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Abstract—In order to maximize throughput in end-system the broadcast of a sports event, where the content may be
multicast, it is necessary to have fine-grained control over the a simple text description of the score and important events
transmit load of each participating member. This both avoids (low volume), an audio play-by-play (medium volume), or
bottlenecks where members are overloaded, and allows hetero- video (high volume). To be honest, we focus on non-interactive
geneous members to contribute as much transmit capacity as they applications because the delay tolerance required by interac-
are able or willing to. In this paper, we describe and simulate an tive applications such as video conferencing, a few hundred
unstructured end-system multicast protocol called Chunkyspread milliseconds, seems extremely difficult to achieve at arbitrarily
that provides members with fine-grained control over their large scale and with high membership churn, without using IP
transmit load, scales well, has relatively low latencies, and can multicast. In essence, we are sacrificing interactivity for scale
tolerate high membership churn. Chunkyspread is designed as a and membership churn.
flexible framework that easily incorporates different constraints Once we accept that we can’t achieve extreme low latencies,
and optimizations. For instance, it is straightforward to add tit- a few seconds of delay becomes tolerable. Indeed in the case of
for-tat or path disjointness as constraints to the system. This streaming media applications, a few seconds of delay is neces-
paper demonstrates the performance of Chunkyspread through sary in the form of a receiver play-out buffer to smooth over
extensive simulations, and provides partial validation of these short-term disruptions in network or OS performance [20].
simulations on Emulab. It also provides detailed comparisons Allowing this much delay buys us considerable flexibility in
with Splitstream, a structured heterogeneous end-system multi- the design, and in particular, allows us to exploit randomness
cast protocol. The simulations show that Chunkyspread provides in the overall structure of the protocol. Like other unstructured
far better control over transmit load than Splitstream, while P2P applications, this allows us to work with relatively simple
exhibiting comparable or better latency and responsiveness to approaches. Having said that, all other things being equal, a
churn. low latency is still preferable, and we do provide mechanisms

to reduce latency.
|. INTRODUCTION In addition to large scale and robustness to churn, a critical

. . requirement is to have fine-grained control over member
In 1997 and 1998, Francis and Zhang independently argu{?gnsmit load. The need for this stems from fairness, utility, and

that IP multicast was going .nowhere, and Fhat some form rformance arguments. Fairness suggests that each member
end-system (P2P) multicast is needed to bring multicast t9 §de should transmit the same volume that it receives. Where
mafsesl ([T],t [8])|.3;IFe)arIy I? de(t:a;]:i N a_r;d ﬁ plethora thmum(ﬁﬁhity is valued over fairness, control over load allows the sys-
protocols 1ater, mufticast ‘has 1SElt gone nownere, to exploit the heterogeneous capacities of members, thus
in spite of the success of other P2P technologies such as SXimizing the throughput of the system. Good performance

shar.mg ar_1d swarming. Part O.f the reason .for th'? Is surely tr?‘@tquires that there be no bottlenecks: no node should be called
multicast is something of a niche application. It is only reall}sn to transmit more than it can

needed for live or near-live streaming, whereas most content, widely accepted that onlynulti-path approaches can

distribution is non-live. Nevertheless, there are some multlcqggd to high utilization, since they allow all nodes to participate

applications out there, which today are largely handled l? transmission of the data stream (as opposed to single-tree

infrastructure-based overlays (i.e. Akamai) or 1P multlcaa proaches, which necessarily require that a large fraction of

(in engﬁrpniet se;tngs [25]). we tbetI;]e\;e, hovgever, (tjhatt thlgg des be leaves and therefore contribute nothing) [11], [2].
are st substantial iImprovements that can be made o multi-path, we mean where each node receives portions

multicast algorithms, and that these improvements may the multicast stream via different routes. A multi-path may

lead to widespread use of this technology. be achieved through multiple trees, as in SplitStream [11], or

I_n this paper, we focus on non-interactive multicast appl{ rough a so-calletteelessapproach, as in Bullet [9], Chain-
cations that can grow to a very large scale (many thousa [12] or Coolstreaming [2]. We say “so-called” treeless,

of_dremplents),f car|1 tolera'tAe hlgh-c_:hulrn, a;?d t_Canfhandle_b@cause the goal of Bullet or Coolstreaming is nevertheless
wide range of volumes. A canonical application 1or Us g4t each individual packet or block of packets traverses a tree.

This work is supported in part by National Science Foundation grant ANI-NIS gives rise to the queStion of which approach to adopt:
0338750, and DARPA project FA8750-04-2-0011. per-block(or packet) omer-slice



In the case of protocols that build trees with per-blocthat this fine-tuning inevitably takes a certain amount of time
granularity, each node explicitly informs its neighbors o&nd overhead. Enforcing tit-for-tat constrains this fine-tuning
which blocks it has, and requests from each neighbor whielien further. The long-term parent-child relationships inherent
blocks it would like to receive. This kind of a push-pullin trees allows us to amortize the cost of this fine-tuning over
swarming strategy represents a substantial overhead: withaarelatively long period of time.
average node degree of 20 (as used in [12]), this means aBy contrast, swarming, in its purest form, constantly re-
additional 20 packets (10 sent and 10 received on averageymulates what is exchanged between neighbors. Fine-tuning
for every data block received. If the stream is low volumdpad balance or establishing enforceable tit-for-tat in this en-
this overhead can be many times the stream volume. Rironment seems problematic. This may seem an odd thing to
higher volume applications, which Bullet and Coolstreamingpy given BitTorrent, whose success arguably derives from its
target, the overhead is more acceptable, but is nevertheltsfor-tat capability. The difference, however, is that BitTorrent
worth trying to avoid. Swarming also results in added deldg a file sharing protocol, not a real-time multicast protocol.
to execute the push-pull, requiring that packets be buffer&tie issues of delay and sustainable load don’t come into play
long enough to accommodate the delay and avoid packet losgh file sharing, thus giving BitTorrent a form of flexibility

