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ABSTRACT

Hierarchical routing structures are needed to reduce the amount of routing informa-
tion stored and exchanged by switching nodes in large networks (data or voice). Only
one hierarchical structure, the area hierarchy, has been available to network designers.
This has resulted in a limited set of design alternatives. In particular, the area hierarchy
is known to have some poor survivability characteristics. This paper introduces a new
hierarchical structure, the Landmark Hierarchy. Analysis and simulation of the Land-
mark hierarchy in its static state show that is a viable alternative to the area hierarchy
for large network routing. Further work is needed to determine the survivability charac-
teristics of the Landmark Hierarchy in a dynamic network environment.

Suggested Keywords: routing, hierarchical networks, hierarchies, landmark routing, land-
mark hierarchy, random graphs data communications
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EXECUTIVE SUMMARY

INTRODUCTION

Because of the rapid growth of data networks, it is necessary to impose hierarchical
routing structures on data networks in order to contain the vast amounts of routing
information present in the networks. Until now, the only hierarchy known was the area
hierarchy. It has seen extensive research over the past decade. The internet, for example,
is a type of area hierarchy in the routing sense.

One problem with the area hierarchy is that it is difficult to manage dynamically.
That is, it is difficult to adjust the area hierarchy to topological changes in a distributed,
dynamic fashion. This difficulty subjects area hierarchy to failures such as the area
partition. This problem is manageable on a limited basis, but not at the level which a
DoD network might require.

To deal with this problem, we introduce a new hierarchy, the Landmark Hierarchy,
which we believe is much easier to dynamically manage. This paper analyzes the
Landmark Hierarchy in its static state—that is, we study its performance as a static
element, but do not study how to dynamically manage it. In a companion paper
(Tsuchiya, 1987), we consider qualities of the many issues of dynamically managing the
Landmark Hierarchy and operating it in existing and future networks. Later, we will
analyze and simulate these issues quantitatively.

THE AREA HIERARCHY

Figure ES1 shows a computer network of arbitrary physical topology, that is, the
topology does not have an obvious structure to it such as a hierarchy, ring, etc. An area
hierarchy has been overlaid on the network of Figure ES1. This hierarchy is created by
logically grouping nodes into areas, grouping areas into super-areas, and so on.

To route a message in an area hierarchy, a node examines the address of the
destination node (the telephone number is a well-known example of such an address),
determines which area the node is in, and routes the message to that area. Nodes in that
area then further route the message to a sub-area, and so on until the message reaches its
destination. This allows nodes outside of an area to view the area as a single entity.
The result is that only one entry is required in that node’s routing table to route to
several nodes in another area. For instance, in Figure ES1, Node 2.1.1 views Nodes 2.2.1,
2.2.2, and 2.2.3 as a single entity, namely, 2.2 —a savings of 3 to 1 in memory overhead
(for the table entries) and in link overhead (for the updates required to maintain that
entry).

The penalty paid for this savings is increased path length. Using mathematical
analysis, Kamoun %nd Kleinrock have shown that, using the area hierarchy, routing table

sizes of R =HNE, where R is the routing table size, and H is the number of
hierarchical levels, can theoretically be achieved (Kamoun, Kleinrock, 1977). Simulation






results on a 200-node network produce path lengths of 5% to 15% greater than shortest
path, and routing table sizes of 40 or more nodes. This is nearly 3 times worse than
Kamoun’s theoretical best, and puts into question the practicality of Kamoun’s results.
Path lengths are even longer for networks with smaller diameters.

THE LANDMARK HIERARCHY

Whereas an area is a group of nodes all of which have a routing table entry for each
other, a Landmark Vicinity is a group of nodes all of which have a routing table entry for a
single node, namely, the Landmark. The Landmark, then, is at the center of a Landmark
Vicinity, and every node r hops away from the Landmark has a routing table entry for
that Landmark. A hierarchy of Landmarks is formed by having all nodes be Landmarks
with small Landmark Vicinities, a portion of those nodes be Landmarks with larger
Landmark Vicinities, a portion of those with still larger Landmark Vicinities, and so on
until there are a few nodes network wide whose Landmark Vicinity covers the whole
network. Whereas in the area hierarchy, a node is addressed by its membership in areas,
a node in a Landmark Hierarchy is addresses by its proximity to Landmarks. Figure ES2
gives an example.

Figure ES-2
Landmark Hierarchy
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&—— Path
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Here, Node a is the lowest-level Landmark, whose vicinity is shown by the circle
defined by radius r,. Node b is the next level Landmark, and so on. Assume we wish to
find a path from the node labeled Source to Node a. The Landmark Addresses of Node a
is c.b.a. To find the path: Source will look in its routing tables and find an entry for ¢
because Source is within the Landmark Vicinity of ¢. Source will not, however, find
entries for either b or a, because Source is outside the Vicinity of those Landmarks.
Source will choose a path towards ¢. The next node will make the same decision as
Source, and the next, until the path reaches a node which is within the radius of b.
When this node looks in its routing tables, it will find an entry for b as well as for c.
Since b is finer resolution, the node will choose a path towards b. This continues until a
node on the path is within the radius of a, at which time a path will be chosen directly
to a. This path is shown as the solid arrow in Figure ES2.

There are two important things to note about this path. First, it is, in general, not
the shortest possible path. The shortest path would be represented by a straight line
directly from Source to a. This increase in path length is the penalty paid for the
savings in network resources which the Landmark hierarchy provides.

The other thing to note is that often the path does not necessarily go through the
Landmarks listed in a Landmark Address. This is an important reliability consideration
in that a Landmark may be heavily congested or down, and yet a usable path may be
found using that Landmark (or, more literally, using previous updates received from that
Landmark).

LANDMARK HIERARCHY ANALYSIS AND SIMULATION

We analyze the Landmark Hierarchy in terms of three parameters: routing table
sizes, path lengths, and path distribution. The size of routing tables tells us how much
routing overhead the hierarchy produces. In general, this is much less than that seen
with no hierarchy. Longer paths are the penalty we pay for using a hierarchy. Path
distribution tells us whether the hierarchy skews traffic patterns, thus causing unfairness
and undue stress in parts of the network.

The major portion of our results comes from simulations of the Landmark
Hierarchy. In all, we present results of over 1000 Landmark Hierarchy simulations, plus
other simulations analyzing various network aspects. The simulations were run on nearly
50 different network types, using 23 different hierarchy descriptions and several
variations on these. To support this work, we developed a new model for describing
networks, the loop-span model, which allows us to generate quasi-random networks with
control over the number of nodes, the node degree, and the diameter. Previous
techniques only allow control over the first two parameters.

Our major results are as follows:

1. One can affect routing table sizes and path lengths through adjustments in the
hierarchy parameters, namely, the density of Landmarks, and the distance
Landmarks can be seen (Figures ES3 and ES4). (P is the ratio of the
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Landmark Hierarchy path length over the shortest possible path.) This gives
the designer considerable flexibility in optimizing the performance of the
Landmark Hierarchy for any given network. We also believe that the dynamie
Landmark Hierarchy management algorithms may be made to automatically
adjust the Landmark Hierarchy parameters for optimal performance in
response to changing network conditions.

Figure ES-8
Routing Table Size for Realistic Networks
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2. When adjusting the Landmark Hierarchy parameters, routing table sizes can
only be made smaller at the expense of longer path lengths, and vice versa
(Figures ES3 and ES4).

3. Routing table sizes and path lengths are strongly affected by network
parameters, namely the number of nodes, the node degree, and the network
diameter (Table 5). In particular, networks with very small diameters exhibit
both larger routing tables and longer path lengths. In many cases, the
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Figure ES-4
Path Lengths for Realistic Networks and Scaled Traffic Matrix
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Landmark Hierarchy (and the area hierarchy, for that matter) may perform
worse than non-hierarchical routing for these cases.

4. Random assignment of Landmarks performs nearly as well as a uniform
assignment of Landmarks. This shows that the Landmark Hierarchy is
extremely resilient to the placement of Landmarks—an important survivability
consideration.

5. There is a large variance between the size of the largest and smallest routing
tables in a network: the largest are about 6 times larger than the smallest.

6. Most routing table entries come from the lower hierarchy levels.
7. Path lengths are the same as shortest path at hierarchy level 0, and get longer
at the higher levels. Overall path length increase is very dependent on the

traffic matrix, and is significantly better when the majority of traffic is
between nodes which are close to each other.

XX




8. We were not able to determine satisfactorily what the effect on path
distribution is. Our preliminary results show that the Landmark Hierarchy
does not cause undue unfairness in path distribution. Several characteristics
which we did not study, namely routing metrics (static and real-time) and the
network topology, will tend to have a smoothing effect on path distribution.

9. The number of global Landmarks (those at the highest level of the hierarchy
which all nodes can see) impacts routing table size and path length. In general,
we were able to get significant improvement in these two parameters by
increasing the number of global Landmarks from one to ten.

10. Our results show that, as a rule of thumb, routing table sizes of R — 3N are
typical, where N is the number of nodes. These results are shown in Figures
ES3, ES41, and ES5. This can be compared to the area hierarchy where

R = HN B, However, this figure for the area hierarchy is conditional on each
area having an identical number of sub areas, a condition not achievable in
practice. Further, this figure is not supported by simulation. In comparable
simulations, the Landmark Hierarchy showed smaller routing table sizes than
the area hierarchy.

11. We were not able to obtain general figures for the increase in path length.
However, we found that path lengths in the Landmark Hierarchy behave
similarly to those in the area hierarchy. Our path length simulation results are
shown in Figure ES4. Also, our simulation results show shorter path lengths
than those shown in similar simulations for the area hierarchy.

12. For networks with very small diameters (close to the smallest possible for a
given number of nodes and node degree) the Landmark Hierarchy performs
very poorly, and cannot be recommended over the area hierarchy or no
hierarchy. However, networks very small with diameters are not normally
found in practice (the author knows of no such networks). It is worth noting
that path lengths on the area hierarchy are also large for these small diameter
networks.

When we compare the Landmark Hierarchy against the area hierarchy, we find that
for networks with diameters of reasonable size, the two hierarchy exhibit similar routing
table sizes. For networks with very small diameters, the area hierarchy performs much
better, because its routing tables are not affected by diameter. For path lengths, we find
that the Landmark Hierarchy and the area Hierarchy perform similarly for all
diameters—both hierarchies perform poorly for very small diameters, and perform well for
reasonable sized diameters.

We conclude that the Landmark Hierarchy is potentially a viable alternative to the
area hierarchy, and that research on the Landmark Hierarchy, both in its static and
dynamic states, should continue. We cannot recommend the Landmark Hierarchy in
networks which do not expect to survive significant topology changes over a short period
of time, such as land based commercial networks. However, for networks which are
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Figure ES-5

Estimated Performance for Networks Larger Than 800 Nodes
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expected to survive rapid change, such as any mobile packet radio network, and any DoD
network, the Landmark Hierarchy is an attractive possibility. Ongoing research will
further explore this possibility.
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1.0 INTRODUCTION
1.1 Background

Switching nodes in computer networks execute routing functions to deliver data
from source to destination. These routing functions involve 1) the storage of routing
tables (memory overhead), 2) the exchange of routing updates with other nodes (link
overhead), and 3) some set of algorithms to compute the routing table entries (CPU
overhead). If the routing structure of the network is non-hierarchical, that is, every node
maintains a routing entry for every other node in the network, then the overhead caused
by the routing function is at best O (N) (McQuillan, Richer, Rosen, 1980), N being the

number of nodes in the network.

As networks grow to many thousands of nodes, the routing overhead can consume
an unacceptable percentage of network resources. To overcome this problem, a

hierarchical routing structure, the area hierarchy, may be used which theoretically can
1
reduce the routing overhead to HN ¥ (Kamoun, Kleinrock, 1977), where H is the number

of hierarchy levels. The penalty paid for reduced overhead is increased path length, the
amount of which depends on the diameter and node degree of the network (small
diameter means longer path lengths) but which is typically small. The telephone network

is a well-known example of a hierarchical routing structure.!

Until now, only one hierarchical routing structure, the area (or cluster) hierarchy,
has been developed. This has resulted in a very limited set of design alternatives for
large network routing schemes. During the past few years, considerable research has been
devoted to the use of area hierarchies in computer networks (Kamoun, Kleinrock, 1977),
(Kamoun, Kleinrock, 1979), (Kamoun, Kleinrock, 1980), (Sunshine, 1981), (Perlman,
1985), (Callon, Lauer, 1985), (Khanna, Seeger, 1986), (Sparta, 1986), (Saltzer, Reed, Clark,
1980), (Hagouel, 1983), (Shacham, 1985), (Zakon, 1987). This work has revealed several
difficulties in the use of area hierarchies in networks where topology changes are expected
(Perlman, 1985), (Sunshine, 1981), (Hagouel, 1983), (Shacham, 1985).

IThe node degree of an individual node is the number of other nodes it is connected to. The aver-

age node degree of a network is the average of all of the individual node degrees. The diameter
of a network is the length, here measured in hops, of the longest minimum-length path between
any two nodes in the network.



In particular, problems arise in situations where a previously connected area is no
longer connected, causing nodes to be unreachable by the routing algorithms even though
there are physical paths to those nodes. This is an area partition, or simply, partition.
The problem of managing partitions when they do not happen often has been solved
(Perlman, 1985). This solution is adequate for most commercial networks, and is used in
at least two. However, in military networks such as mobile packet-radio networks, or
land-based stationary networks whose topologies may be stable during peace-time but not
war-time, this solution is not adequate. A full solution to the problem has been worked
on by Shacham. This work shows that dynamic management of an area hierarchy is very

difficult. It has not yet been attempted in practice.
1.2 Motivation

This work is supported by the Defense Communications Agency (DCA), and
specifically by the Defense Communications System Data Systems organization, which
manages the Defense Data Network (DDN). There are two similar problems which have

motivated this work.

The DDN operates several long-haul packet switching networks for use by
Department of Defense (DoD) subscribers. These networks are growing, and are
scheduled to merge in the future. The size of these networks is becoming such that the
efficiency of the existing non-hierarchical routing (Shortest Path First (SPF)) is
questioned (Sparta, 1986), (Khanna, 1986).

An even more severe problem is that of the growth of the Internet (The DDN plus
connected networks, such as the NSFNET). This growth is greater than that of the DDN
alone, and is now pushing the limits of the existing gateway routing protocols, the
Gateway-to-Gateway Protocol (GGP), and the Exterior Gateway Protocol (EGP) protocol,
A further problem here is that, unlike SPF, the gateway routing protocols are not very

survivable. For instance, they do not respond to partitions.
1.3 Content

This paper introduces a new hierarchical structure, the Landmark hierarchy. This
paper shows that routing overhead due to the Landmark Hierarchy is typically 3VN , and

can be considerably worse for networks with extremely small diameters. The increase in




path length for the Landmark Hierarchy is similar to that seen in the area hierarchy.

These results show that the Landmark hierarchy is a viable alternative to the area
hierarchy for routing in large networks in the sense that it achieves a reduction in

network overhead needed to accomplish routing.

However, we believe that the Landmark Hierarchy will be easier to manage
dynamically than the area hierarchy. In this paper, we analyze the efficiency of the
Landmark Hierarchy in its static state. In other words, we describe and measure the
characteristics of the Landmark Hierarchy with regards to path lengths, path

distributions, and routing table sizes.

We do not consider ways of dynamically managing the Landmark Hierarchy,
although in Section 3.7 we give a brief description of why the Landmark Hierarchy will
be simpler to manage than the area hierarchy. While this management function is
important, and indeed is the whole motivation behind the invention of the Landmark
Hierarchy, it is vital that we first understand everything we can about the Landmark
Hierarchy in its steady state. It is of little use to show that the Landmark Routing
algorithms perform well as a dynamic routing technique when we have not first shown
that the Landmark Hierarchy performs well as a hierarchy. Further, what we learn in
this paper may be applied to the development of distributed, dynamic algorithms.
Dynamic management of the Landmark Hierarchy, then, will be the topic of subsequent

papers.
1.4 Outline

This paper is for readers requiring a general but not detailed knowledge of the
Landmark Hierarchy, for designers and implementors needing a detailed working
knowledge of the Landmark Hierarchy, and for researchers wanting to extend, improve
upon, or refute the work presented in this paper. Those in the first category should read
Sections 1, 2, 3, and 8. For those between the casually interested and the strongly
interested, Section 7 is recommended. For those still more interested, Section 4 should be
read as well. Sections 5 and 6 are for designers and researchers of the Landmark

Hierarchy.




Section 2 is an overview of the Area Hierarchy and its major concepts. Some
limited performance characteristics are discussed in this section, and further discussed in
Section 7.4. Section 3 is an overview of the Landmark Hierarchy and its major concepts.
Also in Section 3 is a brief comparison of dynamic management of the area and
Landmark Hierarchies. Section 4 provides a detailed description and an analysis of the
Landmark Hierarchy. Section 5 describes the simulation techniques used to measure
performance of the Landmark Hierarchy. Sections 4 and 5 provide the necessary
background needed to fully understand Section 6. Section 6 gives the results and
analysis of the simulations. These simulations are designed to isolate the various factors
which affect performance of the Landmark Hierarchy. This section gives most of the
technical details necessary for understanding the Landmark Hierarchy. Section 7
presents additional simulations which are designed more to reflect real networks than to
isolate behavior. Section 7 also uses techniques derived from Section 4 to determine the
performance of Landmark Hierarchies of any size. This is the major result of this paper.
This Section also contains a comparison of the Landmark Hierarchy and the Area
Hierarchy. Section 8 summarizes the major conceptual ideas of Sections 4, 5, and 6. It
also gives conclusions about the utility of the Landmark Hierarchy and a discussion of

the potential use of the Landmark Hierarchy in the DDN and the DoD Internet.

This paper has three appendices. Appendix A is a glossary of mathematical terms
used in this paper. Appendix B contains a set of graphs which describe a particular set
of network characteristics important to the analysis of the Landmark Hierarchy—namely,
the average number of nodes within z hops of any given node. Appendix C contains a
detailed description of the technique we used to generate networks. This technique,
based on what we call the loop-span network model, contains improvements we have not

seen anywhere else, and so deserves a separate discussion.




2.0 THE AREA HIERARCHY

Figure 1 shows a computer network of arbitrary physical topology, that is, the
topology does not have an obvious structure to it such as a hierarchy, ring, etc. An area
hierarchy has been overlaid on the network of Figure 1. This hierarchy is created by

logically grouping nodes into areas, grouping areas into super-areas, and so on.

For the sake of discussion, we will consider a single node in Figure 1 to be a Level 0
area, a group of nodes to be a Level 1 area, and a group of Level 1 areas to be a Level 2
area. The areas in Figure 1 have three-component addresses; the leftmost component
refers to the Level 2 area, the middle component refers to the Level 1 area, and the
rightmost component refers to the individual node. If an address is written as one digit
only (i.e., area 3), then it refers to an entire Level 2 area. Likewise, 2 digit addresses

refer to a Level 1 area (i.e. 3.2), and full 3 digit addresses refer to a single node (i.e. 3.2.1).

