Small routing tables

Paul Francis
Outline

- We have a trick for making routing tables very small
 - For hierarchical addresses
 - Global IP, VPNs
 - Called “CRIO” (Core-Router Integrated Overlay)
- And some speculation as to why this might be a good thing
1977

- Folks were looking at the basic trade-off between routing table size and path length

\[
\text{RIB size} = 11
\]
\[
\text{Path length} = \text{shortest}
\]
1977

- Folks were looking at the basic trade-off between routing table size and path length

RIB size ≈ 4 or 5
Path length = longer
1977

- Folks were looking at the basic trade-off between routing table size and path length

RIB size \(
\approx
\) 4 or 5
Path length = longer
A nice trade-off to have
This trade-off doesn’t exist today
- Hierarchical nature of internet “forces” an ISP-centric address assignment model
- Because of multi-homing, sites don’t fit neatly into a single “cloud”
CRIO has two parts

- **Mapping/tunneling part**
 - Can operate stand-alone

- **Virtual prefix part**
 - Requires mapping/tunneling
Mapping/tunneling part

- BGP keeps routes to major POPs only
 - 1000 – 2000 of these
 - One prefix per POP
- Separate mapping table binds customer prefixes to POPs
- Forwarding is two-step:
 - Map address to POP
 - Tunnel packet to POP address
- Not a new idea
 - Deering’s Map-N-Encap, Kim Claffy et. al.
Mapping doesn’t shrink FIB per se

- Shifts work from *distributed route computation* problem to *data distribution* problem
 - I would argue that the latter problem is easier

- Data distribution could be done by:
 - OSPF-like flooding
 - ICMP-like notification
 - (Note that with data distribution, not all routers need to know about a topology change)
Data distribution easier than route computation

- Streamlined BGP can converge faster
 - A small number of very stable prefixes
 - Operators could crank down the timers
- Easier to debug
 - Mapping table is the same everywhere, BGP RIBs are not
- Easier to secure
 - Secure mapping only, not entire path
Other mapping characteristics

- Provides a new policy hook
 - For multi-homed nodes, mapping can indicate access preference
- Detunnelling is costly
 - Though it could be implemented lightweight (one-ended tunnels)
- Tunnels introduces new security problems
 - Deflection DoS attack
 - Mitigate by using MPLS or a new protocol field for outer IP header
Mappings without virtual prefixes
Mappings with virtual prefixes
Virtual Prefixes

- Mappings for a given virtual super-prefix are stored only at selected routers.
- These routers advertise the virtual prefix into BGP.
- Mapping tables and FIBs are smaller, paths are longer.
- Completely flexibility as to where individual mappings go.
 - Fine-tune size/path-length tradeoff.
Path length versus FIB size (for global IP routing)

(RIB has around 2000 prefixes)
Path length versus FIB size for VPN routing
Does CRIO allow single-chip forwarding engines?

- FIB and all processing on a single chip
- May be possible because ISP can control FIB size
- On other hand, not all of the table is for hierarchical destination address lookup
 - ACLs, source addressing filtering, etc.

If so, is there a big advantage to single-chip forwarding engines?

- After all, much of switch/router memory is due to packet buffering
Really small FIBs

- Can probably shrink the “BGP” FIB component to a few hundred prefixes
 - Using Deering’s metro addressing…all POPs in a metro area have the same prefix
- Can shrink the “mapping” FIB component almost arbitrarily
 - By chaining tunnels (even within a single POP or router)
Chained tunnels

20/8 →

- tunnels to prefixes inside 20/8

20/8

20.0/12
20.16/12
20.48/12
20.240/12
Conclusion

- CRIO gives us back the path-length / table-size trade-off
 - We have shown this for global IP and VPNs
- Interesting, but not clear how valuable this is
 - Faster and simpler BGP (or get rid of BGP altogether)?
 - Better multi-homed traffic engineering?
 - Single-chip forwarding engines?