With a per-slice granularity, nodes maintain a long-terrthat multicast doesn’t have.
parent-child relationship with respect to each slice (where aThis paper makes the following contributions:
slice is defined as every/*" packet of a data streami/ 1) We give a detailed description of Chunkyspread, a new
being the number of slices). As a result, once the trees are end-system multicast protocol that gives fine-grained
established, there is virtually no per-packet overhead. On the control over each member’s transmit load, reacts quickly
other hand, if a node crashes or otherwise stops performing to membership changes, exhibits relatively low laten-
adequately, all of its offspring in the tree will suddenly stop cies, scales well, and has low overhead. Furthermore,
receiving some packets until the tree can be re-built. In an  Chunkyspread is designed such that it provides a frame-
environment with constant churn, trees are continuously being  work for adding new performance optimizations and
destroyed and rebuilt, resulting in a considerable control mes- constraints, such as tit-for-tat.
sage overhead. In order to avoid packet loss due to disruption®) We present a thorough simulation analysis of
in the trees, nodes must buffer packets for the period of time  Chunkyspread’s load control, latency optimization,
it takes to repair a tree. responsiveness, and overhead.

What all this means is that both swarming and tree-building 3) Using the MSPastry simulation of Splitstream, we
approaches exhibit the same types of trade-offs. Both have present an analysis of Splitstream for the same metrics,
control message overheads (though for different reasons), both and compare Splitstream with Chunkyspread.
suffer from substantial delays in packet reception (though for4) Again through simulation, we present preliminary and
different reasons) and require some amount of buffering to  limited analysis of Chunkyspread for tit-for-tat, and for
prevent packet loss. To succeed, tree-building approaches must the basic trade-off of buffer size, data redundancy, and
have simple tree creation and repair algorithms that converge packet loss in the face of churn.
very fast. Swarming approaches, on the other hand, must adod@) We present limited results of a complete implementation
strategies that minimize the overhead and delay of the push- of Chunkyspread running on Emulab. These results
pull. It is not at all clear which approach might emerge as  validate our simulation results.
the best by these measures. Ultimately some kind of hybridThis paper is organized as follows. Section I describes our
strategy may be appropriate. approach in detail. Section Il gives an overview of the existing

An important consideration is simplicity. In spite of the facknulti-tree approach, namely Splitstream. Section IV presents
that we, the research community do not have good measuggaluations of both Chunkyspread and Splitstream, V discusses
for "simplicity”, it seems clear to us that swarming strategielated work in our area while VI concludes the paper and
are simpler than tree-building strategies. We believe that thjgesents future directions to our work.
simplicity makes swarming approaches easier to build and
deploy, and ultimately results in more robust systems. Il. PROTOCOL DESCRIPTION

Despite the above arguments, we have chosen to place &/e start with a high-level overview of Chunkyspread,
stake in the ground, and that stake is a tree-building approafdilowed by detailed descriptions of its various components.
Our reasoning for this boils down to two arguments. First, Chunkyspread constructs a single-source multicast group
we believe that tree-building approaches can in fact be magimong a set of member end-systems. In other words, there
quite simple, even if not as simple as swarming. For instandg,one sender, (which we call titeue sourcg, and multiple
we have chosen an unstructured approach that exploits blomueivers. Support for multiple senders is simple, but we have
filters in the data path [19]. Second, as already discusseat provided this so far in our implemetation and do not dis-
we believe that fine-grained control over transmission loauiss any further in this paper. Like Splitstream, the true source
is critical. We also believe that the multicast system shoutchnsmits the multicast stream a$ distinct slices. Each set
be able to easily incorporate other performance criteria anfl these M slices is said to constitute bdock of stream.
constraints such as tit-for-tat. Our intuition, as well as owEach slice is transmitted over a separate multicast tree. But,
experience so far, suggests that a certain amount of fine-tunngte unlike Splitstream, the trees are not necessarily node-
is required to consistently achieve a desired load balance, aligjoint; as we explain in a later section, node-disjointness is
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a difficult property to achieve even in Splitstream especially Oven%aded
in heterogeneous environments.

TL Latency Interval
Applications can access Chunkyspread through an API that - il
providesjoin(), quit(), send() andreceive()primitives, typical
to any multicast protocol. Of particular interest is tjoin() Underloaded

