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ABSTRACT
Failure detectors are fundamental building blocks in dis-
tributed systems. Multi-node failure detectors, where the
detector is tasked with monitoring N other nodes, play a
critical role in overlay networks and peer-to-peer systems.
In such networks, failures need to be detected quickly and
with low overhead. Achieving these properties simultane-
ously poses a difficult tradeoff between detection latency and
resource consumption.

In this paper, we examine this central tradeoff, formalize
it as an optimization problem and analytically derive the
optimal closed form formulas for multi-node failure detec-
tors. We provide two variants of the optimal solution for
optimality metrics appropriate for two different deployment
scenarios.

√
s-LM is a latency-minimizing optimal failure

detector that achieves the lowest average failure detection
latency given a fixed bandwidth constraint for system main-
tenance.

√
s-BM is a bandwidth-minimizing optimal failure

detector that meets a desired detection latency target with
the least amount of bandwidth consumed. We evaluate our
optimal results with node lifetimes chosen from bimodal and
Pareto distributions, as well as real-world trace data from
PlanetLab hosts, web sites and Microsoft PCs. Compared
to standard failure detectors in wide use,

√
s failure detec-

tors reduce failure detection latencies by 40% on average for
the same bandwidth consumption, or conversely, reduce the
amount of bandwidth consumed by 30% for the same failure
detection latency.
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1. INTRODUCTION
Detecting failed nodes is an essential task in many distributed
systems. In particular, multi-node failure detectors are ubiq-
uitous in many settings and form a fundamental part of
higher-level failure recovery operations in many systems.
Specifically, a multi-node failure detector is tasked with mon-
itoring a set of nodes (a fail-detect set) and needs to de-
tect failures within the set with low latency while consum-
ing little network bandwidth. Multi-node failure detectors
are fundamental components in overlays, content distribu-
tion networks, and group communication services, as well
as many other distributed systems. For instance, peers in a
distributed hash table need to monitor nodes in their rout-
ing tables to detect when they should replace or take over
the duties of failed neighbors. A content distribution net-
work needs to monitor the status of servers in order to direct
clients to the most suitable live replica. Group communica-
tion systems [3, 17, 27, 23] use failure detectors to determine
group membership. Much past work on distributed failure
detectors [9, 11, 25, 1, 24, 2, 6, 36, 15, 31, 21, 41, 14] as-
sumes and builds on top of such a failure detector module
at each node.

The challenge in failure detection stems from the conflicting
goals of low detection latency and low bandwidth consump-
tion. In the limit, low latency can be achieved by using all
available bandwidth to constantly poll the nodes in the fail-
detect set. Similarly, it is possible to build a very low band-
width (and infinite latency) failure detector by not probing
any nodes at all, though such a detector is useless in prac-
tice. Between these two extremes, there exists an optimal
point where a node checks members of its fail-detect set at
just the right frequency such that the total bandwidth con-
sumption is limited to a targeted value and failure detection
latency achieves a desired level of performance. This paper
presents a technique for determining this optimal point.

The standard practice in distributed systems is to use ad
hoc measures to pick a single period τ , and to probe ev-
ery node in the fail-detect set every τ seconds [33, 32, 18,
20]. The selection of a single global τ would make sense in
a setting where all nodes are homogeneous and exhibit the
same session duration. However, past studies have demon-
strated that node lifetimes are highly skewed [34], which in
turn renders a single probe frequency far from optimal. It
is possible to posit many heuristics for picking a node spe-
cific τi, but heuristics are unlikely to achieve a good tradeoff
between bandwidth and latency, and the conditions under



which they might work well are hard to characterize. In this
paper, we derive the optimal strategy for resource-optimal
failure detection from first principles.

Overall, this paper makes three contributions. First, it for-
malizes the multi-node failure detection problem, formulates
it in a manner amenable to mathematical optimization and
identifies two variants of the optimal solution encountered in
practice. The latency-minimizing variant minimizes failure
detection latency while constraining the amount of band-
width used for probing nodes. The bandwidth-minimizing
variant achieves a targeted failure detection latency while
minimizing the amount of bandwidth consumed. The for-
mer is applicable when the amount of bandwidth dedicated
to system overhead is known a priori as it can achieve the op-
timal latency within a strict resource limit, while the latter is
best suited for settings where a particular performance level
is sought from the failure detector module as it can achieve
the performance goals using the minimal resources required.
Second, this paper analytically derives closed-form formu-
las for the optimal rate at which failure checks need to be
performed to solve the latency- and bandwidth-minimizing
failure detection problems. The closed form formulas de-
pend solely on parameters readily available in the problem
statement or measurable via simple mechanisms, such as
the distribution of node lifetimes, loss rate, targeted level
of accuracy, the bandwidth constraint and the latency tar-
get. Finally, we evaluate the proposed solutions using three
realistic traces from PlanetLab, web servers and Microsoft
Desktop PCs, compare them to standard failure detectors
commonly found in distributed systems, and show that they
significantly improve the performance metrics. Compared to
the the failure detectors found in FreePastry and Bamboo
implementations,

√
s-LM improves failure detection latency

by 40% while consuming the same amount of bandwidth as
the standard solution, while

√
s-BM can reduce bandwidth

requirements by 30% for typical failure detection latency
targets.