A constraint on the definition of an area is: a path which does not exit a Level &
area must exist between every Level k-1 area in the Level k area. This way, once a
message to a destination Level k-1 area enters the destination’s Level k area, the message
does not have to leave the Level k area to reach the destination. This allows nodes
outside the area to view the area as a single entity. The result is that only one entry is
required in that node’s routing table to route to several nodes in another area. For
instance, in Figure 1, Node 2.1.1 views Nodes 2.2.1, 2.2.2, and 2.2.3 as a single entity,
namely, 2.2 — a savings of 3 to 1 in memory overhead (for the table entries) and in link
overhead (for the updates required to maintain that entry). Moreover, node 2.1.1 views

all nodes in area 1 as a single entity; a savings of 10 to 1.

The penalty paid for this savings is increased path length. For instance, consider a
route from source 2.2.1 to destination 1.2.3. By examining the high-order component of
the destination address (1.x.x), 2.2.1 determines that 1.2.3 is in a different Level 2 area.
The choice available to 2.2.1 is to 1) route directly from its own Level 2 area into Area 1,
or 2) to route first into Area 3 and let a node in Area 3 forward the message to Area 1.
Having no knowledge about the internal topologies of Areas 3 and 1, 2.2.1 will forward
the packet directly to Area 1 via Area 2.1. For this pathological case, the chosen route is

nearly twice as long as the shortest possible path.






Using mathematical analysis, Kamoun and Kleinrock have shown that, using the
1
area hierarchy, routing overhead of no less than HN #, where H is the number of

hierarchy levels, and N is the number of nodes, can be achieved [Kamoun, Kleinrock,
1977). Path lengths depend on the nature of the network, but are longer for networks
with smaller diameters and larger node degrees. In experiments performed on randomly
generated 200 node networks using a 2-level hierarchy, Hagouel found path lengths to be
on the order of 15% longer than shortest path [Hagouel, 1983]. Using different routing
and clustering techniques on randomly generated 200 node networks, Callon found path
lengths to be no greater than 15% over shortest path, and on the average, about 5% over
shortest path [Callon, Lauer, 1985]. These path increases are acceptable considering the

savings in routing overhead.

There are many possible variations of an area hierarchy. Nodes may choose to keep
selective information about the internal structures of other areas, or areas may be allowed
to overlap [Shacham, 1985]. Use of these variations involve tradeoffs of their own, and

must be considered on a case by case basis.

In this paper, we do not study the area hierarchy. We refer the reader to the
literature. Except for a few isolated cases, we compare our results against those of
shortest path. The reason for this is that, since there are so many possible variations on
the area hierarchy, it would be too difficult to do a fair and thorough comparison of the

Landmark Hierarchy to the area hierarchy.






3.0 THE LANDMARK HIERARCHY

In this section, we describe the Landmark hierarchy. We do this by first describing
the Landmark itself. Then, we describe a hierarchical structure built from Landmarks.
Thirdly, we describe how nodes are addressed in a Landmark hierarchy. Finally, we show

how routing may take place with the Landmark hierarchy.
3.1 The Landmark -

The description of a Landmark is very simple. A Landmark is a node whose
neighbor nodes within a certain vicinity contain routing entries for that node.
Determination of the vicinity based on hops; that is, the distance between any two nodes

that share a link is one.’

As an example, consider Node 1 in the network of Figure 2. Nodes 2 through 6 have
routing entries for Node 1 (as indicated by the arrowheads) and are therefore able to
forward any packets addressed for Node 1 to Node 1. Nodes 7 through 11 do not contain
routing entries for Node 1. Therefore, Node 1 is a Landmark which can be “seen’ by all
nodes within a distance of 2 hops. We refer to Node 1 as a Landmark of Radius 2. In
general, a node for which all nodes within r hops contain a routing entry is a Landmark

of radius r 3

In this case, the Landmark vicinity is expressed in ‘“circular” terms—thus the
radius. In general, the vicinity may not be circular (that is, may not be expressed in
terms of a radius), but may have a more complex shape. As we will see in Section 4, a set
of nodes outside the radius may also be included in the Landmark vicinity. For the sake
of convenience, we usually refer to Landmarks as having a certain radius, and ignore the

possibility of additional nodes unless otherwise stated.
3.2 The Landmark Hierarchy

Next, let us consider a hierarchy built from Landmarks. The nomenclature LM;

. 2The distance between two nodes is the length (here in hops) of the shortest path between those
two nodes.

SAppendix A contains a glossary of the mathematical terms used in this paper.

4The notation here varies slightly. In general, we use id generically to mean any single Land-
mark. When it is necessary to distinguish between Landmarks in the same expression or sen-
tence, we will use either #d,, id,, or simply z, y. The latter form is usually in reference to a




Figure 2
A Single Landmark

refers to a Landmark of hierarchy level s, i =0 being the lowest level, and i =H being the
highest level. Throughout this paper, the term : is reserved to mean a hierarchy level.
The nomenclature LM; [id ]| refers to a specific LM; with label id, called the Landmark ID.*
Each LM;[id] has a corresponding radius r; [id]. In the Landmark hierarchy, every node
in a network is a Landmark LM,[id] of some small radius ry[id]. Some subset of
LM [id]’s are LM,[id]’s with radius r,[id], and with r,[id] almost always greater than
ro[id], such that there is at least one LM,[id] within ry[id] hops of each LM,[id].
Likewise, a subset of the LM,[id]’s are LM,[id]’s, with rj[id] almost always greater than
ri[id], such that there is at least one LM,[id] within r,[id] hops of each LM,[id]. These
iterations continue until a few nodes are LM; [id ]’s each with an r; [id], with r; [id|>D, D
being the diameter of the network. The reason for this structure will become clear in
Section 3.5.°

figure or specific example.

5The network diameter is the distance (here in hops) between the two nodes in the network
furthest from each other.
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Figure 3 illustrates the Landmark hierarchy by showing a portion of a network.
This is a two-dimensional representation (meaning that only nodes drawn very close to
each other will share a link). For simplicity, only four of the nodes are shown, and no
links are shown. The dotted arrows and circle indicate the radius of the Landmarks; that
is, the vicinity within which nodes contain routing entries for that Landmark. For
instance, every node within the circle defined by r,[b] has an entry for, and can route to,
LM,[b]. Since nodes may be Landmarks at several levels, a node may have several
Landmark IDs, one for each level. Again for simplicity, the nodes in Figure 3 are labeled

only with the Landmark IDs which are pertinent to the examples herein.

In general, Landmark IDs only need to be locally unique, except at the highest level.
It is beyond the scope of this paper to define what constitutes local uniqueness, or to
discuss the issues surrounding the use of locally unique Landmark IDs. In this paper, we

assume that all Landmark IDs are globally unique.
3.3 Routing Table

Each node in the network keeps a table of the next hop on the shortest path to each
Landmark it has routing entries for. Each node will therefore have entries for every

LM[id ] within a radius of ry[id], every LM [id | within a radius of r,[id ], and so on.

Since every node is an LM,, and since every node has entries for every LMid]
within a radius of r4[id], every node has full knowledge of all the network nodes within
the immediate vicinity. Likewise, since a portion of all LM, are LM, every node will
have knowledge of a portion of the network nodes further away. Similarly, each node
will have knowledge of even fewer nodes further still, and so on. The result is that all
nodes have full local information, and increasingly less information further away in all
directions. This can be contrasted with the area hierarchy where a node on the border of
an area may have full local information in the direction within the border, but virtually

no local information in the direction across the border.
3.4 Addressing in a Landmark Hierarchy

In an area hierarchy, the address of a node is a reflection of the area(s) at each
hierarchical level in which the node resides. The telephone number is a well-known

example of this. In a Landmark hierarchy, the address of a node is a reflection of the

11



Figure 8
Landmark Hierarchy
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O Network Node
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Landmark(s) at each hierarchical level which the node is near. The Landmark Address,
then, is a series of Landmark IDs: LM,[id, ].LM,[id,]. . . . LM, [id,].

There are two constraints placed on Landmark Addresses. F irst, the Landmark
‘represented by each address component must be within the radius of the Landmark
represented by the next lower address component. For instance, the node labeled LM ola]
in Figure 3 may have the Landmark Address LM[c].LM,[b].LMy[a]. The address of the
node labeled LMg[a] could be LM,c].LM,[e].LM,[a] if and only if there existed a
Landmark LM,le] (not shown) which was within the the radius of the node labeled
LMo[a]. The reason for this constraint will become clear in Section 3.5. Since more than

one Landmark may be within the radius of a lower level Landmark, nodes may have a
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multiplicity of unique addresses. Multiple addresses could be used to improve

survivability and provide some traffic splitting (Tsuchiya, 1987).
3.5 Routing in a Landmark Hierarchy ‘

Now we may consider how routing works in a Landmark Hierarchy. How can we
find a path from the node labeled Source to the node labeled LMg[a] in Figure 3? The
Landmark Addresses for the node labeled LMy[a] is LM,[c ].LM,[b].LMola]. To find the
path Source will look in its routing tables and find an entry for LM[c | because Source is
within the radius of LM,[c]. Source will not, however, find entries for either LM,[b] or
LM[a], because Source is outside the radius of those Landmarks. Source will choose a
path towards LM,[c]. The next node will make the same decision as Source, and the
next, until the path reaches a node which is within the radius of LM,[5]. When this
node looks in its routing tables, it will find an entry for LM [b] as well as for LMc].
Since LM,[b] is finer resolution, the node will choose a path towards LM,[b]. This
continues until a node on the path is within the radius of LM[a], at which time a path

will be chosen directly to LM,[a]. This path is shown as the solid arrow in Figure 3.

There are two important things to note about this path. First, it is, in general, not
the shortest possible path. The shortest path would be represented in Figure 3 by a
straight line directly from Source to LMg[a]. This increase in path length is the penalty
paid for the savings in network resources which the Landmark hierarchy provides. This

will be analyzed in Section 4.

The other thing to note is that often the path does not necessarily go through the
Landmarks listed in a Landmark Address. This happens more frequently if the
Landmark vicinity for an LM; goes well beyond an LM, ,,, in other words, if the vicinity
overage is large. This is an important reliability consideration in that a Landmark may
be heavily congested or down, and yet a usable path may be found using that Landmark

(or, more literally, using previous updates received from that Landmark).
3.8 Landmark Hierarchy Example

To better illustrate the Landmark Hierarchy, Figure 4 shows the same network of
Figure 1 with a Landmark Hierarchy rather than an Area Hierarchy. This network has 3

hierarchical levels. All nodes (small circles) are LM,. LM, are denoted by a diamond, and
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LM, by a large circle. The rightmost address component is the LM[id ], and is unique for
each node in the network. The middle address component is the LM[id ]| and indicates
proximity to an LM,, and the leftmost address component is an LM,[id ], indication

proximity to an LM, All ry = 2 hops, all r; = 4 hops, and all r, = 8 hops.

Figure §
Landmark Routing Example

Table 1 shows the routing table for Node g in Figure 4. This length of this table
has been optimized by including only one entry per node, even if that node is a
Landmark at several different levels. Node g has less than one-fourth of the total network

nodes in its routing table.

Let us consider a routing example where Node g (d.i.g) is routing a message to Node
t (d.n.t). Node g examines Node #s Landmark Address—d.n.t—and does not find entries

for either LMy[t] or LM,[n] in its routing table. Node g does, however, have an entry for
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Table 1
Routing Table for Node g of Figure 4

Landmark | Level | Nezt Hop
LM,[d] 2 f
LM,[s) 1 k
LM e ] 0 f
LM k] 0 k
LM,(f ] 0 f

LM ,[d], and therefore forwards the message towards LM,[d] via Node f. Node f also does
not have entries for LMy[t] or LM,[n], and therefore forwards the message towards
LM ,[d] via Node e. Node e does have an entry for LM [n] (but not LM[t]), and forwards
the message towards LM [n] via Node d. Node d does have an entry for LM[t], as does
Node u, and the message is delivered. The resulting path, g—f—e—d—u—t¢, is 5 hops, 1
hop longer than the shortest path, g—k—i—u—t¢,

3.7 Dynamic Management of the Landmark Hierarchy

Although in this paper we do not study the problem of dynamic management of the
Landmark Hierarchy, we say a few words about it here to give the reader a feel for why
dynamic management of the Landmark Hierarchy should be easier than for the Area

Hierarchy.

We first describe the process of building an area hierarchy from scratch. The first
step is to group nodes into their lowest level areas. This is too difficult to do in a
completely distributed fashion, and so ‘leaders” (nodes which will temporarily take
charge of creating areas) are elected. The number of nodes elected will be approximately
equal to the number of areas expected at that level. These election algorithms are well-

understood and fairly straight forward (Garcia-Molina, 1982). A group of nodes are given
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an ordering, say by assigning numbers and numerically ordering them. Then, the node

which is first in the ordering among the group of nodes running the election is elected.

The leaders then begin to form a group of nodes around them which will be in their
area. They will do this according to some criteria: that there should be at least so many
nodes in their area, and that there should be a certain richness of connectivity in their
area. Sometimes these criteria may result in two leaders wanting the same node in their
area, or in there being some nodes not wanted by any leader. These problems must be
resolved. When these areas are formed, then the leaders again run an election, picking

super-leaders, who may then take charge of forming the next level areas, and so on.

When an area becomes partitioned, this state must be recognized by the nodes in
both partitions. Then a decision must be made whether to fold the partitions into other
areas, to fold one of the partitions into other areas, or to create a new area. This
decision will require the election of a new leader (in the partition without a leader), and
will require that the leaders collect information about the partition and about other
adjacent areas in order to make the decisions. As always, these decisions must be

coordinated with the rest of the nodes in the partitions and with other leaders.

To create a Landmark Hierarchy from scratch, the Landmarks at Level 1 must first
be elected. This is analogous to the election of leaders in the area hierarchy. However,
once this election is completed, there is nothing left to to but start the next election for
the next level—it is not necessary to form areas. By listening to broadcasts from the
Landmarks, non-Landmark nodes are able to determine which Landmark they are closest
to tndependently of what other nodes decide. Also by listening to broadcasts, nodes are
able to determine if there are enough Landmarks and run another election if there are
not, and Landmarks are able to determine what their radii should be. To illustrate how
robust the Landmark Hierarchy is, we built Landmark Hierarchies in some simulations
by simply randomly assigning Landmarks according to a probability scale. In a
distributed environment, this is like a node arbitrarily deciding for itself whether it
should be a Landmark at a certain level. These hierarchies performed very nearly as well

as those created through an election algorithm!
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The equivalent of a partition in the Landmark Hierarchy is when an LM;,, falls
outside the vicinity of an LM; due to changes in topology. In this case, the LM;,, can
locally start another election algorithm to build back the hierarchy, or the LM, can

simply lengthen its radius.
3.7.1 Changing Addresses

Although we do not address this issue in this paper, we should mention that one of
the inherent problems with flexibly and automatically building hierarchies (area or
Landmark) is that addresses can change. There must therefore be a mechanism to bind
the identification of network elements (nodes, hosts, whatever) to the addresses of those
elements. Obviously, it does no good to have a self-adjusting hierarchy if the method of
updating addresses floods the network with packets, thus negating any savings generated

by the hierarchy.

In a related effort, we have found a suitable solution to this problem (Stine,
Tsuchiya, 1987), (Tsuchiya, 1987).
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4.0 ANALYSIS OF LANDMARK HIERARCHY

Now that we have described the fundamental ideas behind the Landmark Hierarchy,
we can analyze the Landmark Hierarchy in detail. We are interested in studying three

aspects of the Landmark Hierarchy:

1. routing tables size R,
2. path length P, and

3. fairness of path distribution F.

The routing table size gives an indication of the cost in network resources of the
Landmark Hierarchy. The routing table size gives a direct indication of memory required
by nodes. It indirectly gives an indication of 1) link usage, because we assume that the
number of updates a node receives will be proportional to the size of its routing table,
and 2) processor usage, because we assume that the amount of processing a node must do
is also proportional to its routing table size. We expect the size of the routing table in
the Landmark Hierarchy to be less than that of a non-hierarchical routing scheme. In
other words, the Landmark Hierarchy results in a cost savings of network resources over

the non-hierarchical routing scheme.

The path length also gives an indication of the cost in network resources of the
Landmark Hierarchy. A path length longer than shortest path results in more links and
nodes being utilized for a given amount of traffic. This causes increased memory (to
buffer traffic), link (to carry traffic), and processor (to process traffic) usage. We expect
path lengths in the Landmark Hierarchy to be longer than those in a non-hierarchical
routing scheme, resulting in an increased cost of network resources. For many networks,
we expect the cost decrease due to smaller routing table size to more than compensate the
cost increase due to longer path length, resulting in a net improvement in overall

network performance.

Also of interest is the distribution of paths chosen by Landmark routes. Paths
should be evenly and fairly distributed so as not to cause unnecessary congestion in parts

of the network. We explore several techniques to minimize uneven path distribution.
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4.1 Describing the Landmark Hierarchy

In this section, we make a few observations about the Landmark Hierarchy and
write down some additional nomenclature. This will aid us in describing how we specify

the Landmark Hierarchy in the following section.

First, we know the following things from the description of the Landmark Hierarchy

given in Section 3.

1. Every node is an LM, This means that To= N, and all do(id)=0. T; is
the total number of LM; in the network. The parameter d;(id) is the distance
in hops from Node id to the nearest LM;. The parameter d;(id, —id,) is the
distance in hops from Node id, to LM; [id,]. In this paper, we assume that the
function d;(id, —id,) is communicative. That is, d;(id, —=id,) = d;(id, —id, ).
This is possible because we assume full-duplex links with a metric of one in
each direction. This assumption will not invalidate our results when we
introduce non-communicative general metrics into the links because the
structure of the hierarchy, even an operating network, is always determined by
hops. General metrics are used to direct traffic flow once the hierarchy is
established.

2. All rg[id] > D. In other words, the radius of the highest level Landmarks
must be at least equal to the diameter of the network. (Physically speaking, it
cannot be greater than the diameter of the network. However, we can specify
it to be greater than the diameter of the network.)

3. For an LM;[id,] and an LM, ,[id;] to be part of the same Landmark Address,
the LM; ,[id,] must be within r; [id, ] of the LM; [id, ], or,
d; (idy —id, )<r; [id, ]. 1
In general, if a given node LM [id, ] has a Landmark Address of
LMg [id,] , LMg_y[id,] , covvene , LM [id, ],
then

do(LM y[idy | —idy ) <rolid, | , d (LM lid, |—LM[idy ) <r,[id;] ,
....... , dg (LMg [id, |~ LMy _,[id, )< rg_y[id, ).

It follows, then, that we don’t know the following:

1. The number of Landmarks at each level greater than 0, (T;, i = 1,2,3,.....H).
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2. The number of Landmark levels H.

5. The set of LM; [id] for i = 1,2,3,.....H .

We can, however, make the following general observations about these parameters.