primitive that takes the following parameters: the group name,
the member type (true source or receiver), the target load,
and the maximum load. The two load parameters refer to
the transmit load of a member, and may be expressed by fi€ 1. The load-latency thresholds
application as absolute throughput values (e.g. 100Kbps), or
as a percentage of the stream volume (e.g. 75% or 250%).
The maximum load is the absolute maximum volume thabntact a rendezvous node at a well-known location (DNS
the membeér will transmit at any time while the target loadname or IP address). This rendezvous node must know of at
is the volume that the member would like to be sending &ast one existing member of the multicast group. This style
steady state. The expectation is that the steady state volumhgoining a P2P group is a fairly standard practice, and not
sent by the application will be near the target load: in fachrther discussed here.
it may be slightly above or below. Of course, there should Once a joining member node or the true source finds at least
be enough capacity in the system to transmit the stream. bioe existing node, it participates in a continuously running
P2P multicast system can operate otherwise. Chunkysprekstributed algorithm called Swaplinks [5] that produces a
internally expresses load in units of the number of slices, amahdom graph among all nodes using simple weighted random
not bandwidth or percentage of stream volume. Chunkyspreadlks. This random neighbor graph is the underpinning of
uses the following parameters: the number of slidésthe Chunkyspread in much the same way as RanSub [17] is the un-
latency threshold, minimum node degfd®ID, and minimum derpinning of Bullet. Swaplinks is able to statistically control
load MinL. These might be set by the true source and cortite node degree of each node, and Chunkyspread exploits this
municated to all members. We will postpone the discussion give nodes with higher target loads proportionally higher
on the last two parameters to later in this section. node degrees. The idea here is that nodes with higher load
The default value for the number of slices that the streamshould have more neighbors to transmit slices, and nodes with
split, is 16. The latency thresholds a value that determineslower load should have proportionally fewer neighbors. With
how the system should weigh the trade-off between achievingtwork churn, the neighbor set of each node changes, but the
target load and minimizing latency. It is expressed as rmmber of neighbors stays roughly the same. In addition to
percentage of the target load. For instance, assume that a gih@se random neighbors, nodes may discover other nodes that
Chunkyspread application requests a target load of 100%, aard nearby with respect to latency. These nodes may be added
that M = 16 and the latency threshold=10%. 10% above artd the neighbor set to improve latency.
below 16 slices is 18 and 14 slices respectively after roundingThis is where the system-wide parametermimum node
to the nearest slice. The lower edge of the range (14 slicesdiegree MND and minimum load MinLcome into playMND
this case) is called theower Latency Threshold LLWhile is the smallest node degree in the random graph that any
the upper edge is called thépper Latency Threshold ULT node may have. Its default value is 8, and as far as we know,
Given theLLT and theULT, load balancing and latencythis value is universally appropriate. Since node degree is set
reduction work as follows. As long as a given member nodgsoportionally to the target load, the node degree of any nodes
load is outside this range, the system adjusts to move the laadet to beND = min[8, (TL/MinL)*MND], whereTL is the
within the range. If a node X’s load is below itd T, other target load. As with ensuring that a given Chunkyspread group
nodes will try to become a child of X, thus increasing X'tias enough capacity, the application must also ensure that
load. If X’s load is above itdJLT, existing children of X will MinL is set to an appropriate value: i.e., the expected smallest
try to find other parents, thus decreasing X's load. Once nodesipacity of a host in the system. It may also be possible to
loads are within the.LT-ULT range, they will no longer try setMinL dynamically, for instance by having nodes remember
to improve load, but rather try to optimize latency. Whenevehe lowestTL they've seen in the network, and settiMinL
a change of parent for a given slice improves latency byaacordingly. We have not explored this possibility.
certain margin without causing the load to fall outside this Unlike the receiving nodes, the true source discovers exactly
range, that change is made. M (the number of slices) neighbors. The true source transmits
From this, we can see that a largetT-ULT range will one slice to each of these neighbors. These neighbors become
improve latency at the expense of nodes not getting as cldle roots ofM multicast trees, and are called thlice sources
to their target load, while a smaller range has the opposifea slice source quits, then the true source discovers this and
effect. selects a new random node as the slice source. Note that a
To join a Chunkyspread multicast group, nodes must firsbde may be a slice source for more than one slice.

A node, upon joining the random graph, tries to find a parent
INote that the term member refers to receiving members only, not the & each slice without forming a |00p We avoid and detect
source. We use the terms member and node interchangeably. ’

2We experimented with more and less and this value gave a satisfactg?sg’pS using bloom f”t_ers In th? dajta packets. In Sel?Ct'ng
load control as well as an acceptable overhead. parents, each node tries to maintain a set of constraints, as
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well as its performance goals and those of its neighbotsad and its bloom filter for that slice (these parameters may
The performance goals we have implemented and studieave changed from the time since the child had made the
in this paper are target and maximum load, and latency, @juest). If the switch request is accepted, the child informs
described above. Other constraints may include tit-for-tat atite previous parent of the switch completion.
path-disjointness. The switch messages that the child sends to its future and the
The basic process is straightforward. Each node lets @srrent parent, identify the sequence number of a future data
neighbors know initially about itELT-ULT range and its max- packet at which the current parent should stop transmitting,
imum load ML). Further, each node periodically advertises tand the new parent should start. This minimizes packet loss
all of its neighbors the following: its per-slice bloom filtersor duplication during the switch itself. The switch message
information about the arrival time of each slice, its current loaalso contains the load parameters that were in force when the
(i.e. the number of children it has). Additional performancdecision to switch was made. If these parameters have changed
constraints may be added to this list. Each node takes tignificantly in the interim, the switch is aborted.
information into consideration to determine which neighbors It is important to note that, in the absence of churn and
would make appropriate parents for each slice. As conditioawitches due to fine-tuning latency, the algorithm for balancing
change, for example, due to neighborhood alterations, loéd will converge. Every load balancing switch results in a
or latency changes, nodes may select different neighborsnasle aboveULT reducing its load and a node belot T
parents for each slice. Note that as a result of this processnereasing its load. Once within theLT-ULT range, there
neighbor may be the child for some slices, and the parent fre no load-balancing switches that can push a node out of
others. Figure 1 shows the thresholds used by Chunkysprélaat range, and no load-balancing switches take place between

in fine tuning the load and latencies in the trees. nodes already in th&LT-ULT range. The period when the
Given this overview, the following subsections providéoad-balancing switches take place predominantly in a node is
additional detail. called the load-phase of the algorithm.

Loop avoidance and detection: Bloom filters offer a Fine-tuning Latency: Once all of a node’s parents are
spatially efficient method to detect and avoid loops, with within their LLT-ULT range, the node looks for parent switches
tunable rate of false positives[19]. Each node selects a blodmat can improve the latency with which it receives packets
mask with an appropriate number of bits. A node, beforghile keeping loads within theLT-ULTrange. This constitutes
forwarding a data packet, adds its bloom mask to the bloafme latency phase of our algorithm. We use a novel trick that
filter that is tagged along with the data packet. Loops ae#lows us to measure the relative latency with which each
avoided by having nodes advertise the bloom filters theyeighbor receives each slice without requiring synchronized
receive for every slice to their neighbors. A given node doetocks. Specifically, each node measures the delay at which
not select a neighbor as a slice parent if the node itself appeiarseceives packets from each slicelative to other slices
in the neighbor’s received bloom filter. The idea is simple: a node close to a slice source in a tree

Loops are detected immediately by the first packet thaill receive packets for that slice relativebponerthan it will
traverses the lodp This packet can either be a data packetceive comparable packets of other slices. If a node has a
sent by the application, or, in the absence of such packetgyarent that is receiving a given slitae (relative to its other
probe packet transmitted by a node to its children. The firslices), and a potential parent that is receiving the same slice
node to detect the looping packet drops it and immediatekylatively early, then it should switch parents (as long as both
selects a new parent. neighbors’ loads remain within range). Note that nodes only