The next section provides a brief overview of related work
in failure detection. Section 3 describes our approach and
derives the formulas for an optimal failure detector. Sec-
tion 4 describes our implementation and discusses some of
the problems encountered in failure detection in practice.
Section 5 evaluates our approach using detailed, long-term
data from three realistic traces. Section 6 summarizes our
contributions and describes future directions.

2. RELATED WORK
Past work on failure detectors has focused on the single-
node and distributed failure detection problems, which differ
substantially from the multi-node failure detection problem
we examine. Our work involves different tradeoffs from the
former and is complementary to the latter. It arose in the
context of peer-to-peer systems, where failure detection is
critical, and existing approaches are typically ad hoc.

Chen [10] provides the most comprehensive analysis to date
of the quality of service (QoS) guarantees for single-node
failure detectors. Given QoS requirements, Chen et al. [11]
show how to compute the parameters, in particular the time
between heartbeats and estimated network delays, for fail-
ure detectors under probabilistic message losses and network

delays. Bertier et al. [5] propose an adaptive failure detector
that computes the heartbeat period by combining the TCP
estimation function with Chen’s, while [16] automatically
adjusts the heartbeat period based on network character-
istics. These approaches examine a single node at a time;
they treat a set of nodes being monitored as collection of
independent single-node detectors and do not examine the
resource tradeoffs between different hosts. In contrast, we
specifically focus on multi-node failure detectors and show
how to optimally dedicate bandwidth among multiple nodes
in the fail-detect set.

Some past work has examined how to incorporate applica-
tion specific requirements into failure detectors. In [12], the
authors use two different timeouts to generate two levels of
suspicions. Instead of using a suspect list, ϕ and Φ failure
detectors [22, 13] compute an estimate for each node that
captures the likelihood that the node has crashed. This ap-
proach provides a more expressive interface from the failure
detector to applications. In contrast, we provide a richer
interface to the failure detector by which applications can
specify their performance goals and resource constraints,
and achieve those goals within the constraints.

Recent work has examined how to adaptively calculate a
homogeneous probing period for peers in an overlay net-
work [8]. The authors derive an analytical model to compute
the probing rate given packet loss rates and node lifetimes.
The protocol is able to self-tune the probing rate in response
to changes in these two parameters. In contrast, we derive
an analytical model to compute a node-specific polling rate
for each node as opposed to a single, homogeneous prob-
ing rate for all nodes, and achieve analytical, closed form
solutions for the optimal strategy.

Distributed failure detectors combine suspicions from multi-
ple nodes into an accurate estimate on process status. Chan-
dra and Toueg [9] introduce the concept of unreliable dis-
tributed failure detectors and characterize them in terms
of completeness and accuracy. They use the failure detec-
tor abstraction to solve the consensus and atomic broadcast
problems in an asynchronous network model. This approach
has formed the foundation of much subsequent work on re-
ducing message complexity and network load [25, 1, 24, 2].

Subsequent work in distributed failure detectors has focused
on how to detect failures in a set of servers in a scalable
manner as the size of the set grows. Hierarchical failure
detectors [6, 36] arrange nodes into a multi-level hierarchy
which partitions the monitoring and reporting tasks along
a tree to improve scalability. Gulfstream [15] reduces prob-
ing traffic by arranging nodes in a circular virtual identifier
space and probing only adjacent nodes. Gossip-based fail-
ure detectors [31] can improve scalability and reduce fail-
ure detection time via random and periodic communication
among the monitoring nodes. Recent work by Gupta et
al. [21] presents a randomized distributed failure detector
that achieves low failure detection latency. A recent study
on failure detection in overlay networks [41] empirically ex-
amines the performance of five distributed failure detection
algorithms, including the basic periodic failure detector that
we use for our baseline. FUSE [14] is a distributed failure
detector that focuses on lightweight and scalable failure no-



tification. These systems assume the presence of a multi-
node failure detector on each node, and focus on the com-
munication among the monitoring nodes. Our approach is
complementary to these systems.