First, there is a direct relationship between r;, the average LM; radius, and d;, the

average distance from all nodes to their closest LM;, where

T; N
E;ri [idz ] Eldi (idz )
i = —_———_T‘- d,- == N

(When we discuss these parameters in thel context of our simulation experiments, where
we take the average over many simulations, we use the same notation. In general, the
context determines the set of elements over which the averaging applies. This notation
is also sometimes used to refer to the radii of LM; when all LM; have the same radii. In
this case the [id] identifier is not needed.) Certainly, if LM; have large r;, nodes can be

far away from them, and hence d; can be large.

Second, H, the number of Landmark levels, is related to D and r;. For instance,
consider a network where r, =16 If D = 100, then certainly H must be greater than 4.
However, if D = 16, then H need not be greater than 4, because the radius r, = 18 would

cover the entire network.

Third, there is a direct relationship between the size of the routing tables R;, and
the number of Landmarks T; and the average Landmark radius r;. Clearly, if there are
either many LM; in a network (large T;), or if their r; are large, then nodes will have

more entries in their routing tables.

In particular, let v (z) be a function which determines the number of nodes z hops
or closer to a given node. Then, on the average, every LM; will have v (r;) nodes within
its Vicinity, and each of those nodes will have a routing entry for that LM;. There will

therefore be T; v (r;) routing entries in the network, and on the average
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T;v(r;)
R,' ——N—-— 2

routing entries in each node for each level 1. While v (r;) is clearly dependent on r;, a
general solution for v (r;) is currently not known (Bollabas, 1985). (While the solution for
v (r;) is known for regular structures such as a ring or lattice topology, analysis using
these topologies was not useful as it obscured important characteristics of the Landmark
Hierarchy which were discovered through simulation. Therefore, those analyses are not

presented.)

Fourth, there is an inverse relationship between 7T;, the number of LM; in a

network, and d;. Consider that for each LM; there are, on the average, %—- nodes closer

to that LM; than any other LM;. Then there will exist some d; for which
N
v (2, ) = _j"—— . 3
Clearly, d; and d; are related. If the average distance to an LM; is small, then the

average maximum distance from a node to an LM; niust also be small.

Finally, if we combine Equations 2 and 3, we get

v(r;)
”(di) )

This shows that routing table sizes depend on the radius of the Landmarks, and the

R.‘N

density of Landmarks in the network. In the following sections, we will consider several

ways to specify the Landmark Hierarchy which will affect both r; and d;.

Clearly, from Equation 4 alone, we will not be able to determine the routing table
sizes we might expect for some given network because we have no solution for v (z). We
must therefore experimentally determine R;. Worse still, we are not able to analytically
say anything about the path lengths P; or the path distributions F;. (This is not to
mean that nothing analytic can be said. We were unable, however, to come up with
anything meaningful.) Therefore, everything we learn about P; and F; will be through

experimentation.
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4.2 Specifying the Landmark Hierarchy

By determining for each node id in the network its LM;[id] and its corresponding
Vicinity, we completely specify the Landmark Hierarchy. For the case where the Vicinity
is circular, then the parameter r; [id] is adequate to define a Landmark’s Vicinity. Unless
otherwise stated, the use of the term r; [1d] will imply a circular Landmark Vicinity. The

question then becomes; how do we pick the LM, [id] and their corresponding r, [id]?

There are several ways of picking the LM; [id] and their r; [id]. It is important that
we consider several ways because the different ways exhibit different characteristics with
regards to routing table sizes R, path lengths P, and path distribution F. The method
of specification also affects how the Landmark Hierarchy may be automatically generated

in a distributed network.
In this paper, we consider two basic approaches to picking the LM; [id].

1. Place limits on the values of r; [id] and d; (i1d), then choose the LM; within the
constraints placed by those limits.

2. Randomly pick the LM; based on a given T;, thus determining d;(id), then
determine the r; [id].

Both of these approaches need further explanation. However, it is clear that both of

the approaches require knowledge or the relationship between r;[id] and d;(id). We

therefore first consider this relationship in some detail before discussing the two

approaches.
4.2.1 Relationship between Landmark Radii and Landmark Distances: Case 1

In this section, we establish the basic relationship between r;[id] and d; (id), and
then develop that relationship by considering several constraints which may be placed on

r; [¢d ] and d; (sd ).

In Equation 1, an expression for d;(a —b) for an LM; [a] with respect to an LM;[b]
is given in terms of r;[6]. We are, however, interested in expressing d; (s —b) for any
node a with respect to an LM; [b] in terms of r;[5]. This is important because ultimately
we wish to use the Landmark Hierarchy in an dynamic network environment where the
hierarchy is generated in a distributed fashion on the fly. If we can express the

Landmark Hierarchy in terms of what any node knows about tts own environment, such
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as its distance from the various Landmarks, then we can allow nodes to make decisions
concerning the hierarchy by themselves, thus reducing the amount of coordinated decision

making needed in the network.

Figure 5 illustrates two extreme cases for values of d;, in this case dy(a). In Figure
5, node LM[a ] requires the use of LM,[b], and either LMj[c | or LM,[d] for its Landmark
Address. LM,[b] is some distance d,(a —=b) < r, from LMg[a], in accordance with
Equation 1. In the extreme cases, either 1) the LM, will be in the opposite direction from
LMfa] as LM,[b], as is LMj[c ], or 2) the LM, will be in the same direction from LMg[a]
as LM,[b], as is LM,[d]. In the first case, to satisfy the inequality d,(c —b) < r,[b], we

must have
dofa—e) < rifb] - dy(a—b).
This can be written in terms of a maximum allowable value of dj(a —c¢ ) as:
A (a—e)=r,y[b] - dy(a —b). 5
In the second case, we must have
dP™ (a—c) = ry[b] + dy(a—b). 6

In the case where d;(a =b) = ro[a], 6 becomes d;*** (a —c¢ ) = ry[b]+ro[a]. This can be
generalized to give the absolute maximum distance a node whose address is

LM; [sd, ).LM; _y[id, Jovrerrrn.. LM [id, ] can be from its LM; :

d;oreer bownd(id —sid, ) = r;4[id, ] + rigfidy ] + e + 7olidg ] 7

This places an upper limit on the value of d;. It is interesting to note that if
rifz] < rialy] + riagfz] + e + rola], (1 < ¢ < H-1), then a node could be using an
LM; [id;] which it did not have in its routing table as part of its Landmark Address. In
fact, it is entirely possible that a node may have 0 entries in its routing table for levels of

i,1<i < H-L

The lower bound on d; (node —LM; [id]) is the trivial case where the node is the LM;.
In this case, d; (node —LM; [node |) = 0.
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Figure 5
Relationship Between Landmark Radii and Landmark Distance: Case 2
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In Equations 5 and 6, the directions of LMj[c] and LM,[d] with respect to LM,[b]
and LM[a] are known. We are interested in finding d™* for the more general case where
this is not known. In this case, we must assume the smaller value of d™*, namely that
given in Equation 5. For instance, consider Figure 6, which shows LMjle] in the
opposite direction from LMgy[a] as LMj[c]. The maximum allowable distance from
LMgla] to LMsle ] is dg™** (a —e) = ry[e ] - dy(a —¢c ). In general,

d;"*(node —LM; [id,]) = r;_4[id, ] - d;_s(node —LM;_,[id,]) . 8
In Equation 8, the d;(id) are known. If they are not known, we must assume the

maximum value for d;(id). Then, d,(a—b) in Figure 6 becomes rgyla], and

d* (@ —c) = ry[b] - ro[a]. In general,

d;"*(node —LM; [id, ]) = r;_4[id, | — r;_o[id; ] + ....... + ro[node ] (3 odd)
d;™*(node —=LM; [id,]) = r; 4[id, | — r; o[id, ] + ....... — ro[node | (¢ even)

Now, we may consider in detail the approaches to specifying the Landmark

Hierarchy.
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Figure 6
Relationship between Landmark Radii and Landmark Distance: Case 2
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4.2.2 Landmark Hierarchy Specification Approach 1—Limit Landmark Radii

and Landmark Distances

In this approach, we place limits on the values of r; [id] and d; (id ), then choose the
LM; within the constraints placed by those limits. There are several ways to place these
limits.

4.2.2.1 Single Value for All Landmark Radii and Landmark Distances.
The first way is to set both r;[id] and d4;™**(id) to single values for all nodes in the
network. In other words, ri[1d,] = r; [4dy ] =.eeee. = r; [4d,] and
d;®*(id, ) = d;™**(id} ) =........ = d;™*(id,). In terms of picking the LM; [id ], this way is the
simplest because the only information needed to pick an LM;[id] is d;(id). In other
words, for a Node id to decide if it should be an LM; [id], it is only necessary for it to
determine if its distance to its nearest LM; is less than or equal to the chosen d;=*, If
d; (id )< d;™*>, then Node id does not need to become an LM;. If d;(id)>d;™*, then Node

id or some other node within ¢;™** hops must become an LM;.

For determining the r; and d;™*, we may either 1) pick all of the r; and derive the
resulting d;,™, or 2) we may pick all of the d;™*, and derive the resulting r;. For Case 1,

we can generalize Equation 9 to
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@™ =11~ it cereens + ryo (‘i Odd)

&P = p; = Tt eeeeen —ro (i even) 10
For Case 2, we can generalize equation 8 to
4" = - 40" .
From this, we derive the expression for r; as
ry = .?Tx +d;mu+ ........... +d1. 11
As an example, assume we pick the r;, as ro =2, r; = 4,......... ,5i = 2%, Then

d ™ = 2 (remember that dy = 0), d** =2, d&™ =8, d ™ = 10, and

i+1
3-—512- (i odd)
GO = i .
2" -2 (5 even)
3
244

Similarly, for r; = (i +1)?, d;® = ,and for r; — i+1, d;™= = ;:—J.

2

4.2.2.2 Single Value for All Landmark Radii, but let the Landmark
Distances Vary. The second way to place constraints on r;[id] and d4;™**(id) is to
define single values for all r;, but let d;®**(id) vary depending on d;_;(¢d). In terms of
picking the LM, [id], this method requires knowledge of both the d;(id) and the d;_,(id).
In other words, for a Node id to decide if it should be an LM; [id], the node must know
both its distance to the nearest LM; and its distance to the nearest LM;_,. For cases
where d;_,(id) is small, d; (d ) may be larger. This allows d; to be larger, thus resulting in

fewer LM; (smaller T;) and ultimately smaller routing tables (smaller R;).
For this case, we generalize Equation 8 to

d;*(node —LM; [id,|) = r;_; - d;_,(node —LM;_,[¢d,]) . 12

However, the last term here may vary from 0 to d;%** (node —LM;_,[id,]). In general,

any d; ™ may be as large as that given in Equation 10, or as small as d;®*=r,;_,.
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4.2.2.3 Single Value for All Landmark Distances, but let the Landmark
Radii Vary. The third way to place constraints on r; [id] and d;™*(id) is to vary r; [id],
but fix d;™** over all i. This is done by picking the LM; as though both r; and d;™** were
fixed, and then varying r; [id] according to d;,,(id) and either 1) some Landmark Overage
constant o; [¢d] which determines how many hops beyond the nearest LM; ., the r;[id]
should extend, or 2) some Landmark Coverage constant ¢;[id] which determines how
many LM;,, the r;[id] should cover. In terms of picking the LM;[id], this method
requires that each node has knowledge of d;,,(node —c/* closest LM;,,[id,]) so that the
node may set its r; [id]. Since typically r; [id] is reduced when it is modified, this method
results in smaller R;. In this approach, Equations 10 and 11 apply, with the addition of

an equation to express the modified r; [id] as:

ri [node | = d; 1y(node —s¢; closest LM; ,4[id,])+o0; . 13

4.2.2.4 Vary Both the Landmark Radii and the Landmark Distances. The
fourth way to place constraints on r; [id] and &;™**(id ) is let both the r; [id] and the d; (id)
vary. This is done by picking the LM; [id] as though there were a single value for r;, but
with varying d;(id) as in the second method described above, and then modifying the
r;[#d] as in the third method described above. In terms of picking the LM;[id], this
method requires that each node has knowledge of both the d;(id) and the d;_y(id), plus
knowledge of d; ,y(node —¢; closest LM; ,4[id,]) so that the node may set its r; [id]. Here,
equations 12 and 13 apply.

4.2.3 Landmark Hierarchy Specification Approach 2—Randomly Pick the

Landmarks

In this approach, we randomly pick the LM; based on a given T;, thus determining
d;(id), then determine the r;[id]. In this approach, the d;(id) are automatically
determined when the LM; [id] are picked. The r; [id] are then determined by Equation 13.

4.2.4 Non-Circular (Shaped) Landmark Vicinities

In addition to the above ways of picking the LM; [id] and their corresponding r; [id ],
it is possible to modify the Landmark Vicinities so that they are no longer circular. The
original purpose for this was to improve the path distribution while still keeping the

routing tables small. However, through simulation, we could not show that this was a

28




problem. Nevertheless, we describe the potential problem below so that the motivation
for this aspect of our simulations can be better understood. This potential problem

requires more study.

Figure 7 illustrates shaped Landmark Vicinities. In Figure 7a, the LM;,, is at the
edge of the Landmark Vicinity of LM;. The paths from a large region of the network,
shown by the dotted lines, all converge on the LM;,, and subsequently follow the same
path to the LM;. This very poor distribution of paths penalizes the LM; ,, and all of the
nodes and links between it and the LM;. However, this represents efficient use of

network resources overall because r; is at a minimum, resulting in small routing tables.

In Figure 7b, the LM; ,, is closer to the LM; (or, conversely, r; is larger), resulting in
a fair amount of Landmark Overage. In this case, the paths are more spread out,
resulting in good (although still not as good as non-hierarchical routing) path
distribution. The penalty, however, is paid in terms of the size of r;, resulting in large

routing tables.

In Figure 7c, the LM; ,, is positioned the same as in Figure 7a, but the Landmark
Vicinity is extended around the area where the LM;,, is. This results in a fairly good
path distribution without the inefficiencies seen in Figure 7b. This extension can be
generated in a distributed fashion, and so is valid for use in a dynamic Landmark

Routing environment.

When we define a Landmark Vicinity Extension, we define it in terms of hops from
the Landmark around which the Extension extends, For instance, in Figure 7c, we say
that the extension for the LM; extends the r; [id] ¢; [id] hops around the LM; ,,.
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Figure 7
Landmark Vicinity Extension Example

7a: Poor path distribution, 7b: Good path distribution,

small routing tables large routing tables

7¢: Good path distribution and small routing tables

using Landmark vicinity extension
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5.0 LANDMARK HIERARCHY STATIC SIMULATION DESCRIPTION

To better understand the characteristics of the Landmark Hierarchy, we ran static
simulations. By static, we mean that time was not an element in our simulations. This

section describes the simulations.
5.1 Overview
Our simulations went as follows:
1. Generate a network to be simulated.
2. Create a Landmark Hierarchy for that network according to input parameters.
3. Measure routing table sizes, paf,h lengths, and path distributions.
4. Analyze measurements.

Our approach to analyzing the Landmark Hierarchy was to do enough simulations
so that any individual parameter could be isolated by averaging the results over many
simulations where the parameter of interest was held constant, but other parameters

varied.
The rest of this Section discusses each of the four parts of the simulations.
5.2 Generating Networks

Our simulations were run on 36 networks. The 36 networks come from all
permutations of network parameters of 1) 200, 400, and 800 nodes; 2) average node
degrees of 2.4, 4, and 6; and 3) and diameters of 30, 40, 50, and ‘“‘very small”—the
smallest diameter which we could generate of a network with a given number of nodes

and node degree. Within these constraints, the networks were randomly generated.6

The nomenclature used throughout this paper to describe a network is <number of
nodes, node degree, diameter>. For instance, a network with 400 nodes, a node degree of
2.4, and a diameter of 40 is 400,2.4,40. The networks with very small diameters are:
200,2.4,18; 200,4,8; 200,6,6; 400,2.4,22; 400,4,9; 400,6,7; 800,2.4,25; 800,4,11; and 800,6,7.
The average diameter of the very small group is 12.56 hops.
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We used an original technique for generating the networks while independently
controlling the three parameters—number of nodes, node degree, and diameter—based on
the loop-span network model. The loop-span network model is a derivation of the
chordal ring (Arden, Lee, 1981; Doty, 1984). To our knowledge, this is the first published
technique for automatically generating networks while independently changing these
three parameters. Previous work allowed independent control of only the number of
nodes and the average node degree (Callon, Hagouel, Sparta). Appendix B describes in
detail the loop-span network model and how it can be used to independently control

these parameters. We give a brief description here for completeness.
5.2.1 Automatically Generating Networks Using the Loop-span Network Model

A loop-span network consists of a Hamilton circuit, called the loop, and additional
links bridging the Hamilton circuit, called spans. The loop, then, is a circular
configuration of N nodes 1 through N, and N links, where Node 1 is connected to Node
2, Node 2 to Node 3, and so on until node N is connected back to Node 1. The loop

alone has an average node degree of 2, and a diameter of 2£_|, where | is the floor function

(for example, 2.5] = 2). Now by adding an additional L -N links (spans) to the loop, we
shorten the diameter of the network. In general, we can make the diameter much shorter
if we add long spans, and make the diameter a little shorter if we add short spans. The
length of a span is a measure of the number of nodes in the loop that the span bridges.
For instance, a span between Nodes 2 and 4 would be a span of length 2. The value of a
span is based on the smallest number of nodes it bridges. Therefore, a span between
Nodes 2 and 20 would be of length 18 if there were 36 or more nodes in the network, but

would be a span of only 2 if there were, say, 20 nodes in the network.’
By specifying 1) the number of nodes in a network, 2) the number of links or,
equivalently, the average node degree (C = %—, where C is the average node degree), and

3) the length of the maximum span in the network, one can control the diameter of the

network while holding the number of nodes and links constant.

7A Hamilton circuit is a path through a network which visits every node exactly once, and returns
to the starting node.
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5.2.2 The Network Generation Algorithm

The algorithm for generating networks is simple. First, create the loop of N nodes
and N links. Then, add L -N spans, with the span lengths chosen uniformly among all
possible span lengths from the minimum possible (2 hops) to the maximum specified span
length ¢™*. The spans are added by randomly picking a node and checking to see if the
node already has a span of that length, or has the maximum allowable number of links
(12 in our simulations). If neither check is positive, the span is added. Otherwise,
proceed is ascending order around the loop until a node is found with neither check

positive.
5.3 Creating the Landmark Hierarchy

As described in Section 4, there are two approaches to specifying the Landmark
Hierarchy, 1) assign the Landmarks according to values of r; and d;, and 2) assign the

Landmarks randomly. Within Approach 1, there are four types,
a. Single value for all r; and ¢;™*,
b. Single value for all r;, but let d;™**(id ) vary,
c. Single value for all d;™** but let r; [id] vary,
d. Vary both r; and d;™*

Of the Landmark creation techniques which allow for a variable r;, it is further
possible to i) shape the Landmark vicinities and either, ii) specify the number of LM; s +1
which are within r; of an LM; (C;), or iii) specify the overage of an LM; vicinity over its

nearest LM; ,; (o;).

In Approach 1, we attempted to assign Landmarks so that they were evenly
distributed throughout the network, and so that there were as few Landmarks as possible
within the specified constraints. The algorithm for assigning the Landmarks is given in

Figure 8.