Fine-tuning Load: As described above, each node perimake such switches if the expected improvement in latency
odically checks to see if it has an overloaded parent (aboebeyond a certain threshold. The latency measure described
the parent’sULT), and an underloaded neighbor (whose loagbove should be calculated as a moving average to smooth out
is below LLT and satisfies the loop-free condition), and if sgransient changes due to congestion.
attempts teswitchparents. Since multiple nodes are doing this We have not used the overlay path length as a measure for
at the same time, multiple potential switches may be possiblatency reduction for obvious reasons: small path lengths do
To encourage only the best such switches take place, eadhnecessarily yield low latencies, especially if the underlying
node with a potential switch informs its overloaded parent gfraph is locality-aware. A smaller path length does, however,
the loads of all (or a subset of the most) underloaded potentiaéan that the packet has to traverse fewer nodes which reduces
parents. The parent, which may receive similar informatiahe chances of disconnections in the path. If this is desired,
from multiple children, picks the best candidate (the child'sath length can be used as a metric for parent selection (in
neighbor with the least load), and instructs the selected childgddition to or instead of latency).
make the switch. In our system, the overloaded parent usuallyinitial Tree Construction and Forced Parent Selection:
picks one amongst a set of good candidates so as to aveidChunkyspread, new trees must be "kick-started” when the
implosion of switch requests to such nodes. true source first starts the multicast stream or when a slice

The child then sends a switch message to the potenigaurce quits and the true source chooses a new one. Initial tree
parent which accepts or rejects the request depending oncig#istruction involves a simple controlled flooding mechanism

- — _ similar to the one used in Chainsaw. Shortly after a node starts
3A loop can happen in spite of maintaining a bloom filter. A node that is

not yet aware of a bloom filter change in its ancestors, can accept one of (R€€IVING flooded pfaCketS for a given S!'Cei 't_seleCts a parent
ancestors as its child. from among the neighbors from which it received the flooded



packet and the parent accepts the node if its load has not IV. RESULTS

exceededVL. . .
. . i i We have performed a series of experiments on a packet-
Apart from this, a node that joins a multicast session Wh0§&e| event-driven simulator coded in C++. We have also

trees hgve aIreagJy been constructed through 'the floodiieh emented the system and made some simple deployment
mechanism described above, may have to periodically requgghe iments on Emulab. The default number of member nodes
its neighbors to be parents for each of its slices until it finqﬁ each simulation is 5000. The Chunkyspread simulation
them. As a result of these cases, the parent's load may eXCggfiy operate with more, but the Splitstream simulator could
the upper latency thresholdLT. Normally, the ongoing load |, 54 \ye Jimit our simulations to 5000 members. To calculate

balancing process will br'ing the lo"f‘d back to or beloWT, 6 atencies between members, we placed member nodes at
though on the rare occasion a node’s Ioad_ma_y_ stay aUh\Te_ random edge locations on GT-ITM network topologies having
for a period of time due to the lack of availability of potent|al5050 routers [14], and set delays proportional to the distance

parents for its children (though there may be underload@ghyic of the resulting topology. We assume that control

nodes elsewhere in the system). messages are sent over TCP, and so ignore message loss in
There are three other cases where a node may requegl,asimulations.

parent even though doing so pushes the parent's load above itghe random overlay is constructed using a packet-level trace

ULT. All three are cases where the node is forced to changg generated offline by a Swaplinks simulator. The trace file
its parent. This may happen when a loop is detected, Whgflyys us to determine the delays associated with the neighbor
the parent quits the group, and when the Swaplinks algorithiBjection in Swaplinks. The trace file was used in order to
changes the neighbor set as part of its normal operation(g,yig running the random neighbor selection as part of the
While the first two is effectively a temporary disconnectiojmyator, hence making the simulations faster. To further scale

from the tree, the third is usually similar in effect of anyhe simulations, the simulator does not explicitly generate data
normal switch. Note that a node may only reject a reque&éckets_

to become a parent if doing so pushes its load abdie
or it does not satisfy the looping constraint (and any other i,
needed).

Member nodes in the simulation receive all slftékhe
fault number of slices in our simulations i = 16. To
represent heterogeneity in upload, each node is assigtotal a
degreeselected randomly between 8 and 50. This represents a
moderate level of heterogeneity, representing say a population
of users behind dial-up modems and broadband, or behind

Since we make simulation comparisons of Chunkyspregﬁoadband and T1. Tr_le upload for each _node is then _calculated
and Splitstream, a brief overview of Splitstream is providez?jS th'e number of slices per stream times the ratio of the
here. Splitstream builds multiple trees on top of Scribe, PU€’s degree to the average degree of the network. Each

single-tree multicast protocol that constructs its tree usiftyde chooses/L = (1.5)T'L so that there is enough upload

the overlay routes of the underlying DHT (Pastry). Howeveg,zzzgity in the system to supply the full stream to all the

a node may not have enough capacity to serve all its in= , ) )
neighbors that want to join the multicast group. In order to W€ experiment with two settings for tHeLT-ULT range.

avoid nodes getting loaded beyond their capacities, Scrif@€ iS when there is no latency range( ULT=LLT=TL),
resorts to two other mechanisms, namely pushdown afepulting in no latency optimizations whatsoe_ver. This is
anycast operations. When a fully loaded Splitstream nodedgnoted-ato. In the other, they are set &(TL)/16slices from

requested to parent another node, it may preempt one chjld (rounded up folULT, and down forLLT). In other words,

node for another based on ID constraints [16]. The resultifig/L=16, thenLLT=14 andULT=18. This is denoted-at2.