Accordion [26] has examined how to efficiently manage band-
width usage in a distributed hash table. It focuses in dy-
namically adjusting DHT parameters to achieve low lookup
latencies subject to a bandwidth constraint. Our approach
to failure detection is orthogonal to optimizations for DHTs
and is more broadly applicable.

3. APPROACH
In this section, we first describe the general system model we
use as our foundation, then analytically express the tradeoffs
involved in failure detection, and finally derive the equations
for two variants of an optimal failure detector.

3.1 System Model
The key metrics of interest in a multi-node failure detector
are failure detection latency, bandwidth overhead and accu-
racy. We assume that each node j has a fail-detect set σj ,
|σj | = N , which it needs to monitor for failures. We build
on an end-to-end model, in which the preferred way to test
if a node has failed is to send an application-specific request
and receive a response. Typically, such a request consists
of a no-op remote procedure call handled at the application
level, though a simpler substitute, such as an ICMP ping
packet, may be used in cases where the application shares
its fate with the entity responding to the request. We use
the term ping for a single such packet sent to detect node
failure; a probe is a series of up to r pings that are separated
by a ∆ timeout value, sent in sequence to guard against
losses in the network.

The current state of the art in failure detection is to pick
a fixed period τ and to probe every node i, i ∈ σj every
τ seconds. If consumed bandwidth is not a concern, low
failure detection latencies can be achieved simply by setting
τ = 0 and continuously probing every node. This strategy
is clearly a terrible choice in practice, as all available band-
width would be dedicated to failure detection, leaving no
surplus bandwidth for useful work. We therefore limit the
maximum per-node bandwidth the system can dedicate to
failure detection to TB

1.

A node j probes a node i in its fail-detect set, σj , i ∈ σj with
period τi, τi > r∆, where ∆ is the ping timeout period.
If any ping elicits a response, the probe is successful, the
series of pings are terminated, and the node is deemed alive.
If more than r consecutive pings to a given node elicit no
response, the destination node is marked as having failed.

Table 1 summarizes all the variables used in the following
analysis. A key variable in the analysis is the estimated
lifetime for a given node, which is denoted by li. Given these
key variables, the next section derives the relevant formulas
for optimal failure detection.

1We assume a uniform TB for all nodes in the system for
simplicity of discussion; it is straightforward to extend the
analysis to accommodate a node-specific bandwidth cap.

Parameter Description
τi Probing period for node i in the fail-detect set
N Number of nodes in the fail-detect set
L Failure detection latency

TL Targeted failure detection latency
B Bandwidth consumed for failure detection

TB Targeted bandwidth consumption
li Estimated lifetime for node i
di Mean time to recovery for node i
α Desired failure detection accuracy
p Round-trip packet loss probability
∆ Timeout for a ping response
r Maximum number of ping packets in a probe
q Expected number of ping packets in a probe
s Ping packet size

Table 1: Notation. Key variables used in the analy-

sis.

3.2 √
s−LM: Latency-Minimizing Optimal Fail-

ure Detector
First, we examine a failure detector designed to achieve
the lowest possible failure detection latency while remain-
ing within a given bandwidth budget.

Failure detection latency is the time between the time a
given target node failed, either due to network or node fail-
ure, and the time the detector decides that the node failed.
If the probing period is τi and a node is considered to be
down after a probe is unsuccessful, then the average failure
detection latency is τi

2
.

Consider the behavior of the system over a long time period
κ. For each neighbor i, a node will use bandwidth s

τi
to

send out a probe every probing interval, where s is the size
of the ping packet. Therefore, the total amount of network
bandwidth consumed at each node for monitoring the fail-
detect set over the period κ is

B =
N
X

i=1

sq

τi

(1)

In the equation above, q is the expected number of ping
packets in a probe before the probe either successfully elicits
a response or is unsuccessful. The precise definition of q

depends on the operating environment, and is derived in
Section 3.6. For now, note that it is a constant between
1 and r; 1 if node i is continuously up and there are no
network losses, and r if the node is permanently down.

From the lifetime estimate of a node, we can calculate the
expected number failures of that node over time κ, which
is κ

li
. Average latency of detecting failed neighbor i is τi

2
+

r∆. Consequently, the average latency of detecting failed
neighbors over time κ is given by:

L =

PN

i=1
( τi

2
+ r∆) × κ

li
PN

i=1

κ

li

(2)



We can now cast the latency-minimizing failure detection
problem as a mathematical optimization problem: minimize
average latency of detecting failed neighbors (Eq. 2) subject
to bandwidth constraint B ≤ TB (Eq. 1). We introduce La-
grange multiplier λ, and use the independence of the terms
under the summation to yield the following equation.