Notice in the third FOR statement, the process continues until there is only one LM
sub i at the highest level. The reason for this is that it is very easy to truncate a
distributed Landmark Hierarchy creation algorithm at this point, because there are no

more Landmarks with which to run an election. However, we did experiment with
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Figure 8
Algorithm for Assigning Landmarks in Simulations

FOR
each node N, assign a Landmark priority number pri (N) (either randomly or
biased according to the node degree of each link).

FOR
each node N, make the node an LM, and assign each node the appropriate r,.
FOR
each hierarchy level 1 =1 and up, while there is more than 1 LM; at each level:
FOR
each node N until all nodes are either an LM; or disqualified from becom-
ing an LM;:
IF
N is disqualified an LM;_,
OR '
N is an LM, ,,
AND
N is within 4;™*(N) of an LM; (i.e., & (N) < d;™(N), where
d;™*(N) is fixed for all N in approach 1a, and in approach 1b and 1¢c
d;™(N)=r;_y - d;y(N), where in approach 1lc r;_; is fixed to some
target value before being adjusted later on),
THEN
disqualify N from becoming an LM;,
ELSE IF
4 (N) = d;"*(N)
ND
pri(N) is greater than the Landmark priorities for all LM;_; within
d;®*(N) of N which are not disqualified from becoming and LM;,
THEN
make N and LM;.
END FOR
END FOR

changing that to a higher number, thus causing multiple Landmarks at the highest level.
Incidentally, this algorithm is very close to an algorithm that could be used in a

distributed environment the create the Landmark Hierarchy.

In Approach 2, Landmarks are randomly assigned to each node for each hierarchical

level until the specified number of Landmarks T; for that level are assigned.

After the Landmarks are assigned, each Landmark LM;[id] is given an r;[id]. In
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Approaches 1a and 1b, the r; are fixed for all hierarchy levels s. In Approaches I¢, 1d,
and 2, r; [id] = d;_y(id —c;PclosestLM; ;) + o; .

5.4 Landmark Hierarchy Measurements

After creating the Landmark Hierarchy, several measurements are made on the
hierarchy. First, the number of hierarchical levels H, the number of Landmarks at each

level T;, and the total number of Landmarks T are counted.

Second, the average routing table sizes for each level R;, the average total routing
table sizes R, and the maximum and minimum routing table size R;™*, R™*, R,™=* and
R™® for the network (one simulation) are calculated. (For multiple simulation
experiments, the average of these maximums and minimums are calculated.) Nodes will
not contain routing table entries for levels lower than the i* level of an LM;. For
example, if a node is within the vicinity of an LM, (which by definition is also an LM,,
LM, LM, and an LM,), then it will only add to the statistics on R, not R, through R,.
In a real Landmark Routing implementation, a node may (or may not) store all instances
of a single Landmark separately. However, it will still only require one message over a
link to update all of the separate entries. Therefore, our method of counting routing

table entries accurately reflects link overhead.

Third, the average distance d; from all nodes to their closest LM;, and the average
r; and v (r;) for all LM;, are calculated for all 5.

Fourth, several statistics on path lengths are collected. The average path length
between all node pairs for both the shortest path P** and the path used in the Landmark
Hierarchy P'™ are calculated. These statistics are also kept for each hierarchy level,

based on the hierarchy level that was used for the routing decision on the first hop from

Im

the source node. Also, the ratios P = -1;7— and P; are calculated. Finally, the longest
path for each level is recorded.

Last,. statistics on the distribution of paths F; are calculated. This is done by
counting the number of paths which traverse each node, and then averaging these values
for the LM; at each level ¢. These statistics are presented two ways. First, all nodes are
ranked from that with the least traffic to that with the most traffic. Then, for each level
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i, the average percentile ranking F?* for all of the LM; at that level is calculated. This
is done because the loading varies so much from node to node that actual values are less
useful than a ranking. Second, for each level i, the ratio of the average number of paths

for each LM; over the average number of paths for all nodes F/® is calculated.

Table 2 summarizes the statistics collected in the simulations.

Table 2
Statistics Collected in Simulations

Statistic Nomenclature
Number of Hierarchy Levels H
Number of Landmarks T;
Average Routing Table Sizes R, R;
Maximum Routing Table Sizes R ™ R,
Minimum Routing Table Sizes Rmin R, min
Average Distance to Landmark d;
Average Landmark Radii ;
Average Nodes Covered by Landmark v (r;)
Average Shortest Path Lengths Pk, psh
Average Landmark Path Lengths pim, P;","
Increase in Path Length P = ;;T’ P;
Maximum Landmark Path Lengths pph max plm max
Paths Through Landmarks (percentile) Fper
Paths Through Landmarks (above average) | F/*

5.5 Landmark Hierarchy Parameter Values

In this section, we give the parameters used for most of the Landmark Hierarchy
simulations. These parameters are summarized in Table 3. Other isolated simulations
with different parameters were done to test specific variations, but these were not

included in the main body of experiments.

Table 3 is divided into several tables, each listing the parameters which apply to
given sets of approaches. The parameters were chosen for learning as much as possible

about the Landmark Hierarchy, while staying within the constraints of practical choices.
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Parameters Used in Simulations

Approach 1a: Fix r; and d;™>

Approach 1lc: Vary r;, Fix 4,2

Parameter | 1=0 | =1 | =2 | i=3 | i >3 | Nomenclature
r: (initial) | 2 4 8 16 | 2¢+ h1
d; =™ 0 1 2 4 2i-1
Approach 1b: Fix r;, Vary d;™**
Approach 1d: Vary r;, Vary 4,®*
Parameter | +=0 | ¢=1 | §=2 | i=3 1 >3 Nomenclature
7§ (initial) 2 4 8 16 2f+1 h2
d; ™ 0 <1 <4 <8 <2
r; (initial) 1 3 5 8 2! h3
d; = 0 <1 <2 <3 | <2
Approach 1c: Vary r;, Fix ¢,
Approach 1d: Vary r;, Vary d;™*
Approach 2: Randomly Pick LM;
Parameter | i=0 | =1 | =2 | =3 | +>3 | Nomenclature
o 0 0 0 0 0 ol
0; * 0 1 2 2’ 02
0; * 0 0 1 i -3 03
€ 1 1 1 1 1 cl
¢ 2 2 2 2 2 c2
¢ 3 3 3 3 3 c3
€; f'o/l fl/l 7'2/1 fs/l f',‘/l . el
¢ ro/2 | r1/2 | raf2 | r3f/2 | 7;/2 e2
e; ro/3 ri/3 | r3/3 | rs/3 ri /3 e3
* Use fixed r; (usually 2) instead of o;
Approach 2: Randomly Pick LM;
| Parameter | =0 | i=1 | §=2 =3 1 >3 Nomenclature
T; N N/2 | N/4 | N/8 | N/2¢ t2
T; N N/3 | N/9 | N/21 | N/3 t3
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The nomenclature listed in Table 3 allows us to label each simulation experiment by the
parameters used. For instance, if we simulate a 400 node network with node degree 4
and diameter 40 using Approach lc with hierarchy parameters (; and d;™*) h2, overage
(0;) 02, and a vicinity extension (e¢;) of e2, then we label that experiment

400,c4,40:1c,h2,02,e2. In what follows, we explain our choices for each of the parameters.
5.5.1 Landmark Radii and Distance to Landmark

For all hierarchies in Approach 1, the Landmark radii r; and distances d;®** are
chosen as powers of 2. The idea behind this choice is to prevent there from being too
many landmark levels in the hierarchy for networks with large diameters—a condition
which would occur if the values of r; and d;™* increased linearly with i. As it turns out,
we did experiment with linear increases for a few isolated simulations, but did not use

these for the main body of experiments.

For Approach 1a, we chose r; to be 4 times greater than d;™>* This provides a
healthy amount of overage (see Equation 10 and subsequent example). We chose ro = 2
because it allows for more complete local network information. This information may be
useful in dealing with local problems, such as routing around broken links. It is
interesting to note that this was the hierarchy that we originally thought would be
appropriate for the Landmark hierarchy in all'situations, and initially was the only

hierarchy simulated.

For Approach lc, the same parameters were used, but r; was modified after the
Landmarks were assigned. For Approach 1b, the same r; is used, but now d;®* is
allowed to be as high as one-half r;. For Approach 1d, an additional level was added
below r; = 8, and r, was reduced from 2 to 1. This was done because it was discovered

that the routing table sizes are effected greatly by entries at those lower levels.
5.5.2 Adjusting the Landmark Vicinity

This capability is represented by the third table in Table 3. The parameters o; and
¢; are used to change the size of r; after the Landmarks are assigned. The parameter ¢;

is used to shape the Landmark Vicinity.
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For ol, there is no overage—the edges of the Landmark Vicinities for an LM; fall
right at the LM;,;. For 02 and o3, the overage increases in powers of 2, but at higher
levels than r;. This makes the overage a percentage of r;, which is also incremented in

powers of 2.

The Coverages cl, c2, and ¢3 cover 1, 2, or 3 LM; respectively at all levels. From a
dynamic network operation point of view, more coverage adds robustness to the
hierarchy. It means that a node may lose its association with one LM;, but will still
others which it may use in its address. The multiple LM; may also be used

simultaneously to disperse paths, either for distribution of loading, or for survivability.

Notice that we do not allow for the specification of both o; > 1 and ¢; > 1 (o1 is
the default when c2 and ¢3 are used, and cl is the default when 02 and 03 are used).
There is no reason in practice why both couldn’t be independently varied. We didn’t do

it because varying both simultaneously would obscure the effect that either was having.

The Vicinity Extensions ¢; are also proportional to r;, with el being the largest

extension and e3 being the smallest.
5.5.3 Adjusting the Number of Landmarks

In Approach 2, we pick the number of Landmarks T; at each level. We specified
geometric progressions for T; for the same reason we do for r; and d;. For tl, each
increasing level i has half as many LM; as the last level. For t2, each increasing level &

has one third as many LM; as the last level.
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6.0 RESULTS OF SIMULATIONS

We initially did 756 simulations; 21 different hierarchy parameter combinations on
36 networks each. These simulations make up the main body of our experiments. In our
analysis, we consider each simulation only once, rather than take the average of several
identically configured simulations. For each experiment we take the avérage of multiple
simulations where one parameter (the one of interest) is held constant. Normally, we do
not include the networks with very small diameters in the set of averaged simulations.
This is because, since their diameters are different for different numbers of nodes and
different node degrees, we often cannot use them without skewing the results. Therefore,
we only use the simulations with the very small diameters when 1) comparing them
against other experiments where the diameter is held constant, or 2) when considering

them individually.

This main body of simulations provides the basis for testing the impact of
differences in networks or differences in hierarchies. In addition, we run several other
simulations when needed. These additional simulations are done on a limited basis, and
therefore are not included in the averages done with experiments from the main body of
simulations. The parameters for these simulations are given where the simulations are

discussed.
8.1 Variation Between Individual Simulations

To determine the variability between individual simulations, we ran one simulation
20 times, each time using a different random number generator seed digit to obtain
different results. For this test, we chose the simulation 200,2.4,vs:2,t3,01,e3. This
simulation is likely to exhibit as much variability as any simulation because 1) it uses
the smallest network, and so any variation between individual nodes will be greater in
proportion to the total number of nodes, 2) it uses the smallest number of links, 3) it uses
a random process of choosing Landmarks, and 4) of the random approaches, it has the
smaller number of Landmarks.

We calculated the mean, median, and standard deviation for both the routing table

Im

sizes R and the path length increases for all twenty simulation runs. For the

Puh

routing table sizes, we got a mean of up = 26.29, a median of mp = 25.72, and a standard
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deviation of op = 2.04. For the path length increases, we got a mean of pp =1.11, a
median of mp = 1.11, and a standard deviation of 0P = .015. These results tell us two
things. First, the mean is a useful value for characterizing the results of multiple
simulations. Second, for a single simulation, we have 95 percent confidence that the
result will be within about 15 percent (two standard deviations) of the routing table size,
and within 3 percent of the path length increase. For the experiments which take the
average multiple simulations, our results will be even more accurate, depending on the
number of simulations. The smooth trends in the data in our large body of simulations

also supports the statistical significance of our simulations.
8.2 Presentation of Experiment Results

Most of our results are presented in tabular rather than graphical form. This is
done for three reasons. First, we usually present enough data, or the differences between
different datum are small enough that a graph only muddles up the presentation.
Second, the tables allow for much more data to be presented, even data which we may
not discuss. This allows the reader to draw his or her own conclusions. Third, it is
usually adequate to simply observe general trends or specific values in the data. Tables

are adequate for this.

When it is necessary to show data graphically, to observe shapes of curves for

instance, then we do present the data that way.
6.3 Broad Comparison of Hierarchy Types

Table 4 lists the experiments and gives the results for a broad comparison of
hierarchy types. Each column in Table 4 gives the average of the hierarchy type over 27
networks (36 networks minus the 9 networks with very small diameters). The *’s in the
network type positions of the experiment descriptions imply an averaging over all such

parameters. Two of the parameters have a ranking associated with them; R and

im
P = l;'h . The columns in Table 4 are in order of the R ranking. These results give us

a comparison of the various Landmark Hierarchy approaches. The following sections

analyze Table 4.
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Table 4
Hierarchy Comparison Simulations and Results

H R P |FPe
R Rmin Rmax

*,*,*:lc,hl,ol 7.67 |1 |14.50 | 6.33 |25.00 |19{1.16 | 0.54
* % %:1d,h2,01 7.00| 2 |14.82|6.37 |25.30 |18{1.15 | 0.55
* % %:1d h2,01,e3 |6.96 |3 (17.87 | 8.44 [30.96 [17]|1.14 | 0.48
* % %:1d h2,01,e2 [6.93|4 [18.37|9.19 |31.26 |16(1.14 | 0.48
* % %:2t2,01,e3 9.00 | 5 [18.85 | 8.37 |34.70 |21[1.17 | 0.57
* % %:2.t2,01,e2 9.00 | 6 |19.03 | 8.37 |35.81 |201.17 | 0.57
* % %:9.t3,01,e3 6.00 | 7 |20.21 | 9.00 |38.07 |15|1.14 | 0.59
* % %:2 t3,01,e2 8.00 | 8 [21.16 | 9.44 |39.85 |14 [1.14|0.59
* % %:1d,h2,01,el |7.00|9 22.02 [10.63 [36.30 [12]1.11 | 0.44

* % %:1d,h3,03,e3 |7.93
* % %:1d,h2,02 7.00
* 0k %:2,t2,c2 9.00
* % %:1d,h3,0l,el |[7.96

[
S

22.12 |10.93 136.96 |11]1.11 | 0.48
22.90 {11.26 |36.70 |10(1.11 | 0.48
22.98 |11.26 |39.59 | 8 |1.10 | 0.58
23.26 |10.70 {37.70 | 7 [1.10 | 0.41

|
[N

L
o

a
<o

*#% #2490l el  [9.00 |14 [24.40 [10.96 |42.00 |15 |1.13 | 0.54
* % %:1d,h2,03,e2 (6.96 |15 |24.81 [12.07 |42.00 | 9 |1.11 | 0.47
* % %9 £3c2 8.00 |16 |26.40 |12.56 [44.93 | 5 [1.00 | 0.58
*+% %9301 el  |6.00|1727.14 [12.52 [46.59 | 6 [1.10| 0.54
* % %19 £2 3 9.00 |18 |30.84 |15.81 {50.30 | 4 |1.08 | 0.55
* % %:9 £3,c3 8.00 |19 |35.50 |18.93 |58.15 | 3 |1.06 | 0.53
* % #:1b h2 7.00 | 20 |36.38 |19.52 {54.07 | 2 |1.05 | 0.44
* % %:1a h1 7.67 |21 |46.88 |29.00 |84.44 | 1 [1.03 | 0.41
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8.3.1 Strong Inverse Relationship Between Routing Table Size and Path
Lengths

The first thing we notice is the strong inverse relationship between the average

routing table sizes R and the increase in landmark path length over shortest path length

im
P = '}}:_.'E‘ This relationship is remarkably consistent. The product R (£-1) for all

experiments in Table 4 yields a standard deviation of 0.42 on a mean of 2.51. We take
this strong consistency (small standard deviation) to mean that these hierarchies perform
approximately the same (unless of course one strongly prefers small tables to small paths,
or vice versa). We see From Table 5 that this product will change with changes in the
network parameters (number of nodes, node degree, and diameter). Also, the product is
not stable for very small 2 or very small R (notice that R(P-1)=1.41 for :1ahl).

However, for reasonable values of R and P, the product is surprisingly consistent.

The results for R and P in Table 4 do not imply that there are no advantages of
one Landmark hierarchy over another. The best hierarchy to use depends on the
circumstances in a network. For instance, if a routing protocol is used that requires very
few updates, and network nodes have sufficient memory, then one of the hierarchies with
a large R and small » may be the most efficient. The opposite also holds true. It is
good, however, that the specification of the Landmark Hierarchy allows for quite a bit of
latitude for adjusting its performance to fit a certain environment. In our experiments R
varied over an order of magnitude of 3, and P varied over an order of magnitude of 5.
This variation could be further increased with larger R smaller P, because one can make

Landmark Vicinities arbitrarily large.

We see from Hagouel’s study of the area hierarchy that this sort of adjustment may
be made for the area hierarchy as well, namely by adjusting the average number of sub-

areas in an area.
8.3.2 Large Variance in Routing Table Sizes

In Table 4, the averages of the maximum and minimum routing table sizes (R™*
and R™" respectively) are shown. These were calculated by taking the maximum and
minimum size routing table in each network, and then averaging all of those for each

hierarchy type.
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R™~ for all entries in Table 4 is 3.53 (with a standard deviation of

The average of R

0.58). So, depending on where in a network a node is, it may expect to have routing
table sizes ranging over a magnitude of around 5.3 (the mean plus three standard
deviations). This would lead to increased routing traffic on links in some areas of a
network, a condition which network designers must be aware of, and which will require
more study.

Rnin

If we compare for Approaches 1 and 2, we see that Approach 2 has an average

range of 3.78, while Approach 1 an average range of 3.31. This shows a small increased

max
variability in the random approach, which is expected. If we compare %ﬁ for the first

10 columns in Table 4 (small R) with the last 10 (large R), we get 3.87 and 3.23

respectively. This shows a small increased variability with small table sizes.
6.3.3 Path Distribution

The values for path distribution (F*") do not have any strong trends. Recall that
this value shows how the traffic passed by a Landmark node compares with that passed
‘by a non-Landmark node. The mean for F* over all experiments is 0.51 (51st
percentile), with a standard deviation of 0.06. This shows that the traffic carried by
Landmarks is virtually the same as that carried by non-Landmarks. It also shows that
path distribution is fairly stable between different hierarchy types, and is not a strong
design consideration when picking hierarchy types. We can, however, find two trends in
F? from Table 4.

First, the mean for the experiments using Approach 2 (random assignment of LM;)
is 0.56, while that for Approach 1 is 0.47. Both of these values are slightly less than one
standard deviation away from the overall mean. Random assignment performs slightly
worse than what might be called uniform assignment. It is interesting to note, however,
that random assignment performs about the same as uniform assignment with regards to

routing table size and path lengths.

