number of traceroutes to each
destination � participating in the experiment. For
each data set, we estimate the latency between �
and � as the minimum of the end-to-end round-
trip-times reported across all of the traceroutes
from � to � . From each data set we then compute a
set of triangles, each involving three such minimum
latency traceroutes: from a host

	
to another

host
�
, from host

�
to a third host

�
, and from host

	
to host

�
. Column 2 of Table 1 lists the number of

triangles we obtained from each of the 9 data sets.
The first 6 data sets are from experiment � � the re-
maining 3 are from experiment �
 .

These triangles simulate IDMaps’ estimation
of a path between two Internet locations, i.e. if

	 �
is the actual path between

	
and

�
, IDMaps, having

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

C
D

F

(a,c)/((a,b)+(b,c))

’D1.1’
’D1.2’
’D1.3’
’D1.4’
’D1.5’
’D1.6’
’D2.1’
’D2.2’
’D2.3’

Figure 7: Cumulative Distribution Function
(CDF) of the ratio of

�
	�������� ���
	����� � �����������
for

shortest-path triangles.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

C
D

F

(a,c)/((a,b)+(b,c))

’D1.1’
’D1.2’
’D1.3’
’D1.4’
’D1.5’
’D1.6’
’D2.1’
’D2.2’
’D2.3’

Figure 8: Cumulative Distribution Function
(CDF) of the ratio of

�
	�������� ���
	����� � �����������
for

all triangles.

only the
	 �

and
� �

distances, estimates
	 �

’s distance
as

�
	����� � ���������
. Hosts

	
and

�
represent the two

Internet addresses (or their APs) whose distance we
want to know. All other hosts

�
represent Tracers

in the distance map through which the calculated
path may go. Our question is, even with the rela-
tively small number of Tracers represented, can we
achieve a reasonably good estimate from the calcu-
lated shortest path?

An answer of “yes” tells us that a relatively
small number of Tracers may potentially serve ef-
fectively as intermediate nodes in a shortest path
distance estimate. This in turns means that the large
majority of Tracer-to-Tracer distances do not need
to be included in a distance map. We hasten to em-
phasize, however, that the experiment here is pre-
liminary, and that experimentation over a working
IDMaps system is required.

4.1 Triangulation Error

We now look at the triangulation error for all of the
triangles formed from our NPD experiments. The
metric we are studying is the ratio of the length of
the ac leg of each triangle over the sum of the length
of its two other sides

�
	����� � ���������
. The closer this

ratio is to 1, the smaller the triangulation error, and
the more accurate the distance estimate obtainable
from IDMaps.

We have speculated in Section 3.3 that when
the number of Tracers involved in IDMaps is large,
the shortest path computed between two APs would
better approximate the actual distance. By shortest-
path here we mean that given all the

�
s that can

potentially be used to estimate the distance
	 �

as�
	����� � ���������
, the shortest-path is the path that in-

volves the
�

that provides the smallest
�
	����� � ���������

(see Figure 5). Column 3 of Table 1 lists the number
of shortest-path triangles computed from each data
set.

Figure 7 shows that the ratio of the actual
�
	������

distance over the sum of length of the other two
legs are quite close to 1. The lines in the figure are
practically on top of each other; we do not see the
need to differentiate them. The figure shows that
less than 10% of all shortest-path triangles formed
have their

	 �
leg shorter than half of the sum of the

other two legs.
For comparative purposes, we show in Figure 8

the cumulative distribution function of the triangu-
lation error from triangles involving all potential

�
s,

not just those providing the shortest distance esti-
mate. The figure shows, for example, that the actual
distance between

	
and

�
in about 40% of the trian-

gles formed is shorter than half that of the sum of
the length of the

	 �
and

� �
legs, which provides ini-

tial confirmation to our speculation that with more
Tracers distributed around the Internet, the shortest-

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10 100 1000

C
D

F

ab/bc

’D1.1’
’D1.2’
’D1.3’
’D1.4’
’D1.5’
’D1.6’
’D2.1’
’D2.2’
’D2.3’

Figure 9: Ratio of the length of the ab leg over that
of the bc leg.

path estimates will more closely approximate the
actual distances.