1

2li
= −λ

sq

τ 2

i

, ∀i, 1 ≤ i ≤ N (3)

Given this equation, we can solve for τi using the constraint
B ≤ TB to reach the following solution:

τ
∗

i =
sq

TB

√
li

 

N
X

j=1

1
p

lj

!

, ∀i, 1 ≤ i ≤ N (4)

A simple example illustrates the potential benefits of this ap-
proach. Suppose that a system consists of 40 nodes whose
lifetimes are drawn from a bimodal distribution. Twenty
short-lived hosts have lifetimes of 1 hour, while the other 20
long-lived hosts have lifetimes of 225 hours. Suppose that
the amount of bandwidth devoted to failure detection is 1
kB/sec, and that the size of a ping packet is 100 bytes. The
traditional approach to failure detection would ping both
the long and short-lived node every 4 seconds, consuming
1kB/sec and yielding an average failure detection latency
of 2 seconds. Our latency-minimizing optimal failure detec-
tor (

√
s-LM) algorithm instead pings long- and short-lived

nodes every 32 and 2.13 seconds respectively, consumes 1
kB/sec, and achieves an average failure detection latency of
1.2 seconds.

3.3 √
s−BM: Bandwidth-Minimizing Optimal

Failure Detector
In some deployment scenarios, the amount of bandwidth
dedicated to system maintenance is not capped, and the
critical performance metric for the failure detector is the
average detection latency. Next, we examine a failure detec-
tor designed to achieve a targeted failure detection latency,
while minimizing the bandwidth consumed to achieve the
desired level of performance.

The derivation of the parameters for a bandwidth-minimizing
optimal failure detector is similar to the latency-minimizing
optimal failure detector, except that the mathematical opti-
mization problem is slightly different. Namely,

√
s-BM will

minimize bandwidth (Eq. 1) given a target failure detection
latency (Eq. 2) of TL. We introduce Lagrange multipliers to
find the minima and solve for the optimal τi subject to the
constraint L ≤ TL, similar to the approach in the previous
subsection. This yields the following equation.

− sq

τ 2

i

= λ

0

@

1

2li
PN

j=1

1

lj

1

A (5)

Now, we can solve for τi using Equation 2, the constraint
L ≤ TL and Equation 5 to reach the following solution.

τ
∗

i =
2(TL − r∆)(

PN

j=1

1

lj
)
√

li
PN

j=1

1√
lj

, ∀i, 1 ≤ i ≤ N (6)

We can illustrate the potential benefits of this approach with
a simple example. Assuming the same sample setup as in
the preceding section, a traditional, periodic failure detector
that targets 2 second average failure detection latency would
ping nodes every 4 seconds, and consume 1 kB/sec as a
consequence. Our

√
s-BM result instead pings long- and

short-lived nodes every 56.5 and 3.77 seconds respectively,
achieves 2 second failure detection latency on average, and
consumes only 0.56 kB/sec.

3.4 Worst-case guarantees
Our derivation so far targeted a minimal or desired detection
latency in the average case. The approach described above
does not (yet) provide a bound on worst-case detection la-
tency. Such a bound can be accommodated by specifying
the worst-case detection latency, Γ, solving for τ ∗

i using the√
s-LM or the

√
s-BM equations above, and setting τi to Γ

in cases where τ∗

i ≥ Γ. Subtracting the resulting bandwidth
consumption from B and re-solving for the remaining τj will
yield the optimal solution for the average-case behavior sub-
ject to the worst-case bound.

3.5 Probe length
Accuracy of failure detection depends significantly on tran-
sient losses encountered in the network. Since network fail-
ures are indistinguishable from host failures, losses in the
network can lead to false positives where a node erroneously
concludes that another node is down because all pings or
ping responses were lost in the network. We consider a ping
lost if a response is not received within a timeout period ∆.
Previous work on temporal dependence of packet losses [40]
indicates that for choices of ∆ > 1s, the losses are likely
to be independent, yielding a probability of pr for losing r

consecutive ping packets, where p is the packet loss rate. In
order to achieve a false positive rate at α, 0 ≤ α ≤ 1, we
can pick r = logp(1−α), and send r such consecutive pings
after timeouts before declaring a node down.

3.6 Expected number of pings
Having derived analytical formulas for the optimal probing
strategy, we are now in a position to compute q, the number
of times a node expects to send ping packets to a monitored
node before it successfully receives a response or concludes
that the node is down. If the node is down, the expected
number of pings is simply qdown

i = r. If the host is up, and
the probability of loss of the ping-response pair is p, the ex-
pected number of ping packets is the sum of the number of
pings for successfully receiving a response and declaring the
node up (the summation term), and the number of pack-
ets for the remaining case where all packets are lost in the
network and the node is erroneously declared down:



q
up

i =

 

r
X

t=1

tp
t−1(1 − p)

!