Second, the mean for the first 10 columns is 0.53, and 0.50 for the last 10 columns—

almost no difference. This lack of difference is good, although it is a surprise to us. It
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means that the small amounts of overage of a Landmark Vicinity does not appear to have

the bad effect we expected.

It is interesting to note that in the experiment listed in the last column in Table 4,
the Landmarks carry a disproportionately small percentage of the traffic. In fact, this
value, 0.41, is further from the mean (nearly two standard deviations) than any other
F? in Table 4. This is a little distressing in that, if these Landmarks are getting a
smaller than average percentage of traffic, other nodes are getting a larger than average
percentage of traffic. The value here, however, is not low enough to warrant focusing on

this potential problem any more at the moment.

We are also interested in seeing whether the Vicinity Extensions have any effect on
path distribution. For hierarchy types *,**:2,t2,01,e3 and *,**:2,t3,01,e3, we have an
average F* of 0.58. For hierarchy types ***:2,t2,01,el and **,*:2,t3,01,el, we have an
average F* of 0.54. Contrary to our expectations, the larger Extension performed worse
than the smaller extension, although the difference is not great. We conclude then that

from this analysis we cannot find any advantage to Vicinity Extensions.

One possible explanation for the lack of difference is as follows. It seems likely that
there are two opposing influences on path distribution. On the one hand, when a packet
is being routed towards an LM;,,, it will have the effect of putting more traffic through
the LM;,, than what would be normal. On the other hand, when the packet reaches the
point where it routes toward an LM;, it could be that this causes the packet to be
diverted away from the LM;,,, causing less traffic to pass through the LM;,; than what
would be normal. The second effect would then cancel out the first effect. If an LM;,, is
close to the edge of the LM; Vicinity, then more traffic would initially be routed towards
it. However, this also means that the LM, is further away from the LM;, so that when
traffic is finally diverted towards the LM;, it is diverted away from the LM;,; more
sharply than it would if the two LM ’s were close together.

More study is required to verify this explanation. Fortunately, none of the path
distributions are bad, and so are not of great concern. We note also that path
distributions will change, and in particular even out, when metrics (other than 1) are

given to the links—especially when those metrics are traffic dependent.
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6.4 Broad Comparison of Network Types

For this comparison, we ran 10 experiments, each experimeht isolating one network
parameter—number of nodes, node degree, or diameter. Table 5 lists the experiments
and gives the results. As with Table 4, each parameter has been averaged over all of the
simulations indicated by the experiment (for instance, all simulations with 200 nodes).
Note again that the networks with “very small” diameter were not included in the
averages derived for the experiments which isolate number of nodes and node degree For
these, only the networks with diameters of 30, 40, and 50 were used. Table 5 does not
have a ranking like Table 4. Instead, the experiments are considered in groups of like
parameter type; for instance, the three experiments where the number of nodes changes,

or the five experiments where the diameter changes. (The double bars in Table 5 indicate

this grouping.)

Table 5
Network Comparison Simulations and Results
H R B |Frer
R Rmin R max
200,*,*:* 16.92 |17.84 {10.93 |26.67 |1.10 | 0.50
400,* *:* 17.38 [23.60 |11.71 |39.73 1.11]0.51
800,*,*:* |7.86 (31.46 (13.31 |55.13 |1.14 | 0.53
*,2.4,*:* 7,37 (23.30 |10.45 |44.30 |1.12 | 0.51
*,4,%*  17.3923.96 [11.85 |39.12 |1.11 | 0.52
*,6,*:* 7.39 (25.64 [13.66 |38.11 {1.12} 0.51
*,*,Vs:* 6.41 |43.47 [16.18 |78.43 |1.28 | 0.82
"‘,*,30:"' 7.22 |26.71 {12.42 |45.61 {1.13 | 0.53
*,",40:* 7.43 [23.56 {11.43 {39.20 {1.11 | 0.50
*,*,50:*  17.51|22.63 |12.11 |36.72 |1.10 | 0.51
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6.4.1 Number of Hierarchy Levels

The average number of hierarchy levels H is increasing with number of nodes. This
increase is very nearly linear, showing approximately an additional half of a hierarchical
level for every doubling of the number of nodes. This is at first glance surprising,
because we stated in Section 4.1 that H should only be dependent on network diameter
and r;. However, this trend is entirely due to the Approach 2 hierarchies. Since
Approach 2 assigns a certain number of Landmarks T; at each level until there is only
one LMy at the highest level, the number of nodes will directly impact the number of
levels. When we run the experiments using only Approach 1 type simulations, we get

Hao = 7.29, H oo = 7.27, and Hgpy = 7.27—virtually no difference.

We see also that there no change in number of hierarchy levels due to changing node

degree.

‘With regards to the group of experiments isolating diameter, we see a clear increase
in the number of hierarchical levels H with increasing diameter. This is the expected

result, based on the discussion in Section 4.1.
8.4.2 Routing Table Sizes

We see that all three groups of experiments in Table 5 have an effect on routing
table size, although the effect from changing node degree is less dramatic, and the effect
from changing diameter is more dramatic. Routing table sizes increase with increases in
both the number of nodes and the node degree, and decrease with an increase in network
v(r;)
(&)

makes sense that the function v(z) is dependent on the number of nodes, the node

diameter. Recalling Equation 4, routing table size is dependent on the ratio It

degree, and the diameter. If the node degree and the diameter is held constant, then
obviously the number of nodes within x hops (v(z)) will increase. Likewise, for a given
number of nodes and a given node degree, if the diameter increases, the v(z) will

decrease.

It is apparent, however, that either 1) the function v (z) is nonlinear with z, or 2) r,

and d;™* are affected by the three network parameters tested. As it turns out, both are
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true, although the nonlinearity of v (z) is the major contributor to changing routing table

sizes. In Section 6.3, we explore the function v (z) in more detail.

We see from Table 5 that more nodes increase the routing table size. This increase
in R is not linear with the doubling of network size. If it were, we would have some
indication that R = O (logN). Unfortunately, the increase in R is greater than linear.
On the good side, the increase in R is certainly not the same as that of the number of
nodes. Also, these experiments are for non-changing diameter. In real networks,
diameter tends to increase roughly with the log of the number of nodes [McQ80]. Since
larger diameters means smaller routing table sizes, we expect to see some improvement in
the increase of R with increasing N over that shown in Table 5. In section 7.3, we
determine the general relationship between R and N.

Rmin
We also notice that the ratio

— is increasing with node size. The indication,

then, is that there is greater variability in routing table sizes as the number of nodes

grows. In addition, we see that the average maximum routing table size is increasing
max

faster than the average routing table size. For 200,**:* RR

= 1.49, for 400* *:*,

lex lex

= 1.88, and for 800**:* = 1.75. This increase, however, appears to be

leveling off, and so should not be a significant concern for increasing numbers of nodes.

It is interesting to note the surprising result that, for increasing node degree, R and
R® jncrease slightly, but R ™% decreases. We believe that this is because the number of
nodes connected to a node will have a larger impact on v (z) in networks with small node
degrees than in networks with large node degrees. If a node in a network with node
degree 3 has 4 nodes connected to it, it will see a dramatic difference in v (z) as compared
to a node with only 2 other nodes connected to it, especially for small z. However, if a
node in a network with node degree 6 has 7 nodes connected to it, it will not see that
much difference in v (z) as compared to a node with 5 nodes connected to it. The reason

for this will be more clear after reading the analysis of v (z) in Section 6.3.
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6.4.3 Path Lengths

Im

For path lengths (A = %.—h—), we see trends for number of nodes and diameter, but

not node degree. The trends are in the same direction as they are for routing table
sizes—namely, larger path lengths for increasing number of nodes, and decreasing path
lengths for increasing diameter. This is different from what we saw in Table 4. There,
routing table sizes consistently decrease with increasing path lengths. In Table 5,
routing table sizes and path lengths vary together, resulting in undisputable better
performance in networks with small number of nodes, small node degrees, and large
diameters. One would of course expect better performance with a small number of
nodes—with the Landmark hierarchy as well as the area hierarchy and non-hierarchical

routing. In Sections 6.7 and 6.10, we study path lengths in more detail.
6.5 Analysis of Function v(x)

It is clear from the preceding discussions that the behavior of the function v (z) (the
average number of nodes within x hops of a node) is very important to routing table size.
In this section, we consider v (z) in detail. To do this, we compared three groups of three
networks each. In the first group, all have network diameters of 36 and node degrees of 4,
but the number of nodes are 200, 400, and 800. In the second group, all have 400 nodes
and node degrees of 4, but diameters of 9, 19 and 36. In the last group, all have 400
nodes and diameters of 22, but node degrees of 2.4, 4, and 6. With these three groups, we
can isolate either the number of nodes, the node degree, or the diameter. For each
network, we calculated v(z) for all z, 0 < z < D. In Figures B1, B2, and B3, we plot
v (z) for each of the three groups. These Figures are in Appendix C.

Each of these plots have been normalized so that the shape of the curves can be
directly compared. First consider Table Bl, where the effect of the number of nodes on
v(z) can be seen. Here we see that the shapes of the curves are very similar, although
there is a slight noticeable difference. The curves are nearly linear, although as it turns
out, that is due to the diameter and node degree chosen. We notice also that the
magnitude of v (z) is proportional to the number of nodes in the network. (This is not

visible because the graphs are normalized. The maximum value for each curve is stated
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below the graph.) We conclude, then, that the number of nodes in a network has a large

effect on the magnitude of v (z ), but only a small effect on its shape.

In Figure B2 and B3, however, we see different curve shapes, some of which have a
v (r;)

@)

strong non-linearity. It is this non-linearity that will cause different values of

different values of r; and d;.

Figures B4, B5, and B6 give plots of v(z) - v (z-1). These graphs show the slope of
the curves in Figures Bl, B2, and B3 respectively. They are also normalized. Here we see
that, for the lines that appear largely linear in Figures Bl, B2, and B3, there is a steep
rise in slope at the beginning before a constant slope is reached. From these curves, we
see that close to a node, there is a rapid increase in the additional number of nodes
picked up for each additional hop away from the node. We call this fan-out. However,
within a few hops, a steady state is reached, whereby roughly the same additional
number of nodes is picked up with each additional hop away from the node. This
continues until the diameter of the network is nearly reached, at which time almost all of
the nodes in the network are picked up, and very few additional nodes are picked up

with each remaining additional hop.

For the case where there is little linearity, such as can be seen by the line for node
degree of 2.4 in Figures B3 and B6, we see a less marked fan-out, and steady state is
never reached. At a point where about half of the nodes in the network are picked up (at
about half of the network diameter), we see a decrease in the number of nodes picked up.
The rate of this decrease is similar to that of the increase—the curve is fairly

symmetrical.

The reason for this fan out is as follows. Consider a network topology where a node
is connected to C other nodes (C is the node degree). Each of those C nodes are in turn
connected to C-1 additional nodes, each of those nodes are in turn connected to C-1
additional nodes, and so on. At each additional hop, we see an exponential increase in

the number of nodes picked up, namely

C X (C-1)! 14

51




where z is the number of hops. It is this exponential fan-out which causes the fan-out

we see in Figures B1 through B6.

In real networks, however, the fan-out sooner or later becomes saturated. This is
because each picked-up node doesn’t necessarily connect to C-1 new nodes. In
particular, some of the links to “new’ nodes will actually connect back to nodes already
picked up. It is the node degree, and the percentage of new nodes, that actually
determine the degree of fan-out. A large percentage of new nodes will result in many
nodes being picked up, resulting in a small network diameter (relative to the number of
nodes), and a curvincy v (z) line. For a given node degree and number of nodes in the
network, a small percentage of new nodes will result in not many new nodes being picked

up, and therefore a large network diameter, and a mostly linear v (z) curve.

Because Figures B1 through B6 are normalized, they don’t give much of an idea of
magnitude. Figures B7, B8, and B9 are non-normalized plots of v(z). Because of the
large difference in scale between the various curves, these are only plotted for the first five

hops. This allows a more detailed view of the initial fan-out.
8.8 Analysis of Routing Table Size by Hierarchical Levels

Now we would like to consider routing table sizes in more detail. For this analysis,
we have two tables, Table 6 and Table 7. Both tables show routing table sizes for all
hierarchical levels. Table 6 shows this over averages for all hierarchy types, similar to
Table 5. Table 7 shows this for three specific hierarchy types and three specific networks.
The three hierarchy types represent small table sizes (:1c,h1,01), large table sizes (:1a,h1)
and something in between (:1d,h2,02). The three network types also represent small table
sizes (800,2.4,153:), large table sizes (800,6,7:), and something in between (800,4,36:), for
800 node networks.

The first thing we notice about Tables 6 and 7 is that most of the routing table
entries come from the first few hierarchical levels. From Table 6, except for the node
degree 2.4 experiment, nearly half of the routing table entries come from the first two
hierarchical levels. From Table 6, we see some evidence that networks with a large fan-
out (small diameter, large node degree) have a larger percentage of routing table entries

in the lower few hierarchical levels. For instance, the Node Degree 6 experiment has 55%
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Table 6
Routing Table Sizes by Network Type

200,*,*:* |537 |3.09 (2.71 (2.47 [1.85 |1.38 [1.21 |1.00 1.00 17.84
400,*,*:* |6.53 |4.25 (3.56 |3.60 [2.50 [1.47 [1.18 |1.42 1.00 23.60
800,*,*:* [8.14 |5.75 (4.73 |5.17 |3.36 |1.98 [1.22 [1.27 1.62 {1.00|[31.48
*2.4,%:* |4.33 |3.12 (3.83 (4.87 |3.60 |1.94 |1.22 [1.21 1.28 {1.00|/23.30
* 4%k 6.72 | 4.73 |3.84 (3.38 |2.11 |1.50 |1.18 |1.26 |1.35 [1.00|[23.96
*.6,%:* 8.99 |5.23 /3.33 (2.99 (2.01 |1.44 (1.21 |1.20 |1.29 |1.00 |[25.64
*,*,vs:*  10.01 (11.16 (8.85 (8.32 (3.10 |1.98 [1.52 |1.42 1.33 |1.00 | (43.47
*,* 30:* 7.42 | 4.92 [4.10 |4.35 [2.90 |1.57 [1.18 |1.29 [1.33 |1.00|/26.71
* % 40:* 6.27 |4.28 |3.62 |3.69 (2.41 {1.62 (1.18 [1.21 [1.34 |1.00([23.56
*, % 50:* 6.36 | 3.88 [3.28 (3.20 |2.40 |1.70 [1.26 |1.19 {1.26 |1.00||22.63

of its routing table entries come from the first two levels, while Node Degree 2.4 has only
32%. This can be seen to a lesser degree in the experiments isolating diameter. Here,
the very small diameter experiment has 49% coming from the first two le\fels, while
diameter 50 has 45%.

From Table 7, we see a similar trend, but with more variation. All of the
experiments with Diameter 153 have contributions to the routing table coming fairly
evenly from all hierarchical levels, although again more so from the lower levels. From
the experiments with Diameter 7 we see the contributions coming more from one or two
levels, but not always the lowest level. In 800,6,7:1c,h1,01, Level 2 is by far the largest
contributor to the routing table. For 800,6,7:1d,h2,02, it is Level 0 (although Levels 1
and 2 still contribute quite heavily), while for 800,6,7:1a,h1, it is Levels 1 and 2. This
heavy contribution comes from the positioning of r; and d; on the steep part of the v (z)

curve, so that v (r;) is much greater than its corresponding v (d;).
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Table 7

Routing Table Sizes for Nine Individual Simulations

R, R
0 1 2 3 4 5 8 7 8 9
:1c,h1,01
800,2.4,153: |2.21 |0.56 |1.85 |1.46 |1.61 |1.33 |0.82 (0.90 [0.99 |1.00|(12.72
800,4,36: 3.61 |2.82 |4.71 |2.68|1.35 (0.81 |0.98 |1.00 17.75
800,6,7: 5.11 | 5.73 (16.83 (8.00 |1.00 36.66
:1d,h2,02
800,2.4,153: |4.12 |1.71 |2.32 |2.31 |2.02 {1.43 {1.15 |1.00 {1.00 17.08
800,4,36: 11.98 | 6.99 | 4.25 |3.101.82 (1.00 |1.00 30.13
800,6,7: 26.08 {19.69 |16.86 |3.00 |1.00 86.63
:1a,h1
800,2.4,153: |4.45 | 1.36 |6.65 |5.61 |5.93 |4.76 |3.61 |2.00 {1.00 |1.00 ||36.36
800,4,36: 12.23 [12.83 [19.64 |9.84 (4.89 ({2.00 |1.00 |1.00 83.43
800,6,7: 26.15 (85.17 (78.00 |9.00 {1.00 99.32

8.7 Analysis of Path Length by Hierarchical Levels

Tables 8 and 9 show paths lengths. They are given for the same experiments as
shown in Tables 6 and 7 respectively. Tables 8 and 9 give the increase in path length for

Landmark paths over shortest path for all hierarchy levels.

The first thing one notices from Tables 8 and 9 is that path lengths are shorter
(compared to shortest path) at the lower levels than at the higher levels. This of course is
what is expected. At the lower levels, routing is based on a finer granularity of
information. At level 0, for instance, routing is based entirely on the destination node.

Therefore, the paths chosen are the same as shortest path.

It appears that many of the path lengths become suddenly much worse at some
hierarchical level. For instance, for *,*,vs:* in Table 8, Level 2 shows a sudden jump
from 1.05 to 1.15, compared with a smaller increase of 1.05 to 1.07 for *,*30:*. From

Table 9, we see this is true for almost all of the entries. For instance, for
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Table 8
Path Lengths by Network Type

P;,m P Im
P P*

200,*,*:* |1.00 (1.03 [1.03 {1.03 [1.05 [1.11 |1.19 [1.25 1.10
400,*,*:* 11.00 |1.05 {1.06 |1.06 |1.07 |1.13 |1.15 [1.17 [1.26 1.11
800,*,*:* 1.00 |1.06 (1.09 [1.09 [1.09 |1.14 (1.20 |1.15 [1.18 [1.30|1.14
*,2.4,*:* 11.00 (1.02 [1.04 |1.08 |1.08 |1.12 [1.18 [1.16 [1.22 |1.29]|1.12
* 4% 1.00 |1.06 |1.07 |1.08 |1.06 |1.12 [1.18 |1.18 |1.22 {1.32]|1.11
*,8,%:% 1.00 {1.07 |1.07 (1.06 |1.06 (1.13 [1.19 [1.21 {1.20 |1.29[1.12
* ¥ vec* 1.00 {1.05 |1.15 [1.27 {1.35 |1.38 1.42 |1.49 {1.57 |1.62||1.28
*,%,30:* 11.00 [1.05 {1.07 [1.08 [1.10 |1.18 1.20 [1.18 [1.24 |1.29]|1.13
*,%,40:* 11.00 (1.05 [1.06 [1.06 (1.06 [1.12 |1.18 |1.17 [1.20 [1.25 || 1.11
*,%,50:* (1.00 |1.04 (1.05 [1.05 |1.05 [1.08 [1.17 (1.19 |1.19 [1.37]| 1.10

800,2.4,153:1¢,h1,01, path lengths are fairly small until Level 8, when suddenly they jump
from 1.05 to 1.27. We are unfortunately unable to correlate this behavior with anything
from Table 7 showing routing table sizes. In fact, from visual inspection of all of the
simulation data, we were not able to find any pattern between these jumps in path

length and any other measured parameters.