orphaned node recursively contacts the parent's descendanid/e chose a bloom filter size of 128 bits and a bloom mask
(called pushdow to find a parent and if it still cannot find SiZ& Of 6. This yields a false positive rate of 0.25% after
one, anycastso the group of nodes that have spare capacitySertion Qf 10 keys.'The heartbeat period is set to 1 second
Splitstream works well in homogeneous cases with usuaﬁ}?d the timeout pe'rlod' o detgc;t a node failure is set to 4
the Pastry neighbors serving the nodes. However, in heteﬁ?—conds' Parent switching deC|S|on§ are made every second.
geneous environments, the pushdown and anycast operation&® compared Chunkyspread simulations with those of
happen more often and this leads to frequent disconnectiond!tstream, for which we used a simulator coded in C# that
of nodes: not only is the preempted node disconnected, ¥(#S Provided to us by Miguel Castro. The simulations are
so are its descendants in the tree. The two operations |64 Over the same GT-ITM synthetic routing topology as
to the formation of parent-child links that are apart from thilsed in Chunkysprgad S|mulat|ons and he_lve 16 slices. Unlike
underlying Pastry neighbors. Hence, Splitstream starts losizgunkyspread, Splitstream provides a single parameter, the
the benefits of cycle-free and route-convergence guarant@g&ximum load $ML). SMLis analogous to Chunkyspread's
offered by the underlying DHT as the number of non—PastgL in that the load never exceedSML It is unlike
neighbors increases. In short, Splitstream prefers ID-basgfUnkyspread'ddL, however, in that a Splitstream node may
constraints over load constraints when initially creating the, ) . .
tree and this leads to further complications in the tree-buildings sices and sil be able 1 repraduce the stream. for instance. by using
protocol. Multiple Description Codes[21]. We neither implemented nor simulated this.

IIl. OVERVIEW OF SPLITSTREAM



easily settle on a sustained transmission rat8Mft, whereas zero load. The maximum value of this parameter is bound
a Chunkyspread node may temporarily trasmibét but will by %ﬁ’m% which is 50% in our Chunkyspread simu-
quickly move towards theLT-ULT range. As a result, we needlations.
to interpretSML differently from ML, and an apples-to-apples We use two parameters to evaluate the latencies: the maxi-
comparison is not really possible. mum and the average overlay latencies over the slices obtained
Because of this difference, in one case we t®§llto be at each node. The latencies are normalized with respect to the
equivalent toML (denotedSS(1.5). That is, we set it to be median value of the network latencies between overlay nodes.
50% above the number of sliceSNIL=1.5TL) whereTL is We chose not to use thretwork stretch parameter to evaluate
the target loads for the corresponding nodes in Chunkyspreadr latencies. Network stretch may not give a true picture of
In the other case, however, we try to treé@IL as though what the latencies are: for example, a high network stretch
it were equivalent tdJLT. As such, we seBML=(1.2)TLto could actually be due to high latency or could be due to a low
compare withLat2 (denotedSS(1.2). To compare withLat0, network latency with the true source.
we tried settingSML=TL, but Splitstream does not converge Figure 2 shows the cumulative distribution function (cdf)
in this case, so instead we uSML=(1.1)TL denotedSS(1.1) of the excess load percentage of nodes in Chunkyspread after
Splitstream has a time-out parameter that determines how Igigady state was reached. We observelth#l performs quite
a node should wait for the result of an anycast operation befovell in both the static and the join scenarios: more than 80%
trying again. This parameter is set to 4 seconds. A value lesfsthe nodes reach exactly théit in the static scenario while
than this tended to result in too many unnecessary anycagtund 90% of the nodes reach thélr in the join scenario.
operations. With the latency phase added, Chunkyspread still performs
We have broadly considered four scenarios to evaluamell: almost 90% of the nodes are within 25% of thé&ic
our protocol. Thestatic scenario is when all overlay nodesvalues in thelLat2 case in both the join and static scenarios.
are already part of the random graph and the tree buildidgle maximum fraction of excess load that any node reaches
starts from the first instant; this is useful in analyzing this about 20%. Apart from the good load balance, we observe
load-latency algorithm without any churn. Thain scenario comparable performances of the join and the static cases which
happens when there are 3750 overlay nodes already in thaicates that the protocol can function at high join rates as
network and the rest (1250 nodes) join at a rate of 50 joigood as in cases without any churn at all. The heavy tails
per second from th@0*"* second by which time most of theobserved on the negative side of the x axis in these curves are
originally present nodes have reached a steady state. Thgsause of imperfect configurations of node connectivity.
scenario is more realistic and can possibly be a live eventFigure 3 shows the cdf of the maximum and average overlay
that attracts a large audience within a short span of tirmatencies normalized with the median of the network latencies
The bursty scenario is the pathological case when a certaifetween nodes in the network. The x-axis is shown in log
percentage of the nodes fail at teeme time instantthis is scale. The cdfs have been plotted for &0 and thelLat2
helpful in analyzing the robustness of the protocol against nogases. We first observe thiaat0 yields very high latencies in
failures. To understand the effect of more realistic scenaribeth the static and the join scenarios, which is expected since
on our protocol, we simulated Chunkyspread urmtettinuous Lat0 is completely ’latency-blind’; this can be seen from the
churnin which nodes join and leave at the same time. THeaximum latencies of.atO in both the static and the join
Swaplinks simulator did not have functionality provided fogases. We observe significant improvements in latencies with
locality-awareness. To determine the effect of adding localityat2. The 90" percentile values of the maximum latencies
to the random graph, in addition to the random neighbois both the static and the join cases are around 7 and 9
selected by Swaplinks, some number of nearest neighbors wiagpectively while the same for the average latencies are
added to the neighbor set of each Chunkyspread node only#eund 4 and 6 respectively. The difference between the
the simple static scenarios. maximum and the minimum latency values gives us an idea
The static and the join scenariosWe first present a com- of how long it takes to receive all the slices for the same
parison study between Splitstream and Chunkyspread followel@ck of the stream and hence the size of the application
by an evaluation on the convergence and the control overhdadfer required to counter losses while waiting for the full
of Chunkyspread. block. We note that the latency for any slice experienced by
1) Comparisons with Splitstreamin the first set of ex- @ node is bounded below by its network latency to the true
periments, we analyze the tradeoff between load balance &@girce. Then, for example, if we assume the median network
latency in Chunkyspread and compare them with Splitstrealdtency were around 50 milliseconds, then a 500 millisecond