+ rp
r =

1 − pr

1 − p
(7)

The precise value for q depends on the manner in which the
failure detector is used. Failure detectors can be classified
into two categories based on how they manage their fail-
detect sets. In static fail-detect sets, the set of nodes being
monitored does not change in response to failures. Static
fail-detect sets are encountered in practice in settings where
the system is closed and set members are known a-priori;
for instance, replicated DNS servers running BIND moni-
tor the server set without replacement through failures. In
dynamic fail-detect sets, failed nodes in the fail-detect set
are removed at run-time. They may potentially be replaced
with alternative nodes, but nevertheless the invariant is that
the fail-detect set consists of all live nodes at all times. Dy-
namic fail-detect sets are encountered in settings where sys-
tem membership can change at run time and newly arriving
nodes can be tasked with explicitly announcing their arrival.
For instance, the Pastry overlay replaces failed nodes in a
node’s vicinity (leaf-set) by picking the closest alive nodes
in the circular identifier space. In effect, failure detectors
are generic event detectors; static fail-detect sets correspond
to event detectors that monitor both failure and recovery
events, whereas dynamic fail-detect sets correspond to event
detectors that monitor only failures.

In a dynamic fail-detect set, failed nodes are probed at most
once following a failure. Consequently, q = avg(qup

i ). In a
static fail-detect set, nodes are probed even when they are
down. We need consider not only the lifetime, but also di,
the mean time to recovery, in order to model q accurately.
Taking into account the percentage of time a node is up or
down, and the relative costs of probing alive and failed nodes
leads to the following formula:

q =

N
X

i=1

„

di

li + di

q
down
i +

li

li + di

q
up
i

«

(8)

This completes the full derivation of all parameters required
for the latency- and bandwidth-minimizing optimal failure
detectors from first principles. The critical inputs to the for-
mulas are the estimates for node lifetimes, whose accuracy
greatly determines the performance of the failure detector.
The next section examines the lifetime estimates as as well
as other practical considerations in implementing

√
s failure

detectors.

4. IMPLEMENTATION
In order to actually build an optimal detector, the parame-
ters used in the analysis need to be accurately and efficiently
estimated so the formula can be computed. The key param-
eter a practical implementation needs to estimate is li, a
node’s lifetime.

The choice of an estimation technique depends on the distri-
bution of node lifetimes (also known as session lengths) as
well as their variation over time. Note that for the defunct

case where node lifetimes are homogeneous, i.e. identical for
all nodes, our optimal solution yields the same result as tra-
ditional, periodic failure detectors. In practice, studies have
shown that node lifetimes vary substantially, which provides
the opportunity for our approach to significantly outperform
simple periodic polling.

We examine three simple techniques for estimating node life-
times, a moving average, an exponential moving average,
and a hybrid approach. A node monitoring other nodes’
failures has ready access to the node’s last session length.
In Moving Average (MovAvg), the monitoring node will cal-
culate the average lifetime of last k sessions, and use it for
its estimated value of li. In Exponential Moving Average
(ExpAvg), a node estimates the average lifetime li after the
tth session using the estimated lifetime lt−1

i and the dura-
tion of the last session λt

i according to li = (1−β)lt−1

i +βλt
i.

When β is large, the exponential average weights recent ses-
sion durations more heavily than previous sessions.

Our Hybrid approach is driven by the observation, from
PlanetLab data, that nodes tend to alternate between peri-
ods of frequent activity, followed by long quiescent periods
of either being up or down. We capture this behavior with a
bimodal moving average, which uses a “low” moving average
table for sessions below a certain threshold κ and a “high”
moving average table for the rest. When the current session
length is below κ, we use the estimate from the “low” mov-
ing average. Otherwise, we use the estimate from the “high”
moving average. The constant κ is set to 24 hours in our
implementation, and the low and high tables are updated
in response to failures, as well as when a monitored node’s
current session length exceeds the current lifetime estimate.

In our implementation, each node calculates the probing pe-
riod for the nodes in its fail-detect set using the previously
derived formulas, informed by estimates of node lifetime.
The node lifetime estimates are computed using the Hybrid
approach; we later provide a comparison of all three estima-
tors and find empirically that it achieves the best results for
the actual temporal variations in the PlanetLab data set.
When a fresh new node is added, its lifetime estimate can
be computed by querying the node (which will omit net-
work failures but capture node uptime up to that point in
time), by querying other nodes for their estimates (which
assumes that the network characteristics are similar from
different vantage points), or by simply assuming a represen-
tative default value, such as the average session duration for
all nodes. The selection depends on the deployment sce-
nario; in settings with moderate to high node churn, the
initial estimate does not materially impact performance.