When we study the parameters ; and d; in Section 6.10, we see that the ratio I

varies with changes in path length. In that section, we revisit the question of path

length behavior.

It is important to point out that the aggregate path length for all hierarchical levels
in Tables 8 and 9 assumes that there is an equal traffic distribution between all nodes.
In networks where there is much more traffic between nodes which are closer to each
other, the aggregate values for path length will of course improve, because they will be

weighted more heavily by the path length figures for lower hierarchy levels.
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Table 9
Path Length by for Nine Individual Simulations

p/m pim
P,"h Plh
0 1 2 3 4 5 8 7 8 9
:1¢,hl,01
800,2.4,153: {1.00 {1.02 {1.05 |1.05 (1.02 |1.01 |{1.00 1.05 {1.27 (1.38 | 1.11
800,4,36: 1.00 |1.09 |1.20 |1.14 |1.10 [1.15 {1.30 |1.57 1.21
800,8,7: 1.00 {1.06 |1.28 {1.60 |1.76 1.51
:1d,h2,02
800,2.4,153: {1.00 {1.01 {1.03 {1.03 {1.01 |1.00 (1.03 128 1.09
800,4,386: 1.00 |1.05 [1.14 {1.09 {1.05 {1.18 | } 1.14
-800,8,7: 1.00 |1.04 |1.34 155 ¢ 1.36
:1a,h1
800,2.4,153: [1.00 [1.01 [1.02 {1.01 |1.00 {1.00 [1.00 {1.04 | $ | § [[1.01
800,4,36: 1.00 {1.07 [1.07 |1.05({1.03 (106 | | % 1.04
800,6,7: 1.00(1.08/122| § | ¢ 1.13

t This level never used for routing

6.8 Analysis of the Number of Landmarks by Network Type and Hierarchy
Type

In this section, we are interested in considering how many Landmarks are at each

level T; and how many nodes each Landmark covers: ?N—- Recall from Equation 2 that

Tiv(r .
R, = __1;\’_(:_)_, so large —g— results in small R;.

Tables 10 and 11 show T; and —TN— for the different hierarchy types and the different

network parameters respectively. In both cases, the hierarchy types with Vicinity
Extensions are not considered. This is because this data will be used in comparison with
r, later in this section. But the value r; is obscured by the Vicinity Extension, and so

Vicinity Extensions are not included in these analysis. Some of the data in Tables 10
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and 11 is not valid for comparison because some of the individual simulations do not
have data points at higher levels of the hierarchy, causing a shift in the overall value of
N. For Table 10, the hierarchy types are listed in the same order as that given in Table

4—from small routing table sizes to large routing table sizes.

Table 10
Number of Landmarks by Hierarchy Type

T,
(N/T:)

0 1 2 3 4 5 8 7 8 9

* % %:1c,hl,01 |466.87 [159.56 | 90.22 (33.22 [12.48 | 4.19 | 1.70 | 1.00
1.00 | 3.00 | 5.77 [17.41 |45.14 [126.29 (309.88 | %

* % %:1d,h2,01 |466.67 172.74 | 53.81 [20.89 [6.89 | 2.41 | 1.13 | 1.00

1.00 | 2.79 |10.20 (25.72 |72.51 [219.51 | ¢ t
**%:1d,h2,02 [466.87 (172.74 | 53.81 [20.89 |6.89 | 2.41 | 1.13 | 1.00
1.00 | 2.79 |10.20 (25.72 |72.51 |219.51 | % t

* % %:2,t2,c2 466.67 (233.33 |116.67 |58.33 (29.00 | 14.33 | 7.00 | 3.33 (2.00 |1.00
1.00 | 2.00 | 4.00 |8.00 {16.22 | 32.89 |66.87 |155.56 | } b¢

* % %:2,t3,c2 466.87 (155.00 | 51.33 |16.87 | 5.00 | 2.00 | 1.00
1.00 | 3.02 | 9.09 |28.24 (96.30| ¢ ¢

* % %:2t2,c3  |466.67 [233.33 |116.67 |58.33 (29.00 | 14.33 | 7.00 | 3.33 [2.00 [1.00
1.00 | 2.00 | 4.00 |8.00 |18.22|32.89 |66.67 [155.56 | | ¢

* % %:2,t3,c3 466.67 |155.00 | 51.33 (16.67 [ 5.00 | 2.00 | 1.00

1.00 | 3.02 | 9.09 |28.24(96.30| ¢ 1
* % #:1b,h2 466.87 [172.74 [ 53.81 (20.89 |6.89 | 2.41 | 1.13 | 1.00
1.00 | 2.79 |10.20 [25.72 |72.51 [219.51 | ¢ t
* % %:1a hl 466.67 [159.56 | 90.22 (33.22 [12.48 | 4.19 | 1.70 | 1.00

1.00 | 3.00 | 5.77 |17.41 |45.14 |126.29 |309.88 b4

$ Data not valid because of changing IV

Both Tables 10 and 11 have what initially appear to be surprises. In Table 10, we
see that there is no correlation between T; and R;. If there were, then we would see
small values of T; and large values of at the top of Table 10. Instead high and low values

are sprinkled throughout.
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Table 11
Number of Landmarks by Network Type

T;
(N/T;)

0 1 2 3 4 5 6 7 8 9

200,*,s:*1 |200.00 | 75.01 |34.09 |15.21|6.74 | 3.79 | 1.98 | 1.00
1.00 | 2.78 | .79 [16.53 |45.22 | 72.70 |125.15 |200.00

400,*,*:*$ 1400.00 {155.17 | 85.57 {27.23 {11.20 | 4.53 | 2.62 2.20 | 1.00
1.00 | 2.66 | 7.54 |19.94 |56.88 |182.88 |266.67 |240.00 |400.00

800,*,*:*1 |800.00 {307.81 |126.31 |50.59 (19.94 | 8.18 | 3.73 | 3.73 3.00 | 1.00
1.00 | 2.69 | 8.44 |25.01 |75.52 |234.35 |553.85 |436.36 |266.67 |800.00

*9.4,%:*%t (466.67 [192.41 |95.93 |40.53 [15.26| 5.95 | 2.86 | 2.27 | 2.00 | 1.00
1.00 | 2.48 | 5.50 [14.83 [45.92| 1t 1t 1 1 1

* 4%:%t  |466.67 [181.49 |70.42 |27.48 [11.49| 5.53 | 2.89 | 2.27 | 2.00 | 1.00
1.00 | 2.67 | 7.59 |21.46 |83.59| it 1t t#t 1t t

*6,%:*f  [466.67 [164.10 | 59.62 (25.02 [11.12| 5.41 | 2.88 | 2.27 | 2.00 | 1.00
1.00 | 2.98 | 9.69 (2539 (68.12| ti it 1t 1t t#
* % ye:*f  (466.87 [179.28 | 72.04 |27.57 [10.89 | 6.79 | 4.80 | 3.33 | 2.00 | 1.00
100 | 2.68 |10.51 [55.72 | 4t | it 1t # t# 1t
* % 30:*f [466.67 [178.73 | 73.68 |20.99 {11.98 | 5.00 | 2.80 | 3.33 | 2.00 | 1.00
1.00 | 2.75 | 8.15 |22.72 |64.85| {1t 1 it # 1t

* % 40:*f |466.67 |181.80 | 77.33 [31.53 [12.42| 5.77 | 2.83 | 2.17 | 2.00 1.00
100 | 2.63 | 7.15 [19.63 [60.68| 1t it 1t 1t 1t

* % 50:%% |466.87 |177.47 | 74.95 |31.52 [13.48 | 6.12 | 2.99 | 1.93 | 2.00 | 1.00
1.00 | 2.76 | 7.47 |[19.13 [52.09 | it 1t 1t t t#

t Vicinity Extensions not included
3t Data not valid because of changing N

In Table 11, we see trends in all three parameter groups, but all three trends are in

the opposite direction of what is expected. In each case, we see small (FN_) where we

have small R;: in networks with fewer nodes, smaller node degrees, and larger diameters.

On reflection, however, we see that this is not a surprise at all. Recall from
Equation 3 that v (d;)= Tl’ where d; = d;. Then the numerator and the denominator

v (r;)

f R, =
o E @)

are the same function. If R; is large for some given hierarchy it not
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because v (r; ) is large and v (d; ) is small, but because v (r; ) gets large faster than v (d;).

Notice that in Table 10, several pairs of columns are identical. This is because the
Landmarks were assigned the same way for these hierarchies. The difference between

them is in how r; is modified after the Landmarks are assigned.

The sharp-eyed reader may also notice a couple of apparent inconsistencies in Table

11. In the experiments ** vs:* and **,30:*, level 3, we see that the values of T; are

similar, but the values of (TL) are very different. Also notice that for experiment

400,*%,*:* level 7, and experiment 800,**:*, levels 7 and 8, the value of (-TI-Y—) decreases

where it otherwise has been increasing. In both cases, the reason for this is that a large

number of the values of T; are 1, which causes a very high —11,1, twice as high as the case
i

where T; = 2, for instance. For experiments 400,* *:* and 800,* *:* the high —T—]Y—— (that

is, T; = 1) occurred at the previous level.
6.9 Analysis of the Landmark Radii and Distance Between Landmarks by
Network Type and Hierarchy Type

In this section we analyze r;, d;, and -3:—- for different hierarchy types and different

network types. Tables 12 and 13 show this data. As with Table 10, the hierarchies in 12
are listed in the same order as in Table 4—small routing tables to large routing tables.
Also as with Tables 10 and 11, 12 and 13 only consider those hierarchy types with no

Vicinity Extensions.

Table 12 gives us favorable data. Notice that small and large values of r; and d;
appear throughout Table 12 for any given hierarchy level. However, the values g—
consistently move from small to large from the top of Table 12 to the bottom. In other

words, for identical networks, as the routing table R; grows, so the the value ;'— From

Equation 4, we see that this is exactly as we would expect.
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Table 12
Landmark Radii and Landmark Distances by Hierarchy Type

av
LA
av

(”i /d-' )”
0 1 2 3 4 5 8 7 8 9

* % %:1c,hl,01 [1.00(1.90 [3.00 |5.25 {10.09 {20.27 |35.58 |45.00
0.00 [0.64 | 1.20 |2.26 | 4.02 |7.67 [13.99 [22.15
oo |2.96|2.59 |2.35 |2.53 |2.69 |2.57 |2.03

* * %:1d,h2,01 [1.00|2.14 | 4.06 |7.15 [14.70 |30.80 |40.96 [50.00
0.00 [0.57 | 1.43 | 2.61 |5.09 [10.77 |18.83 [25.24
oo [3.79|2.89 |2.78 |2.92 |2.89 [2.20 |1.08

* % %:1d,h2,02 (2.00/2.14 |5.08 | 9.15 |18.70 |35.93 {41.25 |50.00
0.00 |0.57 [ 1.57 | 2.85 |5.38 |10.89 |18.83 |25.24
oo |3.79|3.27 [3.24 |3.52 |3.35 |2.22 |1.98

* % %:2,62,c2 1.66 (2.47 | 3.51 | 5.74 [9.20 |12.51 |24.28 |33.51 (40.00 |40.00
0.00 |0.54 /| 0.98 | 1.69 [2.78 | 4.30 | 6.89 [12.35 |15.80 {18.64
oo [4.55|3.57 |3.31 {3.30 | 2.88 [3.47 |3.00 |2.70 | 2.14

* % %:9 t3c2  |2.01 (3.83 | 7.83 |16.98 [33.47 |40.00 |40.00
0.00 [0.85 | 2.10 |4.22 [10.17 [15.18 |19.42
oo |4.48 |3.864 |3.93 |3.49 [2.95 |2.05

* ok %:2,t2,c3 2.07 |3.07 | 4.71 | 7.25 |11.93 |19.40 |29.30 |35.59 |40.00 (40.00
0.00 |0.59 | 1.19 | 2.06 |3.08 |5.18 |8.29 |13.09 {15.55 |18.66
oo |5.17 (3.94 |3.46 |3.84 |3.74 | 3.81 [3.02 | 2.79 |2.18

* % %:9 t3.c3  |2.53 [4.74 |10.33 |25.98 |35.53 [40.00 |40.00
0.00 |0.91 | 2.13 | 4.39 [10.38 |16.52 [18.65
oo |5.20|4.86 |5.86 [3.85 [2.83 [2.18

* % #:1b h2 2.00 (4.00 | 8.00 [16.00 [31.33 |40.00 (41.25 |50.00
0.00 [0.63 | 1.79 |3.19 |5.77 |11.02 [18.83 |25.24
oo |8.37|4.53 |5.08 |5.50 [3.72 |2.22 |1.98

* % *:1a,hl 2.00 {4.00 | 8.00 |16.00 {31.63 {40.00 |40.00 |45.00
‘ 0.00 (0.86 | 1.28 | 2.43 | 4.19 | 7.77 |14.10 |22.15
oo |6.09|6.50 [6.68 |7.65 |5.32 |2.87 |2.03

L] . .
Notice that this smooth increase in . begins to break up a little at levels 4 and

higher. This is because in this range, we begin to have fewer data points, and not all of

the networks are represented fully, causing a skew in some of these values. Also, in this
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Table 18

Landmark Radii and Landmark Distances by Network Type

r.

a9
0
ao

(e /g )

4

5

200,* *;*

1.86
0.00

3.50
0.87
5.14

7.30
1.52
4.69

15.18
3.05
4.72

24.42
8.76
4.24

30.05
8.45
3.70

40.30
14.28
3.02

43.33
21.51
2.03

400,* *:*

1.80
0.00

3.04
0.66
4.61

5.75
1.52
3.81

11.88
2.87
4.02

22.98
5.44
4.22

31.21
10.73
3.23

34.96
14.04
2.81

42.00
15.37
3.05

40.00
19.41
2.06

® %k,%
800,*,*;

1.76
0.00

2.88
0.68
4.37

5.11
1.51
3.43

9.43
2.85
3.49

18.13
4.75
3.74

29.51
8.95
3.32

34.23
14.98
2.46

33.81
14.42
2.69

40.00
11.94
3.43

40.00
18.85
2.16

*,2.4,%:%

2.08
0.00

3.48
0.68
5.10

6.41
1.563
4.33

12.48
3.18
3.86

21.66
6.17
3.61

30.21
9.92
3.13

35.91
14.45
2.60

39.11
17.38
2.39

40.00
16.31
2.58

40.00
17.68
2.29

% 4 k%
14’ °

1.74
0.00

3.00
0.85
4.60

6.03
1.53
3.88

11.92
2.78
4.06

21.96
5.29
4.28

29.69
9.11
3.48

36.02
14.22
2.80

40.22
17.14
2.66

40.00
14.78
2.95

40.00
18.63
2.18

* Kotk
18,

1.63
0.00

2.94
0.66
4.43

5.73
1.49
3.73

12.10
2.61
4.31

21.90
5.48
4.31

30.90
9.32
3.57

36.70
14.77
2.79

39.93
17.37
2.63

40.00
15.93
2.70

40.00
19.64
2.03

% % ook
J¥,vs:

1.74
0.00

2.84
0.66
4.34

4.73
1.60
3.05

7.03
2.85
2.49

9.70
4.41
2.15

12.76
6.05
2.07

11.94
5.79
2.14

10.22
4.73
2.08

13.50
6.35
2.04

14.33
6.64
2.07

* % 30:*

1.77
0.00

2.95
0.68
4.43

5.58
1.49
3.78

10.64
2.72
3.79

18.90
5.02
3.83

24.50
8.78
2.94

27.03
11.58
2.55

26.17
9.96
2.85

30.00
12.43
2.57

30.00
13.71
2.22

* % 40:*

1.84
0.00

3.25
0.66
4.84

8.09
1.54
3.95

11.98
2.89
3.99

22.44
5.81
4.06

31.05
9.43
3.44

35.82
14.90
2.64

37.14
16.63
2.42

40.00
16.77
2.52

40.00
18.91
2.12

* % 50:*

1.81
0.00

3.23
0.66
4.85

6.49
1.52
4.20

13.88
2.95
4.44

24.20
6.12
4.32

35.25
10.14
3.80

44.58
16.58
2.99

47.28
20.75
2.55

50.00
17.82
3.15

50.00
23.33
2.15
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range, values of r; are being limited by the network diameter. This ceiling occurs at
different levels for different networks, again causing a skew in the values. However,

because most routing table entries come from the first few levels, we are not so concerned

with the behavior of ;L at the higher levels.

Table 13 shows some interesting data. Here we see that, in all three parameter

groups, the ratio I gets smaller with larger table sizes for any given hierarchy level.

4
This is true up through level 4. At first glance, this seems to contradict with Table 12,

where {i'— increased with increased R;. Recall, however, that the routing table size is due
v(r;) 7§

to @ not I In Table 12, the hierarchy types are being compared using the same
v (g; i

I
networks, so the function v (z) is the same for each comparison. In this case, 1‘—— must
change to bring about a change in R;. However, in Table 13, the function v(z) is

vr; o L £}
(s) dominates over —.

different for the different network types, and
v (d, ) d,'

If we compare Tables 12 and 13 with Tables 4 and 5, we see that the ratio %

follows the inverse of path length. In other words, large -3— means small path lengths.
i

This is the only parameter we have seen which consistently varies as P varies. As such,

we are interested in considering this relationship in more detail.

Figures 9, 10, and 11 show graphically the relationship between (7;';—) and P for

different numbers of nodes, different diameters, and different node degrees respectively.

Each graph is scaled the same, so they are visually comparable.

Right away we notice the asymptotic shape of the curves, with the y-asymptote
being 1 for shortest path. It is not as clear where the x-asymptote should be. The

L] . . i .
smallest F we achieved was right at 2. Values of 7:— much less than this would
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Figure 9
Path Length by Number of Nodes
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constitute a broken hierarchy, because the level ; Landmark Vicinities would not reach
the level i +1 Landmarks (assuming that d;,, is roughly twice d;). In this case, P = oo,

because nodes become unreachable.

In Figures 9 and 11, we notice that all of the data points fall nearly on the same
curve. There is a slight shift right (longer path lengths) from smaller to larger numbers
of nodes, and from smaller to larger node degree, but this shift is only on the order of .02
or .03. In Figure 10, we see similar behavior for diameters of 30, 40, and 50, but the very

small diameters show a clear departure from the others towards longer path lengths.
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Figure 10
Path Length by Diameter
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Since this represents our worst performance with regards to path lengths, we wish to
consider it more closely.

Im

It is interesting to note that the small diameter networks show worse relative (fﬂh )

behavior compared to shortest path, but very small diameters show better performance

when absolute (P'™ — P**) behavior compared to shortest path is considered. For
instance, values of (P'™ - P**) for ;'— around 2.5 are roughly 1.7 for very small diameters
(average diameter 12.56), 2 for diameter 30, 3 for diameter 40, and 3.5 for diameter 50.