We introduce the terrexcess load percentage quantify load buffer is necessary to successfully play out the stréarne
in the protocols. It is defined for every node as follows. ~ steady stateeven if losses due to factors such as churn or

, congestion are not considered. We also found that 90% of
Excess Load Percentage = Node's Load — TL% (1) the nodes experience average latencies of at most twice the
TL minimum overlay path length between the true source and the

This parameter quantifies how close nodes reach their targetles forLat2 which again indicates its effectiveness.

load and hence the degree of fairness provided by the protocol. _ , _ _ _
A common term used in the literature that is defined as the ratio of the

f/'\ value Of_O% implies that the node has perfectly reaCh%qeasured overlay latency to the network latency between the true source and
its TL, while a value of -100% means that the node hase node
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Let us now see how Splitstream fares with respect to lodltht with heterogeneity, more (random) non-DHT parent-child
and latency. Figure 4 shows the cdfs of the excess lokdks are formed which are not necessarily latency-optimized
percentage values for SS(1.1), SS(1.2) and SS(1.5) for eachunlike their DHT counterparts. The huge difference between
the join and static cases. As expected, a considerable numiheraverage and the maximum latencies requires an application
of nodes get saturated to th&ML values and the percentagebuffer of considerable size and this buffer is to just counter
of such saturated nodes increases%%% values decrease. Forlosses due to delays in the slice arrivals for the same stream.
example, the percentage is 35% for SS(1.5), 60% for SS(118) the example that we had considered for Chunkyspread
and 85% for SS(1.1) in the join cases. This is in stark contradbove, Splitstream nodes may require a 1.5-second buffer in
to the excess load percentage distribution that Chunkyspreatis steady state just to counter losses due to late arrival of
Lat2 and LatO yielded. We also find that the join case haslices.

a worse load balance than the static case, since the newlyVe observe a similar trend with the maximum hop
joined nodes are not provided enough opportunities to supéngth (from the true source) at each overlay node. While
the slice unless an orphaned node or another newly join€unkyspread'd at2 yields a90*" percentile hop lengths of
node requests for a slice. In Chunkyspread, the load balameeund 8 in both the join scenarios, Splitstream’s values are as
algorithm ensures the newly joined nodes also participate high as 30. This reflects poor resilience in Splitstream’s trees.
supplying the slices. We define thénitial startup time of a node as the time taken

The graph in Figure 5 shows cdfs of the average amihce its joining the multicast session, for it to start receiving
maximum latencies in the static and the join cases. We ndbe entire stream. While this quantity is clearly defined in
that both the average and the maximum latencies showebunkyspread, it is not in Splitstream, since a node that has
very marginal improvements a% was increased with started to receive its stream from all its trees can potentially
both the static and the join scenarios performing comparabyjet orphaned from one or more trees. Hence, we include all
The comparable performances show that curbing the sp#mne time durations during which nodes are disconnected from
capacities do not have a significant effect on the latencigke tree due to such preemptions, into the initial startup time.
We have presented only SS(1.5) here for clarity. DI9¢" Note that the disconnection due to orphaning a node will lead
percentile values of the average latencies for both the staticdisconnections of its descendants in that tree, if any.
and the join scenarios are close to 8; this is greater thanFigure 6 shows the cdf of the initial startup time for
Chunkyspread’d.at2 values but still quite comparable. How-Chunkyspread. We find that tta®*" percentile value in the
ever, the maximum latencies show really high values. SS(1j6)n scenario is about 8 seconds while it is 7 seconds in the
yields90*" percentile values of around 20 in both the static anstatic scenario. The reason for the difference is the fact that
the join scenarios; it also displays a heavy tail, almost reachitige static scenario is run with locality which enables faster tree
30. These are in fact comparable with (static) Chunkyspread@nstruction. In the graptRed 3denotes the case where the
LatO values. The reason for the high maximum latencies sream is encoded with 3 redundant slices, hence it is enough