The polling frequency for each node needs to be recomputed
whenever inputs change significantly. Our implementation
recomputes the polling frequency for each node reactively,
whenever the fail-detect set is modified in response to node
joins or failures, as well as proactively, every Ω = 5 minutes.

Note that, while our optimal solution caps the amount of
bandwidth stemming from failure detection actively per-
formed by a given host, it does not take into account the
bandwidth that the same node consumes when responding
to pings initiated by other hosts. This simplification is inten-
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Figure 1: Average Lifetime distributions for the synthetic and real traces.

tional, since neighbor management algorithms in structured
peer-to-peer systems typically provide (and themselves rely
on) in-degree balancing, which ensures that the incoming
load due to pings will not be concentrated at any one node
and can be derived easily. A

√
s failure detector implemen-

tation for an unstructured peer-to-peer system may need to
pay attention to node in-degree imbalance if the overlay does
not already guarantee in-degree balancing [38].

While failure detectors are typically designed as stand-alone
modules independent from the applications they serve, an
implementation can save bandwidth through a tighter inte-
gration between the detector and higher-level system func-
tionality. In particular, aggressively harvesting information
on node failures from higher levels can enable the detector to
delay or skip probes, saving bandwidth. A typical

√
s fail-

ure detection implementation will keep a countdown timer
associated with each node it is monitoring, set initially to τi

for that host. When an indication is received that the target
node is up, for instance, via an application-level invocation
to or from the target node, or via a probe in the reverse
direction from the target back to the monitoring node, the
timer can be reset to τi. Hence a busy overlay can piggy-
back failure detection onto naturally occurring traffic. Since
the bandwidth savings possible with this optimization are
highly application-specific, we ignore this optimization in
our evaluation.

We have implemented parameterizable failure detector toolkit
for

√
s−LM in Java and Python. The current implementa-

tions are approximately 300 lines of code.
√

s − LM failure
detector allows the application to dynamically add or re-
move nodes from the failure detector monitor set.

√
s−LM

calls back to application when it detects a node is not avail-
able. Figure 2 presents the interface for the failure detector
module.

We believe this interface is flexible and easy to adopt. The
actual implementation of the ping process is deferred to the
application for maximum flexibility. And the interface en-
ables the application to notify the failure detector of appli-
cation level traffic with the node, thus indicating that the
node is up and obviating the need to send explicit pings.

5. EVALUATION
In this section, we evaluate the efficacy of

√
s failure de-

tectors using long-term uptime measurements collected on
PlanetLab, web servers and Microsoft Desktop PCs. We ex-
amine two metrics of importance, failure detection latency
and bandwidth consumption. We compare our approach to
common failure detection mechanisms deployed in real sys-
tems.

We compare our
√

s-LM and
√

s-BM failure detectors to the
reference failure detector implementations used in FreePas-
try and Bamboo, two widely deployed distributed systems.
In FreePastry (Version 1.3.2), each node periodically probes
all nodes in its fail-detect set with a default period of 60
seconds. The node is marked as down when a ping packet
is lost. In Bamboo (version 20050701), each node periodi-
cally pings all nodes in its fail-detect set every 20 seconds.
An initial ping failure within 20 seconds marks the node as
“suspect,” which is followed immediately by a second ping
with a 60-second timeout. A subsequent failure marks the
node as having failed. Since the Pastry and Bamboo failure
detectors use different probing schemes, they achieve differ-
ent accuracies. We consequently adjust our algorithms to
match the accuracy achieved by Pastry and Bamboo for a
fair comparison.

We quantify the benefits of the
√

s-LM and
√

s-BM algo-
rithms under five different lifetime distributions, two syn-
thetic and three based on long-term uptime data from Plan-



// Add a node into the failure detector

public void addNode(Node node);

// Delete a node from the failure detector monitor

// set

public void deleteNode(Node node);

// Application should report when it receives

// a ping response from other nodes

public void pingResponse(Node node, long seqNum);

// Application can optionally report the node is alive

// to reduce ping traffic.