64




Figure 11
Path Length by Average Node Degree
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In other words, networks with small diameters show worse path lengths only because they

. are being compared against shorter path lengths.

Figures 12 and 13 illustrate the difference between relative and absolute comparison
of path lengths, plus show another interesting aspect of path lengths. Figures 12 and 13
show path lengths for three networks of 800 nodes each whose diameters are the smallest
possible (for our network generation technique) for the given node degrees. In other

words, we used the largest possible maximum span length in generating each of the
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d

. Im .
networks. Figure 12 plots r—"— against P = —P};—,h—, and Figure 13 plots ;—:— against

P'm _ p*h Notice that Figure 12 is on a different scale than Figures 9, 10, and 11.

Figure 12
Path Lengths by Smallest Achievable Diameter (Relative Comparison)

7 <4+
8 + . = 800,2.4,25; + = 800,4,11; 0 = 800,8,7
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d; 4 4
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+ o
e + + o
2 L o o o
T 0o
1 } + } } } } } } t
1.05 11 1.15 1.2 125 13 135 14 1.45

In Figure 12, we notice again that path lengths are worse for the smaller diameter
network. In Figure 13, however, we see that the absolute comparison of path lengths are
similar for the different diameters. This is different from what was stated previously,
where absolute path lengths got better as relative path lengths got worse. If we adjusted
the data points in Figure 13 to make up for the different node degrees, we would push
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Figure 18
Path Lengths by Smallest Achievable Diameter (Absolute Comparison)
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the data points for node degree 2.4 to the right, and those for node degree 6 to the left,
causing slightly more difference than what is actually seen in Figure 13. This is a moot
point, however, because any change in node degree for these very small diameters would

change the diameter.

In Figure 13, we see a situation where shrinking the diameter can only be
accomplished by increasing the node degree. While shrinking the diameter would tend to
push the data points in Figure 13 to the left, increasing the node degree would push

them to the right. The net effect is little or no movement at all. In other words, at least
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at the low diameter end where the diameter or the node degree can be lowered, but not

both, the absolute difference between P'™ and P** remains roughly constant. For 200

node networks and %— =92, P'™ - P** —1.4. This compares closely with 1.7 for 800 node

i
networks, and shows that this lower wall is not strongly impacted by the number of
nodes. This lower wall says that as the number of nodes N in a network gets larger, and
the diameter gets corresponding larger by log(N), we do not expect to see path lengths get
pathologically longer.

6.10 Fine-tuning the Hierarchy

If one compares Table 7 with Table 9, one sees that path lengths get larger as table
sizes get smaller for increasing hierarchy levels. It seems feasible that one may be able to
“tune” the hierarchy to behave optimally for certain networks. Two methods suggest
themselves. The first is to increase the number of hierarchy levels so that there are more
routing table entries at the higher levels, and we hope shorter paths at the higher levels.
The second is to increase the number of Landmarks Ty at the highest hierarchy level H,
thus decreasing the number of hierarchy levels overall, and hopefully decreasing path
lengths. The first method resulted in no improvement, while the second did show

improvement. These modifications are presented below.

8.10.1 Increasing the Number of Hierarchical Levels

What we hope to do, then, is change the specification of the hierarchy so that it has
more levels, especially for the networks with small diameters and large node degrees. One
would only want to do this, of course, if there was a significant amount of traffic between
‘nodes far apart in the network, or if performance between nodes far apart was to be

maximized.

Table 14 shows the results of attempting to fine-tune the hierarchy for network
800,6,vs:. This table gives the hierarchy parameters r; and d;™*, the routing table sizes
R; and R, and the path lengths P; and P. It shows two new hierarchy types, :1d,h4,01
and :1d,h5,01, plus a previously seen one, 1d,h2,0l, shown here for comparison. These

new hierarchy types increase r; linearly with 1 rather than geometrically, as the previous

hierarchies did. This results in more hierarchy levels, but a small ;—:— at each level. We
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only use this modification on networks with small diameters, because there would be too

many hierarchy levels if it were used on large diameter networks.

Table 14
Attempt to Fine-tune the Hierarchy
800,6,vs:
0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 all
:1d,h2,01
r; (initial)| 2 | 4 | 8 |18 | 32
d; ™™ 0 1 4 8 | 18
R; 5.09 (19.69 | 8.95 |2.83 | 1.00 37.56
P; 1.00/1.05 |1.31 [1.68 | 1.87 1.51
:1d,h4,01
ry (initial) | 1 | 2 | 3 |4 |5 |6 (7 (8 |9 |1011]12]13
R 0 |1 |2 [3 | 4 |5 |6 |7 |89 101112 ,
R; 3.57 | 0.98 |4.78 |2.70 | 4.74 [4.35 |4.56 |4.45 |3.29 (2.68 [1.00 |1.00 1.00]] 39.11
P; 1.00 |1.01 |1.04 |1.15|1.18 [1.30 |1.35 |1.52 |1.67 |1.73 |1.76 |1.74 1.65]| 1.57
:1d,h5,01
r; (initial) | 1 | 2 4 |6 | 8 |10 [12 |14
d; ™™ 0 1 2 4 8 8 10 | 12
R; 3.93 | 1.87 |13.65 |4.05 [10.10 |2.55 |1.00 |1.00 37.95
P, 1.00 | 1.01 |(1.08 |1.31 |1.51 |1.72 [1.72 |1.59 1.56

In both of the new hierarchy types, we reduced the vicinity sizes, resulting in more
hierarchy levels. In both cases, we did achieve more hierarchy levels, and a smoothing
out of the number of routing table entries at each level. This is especially true for
hierarchy :1d,h4,01. However, in both cases, the overall hierarchy does not perform as
well as the original hierarchy :1d,h2,01—in either routing table size or path length.
Given the closeness of the values in Table 14, and the wvariation in individual
experiments, we can conclude that performance is the same for the three hierarc.hy types
tried.
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We see from this experiment and previous ones that the performance of the
hierarchy is very resilient to variations in the hierarchy. In Table 4, for instance, the
random assignment of Landmarks did not significantly change performance. Table 14
shows this resilience even more dramatically. In experiment 800,6,vs:1d,h2,01, there are 5
hierarchical levels; in experiment 800,6,vs:1d,h5,01 there are 13—a difference in order of
magnitude of nearly 3 times. Yet, the routing table size and path lengths are virtually

identical.

The advantage of this is that one can afford a lot of error in building a Landmark
Hierarchy dynamically in a network. Changes in the hierarchy will not greatly impact
the overall performance of the hierarchy. In fact, it seems entirely feasible that nodes in
a network could dynamically adjust the routing table sizes and path lengths by adding
and deleting Landmarks, and by adjusting the vicinity sizes.

We also notice that in experiments 800,6,vs:1d,h2,01 and 800,6,vs:1d,h5,01, we see
sudden jumps in the path lengths, between levels 1 and 2 in the former case, and between
levels 2 and 3 in the latter. In experiment 800,6,vs:1d,h4,01, we do see such a jump.
Path lengths increase in a smoother fashion. Even so, path lengths between the three are
essentially the same. This implies that it may not be of any benefit to try to design the

hierarchy to avoid these sudden jumps.
6.10.2 Increasing the Number of Landmarks at the Highest Level

If one looks at Figure 8, the algorithm for assigning Landmarks in our simulations,
one notices that the algorithm stops when there is only one Landmark at the highest
level. We chose this number because we know it will be easy to end a distributed
algorithm with one Landmark at the highest level, because this single Landmark would
recognize that it was the only Landmark, and would not run any more elections. If]
however, we allow for multiple Landmarks Ty at the highest level H, we will in effect

reduce the number of levels, because the hierarchy building algorithm will end earlier.

In Table 15, we show the results of experiments modifying the Landmark
assignment algorithm so that it ends when there are 1) five or less Landmarks at a level,
and 2) ten or less Landmarks at a level. We ran this experiment on all network types,

but only three hierarchy types, :1¢,hl,01, :2,t2,c2, and :1a,h1. These three hierarchy types
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represent the smallest routing table sizes (and longest path lengths), the largest routing

table sizes (and shortest path lengths), and something in between. It also represents both

Approaches 1 and 2. Since the hierarchy types represent the full range of hierarchy

types, we can use just these three in our averages for the different network types and still

compare these results to previous results where all 21 hierarchy types are averaged. In

Table 15, we additionally give the results from Tables 4 and 5 for easy comparison.

Table 15
Comparison of Number of Level H Landmarks
Ty =14 Ty <5 Ty <10
R P R P R p
*,*,":lc,hl,ol 14.50 1.18 15.45 1.10 17.79 1.07
*,“‘,*:2,t2,c2 22.98 1.10 22.98 1.10 24.41 1.07
*,*,*:la,hl 46.88 1.03 46.85 1.03 47.12 1.03
200,*,*.* 17.84 1.10 19.19 1.08 20.98 1.03
400, *.* 23.80 1.11 26.83 1.07 27.80 1.05
800,* *:%4 31.46 | 1.14 ||39.26 | 1.10 || 4054 | 1.08
*,2.4,%:%¢ 2330 | 1.12 ||31.23 | 1.09 || 32.38 | 1.07
*4,%:%¢ 23.30 1.11 26.96 1.08 28.62 1.05
*6,%:%¢ 2564 | 1.12 || 27.09 | 1.07 (| 2834 | 1.05
*,*,vs:*:l: 43.47 1.28 59.02 1.28 59.53 1.26
* % 30:%¢ 28.71 | 1.13 || 3211 | 1.10 || 33.43 | 1.08
* % 40:%4 23.56 | 1.11 || 2768 | 1.07 || 2891 | 1.05
"‘,*,50:*1 22.63 1.10 25.50 1.08 26.98 1.04

$ Averaged over hierarchies :1¢,hl,01, :2,t2,c2, and :1a,h1 only
1 Averaged over all hierarchy types (data from Tables 4 and 5)

Looking at the first three columns, we see that additional Ty results in substantijal

improvements for experiments :1c,hl,01 and :2,t2,c2, and no substantial difference for

experiment :1a,hl. In experiment :1c,hl,01, Ty < 10 shows a decrease in path length 2

over Ty =1 of more than 50%, while increasing routing table size R by only 23%. For

experiment :2,t2,c2, we have a decrease in P of 30% with an increase in R of only 6%.
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Clearly, increasing Ty has a tendency to decrease path lengths at the expense of routing
table sizes. This tendency is stronger with hierarchies which exhibit large path lengths.
However, in general, the decrease in path length is greater that the increase in routing
table size, resulting in an overall improvement. As before, the real improvement depends

on the traffic pattern and frequency of routing updates seen in a particular network.

While in general we see improvements in the experiments for various network types,
these improvements are not as good for those networks for which we are most
concerned—namely, networks with a large number of nodes, and small diameters. For
instance, for the 200 node networks, increase in R for Ty < 10 over Ty =1 is 18% while
decrease in P is 70%. However, for the 800 node networks, increase in R is 29%, while
the decrease in P is only 42%. Worse still, for the very small diameter experiments,
performance with Ty < 10 is worse than that for Ty = 1. Here, increase in R is 36%,

while decrease in P is only 7%.

Overall, adjusting Ty seems to be a powerful tool for tuning and improving the
performance of the Landmark Hierarchy. However, it must be used with care, for it may
hurt performance in some cases. We regret not having more time to study this
modification. We believe that a good understanding of this parameter ( Ty ) according to
network type and hierarchy type could yield excellent performance improvements in most

situations. This is clearly a good topic for further study.
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7.0 OVERALL PERFORMANCE OF THE LANDMARK HIERARCHY

In Section 6, we analyze the Landmark Hierarchy by isolating certain network and
hierarchy parameters and studying them independently. In real networks, networks
parameters are not isolated—each parameter impacts the others. For instance, it is
commonly accepted that network diameters grow roughly as the log of the number of
nodes (McQuillan, Richer, Rosen, 1980; Kamoun, Kleinrock, 1977). The exact growth
depends on the network in question. Land-based packet radio networks, where
connectivity tends to be to nearby neighbors, will exhibit large diameters, whereas global
land-based and satellite-based networks will exhibit smaller diameters. Further, node

degrees will vary from situation to situation.

Secondly, our simulations were by necessity for relatively small networks—800
nodes. Global data networks will (and in some cases, now do) have many thousands of
nodes. We would like to be able to realistically predict the performance we might see for

networks of these sizes.

To do this, we have created a final set of experiments. These experiments have
networks with 50, 100, 200, 400, and 800 nodes, and diameters which grow as the log of
the number of nodes. With this progression of network sizes, we generate data for r; and
d;, as well as for R and P. Using the resulting r; and d;, and a function which

estimates v (z ), we then predict routing table sizes R for any size network.
7.1 Experiment Description

As stated, in this experiment, we study networks with 50, 100, 200, 400, and 800
nodes. We wish to obtain results for networks with relatively large diameters and
relatively small diameters, in order to satisfy the largest possible set of requirements.
The two groups of five networks studied are 1) 50,5,8:, 100,5,11:, 200,5,14:, 400,5,17:, and
800,5,20:, and 2) 50,4,10:, 100,4,20:, 200,4,30:, 400,4,40:, and 800,4,50:. (See Section 5.2 for
an explanation of this nomenclature.) In both groups, we have diameters progressing
proportionately to log;N. For the small diameter group, D = 2.07log,N, and for large
diameter group, D = 5.19log,N .
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We have chosen hierarchies :1¢,hl,0l, :2,t2,c2, and :1a,hl. These three hierarchies
give a small table size, a medium table size, and a large table size (and conversely, large
path length increases, medium path length increases, and small path length increases)

respectively.

We have chosen different values of Ty, also proportional to log,N; Tg° =2,

T4® = 4, T#® = 6, T4 = 8, and T#* = 10.

Finally, we have scaled the results for P to reflect a more realistic traffic matrix.
We assume that traffic between node pairs decreases with distance; in this case, traffic is
cut in half for each increase in hierarchy level. This obviously improves our overall
average path lengths. Nodes far apart, however, will still see a disproportionate increase

in path lengths. Again, this also holds true for the area hierarchy.

We believe that these diameters and traffic matrix are realistic. For instance,
consider the DoD Internet. A perfectly realistic path from one host to another may cover
say 3 hops to get to a MILNET gateway, 5 hops to a MILNET-ARPANET mail bridge,
another 5 hops to an ARPANET gateway, 3 more hops to a mail-translating host, 2 hops
to a TYMNET gateway, 5 hops through TYMNET, another 3 hops to some destination.
Here we have a 23 hop path (about 8 or 9 of which were IP gateways) which never even
left the USA. With a little ingenuity, I believe one could find paths in existence today
which consisted of 2 or 3 times that many hops. Obviously, paths like this are used very
rarely, and our traffic matrix assumes this. One might argue that the above stated path
is only that long because of administrative constraints placed on current routing, and
that in fact a much shorter physical path almost certainly exists. However, the
forwarding of routing updates in a Landmark Hierarchy would reflect administrative
boundaries. In essence, when we talk about diameters of this length, we are talking
about logical diameters due to administrative restrictions placed on paths, not pure

physical diameters.

We ran each of the 30 simulation 5 times, in order to get an accurate average for

each one.
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7.2 Experiment Results

Figure 14 shows the results for routing table size R, and Figure 15 shows the results

for path length P,.,.;. Each of these Figures are plotted with the x-axis (number of

nodes) on a log scale.

Figure 14

Routing Table Size for Realistic Networks
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o 2,t2,c2
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Clearly, the :1a,h1 experiments perform the worst. Both are increasing faster than

logoN. The :lc,hl,0l and :2,t2,c2 experiments, on the other hand, are increasing much
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slower, and for this plot, are virtually linear. These results are better than we saw in the

earlier experiments when diameter did vary with an increase in the number of nodes.

Figure 15
Path Lengths for Realistic Networks and Scaled Traffic Matrix

— D =2.07 log,N
1.10 <+ - D =5.19 log, N
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o 2,t2,c2
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P
(scaled)
1.04 <+
1.02 <+

The data for path lengths does not have smooth curves like the data for routing
table sizes. Again, the 50 node network experiments deviate the most. The small
diameter experiments :1c,h1,01 and :2,t2,c2 show a stepping pattern—high at 50 nodes,
low at 100, high again at 200, less high at 400, and more high at 800 nodes. This

. _ s . i . .
behavior is also seen in the values of T for these two experiments, except in reverse—

small 5 for large P,,4.4. Both r; and d;, in addition to their ratio, have this behavior.

76




This oscillation can be seen to a much lesser extent in Figure 16. We have no explana-

tion for this behavior.
7.3 Estimated Performance

Before we can estimate the performance of the Landmark Hierarchy, we do to esti-
mate the function v (z).

7.3.1 Estimating the Function v(x)

As discussed in Section 6.5, the function v(z) initially increases exponentially
with x, and then eventually reaches saturation, at which point it increases linearly (see
Figures Bl through B9). When z is close to the diameter of the network, then v(z)
flattens out and increases almost not at all. The initial exponential fan-out is given in

Equation 14 as:
C X (C-1) ' 15

where C is the node degree.

We do not know the rate at which v(z) levels off when z reaches the network
diameter. However, we do not care too much, because there is very little contribution
to R from the upper hierarchy levels; that is, from large z. Since the curves in Figures
B4 through B6 (i (z)=v(z)- v(z -1)) appear to be approximately symmetrical, we will
assume that ¢ (z ) tapers off exponentially at the same rate as the initial fan-out, that is,
i(D-z)=v(z)(v(0)=1).

Having made this assumption, we are now able to fully describe v(z), where

N
v(z)= Y 9(z). Given N, D, and C, an algorithm for determining 4(z), 1<z<D is

g =1

as follows.

1. Letv(0)=v(D)=1.

2. Letj =1.

3. If ¢ x(c-)it> (v (I;"I)XZ)) ~(ix2)+1,  then  let  all

i(z)= (V= (v(5-1)x2)) , with (7 <z <D-y). Otherwise, increment j,

D -(;x2)+1
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and repeat step 3. If ; >D /2, then the chosen diameter D is too small for the
chosen node degree C.

Note that it is possible to create networks with diameters much smaller than above
algorithm can handle. However, for the class of networks we are considering—those with

a quasi-random connectivity—this algorithm is appropriate.

Using the x? (chi-square) calculation, we compared the #(z) generated by our
algorithm with those measured from our simulated networks. For most cases, we got
x? < 2 with 9 or more degrees of freedom, indicating a very good fit. On networks with
very small diameters (those where § (z) never non-hierarchicaltened out), we did not do as
well. However, all of our generated & (z) had fan-outs which either peaked sooner or
peaked higher than those seen in the simulated networks, and so will give us worse

results than might expected from simulations, which is acceptable.
7.3.2 Estimating the Landmark Radii and Landmark Distances

Of course, to predict the performance of R, we need to determine the expected of
values of r; and d;. We have found that we can engineer the Landmark Hierarchy to

give us varying values of r; —d; ranging upwards from approximately 3. We have also

found that we have significant control over the progression of r; and d; with increasing §

i.e., in powers of 2, in powers of three, proportional with i, and so on). Therefore, we
b

can simply pick values of r; and %, and calculate R; = :E;’;

This value for R; will result in routing table sizes greater than what one would

from our generated v (z).

realistically expect. This is because d; is less than the d; given in Equation 3. However,

the estimated results should be proportional to the simulated results.