Figure 9 shows the ratio of the length of the
ab leg of all shortest-path triangles over the length
of their corresponding bc leg. The wide range
of ratios present in the graph means that both the
long-leg/short-leg effect (Seattle–Washington DC–
Baltimore) and the “on the path” effect (Seattle–
Chicago–Washington DC) are coming into play.

In summary, while we do not make any claim
as to the potential accuracy of IDMaps’ distance es-
timates, results presented in this section convince
us that we should continue to explore the use of the
E2E model in distance estimation.

5 Issues

This section briefly discusses a few of the most im-
portant of the many issues facing this work. The pri-
mary issue, already mentioned, is simply whether or
not reasonable distance estimates can be made us-
ing the E2E model presented. Even if so, any num-
ber of performance issues must still be resolved:
how many Tracers are needed, where must they
be placed, how often must they trace distances,
how much traffic is generated, what are the stor-
age/latency trade-offs of Clients, and so on. While
careful simulations may shed some light on these
questions, we believe ultimately that the only real
way to answer them is to build the system and try it
on a large scale.

Acknowledgments

We have benefited from interesting discussions
with Sally Floyd. We thank Susan Hares, Craig
Labovitz, and Dun Liu for making the �
 data set
available to us.

References

[1] B. Kantor and P. Lapsley, “Network news
transfer protocol: A proposed standard for the
stream-based transmission of news,” RFC
977, Internet Engineering Task Force, Feb.
1986.

[2] S. Bhattacharjee et al., ““Application-Layer
Anycasting”,” Proc. of IEEE INFOCOM ’97,
Apr. 1997.

[3] W. Stevens, TCP/IP Illustrated, Volume 1:
The Protocols, Addison-Wesley, 1994.

[4] S.E. Deering and D.R. Cheriton, ““Multi-
cast Routing in Internetworks and Extended
LANs”,” ACM Transactions on Computer
Systems, vol. 8, no. 2, pp. 85–110, May 1990.

[5] K. Moore, J. Cox, and S. Green, “Sonar -
a network proximity service,” Internet-Draft,
url: http://www.netlib.org/utk/projects/sonar/,
Feb. 1996.

[6] P. Francis, “Host proximity service (hops),”
URL: http://www.ingrid.org/hops, Aug. 1998.

[7] M. Stemm, R. Katz, and S. Seshan, “Spand:
Shared passive network performance discov-
ery,” url: http://spand.cs.berkeley.edu/.

[8] C. Huitema et al., “Project felix: Indepen-
dent monitoring for network survivability,”
url: ftp://ftp.bellcore.com/pub/mwg/felix/,
Sep. 1997.

[9] S. Keshav, R. Sharma, and
R. Siamwalla, “Project octopus:
Network topology discovery,” url:
http://www.cs.cornell.edu/cnrg/topology/Default.html,
May 1998.

16

[10] C. Labovitz et al., “Internet performance
measurement and analysis project,” url:
http://www.merit.edu/ipma/, 1998.

[11] V. Paxson et al., ““An Architecture for Large-
Scale Internet Measurement”,” IEEE Commu-
nications Magazine, To appear 1998.

[12] R. Caceres et al., “Minc multicast-based infer-
ence of network-internal characteristics,” url:
http://www.research.att.com/˜duffield/minc/,
1998.

[13] C. Labovitz, G.R. Malan, and F. Jahanian,
““Internet Routing Instability”,” Proc. of
ACM SIGCOMM ’97, 1997.

[14] T. Bates, “The cidr report,” url:
http://www.employees.org/˜tbates/cidr-
report.html, June 1998.

[15] Y. Rekhter and T. Li, “A border gateway pro-
tocol 4 (bgp-4),” RFC 1771, Internet Engi-
neering Task Force, Mar. 1995.

[16] S. Hotz, “Routing information organization
to support scalable interdomain routing with
heterogenous path requirements,” Tech. Rep.
Ph.D. Thesis, Univ. of Southern California,
CS Dept., 1994.

[17] James D. Guyton and Michael F. Schwartz,
“Locating nearby copies of replicated internet
servers,” in Proceedings of ACM SIGCOMM,
August 1995.

[18] V. Paxson, “End-to-End Routing Behavior in
the Internet,” Proc. of ACM SIGCOMM ’96,
pp. 25–38, Aug. 1996.

17