// e.g. regular data traffic was received from the node.

public void alive(Node node);

// Callback to the application to send a ping.

interface SendPingCB {

public void sendPing(Node node, long seqNum);

}

// Callback to the application to notify the node is

// not available

interface NodeFailedCB {

public void nodeFailed(Node node);

}

Figure 2: Interface for the failure detector module

etLab, web servers, and Microsoft Desktop PCs. We first ex-
amine a bimodal lifetime distribution, where nodes are either
long- or short-lived. Such a scenario might be encountered
in a system where there is a mix of client- and server-class
nodes, such as a peer-to-peer system with superpeers. We
pick a bimodal distribution with peaks at 30 and 300 min-
utes. We also examine a Pareto lifetime distribution, where
the probability of a node dying before time t is

Pr(lifetime < t) = 1 − (
β

t
)α (9)

where α and β are the shape and the scale parameters of
the distribution. We use α = 0.83 and β = 1560 sec in
our simulations. These parameters are used to create a syn-
thetic Pareto distribution to closely simulate the previous
data from the Gnutella network. While these parameters
are inspired by [26, 34], we present results from the syn-
thetic bimodal and Pareto lifetime distributions to provide
insight into the operation of the optimal solution by showing
the types of gains possible in two well-characterized settings.

For realistic evaluations, we examine three traces, Planet-
Lab [37], web servers [4] and Microsoft Desktop PCs [7],
which are used in [19]. We first examine the actual lifetime
distribution collected via a long-running all-pairs ping mea-
surement study over 561 nodes. We examine 5 months of all
pairs ping data collected between June 1 and October 26,
2005. The data contains the result of 10 consecutive pings
from each node to all other nodes, sent every 15 minutes.
Using the raw all-pairs ping data, we establish a “ground
truth” about the status of each node at each time interval.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

MS PCsWeb SitesPlanetLabParetoBimodal

La
te

nc
y 

(s
)

Trace

Mean Failure Detection Latency

Pastry
LM

Bamboo
Bamboo-LM

Figure 3: Failure detection latency of the latency-

minimizing optimal failure detector.
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Figure 4: Bandwidth usage of the latency-

minimizing optimal failure detector.

We consider a node to be down if none of the nodes can
ping it during that interval. In some periods of the Plan-
etLab trace, there are times when nearly all the nodes are
down, due to high load before major deadline conferences,
planned system upgrades, and failures of the measurement
system. To remove these cases, we elide the periods when
less than half the average number of nodes are up, follow-
ing previous work [19, 39]. We use a similar technique to
establish the “ground truth” in other traces.

We also examine the actual lifetime distribution of 129 web
sites collected using HTTP requests sent from a single ma-
chine at Carnegie Mellon every 10 minutes. We examine 7
months of data collected between September 2001 and April
2002. Finally, we examine the actual lifetime distribution of
51,662 desktop PCs within Microsoft Corporation that were
pinged every hour, denoted as “MS PCs”. The data spans
35 days beginning July 6, 1999. Figure 1 shows the distribu-
tion of node average lifetimes for the synthetic distributions
and the realistic traces.

In the simulations, the start and end of a failure is ran-
domized within the polling period in which it is detected.



While the polling period used in collecting the data may
have missed failures with very short durations (as will data
collected using any practical method based on polling), the
three realistic traces represents the most extensive and re-
alistic public uptime data available on geographically dis-
tributed systems, and the slight bias away from failures with
very short durations affects periodic failure detectors and

√
s

failure detector equally.

Our simulations accurately reflect the costs and latencies of
failure detection. We select fail-detect set size N to be 50,
and take the size of a ping packet s to be 64 bytes. Nodes
keep track of their own session durations and provide an
initial estimate to other nodes when they initially join the
network; subsequently, failure detectors perform their own
measurements and estimates. We examined network loss
rates p ranging from 0 to 0.05 [28] and found that loss rates
in this range impact the results by less than a few percent.
Consequently, we report only the conservative and realistic
results from the 0.05 loss rate experiments. All reported
measurements represent the average of 9 runs; bars indicate
standard deviation for normally distributed data.

We first examine the central tradeoff between bandwidth
consumption and achieved failure detection latency for latency-
minimizing optimal failure detector (

√
s-LM) at two dif-

ferent accuracy levels, and compare them to Pastry and
Bamboo under three different lifetime distributions. Fig-
ures 3 compare the average failure latency achieved by

√
s-

LM to that of traditional, periodic failure detectors.
√

s-
LM achieves a 40% improvement in update latency for both
the real-world PlanetLab data, and web sites data while
it achieves a 30% improvement in update latency for Mi-
crosoft PCs data. Both improvement in PlanetLab and web
sites significantly exceeds the improvement

√
s-LM provides

when node lifetimes are bimodal (32%) or Pareto (10%),
partly because the nodes exhibit highly skewed session times.√

s-LM has only 10% improvement in failure detection la-
tency because most of the nodes in Pareto distrubtion has
very short lifetime. Fig 4 shows that

√
s-LM consumes ap-

proximately the same amount of bandwidth as Pastry and
Bamboo while achieving significantly better detection laten-
cies. This is not surprising, as our solution was crafted to
take the desired bandwidth consumption as a constraint.