if the node gets any 13 out of the 16 slices to obtain the fulhessages. Figure 10 shows the number of switch messages
stream. We find that in the static case, %#0&" percentile value sent per node per second over the simulation time of 200
for Red 3is less than 6 seconds. seconds wherLat2 is run in the join scenario. The peaks
Figure 7 shows the initial startup times of Splitstreantorrespond to the time when nodes are joining the system
As claimed in [11], the system performs well in the statiand also after the true source kickstarts the multicast session.
case with even SS(1.1) yielding @' percentile value of Though the dominant peak value of the maximum number of
around 8 seconds which is comparable with Chunkyspreadisitch messages sent by any node is 60, the peak values of the
values. Expectedly, as spare capacities decrease, performaxée percentile and the median values of the switch messages
worsens. SS(1.5) performs comparable to Chunkyspread in #re about 20 and 8 messages per second per node respectively.
join scenario, with &0t" percentile value of around 9 secondsThis indicates a modest overhead amongst Chunkyspread
But with decreasind% values, the startup time shoots up tmodes even at a high join rate. Apart from this, we observed
17 and 26 seconds for SS(1.2) and SS(1.1) respectively; tthiat around 50% of the switch messages sent during the joining
is in a good contrast to the static case. As nodes join, maplgase account for failed switch requests.
of the existing nodes have already been saturated to $iir Bursty failures: To quantify data losses due to node
values and the newly joined nodes result in more anycast dadures, we measure the time during which nodes are dis-
pushdown operations. We note that with Chunkyspread, tbennected from one or more trees. We measureréhevery
load balance algorithm ensures that the spare capacities dueation for each node, which is defined as the time duration
distributed across nodes even when nodes are joining at a higirculated from the instant nodedetect failures of their
rate. neighbors till they get connected back to the trees. It is to be
2) Time to convergenceWe now assess the convergencaoted that during the recovery period, nodes are disconnected
properties of our algorithm. For our protocol, the convergené®m the tree and so are its descendants. Hence, while a node
time is the time taken till the last switch is successfullys trying to recover from a parent’s failure, this duration that
completed. We noted for every node the last time instant thtg descendants are disconnected also get accounted to the
it had completed a switch in the system. We observed thadgscendants’ recovery duration (since an ancestor is trying to
LatO converged quite well in both the static (18 seconds) amdcover on their behalf).
the join (70 seconds) scenarios. We also saw that wtat@ Figure 11 shows the cdf of the recovery duration when 10%
converged within 60 seconds in the static scenario, it toak the 5000 nodes fail at thg0'" instant, at various levels
around 120 seconds to converge in the join scenario, whighslice redundancy. We find that both the protocols recover
was 75 seconds after the last join took place. In contragyite fast with90!" percentile values of about 5 seconds and
Splitstream reaches a steady state as soon as the last orghaeconds inLat2, and SS(1.2) respectivelf{Lat2 performs
node gets a parent. Hence its convergence time is actually better tharLatO primarily because the former yields lesser hop
startup time that we discussed earlier. lengths which, as mentioned before, leads to better resilience.
Figure 8 shows the excess load percentage per node as@meadding redundant slices, we find a drastic improvement
simulation proceeds in the case ladt? for the join scenario. in the recovery times. For example, with a redundancy of 3
The maximum and thé5* percentile curves peak tML slices, more than 50% of the Chunkyspread nodes are not dis-
during the first 10 seconds of the simulation after which th@onnected at all and the maximum recovery duration is around
algorithm brings both the curves down to within the target.5 seconds. The maximum control overhead experienced by
upload interval in the next few seconds. The second peaky Chunkyspread node is 42 messages per second per node
arises after nodes start joining and stays till 10 seconds afiest after failures were detected while the median value is just
the last node had joined the network. Though there are nod&smessages per second per node during this time.
saturated to theilL values (50%) during this time period, the Splitstream performs worse than Chunkyspread when 50%
95t" percentile and the median curves are close to the targétthe nodes fail at the same instant. Figure 12 shows the
loads (30% and 10% respectively) which show that there rigcovery duration in such a scenario. Witlat2, the 90"
a considerable number of nodes with spare capacity that garcentile recovery time is 10 seconds while it is at least
serve a newly joined node quite fast. 15 seconds for Splitstream. When redundancy is added, there
Figure 9 shows the normalized average latency over tleea good improvement in the recovery duration: $ig”
slices of nodes as the simulation proceeds in the static spercentile value for Chunkyspread is just 5 seconds in the
nario. We observe that the load phase of the algorithm shootsse when 3 redundant slices are added. This just goes to
the latency up initially, but then, the latency phase of th&how Splitstream’s inability to handle a huge failure burst. The
algorithm steadily brings it down. The peaks in th&'" problem, we suspect, is the high hop lengths that Splitstream
percentile curves of the average and the maximum latenogur, which affects its robustness to node failures.
values show that Chunkyspread may need to maintain arEffect of other parameters: We tried to see the effect of
application buffer of a considerable size for the temporasjtering parameters such as the number of slices (beyond 16
period of time when the load phase of the algorithm is mosdices), degree of heterogeneity and the number of neighbors
dominant than the latency phase; such cases happen after tberehe protocol. We largely observed that these parametric
is churn or after the true source kickstarts the multicast sessichanges do not result in significant changes to the protocol
3) Control Overhead:Next, we evaluate the the controlperformance. More details can be found in [26]. We have also
overhead incurred by nodes in the network due to switchade preliminary simulation experiments on applying tit-for-
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tat constraints in the protocol [26]. no playback. This parameter is called the playback disruption

Churn scenario: We have so far considered isolated nodduration. Figure 13 shows the cdf of the total playback
joins and failures in our simulations. As we had already notediSruption duration at every slice of all nodes for various
a more realistic churn scenario would be to consider one Biffer sizes. With no buffer at all (which corresponds to the 0
which nodes join and leave at the same time. The scenasRFond buffer size), we find that ti9¢'" percentile value is
that we have studied is similar to the one tested in [16]. W& seconds and this value decreases steadily as the buffer size
consider Poisson arrivals at 10 joins per second, and pariidncreased. For example, with a 5 second buffer size 85%
stay times with a minimum duration of 90 seconds and a me@hthe slices are not disrupted at all and #@&" percentile
of 300 seconds (which implies the pareto parameter= disruption duration is 1 second. From this graph, we infer

10). Pareto is a heavy-tailed distribution which is typical ofat most of the disruptions are of short duration and can be
the behavior of users in such environments[15]. The chufcovered using a buffer of modest sizes. The heavy tail in the
happens for the first 1000 seconds after which the remainiigPh was due to one particular slice of a node for which it was

live nodes are allowed to settle down for the next 200 secon@§t able to find a parent as the bloom filter condition yielded
Ise positives for the parents which could have supplied the

. . . . fi
The disconnection time intervals are noted at every nodt . . . S
. Lo Slice. An obvious solution to prevent this from happening is
for every slice; these are the time intervals when the node_Is . . . X
to either request for more neighbors or join all over again.

disconnected from the slice tree due to an ancestor’s failure.
After obtaining the disconnection durations at every slice, To better show this fact, we observe the cdfs of the

we simulated an application playback buffer offline for eagbercentage of disruption duration over the lifetime of nodes
slice at every node to calculate the duration when thereiisthe system, for various levels of redundancy in Figure 14.
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For example, at a redundancy of 1 slice, a node is said tto improve resilience in tree-based multicast, according to
be disrupted if its playback buffers are disrupted for at leasthich each node apart from the usual tree forwarding, proba-
two slices. With no buffer at all (not shown), almost 60% obilistically forwards data to a random node in the overlay. This
the nodes are disrupted at the first slice for more than 608¢heme, however can incur a high overhead in heterogeneous
of the time. But as more redundant slices are added, we figektings. [16] points out the limitations in the applicability of
that the disruption percentage decreases. In particular, witlfseribe in heterogeneous environments especially with respect
redundancy of 4 slices, 90% of the nodes are not disconnectedts anycast and pushdown operations. [4] uses trace-based
at all. Further, with a 5-second buffer, we find that no nodg@mulations to show that placing nodes with desirable prop-
(barring the heavy tail) is disrupted for more than 10% of itsrties higher up in the trees can improve the performance of
lifetime, as can be observed in Figure 14. From these graphee-based multicast protocols.

we observe the tradeoff between the buffer size, redundancy
and the playback disruption duration, which is fundamental to
any streaming protocol.