Looking at the data for r;, and d; from the experiments in this Section 6.9, we find

that r, roughly in powers of 2 with increasing i{. We also find that for the :1a,hl
7.

experiment, d'— is roughly 7; 4 for the :2,t2,c2 experiment, and 3 or slightly less for the
i

:1c,h1,01 experiment.
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7.3.3 Estimation Experiment Results—Routing Table Sizes

Using values of 7, 4, and 3 for all ;—, and with ry = 1.5, we calculated R for

networks ranging from 100 nodes to 1,600,000 nodes, in powers of 2. We did this for the
two diameters studied in this Section, namely D =2.07 log,N and D =5.19 log,N .

Figure 16 compares the :2,t2,c2 experiments for the simulated experiment and for
the estimated experiment. We see that our estimated values are within an order of
magnitude of the simulation results. As mentioned, we expect our estimated results to be
somewhat larger than, but proportional to, our simulated results. Since our estimated
results are greater than our simulated results, we feel safe in using them for estimating

networks with more than 800 nodes.

Figure 17 shows the results of our estimates for networks larger than 800 nodes.
This is plotted on a log-log scale. We see that R grows as kN™, where ¢k and m are
constants. For the small diameter experiments, m ranges from .33 (cube root) to .54
(roughly square root). For the large diameter experiments, m ranges from .38 to .62.
Both ranges encompass .5, the square root. In fact, for the :2,t2,c2 experiment, which
gives us our intermediate results (lines 3 and 4 in Figure 17), we have m = .42 and

m = .48, both slightly better than but close to the square root.

We can safely say, then, that for what we consider networks with reasonable
diameters, one can achieve routing table sizes of the square root of the the number of

nodes times some constant 3 or greater. In other words, R = 3VN .
7.3.4 Estimating Path Lengths

Unfortunately, we do not have a method of predicting path lengths for networks
larger than those we can simulate. On one hand, most of the lines in Figure 15 do not
exhibit upward exponential trends. Two of the lines, large diameter :1a,h1, and small
diameter 2,t2,c2, appear to almost have a decreasing slope. The three lines which exhibit
the stepping behavior, large diameter :1¢c,h1,01 and :2,t2,c2, and small diameter 1c,h1,01,
are nearly linear. We fit lines at the three points equidistant between the data peaks at
100, 200, 400, and 800 nodes for each of the three experiments. In all cases, there was less
that 3% error between the lines at the equidistant points. On the other hand, the lines
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Figure 16
Comparison of Simulated and Estimated Routing Table Size
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may appear linear in Figure 15, but exponentially increase for networks much larger than

800 nodes.

We would like to make three points with regards to path lengths. First, path
lengths in the Landmark Hierarchy behave similarly to path lengths in the area
hierarchy. Both show poorer performance at higher levels of the hierarchy, both perform
worse for small diameter networks, and both perform worse with smaller table sizes. This
is explored in Sections 6.7 and 6.10. However, we can assume that path lengths in the

Landmark Hierarchy are roughly the same as those in the area hierarchy.
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Figure 17
Estimated Performance for Networks Larger Than 800 Nodes
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Second, overall increase in path length depends on the traffic matrix. If nearly all

traffic in the network is between nearby neighbors, then path lengths will be better.

Finally, paths depend somewhat on the physical topology chosen. For instance, if a
network exhibits the properties of a topological hierarchy, such as an internet does with
gateways and subnetworks, then by making gateways higher level Landmarks, it may be

possible to improve path lengths for more distant neighbors.
Clearly, this is an area for further study.
7.4 Comparison with the Area Hierarchy

We are interested in comparing our simulation results with some obtained for the
area hierarchy. We are aware of two large-network simulations of area hierarchies,
Callon’s and Hagouel’s. Unfortunately, Callon didn’t calculate routing table sizes, and so
we may not fully compare our results with his. His results do, however, show some
interesting trends in the area hierarchy. We will discuss this after we present Hagouel’s

results.
7.4.1 Comparison of Routing Table Size and Path Length

Hagouel’s simulations of the area hierarchy (Hagouel, 1983), results in show R = 48
and P =1.18. These results are typical for one of his better performing schemes. The
data for this calculation comes from Hagouel’s Figure 5.1. It is based on 200 node
networks, with average node degrees of 2.8. Hagouel does not tell us his diameters, but
based on his network generation scheme, which would allow any node to be connected to
any other node with equal probability, his diameters would be about the same for the

loop-span model with longest possible maximum span—about 12 hops.

As a comparison, we generated a 200 node network with average node degree 2.8
and diameter 12, and calculated R and B over all hierarchy types. We obtained
R =2575, and P =1.22. For an individual simulation with R = 45.08, we had
P =1.10. For an individual simulation with £ = 1.17, we had R = 30.63. Clearly, at

least for a 200 node network, we see better performance with the Landmark Hierarchy.
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7.4.2 Comparison of Effect of Diameter and Node Degree

Kamoun’s study of the area hierarchy (Kamoun, Kleinrock, 1977) is highly

theoretical and idealized. No simulation is done. His results show that routing table
1
sizes of R = HN ¥ are possible (his Equation 6, where his notation is / for routing table

size, and m for number of hierarchy levels). The conditions necessary for this area
hierarchy equation are that all areas be composed of identical numbers of sub-areas. The
fact that Hagouel’s simulations give results of approximately 3 times worse than
theoretical best brings the practical validity of the theoritical results under suspicion.
(For Landmark Routing, we get R = kN™, where m is on the order of 1/2 and k is on
the order of 3.)

It is not known how easy it is to achieve this condition. It appears, however, that
it may be easier to achieve this condition in networks with larger node degrees and
smaller diameters. Hagouel shows that the number of nodes in an area goes up as the
number of border nodes (nodes on the edge of the area) goes down. The number of
border nodes present will go up as node degree goes up and diameter goes down (compare
a fully connected network with a loop network). Therefore, we will see small areas, and
hence a larger number of hierarchy levels and smaller routing tables for networks with

smaller diameters. This is the opposite of what we see for the Landmark Hierarchy.

Kamoun also gives an equation for an upper bound on the increase in path length
for the area hierarchy with the above condition. Among other things, his results show
that relative path lengths get worse as 1) the connectivity goes up (and likewise as
diameter goes down), and 2) as the number of hierarchical levels goes up. These are the

same result we have observed for the Landmark Hierarchy.

These findings on path length are confirmed by Callon. In his simulations of 200
node networks, he varied the node degree by 4, 6, and 10 (since he is studying packet
radio networks, his node degrees are higher), and got diameters of roughly 32, 18, and 12
respectively. (We am estimating on these diameters. Callon gave average shortest path
length, not diameter. However, our simulations show that diameters are consistently
nearly twice that of the average shortest path length.) For his pure hierarchical scheme

(Figure 2-4c in his paper), he got £ = 1.02, 2 = 1.07 and P = 1.11 respectively. Clearly,
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path lengths are worse for smaller diameters. In fact, even Callon’s absolute path length
increases (P **® - P**) are getting worse for smaller diameters, which is worse that what

we saw for the Landmark Hierarchy.

What we see here, then, is that for the Landmark hierarchy, smaller diameters mean
larger table sizes and longer path lengths, whereas for the area hierarchy, smaller
diameters mean smaller table sizes and longer path lengths. On one hand, this seems to
imply better performance from the area hierarchy for small diameter networks. On the
other hand, nobody has simulated the area hierarchy for very small diameter networks, so
we are not sure what path lengths would be. Both Hagouel’s and Callon’s simulations
were for networks which were out of the very small diameter range. Therefore, we have

no hard numbers to verify this statement.

Another very important consideration is that, for a hierarchical topology the area
hierarchy performs very well. For a perfect topological hierarchy, the area hierarchy will
provide the appropriate reduction in routing table size, but no penalty will be paid in

path length. Of course, hierarchical topologies are less survivable than general topologies.

We have yet to determine the performance of the Landmark hierarchy on a topology
with hierarchical characteristics, such as an internet. Since most networks exhibit some
characteristics of a topological hierarchy, this is an important area for further research.
However, we believe that by forcing nodes higher up in the topological hierarchy to be

higher-level Landmarks, we can get efficient path lengths using a Landmark Hierarchy.

In addition, the area hierarchy is based on the same structure as administrative
hierarchies (ANSI X3S3.3, 1987), which are common in data networking. In this sense,
area hierarchies are convenient for use in data networks, and are expected to perform
well. Again, the use of the Landmark Hierarchy in administrative hierarchies needs to be
studied. However, we believe that by 1) putting administrative hierarchy as well as
Landmark Hierarchy information in addresses, and 2) by allowing nodes on the edges of
administrative areas to filter out certain Landmark Hierarchy updates, we may achieve

good performance in administrative hierarchies.
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8.0 CONCLUSION

This closing section gives a summary of the Landmark Hierarchy, which can replace
Sections 4 through 7 for readers not requiring analytical details. The summary is
followed by conclusions emphasizing applicability to the DDN and DoD Internet. The

section ends with a discussion of future work.
8.1 Summary

Due to the rapid growth of data networks, it is necessary to impose hierarchical
routing structures on data networks in order to contain the vast amounts of routing
information present in the networks. Until now, the only hierarchy known was the area
hierarchy. It has seen extensive research over the past decade. The internet, for example,

is a type of area hierarchy in the routing sense.

One of the problems with the area hierarchy is that it is very difficult to manage
dynamically. That is, it is difficult to adjust the area hierarchy to topological changes in
a distributed, dynamic fashion, thereby subjective, the area hierarchy to such failures as
the area partition. This problem is manageable on a limited basis, but not at the level

which a DoD network might require.

To deal with this problem, we introduce a new hierarchy, the Landmark Hierarchy,
which we believe is much easier to dynamically manage. This paper presents an analysis
of the Landmark Hierarchy in its static state—that is, we study its performance as a
static element, but do not study how to dynamically manage it. That will be the topic of

forthcoming work.

We analyze the Landmark Hierarchy in terms of three parameters: routing table
sizes, path lengths, and path distribution. The size of routing tables tells us how much
routing overhead the hierarchy produces. In general, this is much less than that seen
with no hierarchy. Longer paths are the penalty we pay for using a hierarchy. Path
distribution tells us whether the hierarchy skews traffic patterns, thus causing unfairness
and undue stress in parts of the network. Our analysis of routing table sizes is quite
thorough. Unfortunately, we were able to analytically say very little about path lengths
and path distribution.
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The major portion of our results comes from simulations of the Landmark
Hierarchy. In all, we present results of over 1000 Landmark Hierarchy simulations, plus
other simulations analyzing various network aspects. The simulations were run on nearly
50 different network types, using 23 different hierarchy descriptions and several
variations on these. To support this work, we developed a new model for describing
networks, the loop-span model, which allows us to generate quasi-random networks with
control over the number of nodes, the node degree, and the diameter. Previous

techniques only allow control over the first two parameters.

Our major results are as follows:

1. One can affect routing table sizes and path lengths through adjustments in the
hierarchy parameters, namely, the density of Landmarks, and the distance
Landmarks can be seen (Figures 14 and 15). This gives the designer
considerable flexibility in optimizing the performance of the Landmark
Hierarchy for any given network. We also believe that the dynamic Landmark
Hierarchy management algorithms may be made to automatically adjust the
Landmark Hierarchy parameters for optimal performance in response to
changing network conditions.

2. When adjusting the Landmark Hierarchy parameters, routing table sizes can
only be made smaller at the expense of longer path lengths, and vice versa
(Figures 14 and 15).

3. Routing table sizes and path lengths are strongly affected by network
parameters, namely the number of nodes, the node degree, and the network
diameter (Table 5). In particular, networks with very small diameters exhibit
both larger routing tables and longer path lengths. In many cases, the
Landmark Hierarchy (and the area hierarchy, for that matter) may perform
worse than non-hierarchical routing for these cases.

4. Random assignment of Landmarks performs nearly as well as a uniform
assignment of Landmarks. This shows that the Landmark Hierarchy is
extremely resilient to the placement of Landmarks—an important survivability
consideration.

5.  There is a large variance between the size of the largest and smallest routing
tables in a network—the largest are about 6 times larger than the smallest.

6. Most routing table entries come from the lower hierarchy levels.
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7. Path lengths are the same as shortest path at hierarchy level 0, and get longer
at the higher levels. Overall path length increase depends heavily on the traffic
matrix, and is significantly better when most traffic is between nodes which are
close to each other.

8. We were not able to determine what the effect on path distribution is. Our
preliminary results show that the Landmark Hierarchy does not cause undue
unfairness in path distribution. Several characteristics which we did not
study, namely routing metrics (static and real-time) and the network topology,
will tend to have a smoothing effect on path distribution.

9. The number of global Landmarks (those at the highest level of the hierarchy
which all nodes can see) impacts routing table size and path length. In general,
we were able to get significant improvement in these two parameters by
increasing the number of global Landmarks from one to ten.

10. Our results show that, as a rule of thumb, routing table sizes of R = 3V/N are
typical, where N is the number of nodes. These results are shown in Figurtles

14, 16, and 17. This can be compared to the area hierarchy where R = HN %,
However, this figure for the area hierarchy is conditional on each area having
an identical number of subareas, a condition not achievable in practice.
Further, this figure is not supported by simulation. In comparable simulations,
the Landmark Hierarchy showed smaller routing table sizes than the area
hierarchy.

11. We were not able to obtain general figures for the increase in path length.
However, we found that path lengths in the Landmark Hierarchy behave
similarly to those in the area hierarchy. Our path length simulation results are
shown in Figure 15. Also, our simulation results show better path lengths that
those shown in similar simulations for the area hierarchy.

12. For networks with very small diameters (close to the smallest possible for a
given number of nodes and node degree) the Landmark Hierarchy performs
very poorly, and cannot be recommended over the area hierarchy or no
hierarchy. However, networks with diameters are not normally found in
practice (the author knows of no such networks). It is worth noting that path
lengths on the area hierarchy are also poor for these small diameter networks.

8.2 Conclusions

The major conclusion from this paper is that, in its static state, the Landmark
Hierarchy is a viable alternative to the area hierarchy. In its static state, the area
hierarchy performs better, because its routing table sizes are not subject to change due to

the network parameters as the Landmark Hierarchy is. The results from this paper
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alone, however, are not sufficient proof that one should use a Landmark Hierarchy. For a
network where survivability is not a major concern, and where the topology is normally

static, we recommmend use of the area hierarchy.

To determine whether the Landmark Hierarchy should be used in networks where
either survivability is a major concern, or where the topology changes quickly and often,
further work concerning the dynamic management of the Landmark Hierarchy is
required. However, from the results of this study, we may recommend that work on the

Landmark Hierarchy continue.

With regards to the DDN, the use of the Landmark Hierarchy may result in overall
savings in routing overhead as compared with non-hierarchical routing, depending on the
network situation. Recent DDN studies of the area hierarchy (Khanna, Seeger, 1986;
Sparta, 1986), assume a DDN of 1000 nodes (Packet Switched Nodes, or PSNs, in this
case). From Sparta, we see that, given the DDN routing discipline, Shortest Path First
(SPF), this amounts to 6133 bits/second, or 11% of a 56,000 bit/second link. Using the
data from Figures 14 and 15 for the small diameter experiment :1a,hl, and extending the
curves to 1000 nodes, we get R = 130 and P = 1.05. Assuming 80% loading of links, we
get 2240 bits/second from the 5% increase in path length, and roughly 790 bits/second
from the updates due to the 130 routing table entries. Now, assuming a flooding
discipline for propagating address changes, and assuming that at times of stress, we see
10 address changes per second (which should be worst case), we get an additional 2000
bits/second, for a total of 5030 bps. This is only a roughly 20% savings over flat SPF,
hardly worth the effort. If we assume 1.54 Mbps links, then flat SPF.is by far the better
scheme. If we assume that at times of stress, many DDN links will be limited to 9600
bps, then we see only 3174 bps (roughly 1/2 of flat SPF) from the Landmark Hierarchy,
2000 bps of which is due to the address changes. If we assume a more efficient address
updating scheme (which we believe is possible (Stine, Tsuchiya, 1987)), and low
bandwidth links, then the Landmark Hierarchy begins to look more attractive. However,
we must first prove that the dynamic management of the Landmark Hierarchy is

workable.
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The Landmark Hierarchy looks much more attractive for the DoD Internet. Here we

see several thousands of nodes, including both PSNs and Internet Protocol (IP) gateways,
and 56,000 bps and sometimes slower links. Clearly, a non-hierarchical routing scheme is
out of the question. Using Curve 4 from Figure 17 (larger diameter experiment) and
assuming say 12,000 nodes and updates every minute, then we get a routing table size
about 150 nodes. We will assume path lengths of 10% over shortest path. (We believe
that this assumption is realistic, based on our simulations and on optimalities which
may be achieved by taking advantage of the Internet topology.) Now we see roughly 460
bps from the routing updates, and 4480 bps from the increased traffic. Assuming a good
address binding scheme which produces a negligible amount of traffic, we get roughly
5000 bps, or about 11% of the 80% loaded 56000 bps link. This is acceptable

performance.

Of course all of these figures assume certain diameters of the DDN and the DoD
Internet. A map of the ARPANET with 39 PSNs showed a diameter of 12 hops. This is
larger than the diameter we used in our DDN calculations. We don’t know the diameter
of the Internet (where the Internet is defined as that collection of connected hosts and
gateways which use the DoD Internet Protocol). Based on the example path in Section 7,
we believe that diameters larger than that shown in our large diameter experiment are

and will be typical.
8.3 Future Work

We have just scratched the surface of all the work that needs to be done on the
Landmark Hierarchy. First, there is the study of the algorithms needed to accomplish
both routing and dynamic management of the Landmark Hierarchy. This is the most
important work to do now. It is of a different nature than the work done in this
paper—dynamic rather than static. In a companion paper (Tsuchiya, 1987), we discuss
the architectures and issues associated with the dynamics of the Landmark Hierarchy—

what we globally call Landmark Routing.

However, there is also much work of a static nature still to be done at some point in

time. This work has been mentioned throughout this paper, and is summarized here.
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First, we believe that more analysis and simulation on the Landmark Hierarchy
is necessary. This is crucial for determining path lengths. Ultimately, we hope
for a situation where one may take a set of equations or algorithms, put in
certain network parameters such as number of nodes, diameter, node degree,
link bandwidths, a traffic matrix, and get out performance numbers.

We believe more work could be done on improving the performance of the
Landmark Hierarchy. In Section 6.10.2 we show that substantial improvement
is possible by adjusting the number of nodes at the highest hierarchy level.
However, we didn’t have time to explore this improvement at length. Other
improvements may also be possible.

We need to consider different types of networks. This includes networks with
different types (delay and bandwidth) of links; networks with a regular
topology, especially a hierarchical topology; and networks with extensive
broadcast media, such as satellite and packet radio networks.

We need to do survivability studies on the Landmark Hierarchy. In particular,
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