Next, we examine the bandwidth consumption and achieved
failure detection latency for

√
s-BM, parameterized to match

the average latency of Pastry and Bamboo. Figures 5 and 6
show that our bandwidth-minimizing optimal failure detec-
tor consumes approximately more than 30% less bandwidth
for the realistic traces, while approximately matching the
average failure detection latency. The 20% discrepancy be-
tween the targeted and achieved failure detection latency is
due to inaccuracy in estimated node lifetimes.

We next evaluate what kind of a strategy to use for esti-
mating node lifetimes in a realistic

√
s-LM implementation.

We examine moving average (MovAvg), exponential mov-
ing average (ExpAvg), and the hybrid approach (Hybrid).
To provide a point of comparison, we also examine a life-
time estimator, called FullInfo, that has access to the full
5-month duration of the trace, and uses li = l, the average
of all session durations as its estimate. Note that such a fail-
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bandwidth-minimizing optimal failure detector.
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Figure 6: Bandwidth usage of the bandwidth-

minimizing optimal failure detector.

ure detector is unrealistic, as it has access to future session
lengths, and implicitly assumes that session lifetimes are dis-
tributed normally, but nevertheless provides a yardstick for
the performance of other lifetime estimators. We examine
exponential moving average with α = 0.75; the size of the
moving average windows for MovAvg and Hybrid are set to
3. Figure 7 shows that the Hybrid and ExpAvg estimators
achieve results that are within a few percent of FullInfo.

Figure 8 provides insights into the operation of
√

s-LM by
plotting the average ping period τ i for each of the nodes
sorted by average lifetime.

√
s-LM preferentially pings the

nodes with shorter lifetimes more often, dedicating the re-
quired bandwidth to quickly detect failures, while Pastry’s
periodic failure detector pings every node with the same ping
period. The probe period ranges from 3.4 seconds for the
node with an average lifetime of 15 minutes to 3 minutes for
the node with 3537 hours average lifetime.

Finally, we examine the behavior of
√

s-LM as a function
of the available bandwidth. Figure 9 shows that

√
s-LM

achieves an average of 40% improvement in failure detec-
tion latency under bandwidth constraints ranging from 0.5
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Figure 8: Average ping period sorted by lifetime, as

computed by
√

s-LM.

bytes/s to 800 bytes/s. Note that the choice of τi may im-
pact the accuracy of the failure detector if the node fails
and recovers between successive probes. Figure 10 shows
the number of missed failures under different bandwidth lim-
its. With an extremely tight bandwidth limit of 1 byte/s,
the periodic failure detector misses 85 failures while

√
s-LM

only misses 38, and
√

s-LM achieves much better accuracy
across a range of bandwidths, mostly because it concentrates
its polling activity on nodes likely to fail. While this experi-
mentally confirmed behavior is encouraging, missed failures
are not a significant issue in settings with modest amounts
of bandwidth dedicated to monitoring. In the PlanetLab
trace, neither periodic nor

√
s-LM miss any failures when

bandwidth used for failure detection exceeds 0.2 Kbits/sec,

Overall,
√

s failure detectors utilize the critical resource,
bandwidth, optimally, achieving significant improvements in
detection time for a targeted bandwidth or savings in over-
head for a targeted latency compared to traditional periodic
failure detectors.

6. CONCLUSIONS
In this paper, we examined the problem of how to allocate
bandwidth to monitoring nodes in a multi-node failure de-
tector. We formalized the problem, expressed it analytically
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bandwidth for the PlanetLab trace.
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of bandwidth for the PlanetLab trace.

in a form tractable for mathematical optimization, and de-
rived closed-form solutions. We developed solutions to two
variants of the problem, suitable for two different settings:
our latency-minimizing optimal failure detector achieves the
lowest failure detection latency on average given a band-
width constraint, while our bandwidth-minimizing optimal
failure detector meets a targeted detection latency using
the least amount of bandwidth necessary to reach that goal.
Evaluation of our approach using real-world trace data span-
ning several months from PlanetLab hosts, web sites, and
Microsoft PCs indicate that the approach is effective. Com-
pared to traditional failure detectors, our optimal approach
can reduce detection latencies by 40% while using the same
amount of bandwidth, or reduce bandwidth consumed by
30% for a target detection latency.

Overall, the proposed approach lends itself to a straightfor-
ward implementation, is complementary to decades of work
in distributed failure detectors, and is suitable for recently
emerging peer-to-peer systems. We have built a parameteri-
zable failure detector toolkit

√
s−LM and are currently inte-

grating it into our peer-to-peer systems [30, 29, 35]. We hope
that such a toolkit will lead to a more principled, less ad hoc
implementations of failure detectors among distributed sys-
tem practitioners.
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