Emulation: We have also made small deployment experi- Chunkyspread represents a new point in the P2P multicast
ments in Emulab and have tested our protocol on a clusterdsfsign space: one that has the efficiencies associated with trees
machines. The system was tested on 200 nodes emulatecRBfl the simplicity and scalability associated with unstructured
a set of 50 machines, with the delays obtained from a 100etworks. At the foundation of Chunkyspread is the ability
router transit-stub graph. A 100 Kbps stream was split inte build random sparse overlay graphs with tight statistical
eight 12.5 Kbps streams and sent across multiple trees. Tag#trol over heterogeneous node degrees. This foundation,
stream was multicast by the true source after it received fi@mbined with a simple loop-detection mechanism based
first set of 8 neighbors. As a first step, we have used hep bloom filters, provides a framework whereby different
length as the latency reduction param@tdthe system was constraints and optimizations can be emphasized, depending
run for 20 minutes and a snapshot of the data was taken at @fethe application.

10" minute. we chose a moderate level of heterogeneity withTo date, we have focused on large-scale, non-interactive
the degree distributed uniformly between 8 and 40 neighboggplications like the broadcast of a sporting event, at a range
Figures 15 and 16 show the load distributions and hop leng#i volumes (text, audio, or video formats). Here, control
for the Lat0, Latl and theLat2 cases. The trends in the graphgver load is more important than latency, though in this
are quite similar to the ones that we had obtained in opaper we show nevertheless that significant improvements in
simulations. latency can be made if load control is relaxed slightly. We
also show apples-to-apples comparisons with Splitstream, and
find that Chunkyspread performs better across the board, and

V. RELATED WORK
. . . significantly better with respect to control over load.

There has been considerable work in th? past on single-tre hile preliminary results with severe churn are promising,
multhastprotocols[S], [71, [22]’.[101’ [23]. Smce none of theS%Lore work needs to be done to understand the trade-offs
effectively support h.eterogenelt.y, we restrict our discussion Bhtween packet loss, packet delay (buffering), and stream
related work to multi-path multicast protocols. volume (packet coding schemes). This understanding needs to

. BlIJ"ett [9] spl;ts th? strearrrll ml\tloorlnultlple ,blOCkSI and uzestgef developed for both tree-based and for treeless approaches
singie free on top of a mesn. Nodes receive only a SUDSELPl, 45 Chainsaw. Our intuition is that neither approach in
the blocks from their parents in the tree, the remaining bloc 3 pure form will perform really well, and that some form of
retrieved from other nodes randomly chosen using a distributﬁ)qorid approach is called for '

algorithm calledRanSubBullet however incurs a high control Preliminary results with tit-for-tat also show promise
overhead due to this scheme of orthogonally retrieving pack ﬁ0ugh once again there is much work still to be done. We
Chainsaw [12] and Coolstreaming [2] are swarming-sty

ope to explore a range of tit-for-tat mechanisms, including

data-driven multicast protocols that do away with trees to '"Soth social and irrational behavior. Tit-for-tat also needs to be

prove resilience. Each overlay node (proactively or reactivelg amined for both tree-based and treeless approaches.

notifies neighbors of data arrivals and employs a pull-base . : . .
. . hile we believe that gaining a better understanding of
approach to retrieve blocks. Though Coolstreaming has been . .
. R severe churn and tit-for-tat represent the most fruitful ar-
used in the Internet for TV broadcasts, it is still not known

. eas of research, we still need to consider ways to improve
completely how these protocols fare in heterogeneous and n&@funkyspread For instance, we feel that Chunkyspread as
infrastructural settings. ' '

. . esigned, has too many parameters that need to be set. Is
[15] assessed the feasibility of overlay multicast protocql% possible for Chunkyspread nodes to self-tune based on

supporting large spale “V_e Stfeam'”g applications by :?malyz! BBservations within the overlay, possibly achieving parameter-
real-world Akamai traces; using these traces along with online . .
: : less operation? Also, while the Chunkyspread framework does

and offine bandwidth measurements, they concluded that . ; . : Lo
) ) rovide something of a generic constraints-and-optimizations
real-world hosts indeed have enough bandwidth to support N : .
: . g ramework, we still find ourselves selecting specific parameters

themselves in most cases. [3] describes a probabilistic sch

e1‘r(T)]respeciﬁc optimizations. Can we generalize the framework

6Swaplinks does not retrieve locality-aware neighbors, hence hop Ienéwther’ f‘_)r Instance a_‘"_OW'ng appllcq.tlon de?vellopers. to simply
can still be a reasonable parameter. supply high-level policies about various criteria of interest?

VI. CONCLUSION AND FUTURE WORK
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Beyond this, we would like to explore different typeg22] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.

of applications and environments. These include low-latency OToole, Jr. Overcast: Re!iable multicasting Wi_th an overlay ngtwork.
In Proc. of the 4th Usenix Sympp on Operating System Design and

applications, reliable delivery, and pub-sub applications where 5 iementation (OSDI 2000Dctober 2000.
nodes may join a large number of groups. [23] D. A. Helder, and S. Jamin. End-host multicast communication us-
ing switch-tree protocols. IrProceedings of the 2nd Workshop on
Global and Peer-to-Peer Computing on Large Scale Distributed Systems
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